
GNU Automake
For version 1.7.7, 7 September 2003

David MacKenzie and Tom Tromey



Copyright c© 1995, 1996, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.

This is the first edition of the GNU Automake documentation,
and is consistent with GNU Automake 1.7.7.

Published by the Free Software Foundation
59 Temple Place - Suite 330,
Boston, MA 02111-1307 USA

Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the con-
ditions for verbatim copying, provided that the entire resulting derived work is distributed
under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another lan-
guage, under the above conditions for modified versions, except that this permission notice
may be stated in a translation approved by the Free Software Foundation.



Chapter 2: General ideas 1

1 Introduction

Automake is a tool for automatically generating Makefile.ins from files called
Makefile.am. Each Makefile.am is basically a series of make variable definitions1, with
rules being thrown in occasionally. The generated Makefile.ins are compliant with the
GNU Makefile standards.

The GNU Makefile Standards Document (see Section “Makefile Conventions” in The
GNU Coding Standards) is long, complicated, and subject to change. The goal of Automake
is to remove the burden of Makefile maintenance from the back of the individual GNU
maintainer (and put it on the back of the Automake maintainer).

The typical Automake input file is simply a series of variable definitions. Each such
file is processed to create a Makefile.in. There should generally be one Makefile.am per
directory of a project.

Automake does constrain a project in certain ways; for instance it assumes that the
project uses Autoconf (see Section “Introduction” in The Autoconf Manual), and enforces
certain restrictions on the configure.in contents2.

Automake requires perl in order to generate the Makefile.ins. However, the distribu-
tions created by Automake are fully GNU standards-compliant, and do not require perl in
order to be built.

Mail suggestions and bug reports for Automake to bug-automake@gnu.org.

2 General ideas

The following sections cover a few basic ideas that will help you understand how Automake
works.

2.1 General Operation

Automake works by reading a Makefile.am and generating a Makefile.in. Certain vari-
ables and targets defined in the Makefile.am instruct Automake to generate more special-
ized code; for instance, a ‘bin_PROGRAMS’ variable definition will cause targets for compiling
and linking programs to be generated.

The variable definitions and targets in the Makefile.am are copied verbatim into the
generated file. This allows you to add arbitrary code into the generated Makefile.in. For
instance the Automake distribution includes a non-standard cvs-dist target, which the
Automake maintainer uses to make distributions from his source control system.

Note that most GNU make extensions are not recognized by Automake. Using such
extensions in a Makefile.am will lead to errors or confusing behavior.

A special exception is that the GNU make append operator, ‘+=’, is supported. This
operator appends its right hand argument to the variable specified on the left. Automake

1 These variables are also called make macros in Make terminology, however in this manual we reserve the
term macro for Autoconf’s macros.

2 Autoconf 2.50 promotes configure.ac over configure.in. The rest of this documentation will refer to
configure.in as this use is not yet spread, but Automake supports configure.ac too.

mailto:bug-automake@gnu.org


Chapter 2: General ideas 2

will translate the operator into an ordinary ‘=’ operator; ‘+=’ will thus work with any make
program.

Automake tries to keep comments grouped with any adjoining targets or variable defi-
nitions.

A target defined in Makefile.am generally overrides any such target of a similar name
that would be automatically generated by automake. Although this is a supported feature,
it is generally best to avoid making use of it, as sometimes the generated rules are very
particular.

Similarly, a variable defined in Makefile.am or AC_SUBST’ed from configure.in will
override any definition of the variable that automake would ordinarily create. This feature
is more often useful than the ability to override a target definition. Be warned that many
of the variables generated by automake are considered to be for internal use only, and their
names might change in future releases.

When examining a variable definition, Automake will recursively examine variables refer-
enced in the definition. For example, if Automake is looking at the content of foo_SOURCES
in this snippet

xs = a.c b.c

foo_SOURCES = c.c $(xs)

it would use the files a.c, b.c, and c.c as the contents of foo_SOURCES.

Automake also allows a form of comment which is not copied into the output; all lines
beginning with ‘##’ (leading spaces allowed) are completely ignored by Automake.

It is customary to make the first line of Makefile.am read:

## Process this file with automake to produce Makefile.in

2.2 Strictness

While Automake is intended to be used by maintainers of GNU packages, it does make
some effort to accommodate those who wish to use it, but do not want to use all the GNU
conventions.

To this end, Automake supports three levels of strictness—the strictness indicating how
stringently Automake should check standards conformance.

The valid strictness levels are:

‘foreign’ Automake will check for only those things which are absolutely required for
proper operations. For instance, whereas GNU standards dictate the existence
of a NEWS file, it will not be required in this mode. The name comes from the
fact that Automake is intended to be used for GNU programs; these relaxed
rules are not the standard mode of operation.

‘gnu’ Automake will check—as much as possible—for compliance to the GNU stan-
dards for packages. This is the default.

‘gnits’ Automake will check for compliance to the as-yet-unwritten Gnits standards.
These are based on the GNU standards, but are even more detailed. Unless
you are a Gnits standards contributor, it is recommended that you avoid this
option until such time as the Gnits standard is actually published (which may
never happen).



Chapter 2: General ideas 3

For more information on the precise implications of the strictness level, see Chapter 21
[Gnits], page 67.

Automake also has a special “cygnus” mode which is similar to strictness but handled
differently. This mode is useful for packages which are put into a “Cygnus” style tree (e.g.,
the GCC tree). For more information on this mode, see Chapter 22 [Cygnus], page 67.

2.3 The Uniform Naming Scheme

Automake variables generally follow a uniform naming scheme that makes it easy to decide
how programs (and other derived objects) are built, and how they are installed. This scheme
also supports configure time determination of what should be built.

At make time, certain variables are used to determine which objects are to be built. The
variable names are made of several pieces which are concatenated together.

The piece which tells automake what is being built is commonly called the primary.
For instance, the primary PROGRAMS holds a list of programs which are to be compiled and
linked.

A different set of names is used to decide where the built objects should be installed.
These names are prefixes to the primary which indicate which standard directory should
be used as the installation directory. The standard directory names are given in the GNU
standards (see Section “Directory Variables” in The GNU Coding Standards). Automake
extends this list with pkglibdir, pkgincludedir, and pkgdatadir; these are the same as
the non-‘pkg’ versions, but with ‘@PACKAGE@’ appended. For instance, pkglibdir is defined
as $(libdir)/@PACKAGE@.

For each primary, there is one additional variable named by prepending ‘EXTRA_’ to the
primary name. This variable is used to list objects which may or may not be built, depending
on what configure decides. This variable is required because Automake must statically
know the entire list of objects that may be built in order to generate a Makefile.in that
will work in all cases.

For instance, cpio decides at configure time which programs are built. Some of the
programs are installed in bindir, and some are installed in sbindir:

EXTRA_PROGRAMS = mt rmt

bin_PROGRAMS = cpio pax

sbin_PROGRAMS = @MORE_PROGRAMS@

Defining a primary without a prefix as a variable, e.g., PROGRAMS, is an error.

Note that the common ‘dir’ suffix is left off when constructing the variable names; thus
one writes ‘bin_PROGRAMS’ and not ‘bindir_PROGRAMS’.

Not every sort of object can be installed in every directory. Automake will flag those
attempts it finds in error. Automake will also diagnose obvious misspellings in directory
names.

Sometimes the standard directories—even as augmented by Automake— are not enough.
In particular it is sometimes useful, for clarity, to install objects in a subdirectory of some
predefined directory. To this end, Automake allows you to extend the list of possible
installation directories. A given prefix (e.g. ‘zar’) is valid if a variable of the same name
with ‘dir’ appended is defined (e.g. zardir).



Chapter 2: General ideas 4

For instance, until HTML support is part of Automake, you could use this to install raw
HTML documentation:

htmldir = $(prefix)/html

html_DATA = automake.html

The special prefix ‘noinst’ indicates that the objects in question should be built but not
installed at all. This is usually used for objects required to build the rest of your package,
for instance static libraries (see Section 9.2 [A Library], page 28), or helper scripts.

The special prefix ‘check’ indicates that the objects in question should not be built until
the make check command is run. Those objects are not installed either.

The current primary names are ‘PROGRAMS’, ‘LIBRARIES’, ‘LISP’, ‘PYTHON’, ‘JAVA’,
‘SCRIPTS’, ‘DATA’, ‘HEADERS’, ‘MANS’, and ‘TEXINFOS’.

Some primaries also allow additional prefixes which control other aspects of automake’s
behavior. The currently defined prefixes are ‘dist_’, ‘nodist_’, and ‘nobase_’. These
prefixes are explained later (see Section 9.4 [Program and Library Variables], page 33).

2.4 How derived variables are named

Sometimes a Makefile variable name is derived from some text the maintainer supplies. For
instance, a program name listed in ‘_PROGRAMS’ is rewritten into the name of a ‘_SOURCES’
variable. In cases like this, Automake canonicalizes the text, so that program names and
the like do not have to follow Makefile variable naming rules. All characters in the name
except for letters, numbers, the strudel (@), and the underscore are turned into underscores
when making variable references.

For example, if your program is named sniff-glue, the derived variable name would be
sniff_glue_SOURCES, not sniff-glue_SOURCES. Similarly the sources for a library named
libmumble++.a should be listed in the libmumble___a_SOURCES variable.

The strudel is an addition, to make the use of Autoconf substitutions in variable names
less obfuscating.

2.5 Variables reserved for the user

Some Makefile variables are reserved by the GNU Coding Standards for the use of the
“user” – the person building the package. For instance, CFLAGS is one such variable.

Sometimes package developers are tempted to set user variables such as CFLAGS because
it appears to make their job easier – they don’t have to introduce a second variable into
every target.

However, the package itself should never set a user variable, particularly not to include
switches which are required for proper compilation of the package. Since these variables are
documented as being for the package builder, that person rightfully expects to be able to
override any of these variables at build time.

To get around this problem, automake introduces an automake-specific shadow variable
for each user flag variable. (Shadow variables are not introduced for variables like CC, where
they would make no sense.) The shadow variable is named by prepending ‘AM_’ to the user
variable’s name. For instance, the shadow variable for YFLAGS is AM_YFLAGS.



Chapter 2: General ideas 5

2.6 Programs automake might require

Automake sometimes requires helper programs so that the generated Makefile can do its
work properly. There are a fairly large number of them, and we list them here.

ansi2knr.c

ansi2knr.1

These two files are used by the automatic de-ANSI-fication support (see
Section 9.13 [ANSI], page 44).

compile This is a wrapper for compilers which don’t accept both ‘-c’ and ‘-o’ at the
same time. It is only used when absolutely required. Such compilers are rare.

config.guess

config.sub

These programs compute the canonical triplets for the given build, host, or
target architecture. These programs are updated regularly to support new ar-
chitectures and fix probes broken by changes in new kernel versions. You are
encouraged to fetch the latest versions of these files from ftp://ftp.gnu.org/

gnu/config/ before making a release.

depcomp This program understands how to run a compiler so that it will generate not
only the desired output but also dependency information which is then used by
the automatic dependency tracking feature.

elisp-comp

This program is used to byte-compile Emacs Lisp code.

install-sh

This is a replacement for the install program which works on platforms where
install is unavailable or unusable.

mdate-sh This script is used to generate a version.texi file. It examines a file and prints
some date information about it.

missing This wraps a number of programs which are typically only required by main-
tainers. If the program in question doesn’t exist, missing prints an informative
warning and attempts to fix things so that the build can continue.

mkinstalldirs

This works around the fact that mkdir -p is not portable.

py-compile

This is used to byte-compile Python scripts.

texinfo.tex

Not a program, this file is required for make dvi, make ps and make pdf to work
when Texinfo sources are in the package.

ylwrap This program wraps lex and yacc and ensures that, for instance, multiple yacc
instances can be invoked in a single directory in parallel.

ftp://ftp.gnu.org/gnu/config/
ftp://ftp.gnu.org/gnu/config/


Chapter 3: Some example packages 6

3 Some example packages

3.1 A simple example, start to finish

Let’s suppose you just finished writing zardoz, a program to make your head float from
vortex to vortex. You’ve been using Autoconf to provide a portability framework, but
your Makefile.ins have been ad-hoc. You want to make them bulletproof, so you turn to
Automake.

The first step is to update your configure.in to include the commands that automake
needs. The way to do this is to add an AM_INIT_AUTOMAKE call just after AC_INIT:

AC_INIT(zardoz, 1.0)

AM_INIT_AUTOMAKE

...

Since your program doesn’t have any complicating factors (e.g., it doesn’t use gettext,
it doesn’t want to build a shared library), you’re done with this part. That was easy!

Now you must regenerate configure. But to do that, you’ll need to tell autoconf how
to find the new macro you’ve used. The easiest way to do this is to use the aclocal program
to generate your aclocal.m4 for you. But wait. . . maybe you already have an aclocal.m4,
because you had to write some hairy macros for your program. The aclocal program lets
you put your own macros into acinclude.m4, so simply rename and then run:

mv aclocal.m4 acinclude.m4

aclocal

autoconf

Now it is time to write your Makefile.am for zardoz. Since zardoz is a user program,
you want to install it where the rest of the user programs go: bindir. Additionally, zardoz
has some Texinfo documentation. Your configure.in script uses AC_REPLACE_FUNCS, so
you need to link against ‘$(LIBOBJS)’. So here’s what you’d write:

bin_PROGRAMS = zardoz

zardoz_SOURCES = main.c head.c float.c vortex9.c gun.c

zardoz_LDADD = $(LIBOBJS)

info_TEXINFOS = zardoz.texi

Now you can run automake --add-missing to generate your Makefile.in and grab any
auxiliary files you might need, and you’re done!

3.2 A classic program

GNU hello (ftp://prep.ai.mit.edu/pub/gnu/hello-1.3.tar.gz) is renowned for its
classic simplicity and versatility. This section shows how Automake could be used with the
GNU Hello package. The examples below are from the latest beta version of GNU Hello,
but with all of the maintainer-only code stripped out, as well as all copyright comments.

Of course, GNU Hello is somewhat more featureful than your traditional two-liner. GNU
Hello is internationalized, does option processing, and has a manual and a test suite.

ftp://prep.ai.mit.edu/pub/gnu/hello-1.3.tar.gz


Chapter 3: Some example packages 7

Here is the configure.in from GNU Hello. Please note: The calls to AC_INIT and
AM_INIT_AUTOMAKE in this example use a deprecated syntax. For the current approach, see
the description of AM_INIT_AUTOMAKE in Section 5.6.1 [Public macros], page 17.

dnl Process this file with autoconf to produce a configure script.

AC_INIT(src/hello.c)

AM_INIT_AUTOMAKE(hello, 1.3.11)

AM_CONFIG_HEADER(config.h)

dnl Set of available languages.

ALL_LINGUAS="de fr es ko nl no pl pt sl sv"

dnl Checks for programs.

AC_PROG_CC

AC_ISC_POSIX

dnl Checks for libraries.

dnl Checks for header files.

AC_STDC_HEADERS

AC_HAVE_HEADERS(string.h fcntl.h sys/file.h sys/param.h)

dnl Checks for library functions.

AC_FUNC_ALLOCA

dnl Check for st_blksize in struct stat

AC_ST_BLKSIZE

dnl internationalization macros

AM_GNU_GETTEXT

AC_OUTPUT([Makefile doc/Makefile intl/Makefile po/Makefile.in \

src/Makefile tests/Makefile tests/hello],

[chmod +x tests/hello])

The ‘AM_’ macros are provided by Automake (or the Gettext library); the rest are stan-
dard Autoconf macros.

The top-level Makefile.am:

EXTRA_DIST = BUGS ChangeLog.O

SUBDIRS = doc intl po src tests

As you can see, all the work here is really done in subdirectories.

The po and intl directories are automatically generated using gettextize; they will
not be discussed here.

In doc/Makefile.am we see:

info_TEXINFOS = hello.texi

hello_TEXINFOS = gpl.texi

This is sufficient to build, install, and distribute the GNU Hello manual.



Chapter 3: Some example packages 8

Here is tests/Makefile.am:

TESTS = hello

EXTRA_DIST = hello.in testdata

The script hello is generated by configure, and is the only test case. make check will
run this test.

Last we have src/Makefile.am, where all the real work is done:

bin_PROGRAMS = hello

hello_SOURCES = hello.c version.c getopt.c getopt1.c getopt.h system.h

hello_LDADD = @INTLLIBS@ @ALLOCA@

localedir = $(datadir)/locale

INCLUDES = -I../intl -DLOCALEDIR=\"$(localedir)\"

3.3 Building true and false

Here is another, trickier example. It shows how to generate two programs (true and false)
from the same source file (true.c). The difficult part is that each compilation of true.c
requires different cpp flags.

bin_PROGRAMS = true false

false_SOURCES =

false_LDADD = false.o

true.o: true.c

$(COMPILE) -DEXIT_CODE=0 -c true.c

false.o: true.c

$(COMPILE) -DEXIT_CODE=1 -o false.o -c true.c

Note that there is no true_SOURCES definition. Automake will implicitly assume that
there is a source file named true.c, and define rules to compile true.o and link true.
The true.o: true.c rule supplied by the above Makefile.am, will override the Automake
generated rule to build true.o.

false_SOURCES is defined to be empty—that way no implicit value is substituted. Be-
cause we have not listed the source of false, we have to tell Automake how to link the
program. This is the purpose of the false_LDADD line. A false_DEPENDENCIES variable,
holding the dependencies of the false target will be automatically generated by Automake
from the content of false_LDADD.

