GNU Automake

For version 1.3, 3 April 1998

David MacKenzie and Tom Tromey

Copyright (©) 1995, 96 Free Software Foundation, Inc.

This is the first edition of the GNU Automake documentation,
and is consistent with GNU Automake 1.3.

Published by the Free Software Foundation
59 Temple Place - Suite 330,
Boston, MA 02111-1307 USA

Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the con-
ditions for verbatim copying, provided that the entire resulting derived work is distributed
under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another lan-
guage, under the above conditions for modified versions, except that this permission notice
may be stated in a translation approved by the Free Software Foundation.

Chapter 2: General ideas 1

1 Introduction

Automake is a tool for automatically generating ‘Makefile.in’s from files called
‘Makefile.am’. Each ‘Makefile.am’ is basically a series of make macro definitions (with
rules being thrown in occasionally). The generated ‘Makefile.in’s are compliant with the
GNU Makefile standards.

The GNU Makefile Standards Document (see section “Makefile Conventions” in The
GNU Coding Standards) is long, complicated, and subject to change. The goal of Automake
is to remove the burden of Makefile maintenance from the back of the individual GNU
maintainer (and put it on the back of the Automake maintainer).

The typical Automake input files is simply a series of macro definitions. Each such file
is processed to create a ‘Makefile.in’. There should generally be one ‘Makefile.am’ per
directory of a project.

Automake does constrain a project in certain ways; for instance it assumes that the
project uses Autoconf (see section “The Autoconf Manual” in The Autoconf Manual), and
enforces certain restrictions on the ‘configure.in’ contents.

Automake requires perl in order to generate the ‘Makefile.in’s. However, the distri-
butions created by Automake are fully GNU standards-compliant, and do not require perl
in order to be built.

Mail suggestions and bug reports for Automake to automake-bugs@gnu.org.

2 General ideas

There are a few basic ideas that will help understand how Automake works.

2.1 General Operation

Automake works by reading a ‘Makefile.am’ and generating a ‘Makefile.in’. Cer-
tain macros and targets defined in the ‘Makefile.am’ instruct automake to generate more
specialized code; for instances a ‘bin_PROGRAMS’ macro definition will cause targets for
compiling and linking to be generated.

The macro definitions and targets in the ‘Makefile.am’ are copied into the generated
file. This allows you to add arbitrary code into the generated ‘Makefile.in’. For instance
the Automake distribution includes a non-standard cvs-dist target, which the Automake
maintainer uses to make distributions from his source control system.

Note that GNU make extensions are not recognized by Automake. Using such extensions
in a ‘Makefile.am’ will lead to errors or confusing behavior.

Automake tries to group comments with adjoining targets (or variable definitions) in an
intelligent way.

A target defined in ‘Makefile.am’ generally overrides any such target of a similar name
that would be automatically generated by automake. Although this is a supported feature,
it is generally best to avoid making use of it, as sometimes the generated rules are very
particular.

Chapter 2: General ideas 2

Similarly, a variable defined in ‘Makefile.am’ will override any definition of the variable
that automake would ordinarily create. This feature is more often useful than the ability to
override a target definition. Be warned that many of the variables generated by automake
are considered to be for internal use only, and their names might change in future releases.

When examining a variable definition, Automake will recursively examine variables ref-
erenced in the definition. E.g., if Automake is looking at the content of ‘foo_SOURCES’ in
this snippet

Xs = a.c b.c
foo_SOURCES = c.c $(xs)

it would use the files ‘a.c’, ‘b.c’, and ‘c.c’ as the contents of ‘foo_SOURCES’.

Automake also allows a form of comment which is not copied into the output; all lines
beginning with ‘##’ are completely ignored by Automake.

It is customary to make the first line of ‘Makefile.am’ read:

Process this file with automake to produce Makefile.in

2.2 Depth

automake supports three kinds of directory hierarchy: “flat”, “shallow”, and “deep”.

A flat package is one in which all the files are in a single directory. The ‘Makefile.am’
for such a package by definition lacks a SUBDIRS macro. An example of such a package is
termutils.

A deep package is one in which all the source lies in subdirectories; the top level directory
contains mainly configuration information. GNU cpio is a good example of such a package,
as is GNU tar. The top level ‘Makefile.am’ for a deep package will contain a SUBDIRS
macro, but no other macros to define objects which are built.

A shallow package is one in which the primary source resides in the top-level directory,
while various parts (typically libraries) reside in subdirectories. Automake is one such
package (as is GNU make, which does not currently use automake).

2.3 Strictness

While Automake is intended to be used by maintainers of GNU packages, it does make
some effort to accommodate those who wish to use it, but do not want to use all the GNU
conventions.

To this end, Automake supports three levels of strictness—the strictness indicating how
stringently Automake should check standards conformance.

The valid strictness levels are:

‘foreign’ Automake will check for only those things which are absolutely required for
proper operations. For instance, whereas GNU standards dictate the existence
of a ‘NEWS’ file, it will not be required in this mode. The name comes from the
fact that Automake is intended to be used for GNU programs; these relaxed
rules are not the standard mode of operation.

Chapter 2: General ideas 3

gnu Automake will check—as much as possible—for compliance to the GNU stan-
dards for packages. This is the default.

‘gnits’ Automake will check for compliance to the as-yet-unwritten Gnits standards.
These are based on the GNU standards, but are even more detailed. Unless
you are a Gnits standards contributor, it is recommended that you avoid this
option until such time as the Gnits standard is actually published.

For more information on the precise implications of the strictness level, see See Chap-
ter 18 [Gnits], page 31.

2.4 The Uniform Naming Scheme

Automake variables generally follow a uniform naming scheme that makes it easy to
decide how programs (and other derived objects) are built, and how they are installed.
This scheme also supports configure time determination of what should be built.

At make time, certain variables are used to determine which objects are to be built.
These variables are called primary variables. For instance, the primary variable PROGRAMS
holds a list of programs which are to be compiled and linked.

A different set of variables is used to decide where the built objects should be installed.
These variables are named after the primary variables, but have a prefix indicating which
standard directory should be used as the installation directory. The standard directory
names are given in the GNU standards (see section “Directory Variables” in The GNU
Coding Standards). Automake extends this list with pkglibdir, pkgincludedir, and
pkgdatadir; these are the same as the non-‘pkg’ versions, but with ‘@PACKAGE®’ appended.
For instance, pkglibdir is defined as $(datadir)/@PACKAGEQ.

For each primary, there is one additional variable named by prepending ‘EXTRA_’ to
the primary name. This variable is used to list objects which may or may not be built,
depending on what configure decides. This variable is required because Automake must
statically know the entire list of objects to be built in order to generate a ‘Makefile.in’
that will work in all cases.

For instance, cpio decides at configure time which programs are built. Some of the
programs are installed in bindir, and some are installed in sbindir:
EXTRA_PROGRAMS = mt rmt
bin_PROGRAMS = cpio pax
sbin_PROGRAMS = QPROGRAMS@
Defining a primary variable without a prefix (eg PROGRAMS) is an error.

Note that the common ‘dir’ suffix is left off when constructing the variable names; thus
one writes ‘bin_PROGRAMS’ and not ‘bindir_PROGRAMS’.

Not every sort of object can be installed in every directory. Automake will flag those
attempts it finds in error. Automake will also diagnose obvious misspellings in directory
names.

Sometimes the standard directories—even as augmented by Automake— are not enough.
In particular it is sometimes useful, for clarity, to install objects in a subdirectory of some
predefined directory. To this end, Automake allows you to extend the list of possible

Chapter 3: Some example packages 4

installation directories. A given prefix (eg ‘zar’) is valid if a variable of the same name with
‘dir’ appended is defined (eg ‘zardir’).
For instance, until HTML support is part of Automake, you could use this to install raw
HTML documentation:
htmldir = $(prefix)/html
html_DATA = automake.html
The special prefix ‘noinst’ indicates that the objects in question should not be installed
at all.

The special prefix ‘check’ indicates that the objects in question should not be built until
the make check command is run.

Possible primary names are ‘PROGRAMS’, ‘LIBRARIES’, ‘LISP’, ‘SCRIPTS’, ‘DATA’, ‘HEADERS’,
‘MANS’, and ‘TEXINFOS’.

2.5 How derived variables are named

Sometimes a Makefile variable name is derived from some text the user supplies. For
instance program names are rewritten into Makefile macro names. Automake canonicalizes
this text, so that it does not have to follow Makefile variable naming rules. All characters
in the name except for letters, numbers, and the underscore are turned into underscores
when making macro references. E.g., if your program is named sniff-glue, the derived
variable name would be sniff_glue_SOURCES, not sniff-glue_SOURCES.

3 Some example packages

3.1 A simple example, start to finish

Let’s suppose you just finished writing zardoz, a program to make your head float from
vortex to vortex. You've been using autoconf to provide a portability framework, but your
‘Makefile.in’s have been ad-hoc. You want to make them bulletproof, so you turn to
automake.

The first step is to update your ‘configure.in’ to include the commands that automake
needs. The simplest way to do this is to add an AM_INIT_AUTOMAKE call just after AC_INIT:

AM_INIT_AUTOMAKE(zardoz, 1.0)

Since your program doesn’t have any complicating factors (e.g., it doesn’t use gettext,
it doesn’t want to build a shared library), you're done with this part. That was easy!

Now you must regenerate ‘configure’. But to do that, you’ll need to tell autoconf how
to find the new macro you’ve used. The easiest way to do this is to use the aclocal program
to generate your ‘aclocal.m4’ for you. But wait... you already have an ‘aclocal.m4’,
because you had to write some hairy macros for your program. aclocal lets you put your
own macros into ‘acinclude.m4’; so simply rename and then run:

mv aclocal.m4 acinclude.m4
aclocal
autoconf

Chapter 3: Some example packages 5

Now it is time to write your ‘Makefile.am’ for zardoz. zardoz is a user program, so
you want to install it where the rest of the user programs go. zardoz also has some Texinfo
documentation. Your ‘configure.in’ script uses AC_REPLACE_FUNCS, so you need to link
against ‘QLIBOBJS@’. So here’s what you'd write

bin_PROGRAMS = zardoz
zardoz_SOURCES = main.c head.c float.c vortex9.c gun.c
zardoz_LDADD = QLIBOBJS@

info_TEXINFOS = zardoz.texi

Now you can run automake --add-missing to generate your ‘Makefile.in’ and grab
any auxiliary files you might need, and you’re done!