The above rules won’t work if your compiler doesn’t accept both ‘-c’ and ‘-o’. The
simplest fix for this is to introduce a bogus dependency (to avoid problems with a parallel
make):

true.o: true.c false.o

$(COMPILE) -DEXIT_CODE=0 -c true.c

false.o: true.c

$(COMPILE) -DEXIT_CODE=1 -c true.c && mv true.o false.o

Also, these explicit rules do not work if the de-ANSI-fication feature is used (see
Section 9.13 [ANSI], page 44). Supporting de-ANSI-fication requires a little more work:



Chapter 4: Creating a Makefile.in 9

true._o: true._c false.o

$(COMPILE) -DEXIT_CODE=0 -c true.c

false._o: true._c

$(COMPILE) -DEXIT_CODE=1 -c true.c && mv true._o false.o

As it turns out, there is also a much easier way to do this same task. Some of the above
techniques are useful enough that we’ve kept the example in the manual. However if you
were to build true and false in real life, you would probably use per-program compilation
flags, like so:

bin_PROGRAMS = false true

false_SOURCES = true.c

false_CPPFLAGS = -DEXIT_CODE=1

true_SOURCES = true.c

true_CPPFLAGS = -DEXIT_CODE=0

In this case Automake will cause true.c to be compiled twice, with different flags. De-
ANSI-fication will work automatically. In this instance, the names of the object files would
be chosen by automake; they would be false-true.o and true-true.o. (The name of the
object files rarely matters.)

4 Creating a Makefile.in

To create all the Makefile.ins for a package, run the automake program in the top
level directory, with no arguments. automake will automatically find each appropriate
Makefile.am (by scanning configure.in; see Chapter 5 [configure], page 12) and generate
the corresponding Makefile.in. Note that automake has a rather simplistic view of what
constitutes a package; it assumes that a package has only one configure.in, at the top. If
your package has multiple configure.ins, then you must run automake in each directory
holding a configure.in. (Alternatively, you may rely on Autoconf’s autoreconf, which
is able to recurse your package tree and run automake where appropriate.)

You can optionally give automake an argument; .am is appended to the argument and
the result is used as the name of the input file. This feature is generally only used to
automatically rebuild an out-of-date Makefile.in. Note that automake must always be run
from the topmost directory of a project, even if being used to regenerate the Makefile.in
in some subdirectory. This is necessary because automake must scan configure.in, and
because automake uses the knowledge that a Makefile.in is in a subdirectory to change
its behavior in some cases.

Automake will run autoconf to scan configure.in and its dependencies (aclocal.m4),
therefore autoconf must be in your PATH. If there is an AUTOCONF variable in your environ-
ment it will be used instead of autoconf, this allows you to select a particular version of
Autoconf. By the way, don’t misunderstand this paragraph: Automake runs autoconf to
scan your configure.in, this won’t build configure and you still have to run autoconf

yourself for this purpose.



Chapter 4: Creating a Makefile.in 10

automake accepts the following options:

‘-a’
‘--add-missing’

Automake requires certain common files to exist in certain situations; for in-
stance config.guess is required if configure.in runs AC_CANONICAL_HOST.
Automake is distributed with several of these files (see Section 2.6 [Auxiliary
Programs], page 5); this option will cause the missing ones to be automatically
added to the package, whenever possible. In general if Automake tells you a
file is missing, try using this option. By default Automake tries to make a
symbolic link pointing to its own copy of the missing file; this can be changed
with --copy.

Many of the potentially-missing files are common scripts whose location may be
specified via the AC_CONFIG_AUX_DIR macro. Therefore, AC_CONFIG_AUX_DIR’s
setting affects whether a file is considered missing, and where the missing file
is added (see Section 5.2 [Optional], page 12).

‘--libdir=dir’
Look for Automake data files in directory dir instead of in the installation
directory. This is typically used for debugging.

‘-c’
‘--copy’ When used with --add-missing, causes installed files to be copied. The default

is to make a symbolic link.

‘--cygnus’
Causes the generated Makefile.ins to follow Cygnus rules, instead of GNU or
Gnits rules. For more information, see Chapter 22 [Cygnus], page 67.

‘-f’
‘--force-missing’

When used with --add-missing, causes standard files to be reinstalled even if
they already exist in the source tree. This involves removing the file from the
source tree before creating the new symlink (or, with --copy, copying the new
file).

‘--foreign’
Set the global strictness to ‘foreign’. For more information, see Section 2.2
[Strictness], page 2.

‘--gnits’ Set the global strictness to ‘gnits’. For more information, see Chapter 21
[Gnits], page 67.

‘--gnu’ Set the global strictness to ‘gnu’. For more information, see Chapter 21 [Gnits],
page 67. This is the default strictness.

‘--help’ Print a summary of the command line options and exit.

‘-i’
‘--ignore-deps’

This disables the dependency tracking feature in generated Makefiles; see
Section 9.14 [Dependencies], page 45.



Chapter 4: Creating a Makefile.in 11

‘--include-deps’
This enables the dependency tracking feature. This feature is enabled by de-
fault. This option is provided for historical reasons only and probably should
not be used.

‘--no-force’
Ordinarily automake creates all Makefile.ins mentioned in configure.in.
This option causes it to only update those Makefile.ins which are out of date
with respect to one of their dependents.

Due to a bug in its implementation, this option is currently ignored. It will be
fixed in Automake 1.8.

‘-o dir’
‘--output-dir=dir’

Put the generated Makefile.in in the directory dir. Ordinarily each
Makefile.in is created in the directory of the corresponding Makefile.am.
This option is deprecated and will be removed in a future release.

‘-v’
‘--verbose’

Cause Automake to print information about which files are being read or cre-
ated.

‘--version’
Print the version number of Automake and exit.

‘-W CATEGORY’
‘--warnings=category’

Output warnings falling in category. category can be one of:

‘gnu’ warnings related to the GNU Coding Standards (see The GNU
Coding Standards).

‘obsolete’
obsolete features or constructions

‘portability’
portability issues (e.g., use of Make features which are known not
portable)

‘syntax’ weird syntax, unused variables, typos

‘unsupported’
unsupported or incomplete features

‘all’ all the warnings

‘none’ turn off all the warnings

‘error’ treat warnings as errors

A category can be turned off by prefixing its name with ‘no-’. For instance
‘-Wno-syntax’ will hide the warnings about unused variables.

The categories output by default are ‘syntax’ and ‘unsupported’. Additionally,
‘gnu’ is enabled in ‘--gnu’ and ‘--gnits’ strictness.



Chapter 5: Scanning configure.in 12

‘portability’ warnings are currently disabled by default, but they will be
enabled in ‘--gnu’ and ‘--gnits’ strictness in a future release.

The environment variable ‘WARNINGS’ can contain a comma separated list of
categories to enable. It will be taken into account before the command-line
switches, this way ‘-Wnone’ will also ignore any warning category enabled by
‘WARNINGS’. This variable is also used by other tools like autoconf; unknown
categories are ignored for this reason.

5 Scanning configure.in

Automake scans the package’s configure.in to determine certain information about the
package. Some autoconf macros are required and some variables must be defined in
configure.in. Automake will also use information from configure.in to further tailor
its output.

Automake also supplies some Autoconf macros to make the maintenance easier. These
macros can automatically be put into your aclocal.m4 using the aclocal program.

5.1 Configuration requirements

The one real requirement of Automake is that your configure.in call AM_INIT_AUTOMAKE.
This macro does several things which are required for proper Automake operation (see
Section 5.6 [Macros], page 17).

Here are the other macros which Automake requires but which are not run by AM_INIT_

AUTOMAKE:

AC_CONFIG_FILES

AC_OUTPUT

Automake uses these to determine which files to create (see Section “Creating
Output Files” in The Autoconf Manual). A listed file is considered to be an
Automake generated Makefile if there exists a file with the same name and the
.am extension appended. Typically, AC_CONFIG_FILES([foo/Makefile]) will
cause Automake to generate foo/Makefile.in if foo/Makefile.am exists.

These files are all removed by make distclean.

5.2 Other things Automake recognizes

Every time Automake is run it calls Autoconf to trace configure.in. This way it can
recognize the use of certain macros and tailor the generated Makefile.in appropriately.
Currently recognized macros and their effects are:

AC_CONFIG_HEADERS

Automake will generate rules to rebuild these headers. Older versions of
Automake required the use of AM_CONFIG_HEADER (see Section 5.6 [Macros],
page 17); this is no longer the case today.

AC_CONFIG_AUX_DIR

Automake will look for various helper scripts, such as mkinstalldirs, in
the directory named in this macro invocation. (The full list of scripts is:



Chapter 5: Scanning configure.in 13

config.guess, config.sub, depcomp, elisp-comp, compile, install-sh,
ltmain.sh, mdate-sh, missing, mkinstalldirs, py-compile, texinfo.tex,
and ylwrap.) Not all scripts are always searched for; some scripts will only be
sought if the generated Makefile.in requires them.

If AC_CONFIG_AUX_DIR is not given, the scripts are looked for in their ‘standard’
locations. For mdate-sh, texinfo.tex, and ylwrap, the standard location is
the source directory corresponding to the current Makefile.am. For the rest,
the standard location is the first one of ., .., or ../.. (relative to the top source
directory) that provides any one of the helper scripts. See Section “Finding
‘configure’ Input” in The Autoconf Manual.

Required files from AC_CONFIG_AUX_DIR are automatically distributed, even if
there is no Makefile.am in this directory.

AC_CANONICAL_HOST

Automake will ensure that config.guess and config.sub exist. Also, the
Makefile variables ‘host_alias’ and ‘host_triplet’ are introduced. See
Section “Getting the Canonical System Type” in The Autoconf Manual.

AC_CANONICAL_SYSTEM

This is similar to AC_CANONICAL_HOST, but also defines the Makefile variables
‘build_alias’ and ‘target_alias’. See Section “Getting the Canonical Sys-
tem Type” in The Autoconf Manual.

AC_LIBSOURCE

AC_LIBSOURCES

AC_LIBOBJ

Automake will automatically distribute any file listed in AC_LIBSOURCE or AC_
LIBSOURCES.

Note that the AC_LIBOBJ macro calls AC_LIBSOURCE. So if an Autoconf macro
is documented to call AC_LIBOBJ([file]), then file.c will be distributed
automatically by Automake. This encompasses many macros like AC_FUNC_

ALLOCA, AC_FUNC_MEMCMP, AC_REPLACE_FUNCS, and others.

By the way, direct assignments to LIBOBJS are no longer supported. You should
always use AC_LIBOBJ for this purpose. See Section “AC_LIBOBJ vs. LIBOBJS”
in The Autoconf Manual.

AC_PROG_RANLIB

This is required if any libraries are built in the package. See Section “Particular
Program Checks” in The Autoconf Manual.

AC_PROG_CXX

This is required if any C++ source is included. See Section “Particular Program
Checks” in The Autoconf Manual.

AC_PROG_F77

This is required if any Fortran 77 source is included. This macro is distributed
with Autoconf version 2.13 and later. See Section “Particular Program Checks”
in The Autoconf Manual.



Chapter 5: Scanning configure.in 14

AC_F77_LIBRARY_LDFLAGS

This is required for programs and shared libraries that are a mixture of lan-
guages that include Fortran 77 (see Section 9.10.3 [Mixing Fortran 77 With C
and C++], page 41). See Section 5.6 [Autoconf macros supplied with Automake],
page 17.

AC_PROG_LIBTOOL

Automake will turn on processing for libtool (see Section “Introduction” in
The Libtool Manual).

AC_PROG_YACC

If a Yacc source file is seen, then you must either use this macro or define
the variable ‘YACC’ in configure.in. The former is preferred (see Section
“Particular Program Checks” in The Autoconf Manual).

AC_PROG_LEX

If a Lex source file is seen, then this macro must be used. See Section “Particular
Program Checks” in The Autoconf Manual.

AC_SUBST The first argument is automatically defined as a variable in each generated
Makefile.in. See Section “Setting Output Variables” in The Autoconf Man-
ual.

If the Autoconf manual says that a macro calls AC_SUBST for var, or defined the
output variable var then var will be defined in each generated Makefile.in.
E.g. AC_PATH_XTRA defines X_CFLAGS and X_LIBS, so you can use the variable
in any Makefile.am if AC_PATH_XTRA is called.

AM_C_PROTOTYPES

This is required when using automatic de-ANSI-fication; see Section 9.13
[ANSI], page 44.

AM_GNU_GETTEXT

This macro is required for packages which use GNU gettext (see Section 11.2
[gettext], page 51). It is distributed with gettext. If Automake sees this macro
it ensures that the package meets some of gettext’s requirements.

AM_MAINTAINER_MODE

This macro adds a ‘--enable-maintainer-mode’ option to configure. If this is
used, automake will cause ‘maintainer-only’ rules to be turned off by default
in the generated Makefile.ins. This macro defines the ‘MAINTAINER_MODE’
conditional, which you can use in your own Makefile.am.

5.3 Auto-generating aclocal.m4

Automake includes a number of Autoconf macros which can be used in your package; some
of them are actually required by Automake in certain situations. These macros must be
defined in your aclocal.m4; otherwise they will not be seen by autoconf.

The aclocal program will automatically generate aclocal.m4 files based on the con-
tents of configure.in. This provides a convenient way to get Automake-provided macros,
without having to search around. Also, the aclocal mechanism allows other packages to
supply their own macros.



Chapter 5: Scanning configure.in 15

At startup, aclocal scans all the .m4 files it can find, looking for macro definitions (see
Section 5.5 [Macro search path], page 15). Then it scans configure.in. Any mention of
one of the macros found in the first step causes that macro, and any macros it in turn
requires, to be put into aclocal.m4.

The contents of acinclude.m4, if it exists, are also automatically included in
aclocal.m4. This is useful for incorporating local macros into configure.

aclocal tries to be smart about looking for new AC_DEFUNs in the files it scans. It also
tries to copy the full text of the scanned file into aclocal.m4, including both ‘#’ and ‘dnl’
comments. If you want to make a comment which will be completely ignored by aclocal,
use ‘##’ as the comment leader.

5.4 aclocal options

aclocal accepts the following options:

--acdir=dir

Look for the macro files in dir instead of the installation directory. This is
typically used for debugging.

--help Print a summary of the command line options and exit.

-I dir Add the directory dir to the list of directories searched for .m4 files.

--output=file

Cause the output to be put into file instead of aclocal.m4.

--print-ac-dir

Prints the name of the directory which aclocal will search to find third-party
.m4 files. When this option is given, normal processing is suppressed. This
option can be used by a package to determine where to install a macro file.

--verbose

Print the names of the files it examines.

--version

Print the version number of Automake and exit.

5.5 Macro search path

By default, aclocal searches for .m4 files in the following directories, in this order:

acdir-APIVERSION

This is where the .m4 macros distributed with automake itself are stored.
APIVERSION depends on the automake release used; for automake 1.6.x,
APIVERSION = 1.6.

acdir This directory is intended for third party .m4 files, and is configured when
automake itself is built. This is @datadir@/aclocal/, which typically expands
to ${prefix}/share/aclocal/. To find the compiled-in value of acdir, use the
--print-ac-dir option (see Section 5.4 [aclocal options], page 15).

As an example, suppose that automake-1.6.2 was configured with --prefix=/usr/local.
Then, the search path would be:

1. /usr/local/share/aclocal-1.6/



Chapter 5: Scanning configure.in 16

2. /usr/local/share/aclocal/

As explained in (see Section 5.4 [aclocal options], page 15), there are several options that
can be used to change or extend this search path.

5.5.1 Modifying the macro search path: --acdir

The most obvious option to modify the search path is --acdir=dir, which changes
default directory and drops the APIVERSION directory. For example, if one specifies
--acdir=/opt/private/, then the search path becomes:

1. /opt/private/

Note that this option, --acdir, is intended for use by the internal automake test suite
only; it is not ordinarily needed by end-users.

5.5.2 Modifying the macro search path: -I dir

Any extra directories specified using -I options (see Section 5.4 [aclocal options], page 15)
are prepended to this search list. Thus, aclocal -I /foo -I /bar results in the following
search path:

1. /foo

2. /bar

3. acdir-APIVERSION

4. acdir

5.5.3 Modifying the macro search path: dirlist

There is a third mechanism for customizing the search path. If a dirlist file exists in
acdir, then that file is assumed to contain a list of directories, one per line, to be added to
the search list. These directories are searched after all other directories.

For example, suppose acdir/dirlist contains the following:

/test1

/test2

and that aclocal was called with the -I /foo -I /bar options. Then, the search path
would be

1. /foo

2. /bar

3. acdir-APIVERSION

4. acdir

5. /test1

6. /test2

If the --acdir=dir option is used, then aclocal will search for the dirlist

file in dir. In the --acdir=/opt/private/ example above, aclocal would look for
/opt/private/dirlist. Again, however, the --acdir option is intended for use by the
internal automake test suite only; --acdir is not ordinarily needed by end-users.

dirlist is useful in the following situation: suppose that automake version 1.6.2 is
installed with $prefix=/usr by the system vendor. Thus, the default search directories are

1. /usr/share/aclocal-1.6/



Chapter 5: Scanning configure.in 17

2. /usr/share/aclocal/

However, suppose further that many packages have been manually installed on the sys-
tem, with $prefix=/usr/local, as is typical. In that case, many of these “extra” .m4 files are
in /usr/local/share/aclocal. The only way to force /usr/bin/aclocal to find these
“extra” .m4 files is to always call aclocal -I /usr/local/share/aclocal. This is incon-
venient. With dirlist, one may create the file

/usr/share/aclocal/dirlist

which contains only the single line

/usr/local/share/aclocal

Now, the “default” search path on the affected system is

1. /usr/share/aclocal-1.6/

2. /usr/share/aclocal/

3. /usr/local/share/aclocal/

without the need for -I options; -I options can be reserved for project-specific needs
(my-source-dir/m4/), rather than using it to work around local system-dependent tool
installation directories.