3.2 A classic program

hello is renowned for its classic simplicity and versatility. This section shows how
Automake could be used with the Hello package. The examples below are from the latest
GNU Hello, but all the maintainer-only code has been stripped out, as well as all copyright
comments.

Of course, GNU Hello is somewhat more featureful than your traditional two-liner. GNU
Hello is internationalized, does option processing, and has a manual and a test suite. GNU
Hello is a deep package.

Here is the ‘configure.in’ from GNU Hello:

dnl Process this file with autoconf to produce a configure script.
AC_INIT(src/hello.c)

AM_INIT_AUTOMAKE(hello, 1.3.11)

AM_CONFIG_HEADER(config.h)

dnl Set of available languages.
ALL_LINGUAS="de fr es ko nl no pl pt sl sv"

dnl Checks for programs.

AC_PROG_CC

AC_ISC_POSIX

dnl Checks for libraries.

dnl Checks for header files.

AC_STDC_HEADERS

AC_HAVE_HEADERS(string.h fcntl.h sys/file.h sys/param.h)

dnl Checks for library functions.
AC_FUNC_ALLOCA

dnl Check for st_blksize in struct stat
AC_ST_BLKSIZE

dnl internationalization macros

Chapter 3: Some example packages 6

AM_GNU_GETTEXT
AC_OUTPUT ([Makefile doc/Makefile intl/Makefile po/Makefile.in \

src/Makefile tests/Makefile tests/hello],
[chmod +x tests/hello])

The ‘AM_’ macros are provided by Automake (or the Gettext library); the rest are stan-
dard Autoconf macros.

The top-level ‘Makefile.am’:
EXTRA_DIST = BUGS ChangelLog.0
SUBDIRS = doc intl po src tests
As you can see, all the work here is really done in subdirectories.

The ‘po’” and ‘intl’ directories are automatically generated using gettextize; they will
not be discussed here.
In ‘doc/Makefile.am’ we see:
info_TEXINFOS = hello.texi
hello_TEXINFOS = gpl.texi
This is sufficient to build, install, and distribute the Hello manual.
Here is ‘tests/Makefile.am’
TESTS = hello
EXTRA_DIST = hello.in testdata
The script ‘hello’ is generated by configure, and is the only test case. make check will
run this test.
Last we have ‘src/Makefile.am’, where all the real work is done:
bin_PROGRAMS = hello

hello_SOURCES = hello.c version.c getopt.c getoptl.c getopt.h system.h
hello_LDADD = QINTLLIBS@ QALLOCA®@

localedir = $(datadir)/locale

INCLUDES = -I../intl -DLOCALEDIR=\"$(localedir)\"

3.3 Building etags and ctags

Here is another, trickier example. It shows how to generate two programs (ctags and
etags) from the same source file (‘etags.c’). The difficult part is that each compilation of
‘etags.c’ requires different cpp flags.

bin_PROGRAMS = etags ctags
ctags_SOURCES =
ctags_LDADD = ctags.o

etags.o: etags.c
$ (COMPILE) -DETAGS_REGEXPS -c etags.c

ctags.o: etags.c
$ (COMPILE) -DCTAGS -o ctags.o -c etags.c

Note that ctags_SOURCES is defined to be empty—that way no implicit value is substi-
tuted. The implicit value, however, is used to generate etags from ‘etags.o’.

Chapter 4: Creating a ‘Makefile.in’ 7

ctags_LDADD is used to get ‘ctags.o’ into the link line. ctags_DEPENDENCIES is gener-
ated by Automake.

The above rules won’t work if your compiler doesn’t accept both ‘-¢’ and ‘-o’. The
simplest fix for this is to introduce a bogus dependency (to avoid problems with a parallel
make):

etags.o: etags.c ctags.o
$ (COMPILE) -DETAGS_REGEXPS -c etags.c

ctags.o: etags.c
$(COMPILE) -DCTAGS -c etags.c &% mv etags.o ctags.o
Also, these explicit rules do not work if the de-ANSI-fication feature is used; supporting
that requires a little more work:
etags._o: etags._c ctags.o
$(COMPILE) -DETAGS_REGEXPS -c etags.c

ctags._o: etags._c
$(COMPILE) -DCTAGS -c etags.c && mv etags._o ctags.o

4 Creating a ‘Makefile.in’

To create all the ‘Makefile.in’s for a package, run the automake program in the top
level directory, with no arguments. automake will automatically find each appropriate
‘Makefile.am’ (by scanning ‘configure.in’; see Chapter 5 [configure], page 9) and generate
the corresponding ‘Makefile.in’. Note that automake has a rather simplistic view of what
constitutes a package; it assumes that a package has only one ‘configure.in’, at the top. If
your package has multiple ‘configure.in’s, then you must run automake in each directory
holding a ‘configure.in’.

You can optionally give automake an argument; ‘.am’ is appended to the argument and
the result is used as the name of the input file. This feature is generally only used to au-
tomatically rebuild an out-of-date ‘Makefile.in’. Note that automake must always be run
from the topmost directory of a project, even if being used to regenerate the ‘Makefile.in’
in some subdirectory. This is necessary because automake must scan ‘configure.in’, and
because automake uses the knowledge that a ‘Makefile.in’ is in a subdirectory to change
its behavior in some cases.

automake accepts the following options:

-a

--add-missing
Automake requires certain common files to exist in certain situations; for in-
stance ‘config.guess’ is required if ‘configure.in’ runs AC_CANONICAL_HOST.
Automake is distributed with several of these files; this option will cause the
missing ones to be automatically added to the package, whenever possible. In
general if Automake tells you a file is missing, try using this option.

——amdir=dir
Look for Automake data files in directory dir instead of in the installation
directory. This is typically used for debugging.

Chapter 4: Creating a ‘Makefile.in’ 8

--build-dir=dir
Tell Automake where the build directory is. This option is used when including
dependencies into a ‘Makefile.in’ generated by make dist; it should not be
used otherwise.

-—cygnus Causes the generated ‘Makefile.in’s to follow Cygnus rules, instead of GNU
or Gnits rules. See Chapter 19 [Cygnus|, page 31 for more information.

--foreign
Set the global strictness to ‘foreign’. See Section 2.3 [Strictness|, page 2 for
more information.

--gnits Set the global strictness to ‘gnits’. See Chapter 18 [Gnits|, page 31 for more

information.

--gnu Set the global strictness to ‘gnu’. See Chapter 18 [Gnits], page 31 for more
information. This is the default strictness.

--help Print a summary of the command line options and exit.

-i

--include-deps
Include all automatically generated dependency information (see Section 7.9
[Dependencies|, page 21) in the generated ‘Makefile.in’. This is generally
done when making a distribution; see Chapter 13 [Dist], page 26.

--generate-deps

Generate a file concatenating all automatically generated dependency informa-
tion (see Section 7.9 [Dependencies|, page 21) into one file, ‘.dep_segment’.
This is generally done when making a distribution; see Chapter 13 [Dist],
page 26. It is useful when maintaining a ‘SMakefile’ or makefiles for other
platforms (‘Makefile.DOS’, etc.) It can only be used in conjunction with --
include-deps, --srcdir-name, and --build-dir. Note that if this option is
given, no other processing is done.

--no-force
Ordinarily automake creates all ‘Makefile.in’s mentioned in ‘configure.in’.
This option causes it to only update those ‘Makefile.in’s which are out of date
with respect to one of their dependents.

-o dir

—--output-dir=dir
Put the generated ‘Makefile.in’ in the directory dir. Ordinarily each ‘Makefile.in’
is created in the directory of the corresponding ‘Makefile.am’. This option is
used when making distributions.

--srcdir-name=dir
Tell Automake the name of the source directory associated with the current
build. This option is used when including dependencies into a ‘Makefile.in’
generated by make dist; it should not be used otherwise.

Chapter 5: Scanning ‘configure.in’ 9

-V

--verbose
Cause Automake to print information about which files are being read or cre-
ated.

—--version
Print the version number of Automake and exit.

5 Scanning ‘configure.in’

Automake scans the package’s ‘configure.in’ to determine certain information about
the package. Some autoconf macros are required and some variables must be defined in
‘configure.in’. Automake will also use information from ‘configure.in’ to further tailor
its output.

Automake also supplies some autoconf macros to make the maintenance easier. These
macros can automatically be put into your ‘aclocal.m4’ using the aclocal program.

5.1 Configuration requirements

The simplest way to meet the basic Automake requirements is to use the macro AM_
INIT_AUTOMAKE (see Section 5.4 [Macros|, page 12). But if you prefer, you can do the
required steps by hand:

e Define the variables PACKAGE and VERSION with AC_SUBST. PACKAGE should be the name
of the package as it appears when bundled for distribution. For instance, Automake
defines PACKAGE to be ‘automake’. VERSION should be the version number of the release
that is being developed. We recommend that you make ‘configure.in’ the only place
in your package where the version number is defined; this makes releases simpler.

Automake doesn’t do any interpretation of PACKAGE or VERSION, except in ‘Gnits’
mode (see Chapter 18 [Gnits|, page 31).

e Use the macro AC_ARG_PROGRAM if a program or script is installed.
e Use AC_PROG_MAKE_SET if the package is not flat.
e Use AM_SANITY_CHECK to make sure the build environment is sane.

e Use AM_PROG_INSTALL if any scripts (see Section 8.1 [Scripts], page 22) are installed by
the package. Otherwise, use AC_PROG_INSTALL.

e Use AM_MISSING_PROG to see whether the programs aclocal, autoconf, automake,
autoheader, and makeinfo are in the build environment. Here is how this is done:

missing_dir=‘cd $ac_aux_dir && pwd‘
AM_MISSING_PROG(ACLOCAL, aclocal, $missing_dir)
AM_MISSING_PROG(AUTOCONF, autoconf, $missing_dir)
AM_MISSING_PROG(AUTOMAKE, automake, $missing dir)
AM_MISSING_PROG(AUTOHEADER, autoheader, $missing dir)
AM_MISSING_PROG(MAKEINFO, makeinfo, $missing dir)

Here are the other macros which Automake requires but which are not run by AM_INIT_
AUTOMAKE:

Chapter 5: Scanning ‘configure.in’ 10

AC_QOUTPUT
Automake uses this to determine which files to create. Listed files named
Makefile are treated as ‘Makefile’s. Other listed files are treated differ-
ently. Currently the only difference is that a ‘Makefile’ is removed by make
distclean, while other files are removed by make clean.