Similarly, dirlist can be handy if you have installed a local copy Automake on your
account and want aclocal to look for macros installed at other places on the system.

5.6 Autoconf macros supplied with Automake

Automake ships with several Autoconf macros that you can use from your configure.in.
When you use one of them it will be included by aclocal in aclocal.m4.

5.6.1 Public macros

AM_CONFIG_HEADER

Automake will generate rules to automatically regenerate the config header.
This obsolete macro is a synonym of AC_CONFIG_HEADERS today (see Section 5.2
[Optional], page 12).

AM_ENABLE_MULTILIB

This is used when a “multilib” library is being built. The first optional argument
is the name of the Makefile being generated; it defaults to ‘Makefile’. The
second option argument is used to find the top source directory; it defaults to
the empty string (generally this should not be used unless you are familiar with
the internals). See Section 18.3 [Multilibs], page 65.

AM_C_PROTOTYPES

Check to see if function prototypes are understood by the compiler. If so, define
‘PROTOTYPES’ and set the output variables ‘U’ and ‘ANSI2KNR’ to the empty
string. Otherwise, set ‘U’ to ‘_’ and ‘ANSI2KNR’ to ‘./ansi2knr’. Automake
uses these values to implement automatic de-ANSI-fication.

AM_HEADER_TIOCGWINSZ_NEEDS_SYS_IOCTL

If the use of TIOCGWINSZ requires <sys/ioctl.h>, then define GWINSZ_IN_SYS_
IOCTL. Otherwise TIOCGWINSZ can be found in <termios.h>.



Chapter 5: Scanning configure.in 18

AM_INIT_AUTOMAKE([OPTIONS])

AM_INIT_AUTOMAKE(PACKAGE, VERSION, [NO-DEFINE])

Runs many macros required for proper operation of the generated Makefiles.

This macro has two forms, the first of which is preferred. In this form, AM_
INIT_AUTOMAKE is called with a single argument — a space-separated list of
Automake options which should be applied to every Makefile.am in the tree.
The effect is as if each option were listed in AUTOMAKE_OPTIONS.

The second, deprecated, form of AM_INIT_AUTOMAKE has two required argu-
ments: the package and the version number. This form is obsolete because the
package and version can be obtained from Autoconf’s AC_INIT macro (which
itself has an old and a new form).

If your configure.in has:

AC_INIT(src/foo.c)

AM_INIT_AUTOMAKE(mumble, 1.5)

you can modernize it as follows:

AC_INIT(mumble, 1.5)

AC_CONFIG_SRCDIR(src/foo.c)

AM_INIT_AUTOMAKE

Note that if you’re upgrading your configure.in from an earlier version of
Automake, it is not always correct to simply move the package and version
arguments from AM_INIT_AUTOMAKE directly to AC_INIT, as in the example
above. The first argument to AC_INIT should be the name of your package
(e.g. ‘GNU Automake’), not the tarball name (e.g. ‘automake’) that you used
to pass to AM_INIT_AUTOMAKE. Autoconf tries to derive a tarball name from
the package name, which should work for most but not all package names. (If
it doesn’t work for yours, you can use the four-argument form of AC_INIT —
supported in Autoconf versions greater than 2.52g — to provide the tarball
name explicitly).

By default this macro AC_DEFINE’s ‘PACKAGE’ and ‘VERSION’. This can be
avoided by passing the ‘no-define’ option, as in:

AM_INIT_AUTOMAKE([gnits 1.5 no-define dist-bzip2])

or by passing a third non-empty argument to the obsolete form.

AM_PATH_LISPDIR

Searches for the program emacs, and, if found, sets the output variable lispdir
to the full path to Emacs’ site-lisp directory.

Note that this test assumes the emacs found to be a version that supports
Emacs Lisp (such as gnu Emacs or XEmacs). Other emacsen can cause this
test to hang (some, like old versions of MicroEmacs, start up in interactive
mode, requiring ‘C-x C-c’ to exit, which is hardly obvious for a non-emacs
user). In most cases, however, you should be able to use ‘C-c’ to kill the test.
In order to avoid problems, you can set EMACS to “no” in the environment,
or use the ‘--with-lispdir’ option to configure to explicitly set the correct
path (if you’re sure you have an emacs that supports Emacs Lisp.



Chapter 5: Scanning configure.in 19

AM_PROG_AS

Use this macro when you have assembly code in your project. This will choose
the assembler for you (by default the C compiler) and set CCAS, and will also
set CCASFLAGS if required.

AM_PROG_CC_C_O

This is like AC_PROG_CC_C_O, but it generates its results in the manner required
by automake. You must use this instead of AC_PROG_CC_C_O when you need
this functionality.

AM_PROG_CC_STDC

If the C compiler is not in ANSI C mode by default, try to add an option to
output variable CC to make it so. This macro tries various options that select
ANSI C on some system or another. It considers the compiler to be in ANSI C
mode if it handles function prototypes correctly.

If you use this macro, you should check after calling it whether the C compiler
has been set to accept ANSI C; if not, the shell variable am_cv_prog_cc_stdc
is set to ‘no’. If you wrote your source code in ANSI C, you can make an
un-ANSIfied copy of it by using the ansi2knr option (see Section 9.13 [ANSI],
page 44).

This macro is a relic from the time Autoconf didn’t offer such a feature. AM_

PROG_CC_STDC’s logic has now been merged into Autoconf’s AC_PROG_CC macro,
therefore you should use the latter instead. Chances are you are already using
AC_PROG_CC, so you can simply remove the AM_PROG_CC_STDC call and turn all
occurrences of $am_cv_prog_cc_stdc into $ac_cv_prog_cc_stdc. AM_PROG_

CC_STDC will be marked as obsolete (in the Autoconf sense) in Automake 1.8.

AM_PROG_LEX

Like AC_PROG_LEX (see Section “Particular Program Checks” in The Autoconf
Manual), but uses the missing script on systems that do not have lex. ‘HP-UX
10’ is one such system.

AM_PROG_GCJ

This macro finds the gcj program or causes an error. It sets ‘GCJ’ and
‘GCJFLAGS’. gcj is the Java front-end to the GNU Compiler Collection.

AM_SYS_POSIX_TERMIOS

Check to see if POSIX termios headers and functions are available on the sys-
tem. If so, set the shell variable am_cv_sys_posix_termios to ‘yes’. If not,
set the variable to ‘no’.

AM_WITH_DMALLOC

Add support for the dmalloc (ftp://ftp.letters.com/src/dmalloc/
dmalloc.tar.gz) package. If the user configures with ‘--with-dmalloc’, then
define WITH_DMALLOC and add ‘-ldmalloc’ to LIBS.

AM_WITH_REGEX

Adds ‘--with-regex’ to the configure command line. If specified (the de-
fault), then the ‘regex’ regular expression library is used, regex.o is put into
‘LIBOBJS’, and ‘WITH_REGEX’ is defined. If ‘--without-regex’ is given, then
the ‘rx’ regular expression library is used, and rx.o is put into ‘LIBOBJS’.

ftp://ftp.letters.com/src/dmalloc/dmalloc.tar.gz
ftp://ftp.letters.com/src/dmalloc/dmalloc.tar.gz


Chapter 5: Scanning configure.in 20

5.6.2 Private macros

The following macros are private macros you should not call directly. They are called by
the other public macros when appropriate. Do not rely on them, as they might be changed
in a future version. Consider them as implementation details; or better, do not consider
them at all: skip this section!

_AM_DEPENDENCIES

AM_SET_DEPDIR

AM_DEP_TRACK

AM_OUTPUT_DEPENDENCY_COMMANDS

These macros are used to implement Automake’s automatic dependency track-
ing scheme. They are called automatically by automake when required, and
there should be no need to invoke them manually.

AM_MAKE_INCLUDE

This macro is used to discover how the user’s make handles include statements.
This macro is automatically invoked when needed; there should be no need to
invoke it manually.

AM_PROG_INSTALL_STRIP

This is used to find a version of install which can be used to strip a program
at installation time. This macro is automatically included when required.

AM_SANITY_CHECK

This checks to make sure that a file created in the build directory is newer than
a file in the source directory. This can fail on systems where the clock is set
incorrectly. This macro is automatically run from AM_INIT_AUTOMAKE.

5.7 Writing your own aclocal macros

The aclocal program doesn’t have any built-in knowledge of any macros, so it is easy to
extend it with your own macros.

This can be used by libraries which want to supply their own Autoconf macros for use by
other programs. For instance the gettext library supplies a macro AM_GNU_GETTEXT which
should be used by any package using gettext. When the library is installed, it installs this
macro so that aclocal will find it.

A macro file’s name should end in .m4. Such files should be installed in
$(datadir)/aclocal. This is as simple as writing:

aclocaldir = $(datadir)/aclocal

aclocal_DATA = mymacro.m4 myothermacro.m4

A file of macros should be a series of properly quoted AC_DEFUN’s (see Section “Macro Def-
initions” in The Autoconf Manual). The aclocal programs also understands AC_REQUIRE
(see Section “Prerequisite Macros” in The Autoconf Manual), so it is safe to put each macro
in a separate file. Each file should have no side effects but macro definitions. Especially,
any call to AC_PREREQ should be done inside the defined macro, not at the beginning of the
file.

Starting with Automake 1.8, aclocal will warn about all underquoted calls to AC_DEFUN.
We realize this will annoy a lot of people, because aclocal was not so strict in the past



Chapter 6: The top-level Makefile.am 21

and many third party macros are underquoted; and we have to apologize for this temporary
inconvenience. The reason we have to be stricter is that a future implementation of aclocal
will have to temporary include all these third party .m4 files, maybe several times, even
those which are not actually needed. Doing so should alleviate many problem of the current
implementation, however it requires a stricter style from the macro authors. Hopefully it is
easy to revise the existing macros. For instance

# bad style

AC_PREREQ(2.57)

AC_DEFUN(AX_FOOBAR,

[AC_REQUIRE([AX_SOMETHING])dnl

AX_FOO

AX_BAR

])

should be rewritten as

AC_DEFUN([AX_FOOBAR],

[AC_PREREQ(2.57)dnl

AC_REQUIRE([AX_SOMETHING])dnl

AX_FOO

AX_BAR

])

Wrapping the AC_PREREQ call inside the macro ensures that Autoconf 2.57 will not be
required if AX_FOOBAR is not actually used. Most importantly, quoting the first argument of
AC_DEFUN allows the macro to be redefined or included twice (otherwise this first argument
would be expansed during the second definition).

If you have been directed here by the aclocal diagnostic but are not the maintainer
of the implicated macro, you will want to contact the maintainer of that macro. Please
make sure you have the last version of the macro and that the problem already hasn’t been
reported before doing so: people tend to work faster when they aren’t flooded by mails.

6 The top-level Makefile.am

6.1 Recursing subdirectories

In packages with subdirectories, the top level Makefile.am must tell Automake which
subdirectories are to be built. This is done via the SUBDIRS variable.

The SUBDIRS variable holds a list of subdirectories in which building of various sorts
can occur. Many targets (e.g. all) in the generated Makefile will run both locally and
in all specified subdirectories. Note that the directories listed in SUBDIRS are not required
to contain Makefile.ams; only Makefiles (after configuration). This allows inclusion of
libraries from packages which do not use Automake (such as gettext).

In packages that use subdirectories, the top-level Makefile.am is often very short. For
instance, here is the Makefile.am from the GNU Hello distribution:

EXTRA_DIST = BUGS ChangeLog.O README-alpha

SUBDIRS = doc intl po src tests



Chapter 6: The top-level Makefile.am 22

When Automake invokes make in a subdirectory, it uses the value of the MAKE variable.
It passes the value of the variable AM_MAKEFLAGS to the make invocation; this can be set in
Makefile.am if there are flags you must always pass to make.

The directories mentioned in SUBDIRS must be direct children of the current directory.
For instance, you cannot put ‘src/subdir’ into SUBDIRS. Instead you should put SUBDIRS
= subdir into src/Makefile.am. Automake can be used to construct packages of arbitrary
depth this way.

By default, Automake generates Makefiles which work depth-first (‘postfix’). How-
ever, it is possible to change this ordering. You can do this by putting ‘.’ into SUBDIRS. For
instance, putting ‘.’ first will cause a ‘prefix’ ordering of directories. All ‘clean’ targets
are run in reverse order of build targets.

6.2 Conditional subdirectories

It is possible to define the SUBDIRS variable conditionally if, like in the case of GNU
Inetutils, you want to only build a subset of the entire package.

To illustrate how this works, let’s assume we have two directories src/ and opt/. src/
should always be built, but we want to decide in ./configure whether opt/ will be built
or not. (For this example we will assume that opt/ should be built when the variable
$want_opt was set to yes.)

Running make should thus recurse into src/ always, and then maybe in opt/.

However make dist should always recurse into both src/ and opt/. Because opt/

should be distributed even if it is not needed in the current configuration. This means
opt/Makefile should be created unconditionally.3

There are two ways to setup a project like this. You can use Automake conditionals
(see Chapter 20 [Conditionals], page 66) or use Autoconf AC_SUBST variables (see Section
“Setting Output Variables” in The Autoconf Manual). Using Automake conditionals is the
preferred solution.

6.2.1 Conditional subdirectories with AM_CONDITIONAL

configure should output the Makefile for each directory and define a condition into which
opt/ should be built.

...

AM_CONDITIONAL([COND_OPT], [test "$want_opt" = yes])

AC_CONFIG_FILES([Makefile src/Makefile opt/Makefile])

...

Then SUBDIRS can be defined in the top-level Makefile.am as follows.

if COND_OPT

MAYBE_OPT = opt

endif

SUBDIRS = src $(MAYBE_OPT)

As you can see, running make will rightly recurse into src/ and maybe opt/.

3 Don’t try seeking a solution where opt/Makefile is created conditionally, this is a lot trickier than the
solutions presented here.



Chapter 7: An Alternative Approach to Subdirectories 23

As you can’t see, running make dist will recurse into both src/ and opt/ directories
because make dist, unlike make all, doesn’t use the SUBDIRS variable. It uses the DIST_

SUBDIRS variable.

In this case Automake will define DIST_SUBDIRS = src opt automatically because it
knows that MAYBE_OPT can contain opt in some condition.

6.2.2 Conditional subdirectories with AC_SUBST

Another idea is to define MAYBE_OPT from ./configure using AC_SUBST:

...

if test "$want_opt" = yes; then

MAYBE_OPT=opt

else

MAYBE_OPT=

fi

AC_SUBST([MAYBE_OPT])

AC_CONFIG_FILES([Makefile src/Makefile opt/Makefile])

...

In this case the top-level Makefile.am should look as follows.

SUBDIRS = src $(MAYBE_OPT)

DIST_SUBDIRS = src opt

The drawback is that since Automake cannot guess what the possible values of MAYBE_
OPT are, it is necessary to define DIST_SUBDIRS.

6.2.3 How DIST_SUBDIRS is used

As shown in the above examples, DIST_SUBDIRS is used by targets that need to recurse in
all directories, even those which have been conditionally left out of the build.

Precisely, DIST_SUBDIRS is used by make dist, make distclean, and make

maintainer-clean. All other recursive targets use SUBDIRS.

Automake will define DIST_SUBDIRS automatically from the possibles values of SUBDIRS
in all conditions.

If SUBDIRS contains AC_SUBST variables, DIST_SUBDIRS will not be defined correctly
because Automake doesn’t know the possible values of these variables. In this case DIST_

SUBDIRS needs to be defined manually.

7 An Alternative Approach to Subdirectories

If you’ve ever read Peter Miller’s excellent paper, Recursive Make Considered Harmful
(http://www.pcug.org.au/~millerp/rmch/recu-make-cons-harm.html), the preceding
section on the use of subdirectories will probably come as unwelcome advice. For those who
haven’t read the paper, Miller’s main thesis is that recursive make invocations are both slow
and error-prone.

Automake provides sufficient cross-directory support4 to enable you to write a single
Makefile.am for a complex multi-directory package.

4 We believe. This work is new and there are probably warts. See Chapter 1 [Introduction], page 1, for
information on reporting bugs.

http://www.pcug.org.au/~millerp/rmch/recu-make-cons-harm.html
http://www.pcug.org.au/~millerp/rmch/recu-make-cons-harm.html


Chapter 9: Building Programs and Libraries 24

By default an installable file specified in a subdirectory will have its directory name
stripped before installation. For instance, in this example, the header file will be installed
as $(includedir)/stdio.h:

include_HEADERS = inc/stdio.h

However, the ‘nobase_’ prefix can be used to circumvent this path stripping. In this
example, the header file will be installed as $(includedir)/sys/types.h:

nobase_include_HEADERS = sys/types.h

‘nobase_’ should be specified first when used in conjunction with either ‘dist_’ or
‘nodist_’ (see Chapter 15 [Dist], page 57). For instance:

nobase_dist_pkgdata_DATA = images/vortex.pgm

8 Rebuilding Makefiles

Automake generates rules to automatically rebuild Makefiles, configure, and other de-
rived files like Makefile.in.

If you are using AM_MAINTAINER_MODE in configure.in, then these automatic rebuilding
rules are only enabled in maintainer mode.

Sometimes you need to run aclocal with an argument like -I to tell it where to find .m4

files. Since sometimes make will automatically run aclocal, you need a way to specify these
arguments. You can do this by defining ACLOCAL_AMFLAGS; this holds arguments which are
passed verbatim to aclocal. This variable is only useful in the top-level Makefile.am.

9 Building Programs and Libraries

A large part of Automake’s functionality is dedicated to making it easy to build programs
and libraries.

9.1 Building a program

In order to build a program, you need to tell Automake which sources are part of it, and
which libraries it should be linked with.

This section also covers conditional compilation of sources or programs. Most of the
comments about these also apply to libraries (see Section 9.2 [A Library], page 28) and
libtool libraries (see Section 9.3 [A Shared Library], page 28).

9.1.1 Defining program sources

In a directory containing source that gets built into a program (as opposed to a library or
a script), the ‘PROGRAMS’ primary is used. Programs can be installed in bindir, sbindir,
libexecdir, pkglibdir, or not at all (‘noinst’). They can also be built only for make

check, in which case the prefix is ‘check’.

For instance:

bin_PROGRAMS = hello

In this simple case, the resulting Makefile.in will contain code to generate a program
named hello.



Chapter 9: Building Programs and Libraries 25

Associated with each program are several assisting variables which are named after the
program. These variables are all optional, and have reasonable defaults. Each variable, its
use, and default is spelled out below; we use the “hello” example throughout.

The variable hello_SOURCES is used to specify which source files get built into an exe-
cutable:

hello_SOURCES = hello.c version.c getopt.c getopt1.c getopt.h system.h

This causes each mentioned ‘.c’ file to be compiled into the corresponding ‘.o’. Then
all are linked to produce hello.

If ‘hello_SOURCES’ is not specified, then it defaults to the single file hello.c; that is,
the default is to compile a single C file whose base name is the name of the program itself.
(This is a terrible default but we are stuck with it for historical reasons.)

Multiple programs can be built in a single directory. Multiple programs can share a
single source file, which must be listed in each ‘_SOURCES’ definition.

Header files listed in a ‘_SOURCES’ definition will be included in the distribution but
otherwise ignored. In case it isn’t obvious, you should not include the header file generated
by configure in a ‘_SOURCES’ variable; this file should not be distributed. Lex (‘.l’) and
Yacc (‘.y’) files can also be listed; see Section 9.7 [Yacc and Lex], page 37.

9.1.2 Linking the program

If you need to link against libraries that are not found by configure, you can use LDADD

to do so. This variable is used to specify additional objects or libraries to link with; it is
inappropriate for specifying specific linker flags, you should use AM_LDFLAGS for this purpose.

Sometimes, multiple programs are built in one directory but do not share the same link-
time requirements. In this case, you can use the ‘prog_LDADD’ variable (where prog is the
name of the program as it appears in some ‘_PROGRAMS’ variable, and usually written in
lowercase) to override the global LDADD. If this variable exists for a given program, then
that program is not linked using LDADD.

For instance, in GNU cpio, pax, cpio and mt are linked against the library libcpio.a.
However, rmt is built in the same directory, and has no such link requirement. Also, mt and
rmt are only built on certain architectures. Here is what cpio’s src/Makefile.am looks like
(abridged):

bin_PROGRAMS = cpio pax @MT@

libexec_PROGRAMS = @RMT@

EXTRA_PROGRAMS = mt rmt

LDADD = ../lib/libcpio.a @INTLLIBS@

rmt_LDADD =

cpio_SOURCES = ...

pax_SOURCES = ...

mt_SOURCES = ...

rmt_SOURCES = ...

‘prog_LDADD’ is inappropriate for passing program-specific linker flags (except for ‘-l’,
‘-L’, ‘-dlopen’ and ‘-dlpreopen’). So, use the ‘prog_LDFLAGS’ variable for this purpose.



Chapter 9: Building Programs and Libraries 26

It is also occasionally useful to have a program depend on some other target which is not
actually part of that program. This can be done using the ‘prog_DEPENDENCIES’ variable.
Each program depends on the contents of such a variable, but no further interpretation is
done.

If ‘prog_DEPENDENCIES’ is not supplied, it is computed by Automake. The
automatically-assigned value is the contents of ‘prog_LDADD’, with most configure
substitutions, ‘-l’, ‘-L’, ‘-dlopen’ and ‘-dlpreopen’ options removed. The configure
substitutions that are left in are only ‘@LIBOBJS@’ and ‘@ALLOCA@’; these are left because
it is known that they will not cause an invalid value for ‘prog_DEPENDENCIES’ to be
generated.

9.1.3 Conditional compilation of sources

You can’t put a configure substitution (e.g., ‘@FOO@’) into a ‘_SOURCES’ variable. The reason
for this is a bit hard to explain, but suffice to say that it simply won’t work. Automake will
give an error if you try to do this.

Fortunately there are two other ways to achieve the same result. One is to use configure
substitutions in _LDADD variables, the other is to use an Automake conditional.

9.1.3.1 Conditional compilation using _LDADD substitutions

Automake must know all the source files that could possibly go into a program, even if not
all the files are built in every circumstance. Any files which are only conditionally built
should be listed in the appropriate ‘EXTRA_’ variable. For instance, if hello-linux.c or
hello-generic.c were conditionally included in hello, the Makefile.am would contain:

bin_PROGRAMS = hello

hello_SOURCES = hello-common.c

EXTRA_hello_SOURCES = hello-linux.c hello-generic.c

hello_LDADD = @HELLO_SYSTEM@

hello_DEPENDENCIES = @HELLO_SYSTEM@

You can then setup the @HELLO_SYSTEM@ substitution from configure.in:

...

case $host in

*linux*) HELLO_SYSTEM=’hello-linux.$(OBJEXT)’ ;;

*) HELLO_SYSTEM=’hello-generic.$(OBJEXT)’ ;;

esac

AC_SUBST([HELLO_SYSTEM])

...

In this case, HELLO_SYSTEM should be replaced by hello-linux.o or hello-bsd.o, and
added to hello_DEPENDENCIES and hello_LDADD in order to be built and linked in.

9.1.3.2 Conditional compilation using Automake conditionals

An often simpler way to compile source files conditionally is to use Automake conditionals.
For instance, you could use this Makefile.am construct to build the same hello example:

bin_PROGRAMS = hello

if LINUX

hello_SOURCES = hello-linux.c hello-common.c



Chapter 9: Building Programs and Libraries 27

else

hello_SOURCES = hello-generic.c hello-common.c

endif

In this case, your configure.in should setup the LINUX conditional using
AM_CONDITIONAL (see Chapter 20 [Conditionals], page 66).

When using conditionals like this you don’t need to use the ‘EXTRA_’ variable, because
Automake will examine the contents of each variable to construct the complete list of source
files.

If your program uses a lot of files, you will probably prefer a conditional +=.

bin_PROGRAMS = hello

hello_SOURCES = hello-common.c

if LINUX

hello_SOURCES += hello-linux.c

else

hello_SOURCES += hello-generic.c

endif

9.1.4 Conditional compilation of programs

Sometimes it is useful to determine the programs that are to be built at configure time.
For instance, GNU cpio only builds mt and rmt under special circumstances. The means
to achieve conditional compilation of programs are the same you can use to compile source
files conditionally: substitutions or conditionals.

9.1.4.1 Conditional programs using configure substitutions

In this case, you must notify Automake of all the programs that can possibly be built,
but at the same time cause the generated Makefile.in to use the programs specified by
configure. This is done by having configure substitute values into each ‘_PROGRAMS’
definition, while listing all optionally built programs in EXTRA_PROGRAMS.

bin_PROGRAMS = cpio pax $(MT)

libexec_PROGRAMS = $(RMT)

EXTRA_PROGRAMS = mt rmt

As explained in Section 9.15 [EXEEXT], page 45, Automake will rewrite bin_PROGRAMS,
libexec_PROGRAMS, and EXTRA_PROGRAMS, appending $(EXEEXT) to each binary. Ob-
viously it cannot rewrite values obtained at run-time through configure substitutions,
therefore you should take care of appending $(EXEEXT) yourself, as in AC_SUBST([MT],

[’mt${EXEEXT}’]).

9.1.4.2 Conditional programs using Automake conditionals

You can also use Automake conditionals (see Chapter 20 [Conditionals], page 66) to select
programs to be built. In this case you don’t have to worry about $(EXEEXT) or EXTRA_

PROGRAMS.

bin_PROGRAMS = cpio pax

if WANT_MT

bin_PROGRAMS += mt

endif



Chapter 9: Building Programs and Libraries 28

if WANT_RMT

libexec_PROGRAMS = rmt

endif

9.2 Building a library

Building a library is much like building a program. In this case, the name of the primary
is ‘LIBRARIES’. Libraries can be installed in libdir or pkglibdir.

See Section 9.3 [A Shared Library], page 28, for information on how to build shared
libraries using libtool and the ‘LTLIBRARIES’ primary.

Each ‘_LIBRARIES’ variable is a list of the libraries to be built. For instance to create a
library named libcpio.a, but not install it, you would write:

noinst_LIBRARIES = libcpio.a

The sources that go into a library are determined exactly as they are for programs,
via the ‘_SOURCES’ variables. Note that the library name is canonicalized (see Section 2.4
[Canonicalization], page 4), so the ‘_SOURCES’ variable corresponding to liblob.a is
‘liblob_a_SOURCES’, not ‘liblob.a_SOURCES’.

Extra objects can be added to a library using the ‘library_LIBADD’ variable. This
should be used for objects determined by configure. Again from cpio:

libcpio_a_LIBADD = $(LIBOBJS) $(ALLOCA)

In addition, sources for extra objects that will not exist until configure-time must be
added to the BUILT_SOURCES variable (see Section 10.4 [Sources], page 47).

9.3 Building a Shared Library

Building shared libraries portably is a relatively complex matter. For this reason, GNU
Libtool (see Section “Introduction” in The Libtool Manual) was created to help build shared
libraries in a platform-independent way.

9.3.1 The Libtool Concept

Libtool abstracts shared and static libraries into a unified concept henceforth called libtool
libraries. Libtool libraries are files using the .la suffix, and can designate a static library, a
shared library, or maybe both. Their exact nature cannot be determined until ./configure
is run: not all platforms support all kinds of libraries, and users can explicitly select which
libraries should be built. (However the package’s maintainers can tune the default, See
Section “The AC_PROG_LIBTOOL macro” in The Libtool Manual.)

Because object files for shared and static libraries must be compiled differently, libtool
is also used during compilation. Object files built by libtool are called libtool objects: these
are files using the .lo suffix. Libtool libraries are built from these libtool objects.

You should not assume anything about the structure of .la or .lo files and how libtool
constructs them: this is libtool’s concern, and the last thing one wants is to learn about
libtool’s guts. However the existence of these files matters, because they are used as targets
and dependencies in Makefiles when building libtool libraries. There are situations where
you may have to refer to these, for instance when expressing dependencies for building
source files conditionally (see Section 9.3.4 [Conditional Libtool Sources], page 30).



Chapter 9: Building Programs and Libraries 29

People considering writing a plug-in system, with dynamically loaded modules, should
look into libltdl: libtool’s dlopening library (see Section “Using libltdl” in The Libtool
Manual). This offers a portable dlopening facility to load libtool libraries dynamically, and
can also achieve static linking where unavoidable.

Before we discuss how to use libtool with Automake in details, it should be noted that
the libtool manual also has a section about how to use Automake with libtool (see Section
“Using Automake with Libtool” in The Libtool Manual).

9.3.2 Building Libtool Libraries

Automake uses libtool to build libraries declared with the ‘LTLIBRARIES’ primary. Each
‘_LTLIBRARIES’ variable is a list of libtool libraries to build. For instance, to create a libtool
library named libgettext.la, and install it in ‘libdir’, write:

lib_LTLIBRARIES = libgettext.la

libgettext_la_SOURCES = gettext.c gettext.h ...

Automake predefines the variable ‘pkglibdir’, so you can use pkglib_LTLIBRARIES to
install libraries in $(libdir)/@PACKAGE@/.

9.3.3 Building Libtool Libraries Conditionally

Like conditional programs (see Section 9.1.4 [Conditional Programs], page 27), there are two
main ways to build conditional libraries: using Automake conditionals or using Autoconf
AC_SUBSTitutions.

The important implementation detail you have to be aware of is that the place where a
library will be installed matters to libtool: it needs to be indicated at link-time using the
-rpath option.

For libraries whose destination directory is known when Automake runs, Automake will
automatically supply the appropriate ‘-rpath’ option to libtool. This is the case for libraries
listed explicitly in some installable _LTLIBRARIES variables such as lib_LTLIBRARIES.

However, for libraries determined at configure time (and thus mentioned in EXTRA_

LTLIBRARIES), Automake does not know the final installation directory. For such libraries
you must add the ‘-rpath’ option to the appropriate ‘_LDFLAGS’ variable by hand.

The examples below illustrate the differences between these two methods.

Here is an example where $(WANTEDLIBS) is an AC_SUBSTed variable set at ./configure-
time to either libfoo.la, libbar.la, both, or none. Although $(WANTEDLIBS) appears
in the lib_LTLIBRARIES, Automake cannot guess it relates to libfoo.la or libbar.la by
the time it creates the link rule for these two libraries. Therefore the -rpath argument
must be explicitly supplied.

EXTRA_LTLIBRARIES = libfoo.la libbar.la

lib_LTLIBRARIES = $(WANTEDLIBS)

libfoo_la_SOURCES = foo.c ...

libfoo_la_LDFLAGS = -rpath ’$(libdir)’

libbar_la_SOURCES = bar.c ...

libbar_la_LDFLAGS = -rpath ’$(libdir)’

Here is how the same Makefile.am would look using Automake conditionals named
WANT_LIBFOO and WANT_LIBBAR. Now Automake is able to compute the -rpath setting
itself, because it’s clear that both libraries will end up in $(libdir) if they are installed.



Chapter 9: Building Programs and Libraries 30

lib_LTLIBRARIES =

if WANT_LIBFOO

lib_LTLIBRARIES += libfoo.la

endif

if WANT_LIBBAR

lib_LTLIBRARIES += libbar.la

endif

libfoo_la_SOURCES = foo.c ...

libbar_la_SOURCES = bar.c ...

9.3.4 Libtool Libraries with Conditional Sources

Conditional compilation of sources in a library can be achieved in the same way as condi-
tional compilation of sources in a program (see Section 9.1.3 [Conditional Sources], page 26).
The only difference is that _LIBADD should be used instead of _LDADD and that it should
mention libtool objects (.lo files).

So, to mimic the hello example from Section 9.1.3 [Conditional Sources], page 26, we
could build a libhello.la library using either hello-linux.c or hello-generic.c with
the following Makefile.am.

lib_LTLIBRARIES = libhello.la

libhello_la_SOURCES = hello-common.c

EXTRA_libhello_la_SOURCES = hello-linux.c hello-generic.c

libhello_la_LIBADD = $(HELLO_SYSTEM)

libhello_la_DEPENDENCIES = $(HELLO_SYSTEM)

And make sure $(HELLO_SYSTEM) is set to either hello-linux.lo or hello-generic.lo
in ./configure.

Or we could simply use an Automake conditional as follows.

lib_LTLIBRARIES = libhello.la

libhello_la_SOURCES = hello-common.c

if LINUX

libhello_la_SOURCES += hello-linux.c

else

libhello_la_SOURCES += hello-generic.c

endif

9.3.5 Libtool Convenience Libraries

Sometimes you want to build libtool libraries which should not be installed. These are
called libtool convenience libraries and are typically used to encapsulate many sublibraries,
later gathered into one big installed library.

Libtool convenience libraries are declared by noinst_LTLIBRARIES, check_

LTLIBRARIES, or even EXTRA_LTLIBRARIES. Unlike installed libtool libraries they do not
need an -rpath flag at link time (actually this is the only difference).

Convenience libraries listed in noinst_LTLIBRARIES are always built. Those listed in
check_LTLIBRARIES are built only upon make check. Finally, libraries listed in EXTRA_

LTLIBRARIES are never built explicitly: Automake outputs rules to build them, but if the



Chapter 9: Building Programs and Libraries 31

library does not appear as a Makefile dependency anywhere it won’t be built (this is why
EXTRA_LTLIBRARIES is used for conditional compilation).

Here is a sample setup merging libtool convenience libraries from subdirectories into one
main libtop.la library.

# -- Top-level Makefile.am --

SUBDIRS = sub1 sub2 ...

lib_LTLIBRARIES = libtop.la

libtop_la_SOURCES =

libtop_la_LIBADD = \

sub1/libsub1.la \

sub2/libsub2.la \

...

# -- sub1/Makefile.am --

noinst_LTLIBRARIES = libsub1.la

libsub1_la_SOURCES = ...

# -- sub2/Makefile.am --

# showing nested convenience libraries

SUBDIRS = sub2.1 sub2.2 ...

noinst_LTLIBRARIES = libsub2.la

libsub2_la_SOURCES =

libsub2_la_LIBADD = \

sub21/libsub21.la \

sub22/libsub22.la \

...

9.3.6 Libtool Modules

These are libtool libraries meant to be dlopened. They are indicated to libtool by passing
-module at link-time.

pkglib_LTLIBRARIES = mymodule.la

mymodule_la_SOURCES = doit.c

mymodule_LDFLAGS = -module

Ordinarily, Automake requires that a Library’s name starts with ‘lib’. However, when
building a dynamically loadable module you might wish to use a "nonstandard" name.

9.3.7 LIBADD and LDFLAGS

As shown in previous sections, the ‘library_LIBADD’ variable should be used to list extra
libtool objects (.lo files) or libtool libraries (.la) to add to library.

The ‘library_LDFLAGS’ variable is the place to list additional libtool flags, such as
‘-version-info’, ‘-static’, and a lot more. See See Section “Using libltdl” in The Libtool
Manual.



Chapter 9: Building Programs and Libraries 32

9.3.8 LTLIBOBJS

Where an ordinary library might include $(LIBOBJS), a libtool library must use
$(LTLIBOBJS). This is required because the object files that libtool operates on do not
necessarily end in .o.

Nowadays, the computation of LTLIBOBJS from LIBOBJS is performed automatically by
Autoconf (see Section “AC_LIBOBJ vs. LIBOBJS” in The Autoconf Manual).