5.2 Other things Automake recognizes

Automake will also recognize the use of certain macros and tailor the generated
‘Makefile.in’ appropriately. Currently recognized macros and their effects are:

AC_CONFIG_HEADER
Automake requires the use of AM_CONFIG_HEADER, which is similar to AC_
CONFIG_HEADER but does some useful Automake-specific work.

AC_CONFIG_AUX_DIR
Automake will look for various helper scripts, such as ‘mkinstalldirs’, in
the directory named in this macro invocation. If not seen, the scripts are
looked for in their “standard” locations (either the top source directory, or in
the source directory corresponding to the current ‘Makefile.am’, whichever is
appropriate). FIXME: give complete list of things looked for in this directory

AC_PATH_XTRA
Automake will insert definitions for the variables defined by AC_PATH_XTRA into
each ‘Makefile.in’ that builds a C program or library.

AC_CANONICAL_HOST

AC_CHECK_TOOL
Automake will ensure that ‘config.guess’ and ‘config.sub’ exist. Also, the
‘Makefile’ variables ‘host_alias’ and ‘host_triplet’ are introduced.

AC_CANONICAL_SYSTEM
This is similar to AC_CANONICAL_HOST, but also defines the ‘Makefile’ variables
‘build_alias’ and ‘target_alias’.

AC_FUNC_ALLOCA

AC_FUNC_GETLOADAVG

AC_FUNC_MEMCMP

AC_STRUCT_ST_BLOCKS

AC_FUNC_FNMATCH

AM_FUNC_STRTOD

AC_REPLACE_FUNCS

AC_REPLACE_GNU_GETOPT

AM_WITH_REGEX
Automake will ensure that the appropriate dependencies are generated for the
objects corresponding to these macros. Also, Automake will verify that the
appropriate source files are part of the distribution. Note that Automake does
not come with any of the C sources required to use these macros, so automake
-a will not install the sources. See Section 7.2 [A Library], page 17 for more
information.

Chapter 5: Scanning ‘configure.in’ 11

LIBOBJS Automake will detect statements which put ‘.o’ files into LIBOBJS, and will
treat these additional files as if they were discovered via AC_REPLACE_FUNCS.

AC_PROG_RANLIB
This is required if any libraries are built in the package.

AC_PROG_CXX
This is required if any C++ source is included.

AM_PROG_LIBTOOL
Automake will turn on processing for 1ibtool (see section “The Libtool Man-
ual” in The Libtool Manual).

AC_PROG_YACC
If a Yacc source file is seen, then you must either use this macro or define the
variable ‘YACC’ in ‘configure.in’. The former is preferred.

AC_DECL_YYTEXT
This macro is required if there is Lex source in the package.

AC_PROG_LEX
If a Lex source file is seen, then this macro must be used.

ALL_LINGUAS
If Automake sees that this variable is set in ‘configure.in’, it will check the
‘po’ directory to ensure that all the named ‘.po’ files exist, and that all the
‘.po’ files that exist are named.

AM_C_PROTOTYPES
This is required when using automatic de-ANSI-fication, see Section 7.8 [ANSI],
page 20.

AM_GNU_GETTEXT
This macro is required for packages which use GNU gettext (see Section 9.2
[gettext], page 23). It is distributed with gettext. If Automake sees this macro
it ensures that the package meets some of gettext’s requirements.

AM_MAINTAINER_MODE
This macro adds a ‘~-enable-maintainer-mode’ option to configure. If this
is used, automake will cause “maintainer-only” rules to be turned off by default
in the generated ‘Makefile.in’s. This macro is disallowed in ‘Gnits’ mode (see
Chapter 18 [Gnits|, page 31).

AC_SUBST

AC_CHECK_TOOL

AC_CHECK_PROG

AC_CHECK_PROGS

AC_PATH_PROG

AC_PATH_PROGS
For each of these macros, the first argument is automatically defined as a vari-
able in each generated ‘Makefile.in’.

Chapter 5: Scanning ‘configure.in’ 12

5.3 Auto-generating aclocal.m4

Automake includes a number of Autoconf macros which can be used in your package;
some of them are actually required by Automake in certain situations. These macros must
be defined in your ‘aclocal.mé’; otherwise they will not be seen by autoconf.

The aclocal program will automatically generate ‘aclocal.m4’ files based on the con-
tents of ‘configure.in’. This provides a convenient way to get Automake-provided macros,
without having to search around. Also, the aclocal mechanism is extensible for use by
other packages.

[4

At startup, aclocal scans all the ‘.m4’ files it can find, looking for macro definitions.
Then it scans ‘configure.in’. Any mention of one of the macros found in the first step
causes that macro, and any macros it in turn requires, to be put into ‘aclocal.m4’.

The contents of ‘acinclude.mé’, if it exists, are also automatically included in ‘aclocal .m4’.
This is useful for incorporating local macros into ‘configure’.
aclocal accepts the following options:
—-—acdir=dir
Look for the macro files in dir instead of the installation directory. This is
typically used for debugging.

--help Print a summary of the command line options and exit.
-I dir Add the directory dir to the list of directories searched for ‘.m4’ files.
—-—output=file

Cause the output to be put into file instead of ‘aclocal .m4’.

--print-ac-dir
Prints the name of the directory which aclocal will search to find the ‘m4’ files.
When this option is given, normal processing is suppressed. This option can be
used by a package to determine where to install a macro file.

--verbose
Print the names of the files it examines.

--version
Print the version number of Automake and exit.

5.4 Autoconf macros supplied with Automake

AM_CONFIG_HEADER
Automake will generate rules to automatically regenerate the config header. If
you do use this macro, you must create the file ‘stamp-h.in’ in your source
directory. It can be empty.

AM_CYGWIN32
Check to see if this configure is being run in the ‘Cygwin32’ environment.
(FIXME xref). If so, define output variable EXEEXT to ‘.exe’; otherwise define
it to the empty string. Automake recognizes this macro and uses it to gen-
erate ‘Makefile.in’s which will automatically work under ‘Cygwin32’. In the

Chapter 5: Scanning ‘configure.in’ 13

‘Cygwin32’ environment, gcc generates executables whose names end in ‘. exe’,

even if this was not specified on the command line. Automake adds special
code to ‘Makefile.in’ to gracefully deal with this.

AM_FUNC_STRTOD
If the strtod function is not available, or does not work correctly (like the one
on SunOS 5.4), add ‘strtod.o’ to output variable LIBOBJS.

AM_FUNC_ERROR_AT_LINE
If the function error_at_line is not found, then add ‘error.o’ to LIBOBJS.

AM_FUNC_MKTIME
Check for a working mktime function. If not found, add ‘mktime.o’ to
‘LIBOBJS’.

AM_FUNC_OBSTACK
Check for the GNU obstacks code; if not found, add ‘obstack.o’ to ‘LIBOBJS’ .

AM_C_PROTOTYPES
Check to see if function prototypes are understood by the compiler. If so, define
‘PROTOTYPES’ and set the output variables ‘U’ and ‘ANSI2KNR’ to the empty
string. Otherwise, set ‘U’ to ‘_’ and ‘ANSI2KNR’ to ‘./ansi2knr’. Automake

uses these values to implement automatic de-ANSI-fication.

AM_HEADER_TIOCGWINSZ_NEEDS_SYS_IOCTL
If the use of TIOCGWINSZ requires ‘<sys/ioctl.h>’, then define GWINSZ_IN_
SYS_IOCTL. Otherwise TIOCGWINSZ can be found in ‘<termios.h>’.

AM_INIT_AUTOMAKE
Runs many macros that most ‘configure.in’’s need. This macro has two
required arguments, the package and the version number. By default this macro
AC_DEFINE’s ‘PACKAGE’ and ‘VERSION’. This can be avoided by passing in a non-
empty third argument.

AM_PATH_LISPDIR
Searches for the program emacs, and, if found, sets the output variable 1lispdir
to the full path to Emacs’ site-lisp directory.

AM_PROG_CC_STDC
If the C compiler in not in ANSI C mode by default, try to add an option to
output variable CC to make it so. This macro tries various options that select
ANSI C on some system or another. It considers the compiler to be in ANSI C
mode if it handles function prototypes correctly.

If you use this macro, you should check after calling it whether the C compiler
has been set to accept ANSI C; if not, the shell variable am_cv_prog_cc_stdc
is set to ‘no’. If you wrote your source code in ANSI C, you can make an
un-ANSlIfied copy of it by using the ansi2knr option.

AM_PROG_INSTALL
Like AC_PROG_INSTALL, but also defines INSTALL_SCRIPT.

Chapter 6: The top-level ‘Makefile.am’ 14

AM_PROG_LEX
Like AC_PROG_LEX with AC_DECL_YYTEXT, but uses the missing script on sys-
tems that do not have lex. ‘HP-UX 10’ is one such system.

AM_SANITY_CHECK
This checks to make sure that a file created in the build directory is newer than
a file in the source directory. This can fail on systems where the clock is set
incorrectly. This macro is automatically run from AM_INIT_AUTOMAKE.

AM_SYS_POSIX_TERMIOS
Check to see if POSIX termios headers and functions are available on the sys-
tem. If so, set the shell variable am_cv_sys_posix_termios to ‘yes’. If not,
set the variable to ‘no’.

AM_TYPE_PTRDIFF_T
Define ‘HAVE_PTRDIFF_T’ if the type ‘ptrdiff_t’ is defined in ‘<stddef.h>’.

AM_WITH_DMALLOC
Add support for the dmalloc package. If the user configures with ‘--with-dmalloc’,
then define WITH_DMALLOC and add ‘~1dmalloc’ to LIBS. The dmalloc package
can be found at ftp://ftp.letters.com/src/dmalloc/dmalloc.tar.gz

AM_WITH_REGEX
Adds ‘--with-regex’ to the configure command line. If specified (the de-
fault), then the ‘regex’ regular expression library is used, ‘regex.o’ is put into
‘LIBOBJS’, and ‘WITH_REGEX’ is defined.. If ‘--without-regex’ is given, then
the ‘rx’ regular expression library is used, and ‘rx.o’ is put into ‘LIBOBJS’.