9.3.9 Common Issues Related to Libtool’s Use

9.3.9.1 required file ‘./ltmain.sh’ not found

Libtool comes with a tool called libtoolize that will install libtool’s supporting files into
a package. Running this command will install ltmain.sh. You should execute it before
aclocal and automake.

People upgrading old packages to newer autotools are likely to face this issue because
older Automake versions used to call libtoolize. Therefore old build scripts do not call
libtoolize.

Since Automake 1.6, it has been decided that running libtoolize was none of Au-
tomake’s business. Instead, that functionality has been moved into the autoreconf com-
mand (see Section “Using autoreconf” in The Autoconf Manual). If you do not want to
remember what to run and when, just learn the autoreconf command. Hopefully, replacing
existing bootstrap.sh or autogen.sh scripts by a call to autoreconf should also free you
from any similar incompatible change in the future.

9.3.9.2 Objects created with both libtool and without

Sometimes, the same source file is used both to build a libtool library and to build another
non-libtool target (be it a program or another library).

Let’s consider the following Makefile.am.

bin_PROGRAMS = prog

prog_SOURCES = prog.c foo.c ...

lib_LTLIBRARIES = libfoo.la

libfoo_la_SOURCES = foo.c ...

(In this trivial case the issue could be avoided by linking libfoo.la with prog instead of
listing foo.c in prog_SOURCES. But let’s assume we really want to keep prog and libfoo.la

separate.)

Technically, it means that we should build foo.$(OBJEXT) for prog, and foo.lo for
libfoo.la. The problem is that in the course of creating foo.lo, libtool may erase (or
replace) foo.$(OBJEXT) – and this cannot be avoided.

Therefore, when Automake detects this situation it will complain with a message such
as

object ‘foo.$(OBJEXT)’ created both with libtool and without

A workaround for this issue is to ensure that these two objects get different basenames.
As explained in Section 26.5 [renamed objects], page 76, this happens automatically when
per-targets flags are used.

bin_PROGRAMS = prog



Chapter 9: Building Programs and Libraries 33

prog_SOURCES = prog.c foo.c ...

prog_CFLAGS = $(AM_CFLAGS)

lib_LTLIBRARIES = libfoo.la

libfoo_la_SOURCES = foo.c ...

Adding prog_CFLAGS = $(AM_CFLAGS) is almost a no-op, because when the prog_CFLAGS is
defined, it is used instead of AM_CFLAGS. However as a side effect it will cause prog.c and
foo.c to be compiled as prog-prog.$(OBJEXT) and prog-foo.$(OBJEXT) which solves the
issue.

9.4 Program and Library Variables

Associated with each program are a collection of variables which can be used to modify
how that program is built. There is a similar list of such variables for each library. The
canonical name of the program (or library) is used as a base for naming these variables.

In the list below, we use the name “maude” to refer to the program or library. In your
Makefile.am you would replace this with the canonical name of your program. This list
also refers to “maude” as a program, but in general the same rules apply for both static and
dynamic libraries; the documentation below notes situations where programs and libraries
differ.

‘maude_SOURCES’
This variable, if it exists, lists all the source files which are compiled to build the
program. These files are added to the distribution by default. When building
the program, Automake will cause each source file to be compiled to a single
.o file (or .lo when using libtool). Normally these object files are named after
the source file, but other factors can change this. If a file in the ‘_SOURCES’
variable has an unrecognized extension, Automake will do one of two things
with it. If a suffix rule exists for turning files with the unrecognized extension
into .o files, then automake will treat this file as it will any other source file
(see Section 9.12 [Support for Other Languages], page 44). Otherwise, the file
will be ignored as though it were a header file.

The prefixes ‘dist_’ and ‘nodist_’ can be used to control whether files listed
in a ‘_SOURCES’ variable are distributed. ‘dist_’ is redundant, as sources are
distributed by default, but it can be specified for clarity if desired.

It is possible to have both ‘dist_’ and ‘nodist_’ variants of a given ‘_SOURCES’
variable at once; this lets you easily distribute some files and not others, for
instance:

nodist_maude_SOURCES = nodist.c

dist_maude_SOURCES = dist-me.c

By default the output file (on Unix systems, the .o file) will be put into the cur-
rent build directory. However, if the option subdir-objects is in effect in the
current directory then the .o file will be put into the subdirectory named after
the source file. For instance, with subdir-objects enabled, sub/dir/file.c
will be compiled to sub/dir/file.o. Some people prefer this mode of opera-
tion. You can specify subdir-objects in AUTOMAKE_OPTIONS (see Chapter 17
[Options], page 61).



Chapter 9: Building Programs and Libraries 34

‘EXTRA_maude_SOURCES’
Automake needs to know the list of files you intend to compile statically. For
one thing, this is the only way Automake has of knowing what sort of language
support a given Makefile.in requires.5 This means that, for example, you can’t
put a configure substitution like ‘@my_sources@’ into a ‘_SOURCES’ variable. If
you intend to conditionally compile source files and use configure to substitute
the appropriate object names into, e.g., ‘_LDADD’ (see below), then you should
list the corresponding source files in the ‘EXTRA_’ variable.

This variable also supports ‘dist_’ and ‘nodist_’ prefixes, e.g.,
‘nodist_EXTRA_maude_SOURCES’.

‘maude_AR’
A static library is created by default by invoking $(AR) cru followed by the
name of the library and then the objects being put into the library. You can
override this by setting the ‘_AR’ variable. This is usually used with C++;
some C++ compilers require a special invocation in order to instantiate all the
templates which should go into a library. For instance, the SGI C++ compiler
likes this variable set like so:

libmaude_a_AR = $(CXX) -ar -o

‘maude_LIBADD’
Extra objects can be added to a library using the ‘_LIBADD’ variable. For in-
stance this should be used for objects determined by configure (see Section 9.2
[A Library], page 28).

‘maude_LDADD’
Extra objects can be added to a program by listing them in the ‘_LDADD’ vari-
able. For instance this should be used for objects determined by configure

(see Section 9.1.2 [Linking], page 25).

‘_LDADD’ and ‘_LIBADD’ are inappropriate for passing program-specific linker
flags (except for ‘-l’, ‘-L’, ‘-dlopen’ and ‘-dlpreopen’). Use the ‘_LDFLAGS’
variable for this purpose.

For instance, if your configure.in uses AC_PATH_XTRA, you could link your
program against the X libraries like so:

maude_LDADD = $(X_PRE_LIBS) $(X_LIBS) $(X_EXTRA_LIBS)

‘maude_LDFLAGS’
This variable is used to pass extra flags to the link step of a program or a shared
library.

‘maude_DEPENDENCIES’
It is also occasionally useful to have a program depend on some other tar-
get which is not actually part of that program. This can be done using the
‘_DEPENDENCIES’ variable. Each program depends on the contents of such a
variable, but no further interpretation is done.

If ‘_DEPENDENCIES’ is not supplied, it is computed by Automake. The
automatically-assigned value is the contents of ‘_LDADD’ or ‘_LIBADD’, with

5 There are other, more obscure reasons reasons for this limitation as well.



Chapter 9: Building Programs and Libraries 35

most configure substitutions, ‘-l’, ‘-L’, ‘-dlopen’ and ‘-dlpreopen’ options
removed. The configure substitutions that are left in are only ‘$(LIBOBJS)’
and ‘$(ALLOCA)’; these are left because it is known that they will not cause an
invalid value for ‘_DEPENDENCIES’ to be generated.

‘maude_LINK’
You can override the linker on a per-program basis. By default the linker is
chosen according to the languages used by the program. For instance, a program
that includes C++ source code would use the C++ compiler to link. The ‘_LINK’
variable must hold the name of a command which can be passed all the .o file
names as arguments. Note that the name of the underlying program is not
passed to ‘_LINK’; typically one uses ‘$@’:

maude_LINK = $(CCLD) -magic -o $@

‘maude_CCASFLAGS’
‘maude_CFLAGS’
‘maude_CPPFLAGS’
‘maude_CXXFLAGS’
‘maude_FFLAGS’
‘maude_GCJFLAGS’
‘maude_LFLAGS’
‘maude_OBJCFLAGS’
‘maude_RFLAGS’
‘maude_YFLAGS’

Automake allows you to set compilation flags on a per-program (or per-library)
basis. A single source file can be included in several programs, and it will poten-
tially be compiled with different flags for each program. This works for any lan-
guage directly supported by Automake. These per-target compilation flags are
‘_CCASFLAGS’, ‘_CFLAGS’, ‘_CPPFLAGS’, ‘_CXXFLAGS’, ‘_FFLAGS’, ‘_GCJFLAGS’,
‘_LFLAGS’, ‘_OBJCFLAGS’, ‘_RFLAGS’, and ‘_YFLAGS’.

When using a per-target compilation flag, Automake will choose a different
name for the intermediate object files. Ordinarily a file like sample.c will be
compiled to produce sample.o. However, if the program’s ‘_CFLAGS’ variable
is set, then the object file will be named, for instance, maude-sample.o. (See
also Section 26.5 [renamed objects], page 76.)

In compilations with per-target flags, the ordinary ‘AM_’ form of the flags vari-
able is not automatically included in the compilation (however, the user form
of the variable is included). So for instance, if you want the hypothetical maude
compilations to also use the value of ‘AM_CFLAGS’, you would need to write:

maude_CFLAGS = ... your flags ... $(AM_CFLAGS)

‘maude_DEPENDENCIES’
It is also occasionally useful to have a program depend on some other tar-
get which is not actually part of that program. This can be done using the
‘_DEPENDENCIES’ variable. Each program depends on the contents of such a
variable, but no further interpretation is done.

If ‘_DEPENDENCIES’ is not supplied, it is computed by Automake. The
automatically-assigned value is the contents of ‘_LDADD’ or ‘_LIBADD’, with



Chapter 9: Building Programs and Libraries 36

most configure substitutions, ‘-l’, ‘-L’, ‘-dlopen’ and ‘-dlpreopen’ options
removed. The configure substitutions that are left in are only ‘@LIBOBJS@’
and ‘@ALLOCA@’; these are left because it is known that they will not cause an
invalid value for ‘_DEPENDENCIES’ to be generated.

‘maude_SHORTNAME’
On some platforms the allowable file names are very short. In order to support
these systems and per-program compilation flags at the same time, Automake
allows you to set a “short name” which will influence how intermediate object
files are named. For instance, if you set ‘maude_SHORTNAME’ to ‘m’, then in the
above per-program compilation flag example the object file would be named
m-sample.o rather than maude-sample.o. This facility is rarely needed in
practice, and we recommend avoiding it until you find it is required.

9.5 Special handling for LIBOBJS and ALLOCA

Automake explicitly recognizes the use of $(LIBOBJS) and $(ALLOCA), and uses this infor-
mation, plus the list of LIBOBJS files derived from configure.in to automatically include
the appropriate source files in the distribution (see Chapter 15 [Dist], page 57). These source
files are also automatically handled in the dependency-tracking scheme; see See Section 9.14
[Dependencies], page 45.

$(LIBOBJS) and $(ALLOCA) are specially recognized in any ‘_LDADD’ or ‘_LIBADD’ vari-
able.

9.6 Variables used when building a program

Occasionally it is useful to know which Makefile variables Automake uses for compilations;
for instance you might need to do your own compilation in some special cases.

Some variables are inherited from Autoconf; these are CC, CFLAGS, CPPFLAGS, DEFS,
LDFLAGS, and LIBS.

There are some additional variables which Automake itself defines:

AM_CPPFLAGS

The contents of this variable are passed to every compilation which invokes the
C preprocessor; it is a list of arguments to the preprocessor. For instance, ‘-I’
and ‘-D’ options should be listed here.

Automake already provides some ‘-I’ options automatically. In particular it
generates ‘-I$(srcdir)’, ‘-I.’, and a ‘-I’ pointing to the directory holding
config.h (if you’ve used AC_CONFIG_HEADERS or AM_CONFIG_HEADER). You
can disable the default ‘-I’ options using the ‘nostdinc’ option.

AM_CPPFLAGS is ignored in preference to a per-executable (or per-library) _

CPPFLAGS variable if it is defined.

INCLUDES This does the same job as ‘AM_CPPFLAGS’. It is an older name for the same
functionality. This variable is deprecated; we suggest using ‘AM_CPPFLAGS’ in-
stead.



Chapter 9: Building Programs and Libraries 37

AM_CFLAGS

This is the variable which the Makefile.am author can use to pass in additional
C compiler flags. It is more fully documented elsewhere. In some situations,
this is not used, in preference to the per-executable (or per-library) _CFLAGS.

COMPILE This is the command used to actually compile a C source file. The filename is
appended to form the complete command line.

AM_LDFLAGS

This is the variable which the Makefile.am author can use to pass in additional
linker flags. In some situations, this is not used, in preference to the per-
executable (or per-library) _LDFLAGS.

LINK This is the command used to actually link a C program. It already includes
‘-o $@’ and the usual variable references (for instance, CFLAGS); it takes as
“arguments” the names of the object files and libraries to link in.

9.7 Yacc and Lex support

Automake has somewhat idiosyncratic support for Yacc and Lex.

Automake assumes that the .c file generated by yacc (or lex) should be named using
the basename of the input file. That is, for a yacc source file foo.y, Automake will cause
the intermediate file to be named foo.c (as opposed to y.tab.c, which is more traditional).

The extension of a yacc source file is used to determine the extension of the resulting ‘C’
or ‘C++’ file. Files with the extension ‘.y’ will be turned into ‘.c’ files; likewise, ‘.yy’ will
become ‘.cc’; ‘.y++’, ‘c++’; and ‘.yxx’, ‘.cxx’.

Likewise, lex source files can be used to generate ‘C’ or ‘C++’; the extensions ‘.l’, ‘.ll’,
‘.l++’, and ‘.lxx’ are recognized.

You should never explicitly mention the intermediate (‘C’ or ‘C++’) file in any ‘SOURCES’
variable; only list the source file.

The intermediate files generated by yacc (or lex) will be included in any distribution
that is made. That way the user doesn’t need to have yacc or lex.

If a yacc source file is seen, then your configure.in must define the variable ‘YACC’.
This is most easily done by invoking the macro ‘AC_PROG_YACC’ (see Section “Particular
Program Checks” in The Autoconf Manual).

When yacc is invoked, it is passed ‘YFLAGS’ and ‘AM_YFLAGS’. The former is a user
variable and the latter is intended for the Makefile.am author.

‘AM_YFLAGS’ is usually used to pass the -d option to yacc. Automake knows what this
means and will automatically adjust its rules to update and distribute the header file built
by yacc -d. What Automake cannot guess, though, is where this header will be used: it is
up to you to ensure the header gets built before it is first used. Typically this is necessary
in order for dependency tracking to work when the header is included by another file. The
common solution is listing the header file in BUILT_SOURCES (see Section 10.4 [Sources],
page 47) as follows.

BUILT_SOURCES = parser.h

AM_YFLAGS = -d

bin_PROGRAMS = foo



Chapter 9: Building Programs and Libraries 38

foo_SOURCES = ... parser.y ...

If a lex source file is seen, then your configure.in must define the variable ‘LEX’.
You can use ‘AC_PROG_LEX’ to do this (see Section “Particular Program Checks” in The
Autoconf Manual), but using AM_PROG_LEX macro (see Section 5.6 [Macros], page 17) is
recommended.

When lex is invoked, it is passed ‘LFLAGS’ and ‘AM_LFLAGS’. The former is a user variable
and the latter is intended for the Makefile.am author.

Automake makes it possible to include multiple yacc (or lex) source files in a single
program. When there is more than one distinct yacc (or lex) source file in a directory,
Automake uses a small program called ylwrap to run yacc (or lex) in a subdirectory. This
is necessary because yacc’s output filename is fixed, and a parallel make could conceivably
invoke more than one instance of yacc simultaneously. The ylwrap program is distributed
with Automake. It should appear in the directory specified by ‘AC_CONFIG_AUX_DIR’ (see
Section “Finding ‘configure’ Input” in The Autoconf Manual), or the current directory if
that macro is not used in configure.in.

For yacc, simply managing locking is insufficient. The output of yacc always uses the
same symbol names internally, so it isn’t possible to link two yacc parsers into the same
executable.

We recommend using the following renaming hack used in gdb:

#define yymaxdepth c_maxdepth

#define yyparse c_parse

#define yylex c_lex

#define yyerror c_error

#define yylval c_lval

#define yychar c_char

#define yydebug c_debug

#define yypact c_pact

#define yyr1 c_r1

#define yyr2 c_r2

#define yydef c_def

#define yychk c_chk

#define yypgo c_pgo

#define yyact c_act

#define yyexca c_exca

#define yyerrflag c_errflag

#define yynerrs c_nerrs

#define yyps c_ps

#define yypv c_pv

#define yys c_s

#define yy_yys c_yys

#define yystate c_state

#define yytmp c_tmp

#define yyv c_v

#define yy_yyv c_yyv

#define yyval c_val



Chapter 9: Building Programs and Libraries 39

#define yylloc c_lloc

#define yyreds c_reds

#define yytoks c_toks

#define yylhs c_yylhs

#define yylen c_yylen

#define yydefred c_yydefred

#define yydgoto c_yydgoto

#define yysindex c_yysindex

#define yyrindex c_yyrindex

#define yygindex c_yygindex

#define yytable c_yytable

#define yycheck c_yycheck

#define yyname c_yyname

#define yyrule c_yyrule

For each define, replace the ‘c_’ prefix with whatever you like. These defines work for
bison, byacc, and traditional yaccs. If you find a parser generator that uses a symbol not
covered here, please report the new name so it can be added to the list.

9.8 C++ Support

Automake includes full support for C++.

Any package including C++ code must define the output variable ‘CXX’ in configure.in;
the simplest way to do this is to use the AC_PROG_CXX macro (see Section “Particular
Program Checks” in The Autoconf Manual).

A few additional variables are defined when a C++ source file is seen:

CXX The name of the C++ compiler.

CXXFLAGS Any flags to pass to the C++ compiler.

AM_CXXFLAGS

The maintainer’s variant of CXXFLAGS.

CXXCOMPILE

The command used to actually compile a C++ source file. The file name is
appended to form the complete command line.

CXXLINK The command used to actually link a C++ program.

9.9 Assembly Support

Automake includes some support for assembly code.

The variable CCAS holds the name of the compiler used to build assembly code. This
compiler must work a bit like a C compiler; in particular it must accept ‘-c’ and ‘-o’. The
value of CCASFLAGS is passed to the compilation.

You are required to set CCAS and CCASFLAGS via configure.in. The autoconf macro
AM_PROG_AS will do this for you. Unless they are already set, it simply sets CCAS to the C
compiler and CCASFLAGS to the C compiler flags.

Only the suffixes ‘.s’ and ‘.S’ are recognized by automake as being files containing
assembly code.



Chapter 9: Building Programs and Libraries 40

9.10 Fortran 77 Support

Automake includes full support for Fortran 77.

Any package including Fortran 77 code must define the output variable ‘F77’ in
configure.in; the simplest way to do this is to use the AC_PROG_F77 macro (see Section
“Particular Program Checks” in The Autoconf Manual). See Section 9.10.4 [Fortran 77
and Autoconf], page 43.

A few additional variables are defined when a Fortran 77 source file is seen:

F77 The name of the Fortran 77 compiler.

FFLAGS Any flags to pass to the Fortran 77 compiler.

AM_FFLAGS

The maintainer’s variant of FFLAGS.

RFLAGS Any flags to pass to the Ratfor compiler.

AM_RFLAGS

The maintainer’s variant of RFLAGS.

F77COMPILE

The command used to actually compile a Fortran 77 source file. The file name
is appended to form the complete command line.

FLINK The command used to actually link a pure Fortran 77 program or shared library.

Automake can handle preprocessing Fortran 77 and Ratfor source files in addition to
compiling them6. Automake also contains some support for creating programs and shared
libraries that are a mixture of Fortran 77 and other languages (see Section 9.10.3 [Mixing
Fortran 77 With C and C++], page 41).

These issues are covered in the following sections.

9.10.1 Preprocessing Fortran 77

N.f is made automatically from N.F or N.r. This rule runs just the preprocessor to convert
a preprocessable Fortran 77 or Ratfor source file into a strict Fortran 77 source file. The
precise command used is as follows:

.F $(F77) -F $(DEFS) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(AM_

FFLAGS) $(FFLAGS)

.r $(F77) -F $(AM_FFLAGS) $(FFLAGS) $(AM_RFLAGS) $(RFLAGS)

9.10.2 Compiling Fortran 77 Files

N.o is made automatically from N.f, N.F or N.r by running the Fortran 77 compiler. The
precise command used is as follows:

.f $(F77) -c $(AM_FFLAGS) $(FFLAGS)

.F $(F77) -c $(DEFS) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(AM_

FFLAGS) $(FFLAGS)

.r $(F77) -c $(AM_FFLAGS) $(FFLAGS) $(AM_RFLAGS) $(RFLAGS)

6 Much, if not most, of the information in the following sections pertaining to preprocessing Fortran 77
programs was taken almost verbatim from Section “Catalogue of Rules” in The GNU Make Manual.



Chapter 9: Building Programs and Libraries 41

9.10.3 Mixing Fortran 77 With C and C++

Automake currently provides limited support for creating programs and shared libraries
that are a mixture of Fortran 77 and C and/or C++. However, there are many other issues
related to mixing Fortran 77 with other languages that are not (currently) handled by
Automake, but that are handled by other packages7.

7 For example, the cfortran package (http://www-zeus.desy.de/~burow/cfortran/) addresses all of these
inter-language issues, and runs under nearly all Fortran 77, C and C++ compilers on nearly all platforms.
However, cfortran is not yet Free Software, but it will be in the next major release.

http://www-zeus.desy.de/~burow/cfortran/


Chapter 9: Building Programs and Libraries 42

Automake can help in two ways:

1. Automatic selection of the linker depending on which combinations of source code.

2. Automatic selection of the appropriate linker flags (e.g. ‘-L’ and ‘-l’) to pass to the
automatically selected linker in order to link in the appropriate Fortran 77 intrinsic
and run-time libraries.

These extra Fortran 77 linker flags are supplied in the output variable FLIBS by the
AC_F77_LIBRARY_LDFLAGS Autoconf macro supplied with newer versions of Autoconf
(Autoconf version 2.13 and later). See Section “Fortran 77 Compiler Characteristics”
in The Autoconf .

If Automake detects that a program or shared library (as mentioned in some _PROGRAMS
or _LTLIBRARIES primary) contains source code that is a mixture of Fortran 77 and C and/or
C++, then it requires that the macro AC_F77_LIBRARY_LDFLAGS be called in configure.in,
and that either $(FLIBS) or @FLIBS@ appear in the appropriate _LDADD (for programs) or
_LIBADD (for shared libraries) variables. It is the responsibility of the person writing the
Makefile.am to make sure that $(FLIBS) or @FLIBS@ appears in the appropriate _LDADD

or _LIBADD variable.

For example, consider the following Makefile.am:

bin_PROGRAMS = foo

foo_SOURCES = main.cc foo.f

foo_LDADD = libfoo.la @FLIBS@

pkglib_LTLIBRARIES = libfoo.la

libfoo_la_SOURCES = bar.f baz.c zardoz.cc

libfoo_la_LIBADD = $(FLIBS)

In this case, Automake will insist that AC_F77_LIBRARY_LDFLAGS is mentioned
in configure.in. Also, if @FLIBS@ hadn’t been mentioned in foo_LDADD and
libfoo_la_LIBADD, then Automake would have issued a warning.



Chapter 9: Building Programs and Libraries 43

9.10.3.1 How the Linker is Chosen

The following diagram demonstrates under what conditions a particular linker is chosen by
Automake.

For example, if Fortran 77, C and C++ source code were to be compiled into a program,
then the C++ linker will be used. In this case, if the C or Fortran 77 linkers required any
special libraries that weren’t included by the C++ linker, then they must be manually added
to an _LDADD or _LIBADD variable by the user writing the Makefile.am.

\ Linker

source \

code \ C C++ Fortran

----------------- +---------+---------+---------+

| | | |

C | x | | |

| | | |

+---------+---------+---------+

| | | |

C++ | | x | |

| | | |

+---------+---------+---------+

| | | |

Fortran | | | x |

| | | |

+---------+---------+---------+

| | | |

C + C++ | | x | |

| | | |

+---------+---------+---------+

| | | |

C + Fortran | | | x |

| | | |

+---------+---------+---------+

| | | |

C++ + Fortran | | x | |

| | | |

+---------+---------+---------+

| | | |

C + C++ + Fortran | | x | |

| | | |

+---------+---------+---------+

9.10.4 Fortran 77 and Autoconf

The current Automake support for Fortran 77 requires a recent enough version of Autoconf
that also includes support for Fortran 77. Full Fortran 77 support was added to Autoconf
2.13, so you will want to use that version of Autoconf or later.



Chapter 9: Building Programs and Libraries 44

9.11 Java Support

Automake includes support for compiled Java, using gcj, the Java front end to the GNU
Compiler Collection.

Any package including Java code to be compiled must define the output variable
‘GCJ’ in configure.in; the variable ‘GCJFLAGS’ must also be defined somehow (either in
configure.in or Makefile.am). The simplest way to do this is to use the AM_PROG_GCJ

macro.

By default, programs including Java source files are linked with gcj.

As always, the contents of ‘AM_GCJFLAGS’ are passed to every compilation invoking
gcj (in its role as an ahead-of-time compiler – when invoking it to create .class

files, ‘AM_JAVACFLAGS’ is used instead). If it is necessary to pass options to gcj from
Makefile.am, this variable, and not the user variable ‘GCJFLAGS’, should be used.

gcj can be used to compile .java, .class, .zip, or .jar files.

When linking, gcj requires that the main class be specified using the ‘--main=’ option.
The easiest way to do this is to use the _LDFLAGS variable for the program.

9.12 Support for Other Languages

Automake currently only includes full support for C, C++ (see Section 9.8 [C++ Sup-
port], page 39), Fortran 77 (see Section 9.10 [Fortran 77 Support], page 40), and Java
(see Section 9.11 [Java Support], page 44). There is only rudimentary support for other
languages, support for which will be improved based on user demand.

Some limited support for adding your own languages is available via the suffix rule
handling; see Section 18.2 [Suffixes], page 64.

9.13 Automatic de-ANSI-fication

Although the GNU standards allow the use of ANSI C, this can have the effect of limiting
portability of a package to some older compilers (notably the SunOS C compiler).

Automake allows you to work around this problem on such machines by de-ANSI-fying
each source file before the actual compilation takes place.

If the Makefile.am variable AUTOMAKE_OPTIONS (see Chapter 17 [Options], page 61)
contains the option ansi2knr then code to handle de-ANSI-fication is inserted into the
generated Makefile.in.

This causes each C source file in the directory to be treated as ANSI C. If an ANSI C
compiler is available, it is used. If no ANSI C compiler is available, the ansi2knr program
is used to convert the source files into K&R C, which is then compiled.

The ansi2knr program is simple-minded. It assumes the source code will be formatted
in a particular way; see the ansi2knr man page for details.

Support for de-ANSI-fication requires the source files ansi2knr.c and ansi2knr.1 to
be in the same package as the ANSI C source; these files are distributed with Automake.
Also, the package configure.in must call the macro AM_C_PROTOTYPES (see Section 5.6
[Macros], page 17).

Automake also handles finding the ansi2knr support files in some other directory in the
current package. This is done by prepending the relative path to the appropriate directory



Chapter 9: Building Programs and Libraries 45

to the ansi2knr option. For instance, suppose the package has ANSI C code in the src

and lib subdirectories. The files ansi2knr.c and ansi2knr.1 appear in lib. Then this
could appear in src/Makefile.am:

AUTOMAKE_OPTIONS = ../lib/ansi2knr

If no directory prefix is given, the files are assumed to be in the current directory.

Note that automatic de-ANSI-fication will not work when the package is being built
for a different host architecture. That is because automake currently has no way to build
ansi2knr for the build machine.

Using LIBOBJS with source de-ANSI-fication used to require hand-crafted code in
configure to append $U to basenames in LIBOBJS. This is no longer true today. Starting
with version 2.54, Autoconf takes care of rewriting LIBOBJS and LTLIBOBJS. (see Section
“AC_LIBOBJ vs. LIBOBJS” in The Autoconf Manual)

9.14 Automatic dependency tracking

As a developer it is often painful to continually update the Makefile.in whenever the
include-file dependencies change in a project. Automake supplies a way to automatically
track dependency changes.

Automake always uses complete dependencies for a compilation, including system head-
ers. Automake’s model is that dependency computation should be a side effect of the build.
To this end, dependencies are computed by running all compilations through a special
wrapper program called depcomp. depcomp understands how to coax many different C and
C++ compilers into generating dependency information in the format it requires. automake
-a will install depcomp into your source tree for you. If depcomp can’t figure out how to
properly invoke your compiler, dependency tracking will simply be disabled for your build.

Experience with earlier versions of Automake1 taught us that it is not reliable to generate
dependencies only on the maintainer’s system, as configurations vary too much. So instead
Automake implements dependency tracking at build time.

Automatic dependency tracking can be suppressed by putting no-dependencies in the
variable AUTOMAKE_OPTIONS, or passing no-dependencies as an argument to AM_INIT_

AUTOMAKE (this should be the preferred way). Or, you can invoke automake with the -i

option. Dependency tracking is enabled by default.

The person building your package also can choose to disable dependency tracking by
configuring with --disable-dependency-tracking.

9.15 Support for executable extensions

On some platforms, such as Windows, executables are expected to have an extension such as
‘.exe’. On these platforms, some compilers (GCC among them) will automatically generate
foo.exe when asked to generate foo.

Automake provides mostly-transparent support for this. Unfortunately mostly doesn’t
yet mean fully. Until the English dictionary is revised, you will have to assist Automake if
your package must support those platforms.

1 See http://sources.redhat.com/automake/dependencies.html for more information on the history
and experiences with automatic dependency tracking in Automake

http://sources.redhat.com/automake/dependencies.html


Chapter 10: Other Derived Objects 46

One thing you must be aware of is that, internally, Automake rewrites something like
this:

bin_PROGRAMS = liver

to this:

bin_PROGRAMS = liver$(EXEEXT)

The targets Automake generates are likewise given the ‘$(EXEEXT)’ extension. EXEEXT

However, Automake cannot apply this rewriting to configure substitutions. This means
that if you are conditionally building a program using such a substitution, then your
configure.in must take care to add ‘$(EXEEXT)’ when constructing the output variable.

With Autoconf 2.13 and earlier, you must explicitly use AC_EXEEXT to get this sup-
port. With Autoconf 2.50, AC_EXEEXT is run automatically if you configure a compiler (say,
through AC_PROG_CC).

Sometimes maintainers like to write an explicit link rule for their program. Without
executable extension support, this is easy—you simply write a target with the same name
as the program. However, when executable extension support is enabled, you must instead
add the ‘$(EXEEXT)’ suffix.

Unfortunately, due to the change in Autoconf 2.50, this means you must always add this
extension. However, this is a problem for maintainers who know their package will never
run on a platform that has executable extensions. For those maintainers, the no-exeext

option (see Chapter 17 [Options], page 61) will disable this feature. This works in a fairly
ugly way; if no-exeext is seen, then the presence of a target named foo in Makefile.am will
override an automake-generated target of the form foo$(EXEEXT). Without the no-exeext
option, this use will give an error.

10 Other Derived Objects

Automake can handle derived objects which are not C programs. Sometimes the support
for actually building such objects must be explicitly supplied, but Automake will still au-
tomatically handle installation and distribution.

10.1 Executable Scripts

It is possible to define and install programs which are scripts. Such programs are listed
using the ‘SCRIPTS’ primary name. Automake doesn’t define any dependencies for scripts;
the Makefile.am should include the appropriate rules.

Automake does not assume that scripts are derived objects; such objects must be deleted
by hand (see Chapter 14 [Clean], page 57).

The automake program itself is a Perl script that is generated at configure time from
automake.in. Here is how this is handled:

bin_SCRIPTS = automake

Since automake appears in the AC_OUTPUT macro, a target for it is automatically gener-
ated, and it is also automatically cleaned (despite the fact it’s a script).

Script objects can be installed in bindir, sbindir, libexecdir, or pkgdatadir.

Scripts that need not being installed can be listed in noinst_SCRIPTS, and among them,
those which are needed only by make check should go in check_SCRIPTS.



Chapter 10: Other Derived Objects 47

10.2 Header files

Header files are specified by the ‘HEADERS’ family of variables. Generally header files are
not installed, so the noinst_HEADERS variable will be the most used.2

All header files must be listed somewhere; missing ones will not appear in the distri-
bution. Often it is clearest to list uninstalled headers with the rest of the sources for a
program. See Section 9.1 [A Program], page 24. Headers listed in a ‘_SOURCES’ variable
need not be listed in any ‘_HEADERS’ variable.

Headers can be installed in includedir, oldincludedir, or pkgincludedir.

10.3 Architecture-independent data files

Automake supports the installation of miscellaneous data files using the ‘DATA’ family of
variables.

Such data can be installed in the directories datadir, sysconfdir, sharedstatedir,
localstatedir, or pkgdatadir.

By default, data files are not included in a distribution. Of course, you can use the
‘dist_’ prefix to change this on a per-variable basis.

Here is how Automake declares its auxiliary data files:

dist_pkgdata_DATA = clean-kr.am clean.am ...

10.4 Built sources

Because Automake’s automatic dependency tracking works as a side-effect of compilation
(see Section 9.14 [Dependencies], page 45) there is a bootstrap issue: a target should not
be compiled before its dependencies are made, but these dependencies are unknown until
the target is first compiled.

Ordinarily this is not a problem, because dependencies are distributed sources: they
preexist and do not need to be built. Suppose that foo.c includes foo.h. When it first
compiles foo.o, make only knows that foo.o depends on foo.c. As a side-effect of this
compilation depcomp records the foo.h dependency so that following invocations of make
will honor it. In these conditions, it’s clear there is no problem: either foo.o doesn’t exist
and has to be built (regardless of the dependencies), either accurate dependencies exist and
they can be used to decide whether foo.o should be rebuilt.

It’s a different story if foo.h doesn’t exist by the first make run. For instance there
might be a rule to build foo.h. This time file.o’s build will fail because the compiler
can’t find foo.h. make failed to trigger the rule to build foo.h first by lack of dependency
information.

The BUILT_SOURCES variable is a workaround for this problem. A source file listed in
BUILT_SOURCES is made on make all or make check (or even make install) before other
targets are processed. However, such a source file is not compiled unless explicitly requested
by mentioning it in some other ‘_SOURCES’ variable.

2 However, for the case of a non-installed header file that is actually used by a particular program, we
recommend listing it in the program’s ‘_SOURCES’ variable instead of in noinst_HEADERS. We believe this
is more clear.



Chapter 10: Other Derived Objects 48

So, to conclude our introductory example, we could use BUILT_SOURCES = foo.h to
ensure foo.h gets built before any other target (including foo.o) during make all or make
check.

BUILT_SOURCES is actually a bit of a misnomer, as any file which must be created early
in the build process can be listed in this variable. Moreover, all built sources do not
necessarily have to be listed in BUILT_SOURCES. For instance a generated .c file doesn’t
need to appear in BUILT_SOURCES (unless it is included by another source), because it’s a
known dependency of the associated object.