5.5 Writing your own aclocal macros

Aclocal doesn’t have any built-in knowledge of any macros, so it is easy to extend it
with your own macros.

This is mostly used for libraries which want to supply their own Autoconf macros for
use by other programs. For instance the gettext library supplies a macro AM_GNU_GETTEXT
which should be used by any package using gettext. When the library is installed, it
installs this macro so that aclocal will find it.

A file of macros should be a series of AC_DEFUN’s. Aclocal also understands AC_REQUIRE,
so it is safe to put each macro in a separate file.

A macro file’s name should end in ‘.m4’. Such files should be installed in ‘$ (datadir) /aclocal’.

6 The top-level ‘Makefile.am’

In non-flat packages, the top level ‘Makefile.am’ must tell Automake which subdirecto-
ries are to be built. This is done via the SUBDIRS variable.

The SUBDIRS macro holds a list of subdirectories in which building of various sorts can
occur. Many targets (eg all) in the generated ‘Makefile’ will run both locally and in
all specified subdirectories. Note that the directories listed in SUBDIRS are not required

Chapter 7: Building Programs and Libraries 15

to contain ‘Makefile.am’s; only ‘Makefile’s (after configuration). This allows inclusion
of libraries from packages which do not use Automake (such as gettext). The directories
mentioned in SUBDIRS must be direct children of the current directory. For instance, you
cannot put ‘src/subdir’ into SUBDIRS.

In a deep package, the top-level ‘Makefile.am’ is often very short. For instance, here is
the ‘Makefile.am’ from the Hello distribution:

EXTRA_DIST = BUGS ChangelLog.0 README-alpha
SUBDIRS = doc intl po src tests

It is possible to override the SUBDIRS variable if, like in the case of GNU Inetutils,
you want to only build a subset of the entire package. In your ‘Makefile.am’ include:

SUBDIRS = Q@SUBDIRS@
Then in your ‘configure.in’ you can specify:

SUBDIRS = "src doc 1lib po"
AC_SUBST (SUBDIRS)

The upshot of this is that automake is tricked into building the package to take the
subdirs, but doesn’t actually bind that list until configure is run.

SUBDIRS can contain configure substitutions (eg ‘@DIRS@’); Automake itself does not
actually examine the contents of this variable.

If SUBDIRS is defined, then your ‘configure.in’ must include AC_PROG_MAKE_SET.

The use of SUBDIRS is not restricted to just the top-level ‘Makefile.am’. Automake can
be used to construct packages of arbitrary depth.

7 Building Programs and Libraries

A large part of Automake’s functionality is dedicated to making it easy to build C
programs and libraries.

7.1 Building a program

In a directory containing source that gets built into a program (as opposed to a li-
brary), the ‘PROGRAMS’ primary is used. Programs can be installed in ‘bindir’, ‘sbindir’,
‘libexecdir’, ‘pkglibdir’, or not at all (‘noinst’).

For instance:

bin_PROGRAMS = hello

In this simple case, the resulting ‘Makefile.in’ will contain code to generate a program
named hello. The variable hello_SOURCES is used to specify which source files get built
into an executable:

hello_SOURCES = hello.c version.c getopt.c getoptl.c getopt.h system.h

This causes each mentioned ‘.c’ file to be compiled into the corresponding ‘.o’. Then
all are linked to produce ‘hello’.

If ‘prog_SOURCES’ is needed, but not specified, then it defaults to the single file ‘prog.c’.
In the example above, the definition of hello_SOURCES is actually redundant.

Chapter 7: Building Programs and Libraries 16

Multiple programs can be built in a single directory. Multiple programs can share a
single source file. The source file must be listed in each ‘_SOURCES’ definition.

Header files listed in a ‘_SOURCES’ definition will be included in the distribution but
otherwise ignored. In case it isn’t obvious, you should not include the header file generated
by ‘configure’ in an ‘_SOURCES’ variable; this file should not be distributed. Lex (‘.1’)
and yacc (‘.y’) files can also be listed; see Section 7.6 [Yacc and Lex], page 18.

Automake must know all the source files that could possibly go into a program, even if
not all the files are built in every circumstance. Any files which are only conditionally built
should be listed in the appropriate ‘EXTRA_’ variable. For instance, if ‘hello-linux.c’ were
conditionally included in hello, the ‘Makefile.am’ would contain:

EXTRA_hello_SOURCES = hello-linux.c

Similarly, sometimes it is useful to determine the programs that are to be built at
configure time. For instance, GNU cpio only builds mt and rmt under special circumstances.

In this case, you must notify automake of all the programs that can possibly be built,
but at the same time cause the generated ‘Makefile.in’ to use the programs specified by
configure. This is done by having configure substitute values into each ‘_PROGRAMS’
definition, while listing all optionally built programs in EXTRA_PROGRAMS.

If you need to link against libraries that are not found by configure, you can use LDADD
to do so. This variable actually can be used to add any options to the linker command line.

Sometimes, multiple programs are built in one directory but do not share the same link-
time requirements. In this case, you can use the ‘prog_LDADD’ variable (where prog is the
name of the program as it appears in some ‘_PROGRAMS’ variable, and usually written in
lowercase) to override the global LDADD. (If this variable exists for a given program, then
that program is not linked using LDADD.)

For instance, in GNU cpio, pax, cpio, and mt are linked against the library ‘libcpio.a’.
However, rmt is built in the same directory, and has no such link requirement. Also, mt and
rmt are only built on certain architectures. Here is what cpio’s ‘src/Makefile.am’ looks
like (abridged):

bin_PROGRAMS = cpio pax QMTQ
libexec_PROGRAMS = ©RMTQ
EXTRA_PROGRAMS = mt rmt

LDADD = ../lib/libcpio.a @INTLLIBSQ
rmt_LDADD =

cpio_SOURCES = ...
pax_SOURCES = ...
mt_SOURCES = ...

rmt_SOURCES = ...

‘prog_LDADD’ is inappropriate for passing program-specific linker flags (except for ‘-1’
and ‘=L’). So, use the ‘prog_LDFLAGS’ variable for this purpose.

It is also occasionally useful to have a program depend on some other target which is not
actually part of that program. This can be done using the ‘prog_DEPENDENCIES’ variable.

Chapter 7: Building Programs and Libraries 17

Each program depends on the contents of such a variable, but no further interpretation is
done.

If ‘prog_DEPENDENCIES’ is not supplied, it is computed by Automake. The automatically-
assigned value is the contents of ‘prog_LDADD’, with most configure substitutions, ‘-1’, and
‘-L’ options removed. The configure substitutions that are left in are only ‘eLIBOBJS®@’ and
‘@ALLOCAQ’; these are left because it is known that they will not cause an invalid value for
‘prog_DEPENDENCIES’ to be generated.

7.2 Building a library

Building a library is much like building a program. In this case, the name of the primary
is ‘LIBRARIES’. Libraries can be installed in 1ibdir or pkglibdir.

See Section 7.4 [A Shared Library], page 17, for information on how to build shared
libraries using Libtool and the ‘LTLIBRARIES’ primary.

Each ‘_LIBRARIES’ variable is a list of the libraries to be built. For instance to create a
library named ‘libcpio.a’, but not install it, you would write:

noinst_LIBRARIES = libcpio.a

The sources that go into a library are determined exactly as they are for programs, via
the ‘_SOURCES’ variables. Note that the library name is canonicalized (see Section 2.5
[Canonicalization], page 4), so the ‘_SOURCES’ variable corresponding to ‘liblob.a’ is
‘liblob_a_SOURCES’, not ‘liblob.a_SOURCES’.

Extra objects can be added to a library using the ‘library_LIBADD’ variable. This
should be used for objects determined by configure. Again from cpio:
libcpio_a_LIBADD = @LIBOBJS@ Q@ALLOCA®

7.3 Special handling for LIBOBJS and ALLOCA

Automake explicitly recognizes the use of @LIBOBJS@ and @ALLOCA®@, and uses this infor-
mation, plus the list of LIBOBJS files derived from ‘configure.in’ to automatically include
the appropriate source files in the distribution (see Chapter 13 [Dist], page 26). These source
files are also automatically handled in the dependency-tracking scheme, see See Section 7.9
[Dependencies], page 21.

@LIBOBJS@ and @ALLOCAQ@ are specially recognized in any ‘_LDADD’ or ‘_LIBADD’ variable.

7.4 Building a Shared Library

Building shared libraries is a relatively complex matter. For this reason, GNU Libtool
(see section “The Libtool Manual” in The Libtool Manual) was created to help build shared
libraries in a platform-independent way.

Automake uses Libtool to build libraries declared with the ‘LTLIBRARIES’ primary. Each
‘_LTLIBRARIES’ variable is a list of shared libraries to build. For instance, to create a library
named ‘libgettext.a’ and its corresponding shared libraries, and install them in ‘libdir’,
write:

Chapter 7: Building Programs and Libraries 18

1ib_LTLIBRARIES = libgettext.la

Note that shared libraries must be installed, so ‘noinst_LTLIBRARIES’ and ‘check_LTLIBRARIES’
are not allowed.

For each library, the ‘library_LIBADD’ variable contains the names of extra libtool
objects (.10’ files) to add to the shared library. The ‘1ibrary_LDFLAGS’ variable contains
any additional libtool flags, such as ‘-version-info’ or ‘-static’.

Where an ordinary library might include @LIBOBJS@, a libtool library must use @LTLIBOBJSQ.
This is required because the object files that libtool operates on do not necessarily end in
*.0’. The libtool manual contains more details on this topic.

For libraries installed in some directory, automake will automatically supply the ap-
propriate ‘-rpath’ option. However, for libraries determined at configure time (and thus
mentioned in EXTRA_LTLIBRARIES), automake does not know the eventual installation di-
rectory; for such libraries you must add the ‘~rpath’ option to the appropriate ‘_LDFLAGS’
variable by hand.

See section “The Libtool Manual” in The Libtool Manual, for more information.

7.5 Variables used when building a program

Occasionally it is useful to know which ‘Makefile’ variables Automake uses for compi-
lations; for instance you might need to do your own compilation in some special cases.

Some variables are inherited from Autoconf; these are CC, CFLAGS, CPPFLAGS, DEFS,
LDFLAGS, and LIBS.

There are some additional variables which Automake itself defines:
INCLUDES A list of ‘-1’ options. This can be set in your ‘Makefile.am’ if you have special
directories you want to look in. automake already provides some ‘-I’ options
automatically. In particular it generates ‘-I$(srcdir)’ and a ‘-I’ pointing

to the directory holding ‘config.h’ (if you’'ve used AC_CONFIG_HEADER or AM_
CONFIG_HEADER).

INCLUDES can actually be used for other cpp options besides ‘-I’. For instance,
it is sometimes used to pass arbitrary ‘-D’ options to the compiler.

COMPILE This is the command used to actually compile a C source file. The filename is
appended to form the complete command line.

LINK This is the command used to actually link a C program.

7.6 Yacc and Lex support

Automake has somewhat idiosyncratic support for Yacc and Lex.

Automake assumes that the ‘. c’ file generated by yacc (or lex) should be named using the
basename of the input file. That is, for a yacc source file ‘foo.y’, automake will cause the
intermediate file to be named ‘foo.c’ (as opposed to ‘y.tab.c’, which is more traditional).

The extension of a yacc source file is used to determine the extension of the resulting
‘C’ or ‘C++’ file. Files with the extension ‘.y’ will be turned into ‘.c’ files; likewise, ‘.yy’

Chapter 7: Building Programs and Libraries 19

¢ ¢

will become ‘.cc’; ‘.y++’) ‘c++’; and ‘.yxx’, ‘.cxx’. Likewise, lex source files can be used
to generate ‘C’ or ‘C++’; the extensions ‘.1’, *.11’, ‘. 1++’ and ‘.1xx’ are recognized.

You should never explicitly mention the intermediate (‘C’ or ‘C++’) file in any ‘SOURCES’
variable; only list the source file.

The intermediate files generated by yacc (or lex) will be included in any distribution
that is made. That way the user doesn’t need to have yacc or lex.

If a yacc source file is seen, then your ‘configure.in’ must define the variable ‘YACC’.
This is most easily done by invoking the macro ‘AC_PROG_YACC’.

Similarly, if a lex source file is seen, then your ‘configure.in’ must define the variable
‘LEX’. You can use ‘AC_PROG_LEX’ to do this. Automake’s lex support also requires that you
use the ‘AC_DECL_YYTEXT’ macro—automake needs to know the value of ‘LEX_OUTPUT_ROOT’.

Automake makes it possible to include multiple yacc (or lex) source files in a single
program. Automake uses a small program called ylwrap to run yacc (or lex) in a subdi-
rectory. This is necessary because yacc’s output filename is fixed, and a parallel make could
conceivably invoke more than one instance of yacc simultaneously. ylwrap is distributed
with automake. It should appear in the directory specified by ‘AC_CONFIG_AUX_DIR’, or the
current directory if that macro is not used in ‘configure.in’.

For yacc, simply managing locking is insufficient. yacc output also always uses the
same symbol names internally, so it isn’t possible to link two yacc parsers into the same
executable.

We recommend using the following renaming hack used in gdb:

#define yymaxdepth c_maxdepth
#define yyparse c_parse
#define yylex c_lex
#define yyerror c_error
#define yylval c_lval
#define yychar c_char
#define yydebug c_debug
#define yypact c_pact
#define yyrl c_ril
#define yyr2 c_r2
#define yydef c_def
#define yychk c_chk
#define yypgo c_pgo
#define yyact c_act
#define yyexca c_exca
#define yyerrflag c_errflag
#define yynerrs c_nerrs
#define yyps c_ps
#define yypv c_pv
#define yys c_s

#define yy_yys c_yys
#define yystate c_state
#define yytmp c_tmp
#define yyv c_v

#define yy_yyv c_yyv

Chapter 7: Building Programs and Libraries 20

#define yyval c_val

#define yylloc c_lloc
#define yyreds c_reds
#define yytoks c_toks
#define yylhs c_yylhs
#define yylen c_yylen
#define yydefred c_yydefred
#define yydgoto c_yydgoto
#define yysindex c_yysindex
#define yyrindex c_yyrindex
#define yygindex c_yygindex
#define yytable c_yytable
#define yycheck c_yycheck

For each define, replace the ‘c_’ prefix with whatever you like. These defines work for
bison, byacc, and traditional yaccs. If you find a parser generator that uses a symbol not
covered here, please report the new name so it can be added to the list.

7.7 C++ and other languages

Automake includes full support for C++, and rudimentary support for other languages.
Support for other languages will be improved based on demand.

Any package including C++ code must define the output variable ‘CXX’ in ‘configure.in’;
the simplest way to do this is to use the AC_PROG_CXX macro.

A few additional variables are defined when a C++ source file is seen:
CXX The name of the C++ compiler.
CXXFLAGS Any flags to pass to the C++ compiler.

CXXCOMPILE
The command used to actually compile a C++ source file. The file name is
appended to form the complete command line.

CXXLINK The command used to actually link a C++ program.

7.8 Automatic de-ANSI-fication

Although the GNU standards allow the use of ANSI C, this can have the effect of limiting
portability of a package to some older compilers (notably SunOS).

Automake allows you to work around this problem on such machines by “de-ANSI-fying”
each source file before the actual compilation takes place.

If the ‘Makefile.am’ variable AUTOMAKE_OPTIONS (Chapter 15 [Options|, page 28) con-
tains the option ansi2knr then code to handle de-ANSI-fication is inserted into the gener-
ated ‘Makefile.in’.

This causes each C source file in the directory to be treated as ANSI C. If an ANSI C
compiler is available, it is used. If no ANSI C compiler is available, the ansi2knr program
is used to convert the source files into K&R C, which is then compiled.

Chapter 8: Other Derived Objects 21

The ansi2knr program is simple-minded. It assumes the source code will be formatted
in a particular way; see the ansi2knr man page for details.

De-ANSI-fication support requires the source files ‘ansi2knr.c’ and ‘ansi2knr.1’ to be
in the same package as the ANSI C source; these files are distributed with Automake. Also,
the package ‘configure.in’ must call the macro AM_C_PROTOTYPES.

Automake also handles finding the ansi2knr support files in some other directory in the
current package. This is done by prepending the relative path to the appropriate directory
to the ansi2knr option. For instance, suppose the package has ANSI C code in the ‘src’
and ‘1ib’ subdirs. The files ‘ansi2knr.c’ and ‘ansi2knr.1’ appear in ‘lib’. Then this
could appear in ‘src/Makefile.am’:

AUTOMAKE_OPTIONS = ../lib/ansi2knr

If no directory prefix is given, the files are assumed to be in the current directory.

7.9 Automatic dependency tracking

As a developer it is often painful to continually update the ‘Makefile.in’ whenever the
include-file dependencies change in a project. automake supplies a way to automatically
track dependency changes, and distribute the dependencies in the generated ‘Makefile.in’.

Currently this support requires the use of GNU make and gcc. It might become possi-
ble in the future to supply a different dependency generating program, if there is enough
demand. In the meantime, this mode is enabled by default if any C program or library
is defined in the current directory, so you may get a ‘Must be a separator’ error from
non-GNU make.

When you decide to make a distribution, the dist target will re-run automake with
‘~-—include-deps’ and other options. This will cause the previously generated dependencies
to be inserted into the generated ‘Makefile.in’, and thus into the distribution. This step
also turns off inclusion of the dependency generation code, so that those who download
your distribution but don’t use GNU make and gcc will not get errors.

When added to the ‘Makefile.in’, the dependencies have all system-specific dependen-
cies automatically removed. This can be done by listing the files in ‘OMIT_DEPENDENCIES’.
For instance all references to system header files are removed by automake. Sometimes
it is useful to specify that a certain header file should be removed. For instance if your
‘configure.in’ uses ‘AM_WITH_REGEX’, then any dependency on ‘rx.h’ or ‘regex.h’ should
be removed, because the correct one cannot be known until the user configures the package.

As it turns out, automake is actually smart enough to handle the particular case of the
regular expression header. It will also automatically omit ‘1ibintl.h’ if ‘AM_GNU_GETTEXT’
is used.

Automatic dependency tracking can be suppressed by putting no-dependencies in the
variable AUTOMAKE_OPTIONS.

If you unpack a distribution made by make dist, and you want to turn on the
dependency-tracking code again, simply re-run automake.

The actual dependency files are put under the build directory, in a subdirectory named
‘.deps’. These dependencies are machine specific. It is safe to delete them if you like; they
will be automatically recreated during the next build.

Chapter 8: Other Derived Objects 22

8 Other Derived Objects

Automake can handle derived objects which are not C programs. Sometimes the sup-
port for actually building such objects must be explicitly supplied, but Automake will still
automatically handle installation and distribution.

8.1 Executable Scripts

It is possible to define and install programs which are scripts. Such programs are listed
using the ‘SCRIPTS’ primary name. automake doesn’t define any dependencies for scripts;
the ‘Makefile.am’ should include the appropriate rules.

automake does not assume that scripts are derived objects; such objects must be deleted
by hand; see Chapter 12 [Clean], page 26 for more information.

automake itself is a script that is generated at configure time from ‘automake.in’. Here
is how this is handled:

bin_SCRIPTS = automake

Since automake appears in the AC_OUTPUT macro, a target for it is automatically gener-
ated.

Script objects can be installed in bindir, sbindir, libexecdir, or pkgdatadir.

8.2 Header files

Header files are specified by the ‘HEADERS’ family of variables. Generally header files are
not installed, so the noinst_HEADERS variable will be the most used.

All header files must be listed somewhere; missing ones will not appear in the distri-
bution. Often it is clearest to list uninstalled headers with the rest of the sources for a
program. See Section 7.1 [A Program|, page 15. Headers listed in a ‘_SOURCES’ variable
need not be listed in any ‘_HEADERS’ variable.

Headers can be installed in includedir, oldincludedir, or pkgincludedir.

8.3 Architecture-independent data files

Automake supports the installation of miscellaneous data files using the ‘DATA’ family of
variables.

Such data can be installed in the directories datadir, sysconfdir, sharedstatedir,
localstatedir, or pkgdatadir.

By default, data files are not included in a distribution.
Here is how automake installs its auxiliary data files:

pkgdata_DATA = clean-kr.am clean.am ...

Chapter 9: Other GNU Tools 23

8.4 Built sources

Occasionally a file which would otherwise be called “source” (eg a C ‘.h’ file) is actually
derived from some other file. Such files should be listed in the BUILT_SOURCES variable.