It might be important to emphasize that BUILT_SOURCES is honored only by make all,
make check and make install. This means you cannot build a specific target (e.g., make
foo) in a clean tree if it depends on a built source. However it will succeed if you have run
make all earlier, because accurate dependencies are already available.

The next section illustrates and discusses the handling of built sources on a toy example.

10.4.1 Built sources example

Suppose that foo.c includes bindir.h, which is installation-dependent and not distributed:
it needs to be built. Here bindir.h defines the preprocessor macro bindir to the value of
the make variable bindir (inherited from configure).

We suggest several implementations below. It’s not meant to be an exhaustive listing of
all ways to handle built sources, but it will give you a few ideas if you encounter this issue.

First try

This first implementation will illustrate the bootstrap issue mentioned in the previous sec-
tion (see Section 10.4 [Sources], page 47).

Here is a tentative Makefile.am.

# This won’t work.

bin_PROGRAMS = foo

foo_SOURCES = foo.c

nodist_foo_SOURCES = bindir.h

CLEANFILES = bindir.h

bindir.h: Makefile

echo ’#define bindir "$(bindir)"’ >$@

This setup doesn’t work, because Automake doesn’t know that foo.c includes bindir.h.
Remember, automatic dependency tracking works as a side-effect of compilation, so the
dependencies of foo.o will be known only after foo.o has been compiled (see Section 9.14
[Dependencies], page 45). The symptom is as follows.

% make

source=’foo.c’ object=’foo.o’ libtool=no \

depfile=’.deps/foo.Po’ tmpdepfile=’.deps/foo.TPo’ \

depmode=gcc /bin/sh ./depcomp \

gcc -I. -I. -g -O2 -c ‘test -f ’foo.c’ || echo ’./’‘foo.c

foo.c:2: bindir.h: No such file or directory

make: *** [foo.o] Error 1



Chapter 10: Other Derived Objects 49

Using BUILT_SOURCES

A solution is to require bindir.h to be built before anything else. This is what BUILT_

SOURCES is meant for (see Section 10.4 [Sources], page 47).

bin_PROGRAMS = foo

foo_SOURCES = foo.c

BUILT_SOURCES = bindir.h

CLEANFILES = bindir.h

bindir.h: Makefile

echo ’#define bindir "$(bindir)"’ >$@

See how bindir.h get built first:

% make

echo ’#define bindir "/usr/local/bin"’ >bindir.h

make all-am

make[1]: Entering directory ‘/home/adl/tmp’

source=’foo.c’ object=’foo.o’ libtool=no \

depfile=’.deps/foo.Po’ tmpdepfile=’.deps/foo.TPo’ \

depmode=gcc /bin/sh ./depcomp \

gcc -I. -I. -g -O2 -c ‘test -f ’foo.c’ || echo ’./’‘foo.c

gcc -g -O2 -o foo foo.o

make[1]: Leaving directory ‘/home/adl/tmp’

However, as said earlier, BUILT_SOURCES applies only to the all, check, and install

targets. It still fails if you try to run make foo explicitly:

% make clean

test -z "bindir.h" || rm -f bindir.h

test -z "foo" || rm -f foo

rm -f *.o core *.core

% : > .deps/foo.Po # Suppress previously recorded dependencies

% make foo

source=’foo.c’ object=’foo.o’ libtool=no \

depfile=’.deps/foo.Po’ tmpdepfile=’.deps/foo.TPo’ \

depmode=gcc /bin/sh ./depcomp \

gcc -I. -I. -g -O2 -c ‘test -f ’foo.c’ || echo ’./’‘foo.c

foo.c:2: bindir.h: No such file or directory

make: *** [foo.o] Error 1

Recording dependencies manually

Usually people are happy enough with BUILT_SOURCES because they never run targets such
as make foo before make all, as in the previous example. However if this matters to you,
you can avoid BUILT_SOURCES and record such dependencies explicitly in the Makefile.am.

bin_PROGRAMS = foo

foo_SOURCES = foo.c

foo.$(OBJEXT): bindir.h

CLEANFILES = bindir.h

bindir.h: Makefile

echo ’#define bindir "$(bindir)"’ >$@



Chapter 10: Other Derived Objects 50

You don’t have to list all the dependencies of foo.o explicitly, only those which might
need to be built. If a dependency already exists, it will not hinder the first compilation
and will be recorded by the normal dependency tracking code. (Note that after this first
compilation the dependency tracking code will also have recorded the dependency between
foo.o and bindir.h; so our explicit dependency is really useful to the first build only.)

Adding explicit dependencies like this can be a bit dangerous if you are not careful
enough. This is due to the way Automake tries not to overwrite your rules (it assumes
you know better than it). foo.$(OBJEXT): bindir.h supersedes any rule Automake may
want to output to build foo.$(OBJEXT). It happens to work in this case because Automake
doesn’t have to output any foo.$(OBJEXT): target: it relies on a suffix rule instead (i.e.,
.c.$(OBJEXT):). Always check the generated Makefile.in if you do this.

Build bindir.h from configure

It’s possible to define this preprocessor macro from configure, either in config.h (see
Section “Defining Directories” in The Autoconf Manual), or by processing a bindir.h.in

file using AC_CONFIG_FILES (see Section “Configuration Actions” in The Autoconf Manual).

At this point it should be clear that building bindir.h from configure work well for
this example. bindir.h will exist before you build any target, hence will not cause any
dependency issue.

The Makefile can be shrunk as follows. We do not even have to mention bindir.h.

bin_PROGRAMS = foo

foo_SOURCES = foo.c

However, it’s not always possible to build sources from configure, especially when these
sources are generated by a tool that needs to be built first...

Build bindir.c, not bindir.h.

Another attractive idea is to define bindir as a variable or function exported from bindir.o,
and build bindir.c instead of bindir.h.

noinst_PROGRAMS = foo

foo_SOURCES = foo.c bindir.h

nodist_foo_SOURCES = bindir.c

CLEANFILES = bindir.c

bindir.c: Makefile

echo ’const char bindir[] = "$(bindir)";’ >$

bindir.h contains just the variable’s declaration and doesn’t need to be built, so it
won’t cause any trouble. bindir.o is always dependent on bindir.c, so bindir.c will get
built first.

Which is best?

There is no panacea, of course. Each solution has its merits and drawbacks.

You cannot use BUILT_SOURCES if the ability to run make foo on a clean tree is important
to you.

You won’t add explicit dependencies if you are leery of overriding an Automake target
by mistake.



Chapter 11: Other GNU Tools 51

Building files from ./configure is not always possible, neither is converting .h files into
.c files.

11 Other GNU Tools

Since Automake is primarily intended to generate Makefile.ins for use in GNU programs,
it tries hard to interoperate with other GNU tools.

11.1 Emacs Lisp

Automake provides some support for Emacs Lisp. The ‘LISP’ primary is used to hold a
list of .el files. Possible prefixes for this primary are ‘lisp_’ and ‘noinst_’. Note that
if lisp_LISP is defined, then configure.in must run AM_PATH_LISPDIR (see Section 5.6
[Macros], page 17).

By default Automake will byte-compile all Emacs Lisp source files using the Emacs
found by AM_PATH_LISPDIR. If you wish to avoid byte-compiling, simply define the variable
ELCFILES to be empty. Byte-compiled Emacs Lisp files are not portable among all versions
of Emacs, so it makes sense to turn this off if you expect sites to have more than one
version of Emacs installed. Furthermore, many packages don’t actually benefit from byte-
compilation. Still, we recommend that you leave it enabled by default. It is probably better
for sites with strange setups to cope for themselves than to make the installation less nice
for everybody else.

Lisp sources are not distributed by default. You can prefix the LISP primary with
dist_, as in dist_lisp_LISP or dist_noinst_LISP, to indicate that these files should be
distributed.

11.2 Gettext

If AM_GNU_GETTEXT is seen in configure.in, then Automake turns on support for GNU
gettext, a message catalog system for internationalization (see Section “GNU Gettext” in
GNU gettext utilities).

The gettext support in Automake requires the addition of two subdirectories to the
package, intl and po. Automake insures that these directories exist and are mentioned in
SUBDIRS.

11.3 Libtool

Automake provides support for GNU Libtool (see Section “Introduction” in The Libtool
Manual) with the ‘LTLIBRARIES’ primary. See Section 9.3 [A Shared Library], page 28.

11.4 Java

Automake provides some minimal support for Java compilation with the ‘JAVA’ primary.

Any .java files listed in a ‘_JAVA’ variable will be compiled with JAVAC at build time.
By default, .class files are not included in the distribution.

Currently Automake enforces the restriction that only one ‘_JAVA’ primary can be used
in a given Makefile.am. The reason for this restriction is that, in general, it isn’t possible to



Chapter 11: Other GNU Tools 52

know which .class files were generated from which .java files – so it would be impossible
to know which files to install where. For instance, a .java file can define multiple classes;
the resulting .class file names cannot be predicted without parsing the .java file.

There are a few variables which are used when compiling Java sources:

JAVAC The name of the Java compiler. This defaults to ‘javac’.

JAVACFLAGS

The flags to pass to the compiler. This is considered to be a user variable (see
Section 2.5 [User Variables], page 4).

AM_JAVACFLAGS

More flags to pass to the Java compiler. This, and not JAVACFLAGS, should be
used when it is necessary to put Java compiler flags into Makefile.am.

JAVAROOT The value of this variable is passed to the ‘-d’ option to javac. It defaults to
‘$(top_builddir)’.

CLASSPATH_ENV

This variable is an sh expression which is used to set the CLASSPATH environ-
ment variable on the javac command line. (In the future we will probably
handle class path setting differently.)

11.5 Python

Automake provides support for Python compilation with the ‘PYTHON’ primary.

Any files listed in a ‘_PYTHON’ variable will be byte-compiled with py-compile at install
time. py-compile actually creates both standard (.pyc) and byte-compiled (.pyo) versions
of the source files. Note that because byte-compilation occurs at install time, any files listed
in ‘noinst_PYTHON’ will not be compiled. Python source files are included in the distribution
by default.

Automake ships with an Autoconf macro called AM_PATH_PYTHON which will deter-
mine some Python-related directory variables (see below). If you have called AM_PATH_

PYTHON from configure.in, then you may use the following variables to list you Python
source files in your variables: ‘python_PYTHON’, ‘pkgpython_PYTHON’, ‘pyexecdir_PYTHON’,
‘pkgpyexecdir_PYTHON’, depending where you want your files installed.

AM_PATH_PYTHON takes a single optional argument. This argument, if present, is the
minimum version of Python which can be used for this package. If the version of Python
found on the system is older than the required version, then AM_PATH_PYTHON will cause an
error.

AM_PATH_PYTHON creates several output variables based on the Python installation found
during configuration.

PYTHON The name of the Python executable.

PYTHON_VERSION

The Python version number, in the form major.minor (e.g. ‘1.5’). This is
currently the value of sys.version[:3].



Chapter 12: Building documentation 53

PYTHON_PREFIX

The string ${prefix}. This term may be used in future work which needs the
contents of Python’s sys.prefix, but general consensus is to always use the
value from configure.

PYTHON_EXEC_PREFIX

The string ${exec_prefix}. This term may be used in future work which needs
the contents of Python’s sys.exec_prefix, but general consensus is to always
use the value from configure.

PYTHON_PLATFORM

The canonical name used by Python to describe the operating system, as given
by sys.platform. This value is sometimes needed when building Python ex-
tensions.

pythondir

The directory name for the site-packages subdirectory of the standard Python
install tree.

pkgpythondir

This is is the directory under pythondir which is named after the package.
That is, it is ‘$(pythondir)/$(PACKAGE)’. It is provided as a convenience.

pyexecdir

This is the directory where Python extension modules (shared libraries) should
be installed.

pkgpyexecdir

This is a convenience variable which is defined as ‘$(pyexecdir)/$(PACKAGE)’.

All these directory variables have values that start with either ${prefix} or ${exec_

prefix} unexpanded. This works fine in Makefiles, but it makes these variables hard to
use in configure. This is mandated by the GNU coding standards, so that the user can
run make prefix=/foo install. The Autoconf manual has a section with more details on
this topic (see Section “Installation Directory Variables” in The Autoconf Manual).

12 Building documentation

Currently Automake provides support for Texinfo and man pages.

12.1 Texinfo

If the current directory contains Texinfo source, you must declare it with the ‘TEXINFOS’
primary. Generally Texinfo files are converted into info, and thus the info_TEXINFOS

variable is most commonly used here. Any Texinfo source file must end in the .texi, .txi,
or .texinfo extension. We recommend .texi for new manuals.

Automake generates rules to build .info, .dvi, .ps, and .pdf files from your Texinfo
sources. The .info files are built by make all and installed by make install (unless you
use no-installinfo, see below). The other files can be built on request by make dvi, make
ps, and make pdf.



Chapter 12: Building documentation 54

If the .texi file @includes version.texi, then that file will be automatically generated.
The file version.texi defines four Texinfo flag you can reference using @value{EDITION},
@value{VERSION}, @value{UPDATED}, and @value{UPDATED-MONTH}.

EDITION

VERSION Both of these flags hold the version number of your program. They are kept
separate for clarity.

UPDATED This holds the date the primary .texi file was last modified.

UPDATED-MONTH

This holds the name of the month in which the primary .texi file was last
modified.

The version.texi support requires the mdate-sh program; this program is supplied
with Automake and automatically included when automake is invoked with the --add-

missing option.

If you have multiple Texinfo files, and you want to use the version.texi feature, then
you have to have a separate version file for each Texinfo file. Automake will treat any include
in a Texinfo file that matches ‘vers*.texi’ just as an automatically generated version file.

When an info file is rebuilt, the program named by the MAKEINFO variable is used to
invoke it. If the makeinfo program is found on the system then it will be used by default;
otherwise missing will be used instead. The flags in the variables MAKEINFOFLAGS and AM_

MAKEINFOFLAGS will be passed to the makeinfo invocation; the first of these is intended for
use by the user (see Section 2.5 [User Variables], page 4) and the second by the Makefile.am
writer.

Sometimes an info file actually depends on more than one .texi file. For instance, in
GNU Hello, hello.texi includes the file gpl.texi. You can tell Automake about these
dependencies using the texi_TEXINFOS variable. Here is how GNU Hello does it:

info_TEXINFOS = hello.texi

hello_TEXINFOS = gpl.texi

By default, Automake requires the file texinfo.tex to appear in the same directory
as the Texinfo source. However, if you used AC_CONFIG_AUX_DIR in configure.in (see
Section “Finding ‘configure’ Input” in The Autoconf Manual), then texinfo.tex is looked
for there. Automake supplies texinfo.tex if ‘--add-missing’ is given.

If your package has Texinfo files in many directories, you can use the variable TEXINFO_
TEX to tell Automake where to find the canonical texinfo.tex for your package. The value
of this variable should be the relative path from the current Makefile.am to texinfo.tex:

TEXINFO_TEX = ../doc/texinfo.tex

The option ‘no-texinfo.tex’ can be used to eliminate the requirement for texinfo.tex.
Use of the variable TEXINFO_TEX is preferable, however, because that allows the dvi, ps,
and pdf targets to still work.

Automake generates an install-info target; some people apparently use this. By
default, info pages are installed by ‘make install’. This can be prevented via the
no-installinfo option.



Chapter 13: What Gets Installed 55

12.2 Man pages

A package can also include man pages (but see the GNU standards on this matter, Section
“Man Pages” in The GNU Coding Standards.) Man pages are declared using the ‘MANS’
primary. Generally the man_MANS variable is used. Man pages are automatically installed
in the correct subdirectory of mandir, based on the file extension.

File extensions such as ‘.1c’ are handled by looking for the valid part of the extension
and using that to determine the correct subdirectory of mandir. Valid section names are
the digits ‘0’ through ‘9’, and the letters ‘l’ and ‘n’.

Sometimes developers prefer to name a man page something like foo.man in the source,
and then rename it to have the correct suffix, e.g. foo.1, when installing the file. Automake
also supports this mode. For a valid section named SECTION, there is a corresponding
directory named ‘manSECTIONdir’, and a corresponding ‘_MANS’ variable. Files listed in
such a variable are installed in the indicated section. If the file already has a valid suffix,
then it is installed as-is; otherwise the file suffix is changed to match the section.

For instance, consider this example:

man1_MANS = rename.man thesame.1 alsothesame.1c

In this case, rename.man will be renamed to rename.1 when installed, but the other files
will keep their names.

By default, man pages are installed by ‘make install’. However, since the GNU project
does not require man pages, many maintainers do not expend effort to keep the man pages
up to date. In these cases, the no-installman option will prevent the man pages from being
installed by default. The user can still explicitly install them via ‘make install-man’.

Here is how the man pages are handled in GNU cpio (which includes both Texinfo
documentation and man pages):

man_MANS = cpio.1 mt.1

EXTRA_DIST = $(man_MANS)

Man pages are not currently considered to be source, because it is not uncommon for
man pages to be automatically generated. Therefore they are not automatically included
in the distribution. However, this can be changed by use of the ‘dist_’ prefix.

The ‘nobase_’ prefix is meaningless for man pages and is disallowed.

13 What Gets Installed

13.1 Basics of installation

Naturally, Automake handles the details of actually installing your program once it has been
built. All files named by the various primaries are automatically installed in the appropriate
places when the user runs make install.

A file named in a primary is installed by copying the built file into the appropriate
directory. The base name of the file is used when installing.

bin_PROGRAMS = hello subdir/goodbye

In this example, both ‘hello’ and ‘goodbye’ will be installed in $(bindir).