Built sources are also not compiled by default. You must explicitly mention them in
some other ‘_SOURCES’ variable for this to happen.

Note that, in some cases, BUILT_SOURCES will work in somewhat suprising ways. In
order to get the built sources to work with automatic dependency tracking, the ‘Makefile’
must depend on $(BUILT_SOURCES). This can cause these sources to be rebuilt at what
might seem like funny times.

9 Other GNU Tools

Since Automake is primarily intended to generate ‘Makefile.in’s for use in GNU pro-
grams, it tries hard to interoperate with other GNU tools.

9.1 Emacs Lisp

Automake provides some support for Emacs Lisp. The ‘LISP’ primary is used to hold a
list of ‘.el’ files. Possible prefixes for this primary are ‘lisp_’ and ‘noinst_’. Note that
if 1isp_LISP is defined, then ‘configure.in’ must run AM_PATH_LISPDIR (see Section 5.4
[Macros], page 12).

By default Automake will byte-compile all Emacs Lisp source files using the Emacs
found by AM_PATH_LISPDIR. If you wish to avoid byte-compiling, simply define the variable
‘ELCFILES’ to be empty. Byte-compiled Emacs Lisp files are not portable among all versions
of Emacs, so it makes sense to turn this off if you expect sites to have more than one
version of Emacs installed. Furthermore, many packages don’t actually benefit from byte-
compilation. Still, we recommand that you leave it enabled by default. It is probably better
for sites with strange setups to cope for themselves than to make the installation less nice
for everybody else.

9.2 Gettext

If AM_GNU_GETTEXT is seen in ‘configure.in’, then Automake turns on support for GNU
gettext, a message catalog system for internationalization (see section “GNU Gettext” in
GNU gettext utilities).

The gettext support in Automake requires the addition of two subdirectories to the
package, ‘intl’ and ‘po’. Automake ensure that these directories exist and are mentioned
in SUBDIRS.

Furthermore, Automake checks that the definition of ‘ALL_LINGUAS’ in ‘configure.in’
corresponds to all the valid ‘.po’ files, and nothing more.

Chapter 10: Building documentation 24

9.3 Guile

Automake provides some automatic support for writing Guile modules. Automake will
turn on Guile support if the AM_INIT_GUILE_MODULE macro is used in ‘configure.in’.

Right now Guile support just means that the AM_INIT_GUILE_MODULE macro is under-
stood to mean:
e AM_INIT_AUTOMAKE is run.
e AC_CONFIG_AUX_DIR is run, with a path of ‘. .’.

As the Guile module code matures, no doubt the Automake support will grow as well.

9.4 Libtool

Automake provides support for GNU Libtool (see section “The Libtool Manual” in The
Libtool Manual) with the ‘LTLIBRARIES’ primary. See Section 7.4 [A Shared Library],
page 17.

9.5 Java

Automake provides some minimal support for Java compilation with the ‘JAVA’ primary.

Any ‘. java’ files listed in a ‘_JAVA’ variable will be compiled with JAVAC at build time.
By default, ‘.class’ files are not included in the distribution.

Currently Automake enforces the restriction that only one ‘_JAVA’ primary can be used
in a given ‘Makefile.am’. The reason for this restriction is that, in general, it isn’t possible
to know which ‘.class’ files were generated from which ‘. java’ files — so it would be
impossible to know which files to install where.

10 Building documentation

Currently Automake provides support for Texinfo and man pages.

10.1 Texinfo

If the current directory contains Texinfo source, you must declare it with the ‘TEXINFOS’
primary. Generally Texinfo files are converted into info, and thus the info_TEXINFOS macro
is most commonly used here. Note that any Texinfo source file must end in the ‘.texi’ or
‘.texinfo’ extension.

If the ‘. texi’ file @includes ‘version.texi’, then that file will be automatically gener-
ated. ‘version.texi’ defines three Texinfo macros you can reference: EDITION, VERSION,
and UPDATED. The first two hold the version number of your package (but are kept separate
for clarity); the last is the date the primary file was last modified. The ‘version.texi’
support requires the mdate-sh program; this program is supplied with Automake.

Sometimes an info file actually depends on more than one ‘.texi’ file. For instance, in
GNU Hello, ‘hello.texi’ includes the file ‘gpl.texi’. You can tell Automake about these
dependencies using the ‘texi_TEXINFOS’ variable. Here is how Hello does it:

Chapter 11: What Gets Installed 25

info_TEXINFOS = hello.texi
hello_TEXINFOS = gpl.texi

By default, Automake requires the file ‘texinfo.tex’ to appear in the same directory
as the Texinfo source. However, if you used AC_CONFIG_AUX_DIR in ‘configure.in’, then
‘texinfo.tex’ is looked for there. Automake supplies ‘texinfo.tex’ if ‘~~add-missing’ is
given.

If your package has Texinfo files in many directories, you can use the variable TEXINFO_
TEX to tell automake where to find the canonical ‘texinfo.tex’ for your package. The
value of this variable should be the relative path from the current ‘Makefile.am’ to
‘texinfo.tex’:

TEXINFO_TEX = ../doc/texinfo.tex

The option ‘no-texinfo.tex’ can be used to eliminate the requirement for ‘texinfo.tex’.
Use of the variable TEXINFO_TEX is preferable, however, because that allows the dvi target
to still work.

Automake generates an install-info target; some people apparently use this. By
default, info pages are installed by ‘make install’. This can be prevented via the no-
installinfo option.

10.2 Man pages

A package can also include man pages. (Though see the GNU standards on this matter,
section “Man Pages” in The GNU Coding Standards.) Man pages are declared using the
‘MANS’ primary. Generally the man_MANS macro is used. Man pages are automatically
installed in the correct subdirectory of mandir, based on the file extension.

By default, man pages are installed by ‘make install’. However, since the GNU project
does not require man pages, many maintainers do not expend effort to keep the man pages
up to date. In these cases, the no-installman option will prevent the man pages from being
installed by default. The user can still explicitly install them via ‘make install-man’.

Here is how the documentation is handled in GNU cpio (which includes both Texinfo
documentation and man pages):

info_TEXINFOS = cpio.texi
man_MANS = cpio.1l mt.1

Texinfo source and info pages are all considered to be source for the purposes of making
a distribution.

Man pages are not currently considered to be source, because it is not uncommon for
man pages to be automatically generated.

11 What Gets Installed

Naturally, Automake handles the details of actually installing your program once it has
been built. All PROGRAMS, SCRIPTS, LIBRARIES, LISP, DATA and HEADERS are automatically
installed in the appropriate places.

Automake also handles installing any specified info and man pages.

Chapter 13: What Goes in a Distribution 26

Automake generates separate install-data and install-exec targets, in case the in-
staller is installing on multiple machines which share directory structure—these targets allow
the machine-independent parts to be installed only once. The install target depends on
both of these targets.

Automake also generates an uninstall target, an installdirs target, and an install-
strip target.

It is possible to extend this mechanism by defining an install-exec-local or install-
data-local target. If these targets exist, they will be run at ‘make install’ time.

Variables using the standard directory prefixes ‘data’, ‘info’, ‘man’, ‘include’, ‘oldinclude’,
‘pkgdata’, or ‘pkginclude’ (eg ‘data_DATA’) are installed by ‘install-data’.

Variables using the standard directory prefixes ‘bin’, ‘sbin’, ‘libexec’, ‘sysconf’,
‘localstate’, ‘1ib’, or ‘pkglib’ (eg ‘bin_PROGRAMS’) are installed by ‘install-exec’.

Any variable using a user-defined directory prefix with ‘exec’ in the name (eg ‘myexecbin_PROGRAMS’
is installed by ‘install-exec’. All other user-defined prefixes are installed by ‘install-data’.

Automake generates support for the ‘DESTDIR’ variable in all install rules; see See section
“Makefile Conventions” in The GNU Coding Standards.

12 What Gets Cleaned

The GNU Makefile Standards specify a number of different clean rules. Generally the
files that can cleaned are determined automatically by Automake. Of course, Automake also
recognizes some variables that can be defined to specify additional files to clean. These vari-
ables are MOSTLYCLEANFILES, CLEANFILES, DISTCLEANFILES, and MAINTAINERCLEANFILES.

13 What Goes in a Distribution

The dist target in the generated ‘Makefile.in’ can be used to generate a gzip’'d tar
file for distribution. The tar file is named based on the ‘PACKAGE’ and ‘VERSION’ variables;
more precisely it is named ‘package-version.tar.gz’.

For the most part, the files to distribute are automatically found by Automake: all
source files are automatically included in a distribution, as are all ‘Makefile.am’s and
‘Makefile.in’s. Automake also has a built-in list of commonly used files which, if present
in the current directory, are automatically included. This list is printed by ‘automake
--help’. Also, files which are read by configure (ie, the source files corresponding to the
files specified in the AC_OUTPUT invocation) are automatically distributed.

Still, sometimes there are files which must be distributed, but which are not covered in
the automatic rules. These files should be listed in the EXTRA_DIST variable. Note that
EXTRA_DIST can only handle files in the current directory; files in other directories will cause
make dist runtime failures.

If you define SUBDIRS, automake will recursively include the subdirectories in the dis-
tribution. If SUBDIRS is defined conditionally (see Chapter 17 [Conditionals], page 30),
automake will normally include all directories that could possibly appear in SUBDIRS in

Chapter 15: Changing Automake’s Behavior 27

the distribution. If you need to specify the set of directories conditionally, you can set the
variable DIST_SUBDIRS to the exact list of subdirectories to include in the distribution.

Occasionally it is useful to be able to change the distribution before it is packaged up.
If the dist-hook target exists, it is run after the distribution directory is filled, but before
the actual tar (or shar) file is created. One way to use this is for distributing files in
subdirectories for which a new ‘Makefile.am’ is overkill:

dist-hook:
mkdir $(distdir)/random
cp -p random/al random/a2 $(distdir)/random

Automake also generates a distcheck target which can be help to ensure that a given
distribution will actually work. distcheck makes a distribution, and then tries to do a
VPATH build.

14 Support for test suites

Automake supports a two forms of test suite.

If the variable TESTS is defined, its value is taken to be a list of programs to run in
order to do the testing. The programs can either be derived objects or source objects; the
generated rule will look both in sredir and .’. Programs needing data files should look for
them in sredir (which is both an environment variable and a make variable) so they work
when building in a separate directory (see (undefined) [Build Directories|, page (undefined)),
and in particular for the distcheck target (see Chapter 13 [Dist], page 26).

The number of failures will be printed at the end of the run. If a given test program
exits with a status of 77, then its result is ignored in the final count. This feature allows
non-portable tests to be ignored in environments where they don’t make sense.

The variable TESTS_ENVIRONMENT can be used to set environment variables for the test
run; the environment variable srcdir is set in the rule. If all your test programs are scripts,
you can also set TESTS_ENVIRONMENT to an invocation of the shell (eg ‘$ (SHELL) -x’); this
can be useful for debugging the tests.

If ‘dejagnu’ appears in AUTOMAKE_OPTIONS, then the a dejagnu-based test suite is as-
sumed. The value of the variable DEJATOOL is passed as the -—tool argument to runtest;
it defaults to the name of the package.

The variable RUNTESTDEFAULTFLAGS holds the ——tool and --srcdir flags that are passed
to dejagnu by default; this can be overridden if necessary.

The variables EXPECT, RUNTEST and RUNTESTFLAGS can also be overridden to provide
project-specific values. For instance, you will need to do this if you are testing a compiler
toolchain, because the default values do not take into account host and target names.

In either case, the testing is done via ‘make check’.

Chapter 15: Changing Automake’s Behavior 28

15 Changing Automake’s Behavior

Various features of Automake can be controlled by options in the ‘Makefile.am’. Such
options are listed in a special variable named AUTOMAKE_OPTIONS. Currently understood
options are:

gnits

gnu

foreign

cygnus Set the strictness as appropriate. The gnits option also implies readme-alpha
and check-news.

ansi2knr

path/ansi2knr

Turn on automatic de-ANSI-fication. See Section 7.8 [ANSI], page 20. If pre-
ceeded by a path, the generated ‘Makefile.in’ will look in the specified direc-
tory to find the ‘ansi2knr’ program. Generally the path should be a relative
path to another directory in the same distribution (though Automake currently
does not check this).

check-news
Cause make dist to fail unless the current version number appears in the first
few lines of the ‘NEWS’ file.

dejagnu Cause dejagnu-specific rules to be generated. See Chapter 14 [Tests|, page 27.

dist-shar
Generate a dist-shar target as well as the ordinary dist target. This new
target will create a shar archive of the distribution.

dist-zip Generate a dist-zip target as well as the ordinary dist target. This new
target will create a zip archive of the distribution.

dist-tarZ
Generate a dist-tarZ target as well as the ordinary dist target. This new
target will create a compressed tar archive of the distribution; a traditional tar
and compress will be assumed. Warning: if you are actually using GNU tar,
then the generated archive might contain nonportable constructs.

no-dependencies
This is similar to using ‘--include-deps’ on the command line, but is useful
for those situations where you don’t have the necessary bits to make automatic
dependency tracking work See Section 7.9 [Dependencies|, page 21. In this case
the effect is to effectively disable automatic dependency tracking.

no-installinfo
The generated ‘Makefile.in’ will not cause info pages to be built or installed
by default. However, info and install-info targets will still be available.
This option is disallowed at ‘GNU’ strictness and above.

Chapter 16: Miscellaneous Rules 29

no-installman
The generated ‘Makefile.in’ will not cause man pages to be installed by de-
fault. However, an install-man target will still be available for optional in-
stallation. This option is disallowed at ‘GNU’ strictness and above.

no-texinfo.tex
Don’t require ‘texinfo.tex’, even if there are texinfo files in this directory.

readme-alpha
If this release is an alpha release, and the file ‘README-alpha’ exists, then it
will be added to the distribution. If this option is given, version numbers are ex-
pected to follow one of two forms. The first form is ‘MAJOR. MINOR.ALPHA’,
where each element is a number; the final period and number should be left off
for non-alpha releases. The second form is ‘MAJOR. MINORALPHA’, where
ALPHA is a letter; it should be omitted for non-alpha releases.

version A version number (eg ‘0.30’) can be specified. If Automake is not newer than
the version specified, creation of the ‘Makefile.in’ will be suppressed.

Unrecognized options are diagnosed by automake.

16 Miscellaneous Rules

There are a few rules and variables that didn’t fit anywhere else.

16.1 Interfacing to etags

automake will generate rules to generate ‘TAGS’ files for use with GNU Emacs under
some circumstances.

If any C source code or headers are present, then tags and TAGS targets will be generated
for the directory.

At the topmost directory of a multi-directory package, a tags target file will be generated
which, when run, will generate a ‘TAGS’ file that includes by reference all ‘TAGS’ files from
subdirectories.

Also, if the variable ETAGS_ARGS is defined, a tags target will be generated. This vari-
able is intended for use in directories which contain taggable source that etags does not
understand.

Here is how Automake generates tags for its source, and for nodes in its Texinfo file:

ETAGS_ARGS = automake.in --lang=none \
--regex=’"/"@node[\t]+\([",]1+\)/\1/’ automake.texi

If you add filenames to ‘ETAGS_ARGS’, you will probably also want to set ‘TAGS_DEPENDENCIES’.
The contents of this variable are added directly to the dependencies for the tags target.

Automake will also generate an ID target which will run mkid on the source. This is
only supported on a directory-by-directory basis.

Chapter 17: Conditionals 30

16.2 Handling new file extensions

It is sometimes useful to introduce a new implicit rule to handle a file type that Automake
does not know about. If this is done, you must notify GNU Make of the new suffixes. This
can be done by putting a list of new suffixes in the SUFFIXES variable.

For instance, currently automake does not provide any Java support. If you wrote a
macro to generate ‘.class’ files from ‘. java’ source files, you would also need to add these
suffixes to the list:

SUFFIXES = .java .class

17 Conditionals

Automake supports a simple type of conditionals.

Before using a conditional, you must define it by using AM_CONDITIONAL in the configure.

file. The AM_CONDITIONAL macro takes two arguments.

The first argument to AM_CONDITIONAL is the name of the conditional. This should be
a simple string starting with a letter and containing only letters, digits, and underscores.

The second argument to AM_CONDITIONAL is a shell condition, suitable for use in a shell
if statement. The condition is evaluated when configure is run.

Conditionals typically depend upon options which the user provides to the configure
script. Here is an example of how to write a conditional which is true if the user uses the
‘-—enable-debug’ option.

AC_ARG_ENABLE (debug,
[--enable-debug Turn on debugging],
[case "${enablevall}" in
yes) debug=true ;;
no) debug=false ;;
*) AC_MSG_ERROR(bad value ${enableval} for --enable-debug) ;;
esac], [debug=false])
AM_CONDITIONAL(DEBUG, test x$debug = xtrue)

Here is an example of how to use that conditional in ‘Makefile.am’:

if DEBUG

DBG = debug

else

DBG =

endif

noinst_PROGRAMS = $(DBG)

This trivial example could also be handled using EXTRA_PROGRAMS (see Section 7.1
[A Program]|, page 15).

You may only test a single variable in an if statement. The else statement may be
omitted. Conditionals may be nested to any depth.

Note that conditionals in Automake are not the same as conditionals in GNU Make.
Automake conditionals are checked at configure time by the ‘configure’ script, and affect
the translation from ‘Makefile.in’ to ‘Makefile’. They are based on options passed to

in

Chapter 19: The effect of --cygnus 31

‘configure’ and on results that ‘configure’ has discovered about the host system. GNU
Make conditionals are checked at make time, and are based on variables passed to the make
program or defined in the ‘Makefile’.

Automake conditionals will work with any make program.

18 The effect of -—gnu and --gnits

The ‘--gnu’ option (or ‘gnu’ in the ‘AUTOMAKE_OPTIONS’ variable) causes automake to
check the following;:

e The files ‘INSTALL’, ‘NEWS’, ‘README’, ‘COPYING’, ‘AUTHORS’, and ‘ChangelLog’ are re-
quired at the topmost directory of the package.

e The options ‘no-installman’ and ‘no-installinfo’ are prohibited.

Note that this option will be extended in the future to do even more checking; it is
advisable to be familiar with the precise requirements of the GNU standards. Also, ‘--gnu’
can require certain non-standard GNU programs to exist for use by various maintainer-only
targets; for instance in the future pathchk might be required for ‘make dist’.

The ‘--gnits’ option does everything that ‘--gnu’ does, and checks the following as
well:

e ‘make dist’ will check to make sure the ‘NEWS’ file has been updated to the current
version.

e The file ‘COPYING.LIB’ is prohibited. The LGPL is apparently considered a failed
experiment.

e ‘VERSION’ is checked to make sure its format complies with Gnits standards.

e If ‘VERSION’ indicates that this is an alpha release, and the file ‘README-alpha’ appears
in the topmost directory of a package, then it is included in the distribution. This
is done in ‘--gnits’ mode, and no other, because this mode is the only one where

version number formats are constrained, and hence the only mode where automake can
automatically determine whether ‘README-alpha’ should be included.

e The file ‘THANKS’ is required.

19 The effect of --cygnus

Cygnus Solutions has slightly different rules for how a ‘Makefile.in’is to be constructed.
Passing ‘--cygnus’ to automake will cause any generated ‘Makefile.in’ to comply with
Cygnus rules.

Here are the precise effects of ‘--cygnus’:

e Info files are always created in the build directory, and not in the source directory.

e ‘texinfo.tex’ is not required if a Texinfo source file is specified. The assumption is
that the file will be supplied, but in a place that automake cannot find. This assumption
is an artifact of how Cygnus packages are typically bundled.

e ‘make dist’ will look for files in the build directory as well as the source directory. This
is required to support putting info files into the build directory.

Chapter 22: Some ideas for the future 32

e Certain tools will be searched for in the build tree as well as in the user’s ‘PATH’. These
tools are runtest, expect, makeinfo and texi2dvi.

e ——foreign is implied.

e The options ‘no-installinfo’ and ‘no-dependencies’ are implied.
e The macros ‘AM_MAINTAINER_MODE’ and ‘AM_CYGWIN32’ are required.
e The check target doesn’t depend on all.

GNU maintainers are advised to use ‘gnu’ strictness in preference to the special Cygnus
mode.

20 When Automake Isn’t Enough

Automake’s implicit copying semantics means that many problems can be worked around
by simply adding some make targets and rules to ‘Makefile.in’. automake will ignore these
additions.

There are some caveats to doing this. Although you can overload a target already used
by automake, it is often inadvisable, particularly in the topmost directory of a non-flat
package. However, various useful targets have a ‘-local’ version you can specify in your
‘Makefile.in’. Automake will supplement the standard target with these user-supplied
targets.

The targets that support a local version are all, info, dvi, check, install-data,
install-exec, uninstall, and the various clean targets (mostlyclean, clean, distclean,
and maintainer-clean). Note that there are no uninstall-exec-local or uninstall-
data-local targets; just use uninstall-local. It doesn’t make sense to uninstall just
data or just executables.

For instance, here is one way to install a file in ‘/etc’:

install-data-local:
$ (INSTALL_DATA) $(srcdir)/afile /etc/afile

Some targets also have a way to run another target, called a hook, after their work is
done. The hook is named after the principal target, with ‘~hook’ appended. The targets
allowing hooks are install-data, install-exec, dist, and distcheck.

For instance, here is how to create a hard link to an installed program:

install-exec-hook:
1n $(bindir)/program $(bindir)/proglink

21 Distributing ‘Makefile.in’s

Automake places no restrictions on the distribution of the resulting ‘Makefile.in’s. We
still encourage software authors to distribute their work under terms like those of the GPL,
but doing so is not required to use Automake.

Some of the files that can be automatically installed via the --add-missing switch do
fall under the GPL; examine each file to see.

Index

33

22 Some ideas for the future

Here are some things that might happen in the future:

e HTML support.

e The output will be cleaned up. For instance, only variables which are actually used
will appear in the generated ‘Makefile.in’.

e There will be support for automatically recoding a distribution. The intent is to al-
low a maintainer to use whatever character set is most convenient locally, but for all
distributions to be Unicode or ISO 10646 with the UTF-8 encoding.

e Support for automatically generating packages (eg Debian packages, RPM packages,
Solaris packages, etc). This will happen more quickly if someone with package-building
experience can tell me what would be helpful.

e Rewrite in Guile. This won’t happen in the near future, but it will eventually happen.

Index

LDADD ..ottt e 16
_LDFLAGS . . 16
CLIBADD ..o 17
_SOURCES . ..ot e 15
_TEXINFOS. . e 24
A
AC_ARG_PROGRAM 9
AC_CANONICAL_HOST. ... 10
AC_CANONICAL_SYSTEMo, 10
AC_CHECK_PROG ...t 11
AC_CHECK_PROGS 11
AC_CHECK_TOOL ...ttt 10, 11
AC_CONFIG_AUX DIR.....coviiiiiaiann, 10
AC_CONFIG_HEADER.........ciiiiin. 10
AC_DECL _YYTEXT ot 11
AC_FUNC_ALLOCA e e 10
AC_FUNC_FNMATCH.t 10
AC_FUNC_GETLOADAVG 10
AC_FUNC_MEMCMPttt 10
AC_OUTPUTt e e 10
AC_PATH_PROGttt 11
AC_PATH_PROGSo 11
AC_PATH_XTRA e 10
AC_PROG_CXX ..ot e e 11
AC_PROG_INSTALL ...ttt 9
AC_PROG_LEX ...t 11

AC_PROG_MAKE_SET........ ..ottt 9

AC_PROG_RANLIB......c.itiniinieinenenn, 11
AC_PROG_YACCt 11
AC_REPLACE_FUNCS...... ...t 10
AC_REPLACE_GNU_GETOPTcooun... 10
AC_STRUCT_ST_BLOCKScciviiennen 10
AC_SUBST ..ottt et 11
£ 0 0 PP 32
ALL_LINGUAS ... e 11
AM_C_PROTOTYPES.......... ... 11, 13, 21
AM_CONDITIONALcoiittr i, 30
AM_CONFIG_HEADER.........coiiiinnnann, 12
AM_FUNC_ERROR_AT_LINE....................... 13
AM_FUNC_MKTIME.........oiiiiinannnnn, 13
AM_FUNC_OBSTACK . ..o et 13
AM_FUNC_STRTODooviieee e 10, 13
AM_GNU_GETTEXT ..ot 11
AM_HEADER_TIOCGWINSZ_NEEDS_SYS_IOCTL...... 13
AM_INIT_AUTOMAKE.t 9
AM_MAINTAINER_MODEcvvinininnn.. 11
AM_PATH_LISPDIR.......covitiinininieeean.. 13
AM_PROG_CC_STDC......viiiee i 13
AM_PROG_INSTALL ..ottt 9, 13
AM_PROG_LEX . ..ottt et e e 14
AM_PROG_LIBTOOL.......covvitieiennnnn, 11
AM_SANITY_CHECK........civiiiininean.. 14
AM_SYS_POSIX_TERMIOS............covivinvnnn. 14
AM_TYPE_PTRDIFF_T.......ccoiuiiinnnnn.. 14
AM_WITH_DMALLOC.......ciriiiiin e, 14
AM_WITH_REGEX, 10, 14
ANSI2KRNT ... 20

Index

AUTOMAKE_OPTIONSo, 20, 21, 28
B

build_aliasovviiiiiiiniiiin . 10
BUILT_SOURCESottt 23
C

CheCk ..ot 32
CLEANFILES. ...ttt e 26
(0.0 20
CXXCOMPILE. ...ttt 20
CXXFLAGS . ..o e 20
CEXLINK .ottt e e e 20
D

DATA . oot e e 4, 22
dejagnu..................iii 27
DEJATOOLottt e e e e 27
DESTDIR ...ttt e e 26
dist ..o 21, 26
dist-hooK. ...t 32
dist-shar...........c. i 28
dist-tarZ....... ... 28
dist-zip......... 28
DIST_SUBDIRSottt 27
distcheck. ..ot 27
DISTCLEANFILESttt 26
AVa .o 32
E

ELCFILES .. ittt et et 23
ETAGS_ARGS. ... 29
EXPECT ..o 27
EXTRA _DIST. ..ottt e 26
EXTRA_PROGRAMS 16
H

HEADERS. 4, 22
host_alias.......coviiiiriniiiiinann. 10
host_tripleto 10
|

Ad . e 29
info... ... 28, 32
info_TEXINFOSt 24
install ...t 26
install-data...........ccoiiiiiiiiii.. 26, 32
install-data-hook..........., 32
install-data-localc..oeunienn.. 26

34
install-eXecC.........oviiiiiiiiiiinnaa.. 26, 32
install-exec-hooK............covviureuiinnn. 32
install-exec-localccovuin... 26
install-info.......... .. i 28
install-man.............oeiiiiiniiiinnn... 25, 29
install-strip..............l 26
installdirscoiiiii 26
LDADD ..ot 16
LDFLAGS ... e 18
LIBADD ..ottt e e 17
LIBOBIS ..ottt e e 11
LIBRARIES . ..ottt e 4
LiSP_LISP. .ot 23
LIS P ottt 4, 23
MAINTAINERCLEANFILEScvviinennn. 26
man_MANS 25
MANS e 4, 25
MOSTLYCLEANFILES.......otitiiiinieeann 26
no-dependencies............. ..o 21
no-installman..............c..oiiniinennenann. 25
noinst_LISP ...t 23
OMIT_DEPENDENCIES..........covviininnnnan.. 21
PACKAGE\ 3,9, 26
PROGRAMS .. .o e 3,4
RUNTEST ..ottt e e 27
RUNTESTDEFAULTFLAGSt 27
RUNTESTFLAGSt 27
SCRIPTS. ..o e 4, 22
SOURCES .. oot e 15
SUBDIRS. ...t 2, 14
SUFFIXES .. i 30
T
tagS . 29

TAGS_DEPENDENCIES............ ..., 29

Index

target_aliasoooiiiiiiiiiiiii, 10
TESTS . 27
TESTS_ENVIRONMENT........... ..., 27
TEXINFOS © .o 4,24

uninstall........... ..o il 26, 32

35

vV
VERSTON. ...\t ee e 9, 26
Y

YACC oot 11

Table of Contents

1 Introduction............................... 1
2 Generalideas.................iiiiii... 1
2.1 General Operationooiiiiiiiiniina.. 1
2.2 Depth ... 2
2.3 StriCtNeSS . ..ottt 2
2.4 The Uniform Naming Scheme 3
2.5 How derived variables are named 4
3 Some example packages 4
3.1 A simple example, start to finish 4
3.2 A classic Program ...ttt 5
3.3 Building etags and ctags.......... 6
4 Creating a ‘Makefile.in’.................... 7
5 Scanning ‘configure.in’ 9
5.1 Configuration requirements 9
5.2 Other things Automake recognizes....................... 10
5.3 Auto-generating aclocalmd 12
5.4 Autoconf macros supplied with Automake................ 12
5.5 Writing your own aclocal macros 14
6 The top-level ‘Makefile.am’ 14
7 Building Programs and Libraries 15
7.1 Building a program. i 15
7.2 Building alibrary 17
7.3 Special handling for LIBOBJS and ALLOCA............. 17
7.4 Building a Shared Library 17
7.5 Variables used when building a program 18
7.6 Yacc and Lex support ... 18
7.7 C++ and other languages............. 20
7.8 Automatic de-ANSI-fication............................. 20
7.9 Automatic dependency tracking, 21
8 Other Derived Objects.................... 22
8.1 Executable Scripts 22
8.2 Header files........... ... 22
8.3 Architecture-independent data files...................... 22
8.4 Built sources............... i 23

9 Other GNU Toolscoivviven... 23
9.1 Emacs Lisp.......ooiii 23
9.2 Gettext. ..ot 23
9.3 Guile.o 24
9.4 Libtool........ .. . 24
0.5 Java. ... e 24
10 Building documentation.................. 24
10.1 Texinfo...... ..o 24
10.2 Man pages.ovvrei e 25
11 What Gets Installed 25
12 What Gets Cleaned...................... 26
13 What Goes in a Distribution 26
14 Support for test suites 27
15 Changing Automake’s Behavior........... 28
16 Miscellaneous Rules 29
16.1 Interfacingtoetags..........covviiiiiiinnnii. 29
16.2 Handling new file extensions 30
17 Conditionals................... ..., 30
18 The effect of --gnu and --gnits........... 31
19 The effect of ——cygnus.................... 31
20 When Automake Isn’t Enough............ 32
21 Distributing ‘Makefile.in’s............... 32
22 Some ideas for the future 33

ii