Chapter 13: What Gets Installed 56

Sometimes it is useful to avoid the basename step at install time. For instance, you
might have a number of header files in subdirectories of the source tree which are laid out
precisely how you want to install them. In this situation you can use the ‘nobase_’ prefix
to suppress the base name step. For example:

nobase_include_HEADERS = stdio.h sys/types.h

Will install stdio.h in $(includedir) and types.h in $(includedir)/sys.

13.2 The two parts of install

Automake generates separate install-data and install-exec targets, in case the in-
staller is installing on multiple machines which share directory structure—these targets allow
the machine-independent parts to be installed only once. install-exec installs platform-
dependent files, and install-data installs platform-independent files. The install target
depends on both of these targets. While Automake tries to automatically segregate objects
into the correct category, the Makefile.am author is, in the end, responsible for making
sure this is done correctly.

Variables using the standard directory prefixes ‘data’, ‘info’, ‘man’, ‘include’,
‘oldinclude’, ‘pkgdata’, or ‘pkginclude’ (e.g. ‘data_DATA’) are installed by
‘install-data’.

Variables using the standard directory prefixes ‘bin’, ‘sbin’, ‘libexec’, ‘sysconf’,
‘localstate’, ‘lib’, or ‘pkglib’ (e.g. ‘bin_PROGRAMS’) are installed by ‘install-exec’.

Any variable using a user-defined directory prefix with ‘exec’ in the name (e.g.
‘myexecbin_PROGRAMS’ is installed by ‘install-exec’. All other user-defined prefixes are
installed by ‘install-data’.

13.3 Extending installation

It is possible to extend this mechanism by defining an install-exec-local or
install-data-local target. If these targets exist, they will be run at ‘make install’
time. These rules can do almost anything; care is required.

Automake also supports two install hooks, install-exec-hook and install-data-

hook. These hooks are run after all other install rules of the appropriate type, exec or data,
have completed. So, for instance, it is possible to perform post-installation modifications
using an install hook.

13.4 Staged installs

Automake generates support for the ‘DESTDIR’ variable in all install rules. ‘DESTDIR’ is used
during the ‘make install’ step to relocate install objects into a staging area. Each object
and path is prefixed with the value of ‘DESTDIR’ before being copied into the install area.
Here is an example of typical DESTDIR usage:

make DESTDIR=/tmp/staging install

This places install objects in a directory tree built under /tmp/staging. If /gnu/bin/foo
and /gnu/share/aclocal/foo.m4 are to be installed, the above command would install
/tmp/staging/gnu/bin/foo and /tmp/staging/gnu/share/aclocal/foo.m4.



Chapter 15: What Goes in a Distribution 57

This feature is commonly used to build install images and packages. For more informa-
tion, see Section “Makefile Conventions” in The GNU Coding Standards.

Support for ‘DESTDIR’ is implemented by coding it directly into the install rules. If your
Makefile.am uses a local install rule (e.g., install-exec-local) or an install hook, then
you must write that code to respect ‘DESTDIR’.

13.5 Rules for the user

Automake also generates an uninstall target, an installdirs target, and an
install-strip target.

Automake supports uninstall-local and uninstall-hook. There is no notion of sep-
arate uninstalls for “exec” and “data”, as these features would not provide additional func-
tionality.

Note that uninstall is not meant as a replacement for a real packaging tool.

14 What Gets Cleaned

The GNU Makefile Standards specify a number of different clean rules. See See Section
“Standard Targets for Users” in The GNU Coding Standards.

Generally the files that can be cleaned are determined automatically by Automake. Of
course, Automake also recognizes some variables that can be defined to specify additional
files to clean. These variables are MOSTLYCLEANFILES, CLEANFILES, DISTCLEANFILES, and
MAINTAINERCLEANFILES.

As the GNU Standards aren’t always explicit as to which files should be removed by
which target, we’ve adopted a heuristic which we believe was first formulated by François
Pinard:

• If make built it, and it is commonly something that one would want to rebuild (for
instance, a .o file), then mostlyclean should delete it.

• Otherwise, if make built it, then clean should delete it.

• If configure built it, then distclean should delete it.

• If the maintainer built it (for instance, a .info file), then maintainer-clean should
delete it. However maintainer-clean should not delete anything that needs to exist
in order to run ./configure && make.

We recommend that you follow this same set of heuristics in your Makefile.am.

15 What Goes in a Distribution

15.1 Basics of distribution

The dist target in the generated Makefile.in can be used to generate a gzip’d tar file
and other flavors of archive for distribution. The files is named based on the ‘PACKAGE’ and
‘VERSION’ variables defined by AM_INIT_AUTOMAKE (see Section 5.6 [Macros], page 17); more



Chapter 15: What Goes in a Distribution 58

precisely the gzip’d tar file is named ‘package-version.tar.gz’. You can use the make

variable ‘GZIP_ENV’ to control how gzip is run. The default setting is ‘--best’.

For the most part, the files to distribute are automatically found by Automake: all source
files are automatically included in a distribution, as are all Makefile.ams and Makefile.ins.
Automake also has a built-in list of commonly used files which are automatically included if
they are found in the current directory (either physically, or as the target of a Makefile.am

rule). This list is printed by ‘automake --help’. Also, files which are read by configure

(i.e. the source files corresponding to the files specified in various Autoconf macros such as
AC_CONFIG_FILES and siblings) are automatically distributed. Helper scripts installed with
‘automake --add-missing’ are also distributed.

Still, sometimes there are files which must be distributed, but which are not covered
in the automatic rules. These files should be listed in the EXTRA_DIST variable. You can
mention files from subdirectories in EXTRA_DIST.

You can also mention a directory in EXTRA_DIST; in this case the entire directory will be
recursively copied into the distribution. Please note that this will also copy everything in
the directory, including CVS/RCS version control files. We recommend against using this
feature.

If you define SUBDIRS, Automake will recursively include the subdirectories in the dis-
tribution. If SUBDIRS is defined conditionally (see Chapter 20 [Conditionals], page 66),
Automake will normally include all directories that could possibly appear in SUBDIRS in
the distribution. If you need to specify the set of directories conditionally, you can set the
variable DIST_SUBDIRS to the exact list of subdirectories to include in the distribution (see
Chapter 6 [Top level], page 21).

15.2 Fine-grained distribution control

Sometimes you need tighter control over what does not go into the distribution; for instance
you might have source files which are generated and which you do not want to distribute. In
this case Automake gives fine-grained control using the ‘dist’ and ‘nodist’ prefixes. Any
primary or ‘_SOURCES’ variable can be prefixed with ‘dist_’ to add the listed files to the
distribution. Similarly, ‘nodist_’ can be used to omit the files from the distribution.

As an example, here is how you would cause some data to be distributed while leaving
some source code out of the distribution:

dist_data_DATA = distribute-this

bin_PROGRAMS = foo

nodist_foo_SOURCES = do-not-distribute.c

15.3 The dist hook

Occasionally it is useful to be able to change the distribution before it is packaged up. If
the dist-hook target exists, it is run after the distribution directory is filled, but before
the actual tar (or shar) file is created. One way to use this is for distributing files in
subdirectories for which a new Makefile.am is overkill:

dist-hook:

mkdir $(distdir)/random

cp -p $(srcdir)/random/a1 $(srcdir)/random/a2 $(distdir)/random



Chapter 15: What Goes in a Distribution 59

Another way to to use this is for removing unnecessary files that get recursively included
by specifying a directory in EXTRA DIST:

EXTRA_DIST = doc

dist-hook:

rm -rf ‘find $(distdir)/doc -name CVS‘

15.4 Checking the distribution

Automake also generates a distcheck target which can be of help to ensure that a given
distribution will actually work. distcheck makes a distribution, then tries to do a VPATH

build, run the test suite, and finally make another tarfile to ensure the distribution is self-
contained.

Building the package involves running ./configure. If you need to supply additional
flags to configure, define them in the DISTCHECK_CONFIGURE_FLAGS variable, either in
your top-level Makefile.am, or on the command line when invoking make.

If the target distcheck-hook is defined in your Makefile.am, then it will be invoked
by distcheck after the new distribution has been unpacked, but before the unpacked copy
is configured and built. Your distcheck-hook can do almost anything, though as always
caution is advised. Generally this hook is used to check for potential distribution errors not
caught by the standard mechanism.

Speaking about potential distribution errors, distcheck will also ensure that
the distclean target actually removes all built files. This is done by running make

distcleancheck at the end of the VPATH build. By default, distcleancheck will
run distclean and then make sure the build tree has been emptied by running
$(distcleancheck_listfiles). Usually this check will find generated files that you
forgot to add to the DISTCLEANFILES variable (see Chapter 14 [Clean], page 57).

The distcleancheck behavior should be OK for most packages, otherwise you
have the possibility to override the definition of either the distcleancheck target, or
the $(distcleancheck_listfiles) variable. For instance to disable distcleancheck

completely, add the following rule to your top-level Makefile.am:

distcleancheck:

@:

If you want distcleancheck to ignore built files which have not been cleaned because
they are also part of the distribution, add the following definition instead:

distcleancheck_listfiles = \

find -type f -exec sh -c ’test -f $(srcdir)/{} || echo {}’ ’;’

The above definition is not the default because it’s usually an error if your Makefiles
cause some distributed files to be rebuilt when the user build the package. (Think about
the user missing the tool required to build the file; or if the required tool is built by your
package, consider the cross-compilation case where it can’t be run.) There is a FAQ entry
about this (see Section 26.4 [distcleancheck], page 74), make sure you read it before playing
with distcleancheck_listfiles.

distcheck also checks that the uninstall target works properly, both for ordinary and
‘DESTDIR’ builds. It does this by invoking make uninstall, and then it checks the install



Chapter 16: Support for test suites 60

tree to see if any files are left over. This check will make sure that you correctly coded your
uninstall-related targets.

By default, the checking is done by the distuninstallcheck target, and the list of files
in the install tree is generated by $(distuninstallcheck_listfiles) (this is a variable
whose value is a shell command to run that prints the list of files to stdout).

Either of these can be overridden to modify the behavior of distcheck. For instance,
to disable this check completely, you would write:

distuninstallcheck:

@:

15.5 The types of distributions

Automake generates a ‘.tar.gz’ file when asked to create a distribution and other archives
formats, Chapter 17 [Options], page 61. The target dist-gzip generates the ‘.tar.gz’ file
only.

16 Support for test suites

Automake supports two forms of test suites.

16.1 Simple Tests

If the variable TESTS is defined, its value is taken to be a list of programs to run in order to
do the testing. The programs can either be derived objects or source objects; the generated
rule will look both in srcdir and .. Programs needing data files should look for them in
srcdir (which is both an environment variable and a make variable) so they work when
building in a separate directory (see Section “Build Directories ” in The Autoconf Manual),
and in particular for the distcheck target (see Chapter 15 [Dist], page 57).

The number of failures will be printed at the end of the run. If a given test program
exits with a status of 77, then its result is ignored in the final count. This feature allows
non-portable tests to be ignored in environments where they don’t make sense.

The variable TESTS_ENVIRONMENT can be used to set environment variables for the test
run; the environment variable srcdir is set in the rule. If all your test programs are scripts,
you can also set TESTS_ENVIRONMENT to an invocation of the shell (e.g. ‘$(SHELL) -x’); this
can be useful for debugging the tests.

You may define the variable XFAIL_TESTS to a list of tests (usually a subset of TESTS)
that are expected to fail. This will reverse the result of those tests.

Automake ensures that each program listed in TESTS is built before any tests are run;
you can list both source and derived programs in TESTS. For instance, you might want
to run a C program as a test. To do this you would list its name in TESTS and also in
check_PROGRAMS, and then specify it as you would any other program.



Chapter 17: Changing Automake’s Behavior 61

16.2 DejaGnu Tests

If ‘dejagnu’ (ftp://ftp.gnu.org/gnu/dejagnu/) appears in AUTOMAKE_OPTIONS, then a
dejagnu-based test suite is assumed. The variable DEJATOOL is a list of names which are
passed, one at a time, as the --tool argument to runtest invocations; it defaults to the
name of the package.

The variable RUNTESTDEFAULTFLAGS holds the --tool and --srcdir flags that are passed
to dejagnu by default; this can be overridden if necessary.

The variables EXPECT and RUNTEST can also be overridden to provide project-specific
values. For instance, you will need to do this if you are testing a compiler toolchain,
because the default values do not take into account host and target names.

The contents of the variable RUNTESTFLAGS are passed to the runtest invocation. This
is considered a “user variable” (see Section 2.5 [User Variables], page 4). If you need to set
runtest flags in Makefile.am, you can use AM_RUNTESTFLAGS instead.

Automake will generate rules to create a local site.exp file, defining various variables
detected by ./configure. This file is automatically read by DejaGnu. It is OK for the user
of a package to edit this file in order to tune the test suite. However this is not the place
where the test suite author should define new variables: this should be done elsewhere in
the real test suite code. Especially, site.exp should not be distributed.

For more information regarding DejaGnu test suites, see See The DejaGnu Manual.

In either case, the testing is done via ‘make check’.

16.3 Install Tests

The installcheck target is available to the user as a way to run any tests after the package
has been installed. You can add tests to this by writing an installcheck-local target.

17 Changing Automake’s Behavior

Various features of Automake can be controlled by options in the Makefile.am. Such
options are applied on a per-Makefile basis when listed in a special Makefile variable
named AUTOMAKE_OPTIONS. They are applied globally to all processed Makefiles when
listed in the first argument of AM_INIT_AUTOMAKE in configure.in. Currently understood
options are:

gnits

gnu

foreign

cygnus

Set the strictness as appropriate. The gnits option also implies readme-alpha
and check-news.

ansi2knr

path/ansi2knr

Turn on automatic de-ANSI-fication. See Section 9.13 [ANSI], page 44. If pre-
ceded by a path, the generated Makefile.in will look in the specified directory

ftp://ftp.gnu.org/gnu/dejagnu/


Chapter 17: Changing Automake’s Behavior 62

to find the ansi2knr program. The path should be a relative path to another
directory in the same distribution (Automake currently does not check this).

check-news

Cause make dist to fail unless the current version number appears in the first
few lines of the NEWS file.

dejagnu Cause dejagnu-specific rules to be generated. See Chapter 16 [Tests], page 60.

dist-bzip2

Generate a dist-bzip2 target, creating a bzip2 tar archive of the distribution.
dist will create it in addition to the other formats. bzip2 archives are frequently
smaller than gzipped archives.

dist-shar

Generate a dist-shar target, creating a shar archive of the distribution. dist
will create it in addition to the other formats.

dist-zip Generate a dist-zip target, creating a zip archive of the distribution. dist

will create it in addition to the other formats.

dist-tarZ

Generate a dist-tarZ target, creating a compressed tar archive of the distri-
bution. dist will create it in addition to the other formats.

no-define

This options is meaningful only when passed as an argument to AM_INIT_

AUTOMAKE. It will prevent the PACKAGE and VERSION variables to be AC_DEFINEd.

no-dependencies

This is similar to using ‘--include-deps’ on the command line, but is useful
for those situations where you don’t have the necessary bits to make automatic
dependency tracking work See Section 9.14 [Dependencies], page 45. In this
case the effect is to effectively disable automatic dependency tracking.

no-exeext

If your Makefile.am defines a target ‘foo’, it will override a target named
‘foo$(EXEEXT)’. This is necessary when EXEEXT is found to be empty. However,
by default automake will generate an error for this use. The no-exeext option
will disable this error. This is intended for use only where it is known in advance
that the package will not be ported to Windows, or any other operating system
using extensions on executables.

no-installinfo

The generated Makefile.in will not cause info pages to be built or installed by
default. However, info and install-info targets will still be available. This
option is disallowed at ‘GNU’ strictness and above.

no-installman

The generated Makefile.in will not cause man pages to be installed by default.
However, an install-man target will still be available for optional installation.
This option is disallowed at ‘GNU’ strictness and above.



Chapter 17: Changing Automake’s Behavior 63

nostdinc This option can be used to disable the standard ‘-I’ options which are ordinarily
automatically provided by Automake.

no-texinfo.tex

Don’t require texinfo.tex, even if there are texinfo files in this directory.

readme-alpha

If this release is an alpha release, and the file README-alpha exists, then it
will be added to the distribution. If this option is given, version numbers are
expected to follow one of two forms. The first form is ‘MAJOR.MINOR.ALPHA’,
where each element is a number; the final period and number should be left off
for non-alpha releases. The second form is ‘MAJOR.MINORALPHA’, where ALPHA
is a letter; it should be omitted for non-alpha releases.

std-options

Make the installcheck target check that installed scripts and programs sup-
port the --help and --version options. This also provides a basic check that
the program’s run-time dependencies are satisfied after installation.

In a few situations, programs (or scripts) have to be exempted from this test.
For instance false (from GNU sh-utils) is never successful, even for --help

or --version. You can list such programs in the variable AM_INSTALLCHECK_

STD_OPTIONS_EXEMPT. Programs (not scripts) listed in this variable should be
suffixed by $(EXEEXT) for the sake of Win32 or OS/2. For instance suppose we
build false as a program but true.sh as a script, and that neither of them
support --help or --version:

AUTOMAKE_OPTIONS = std-options

bin_PROGRAMS = false ...

bin_SCRIPTS = true.sh ...

AM_INSTALLCHECK_STD_OPTIONS_EXEMPT = false$(EXEEXT) true.sh

subdir-objects

If this option is specified, then objects are placed into the subdirectory of the
build directory corresponding to the subdirectory of the source file. For in-
stance if the source file is subdir/file.cxx, then the output file would be
subdir/file.o.

version A version number (e.g. ‘0.30’) can be specified. If Automake is not newer than
the version specified, creation of the Makefile.in will be suppressed.

-Wcategory or --warnings=category
These options behave exactly like their command-line counterpart (see
Chapter 4 [Invoking Automake], page 9). This allows you to enable or disable
some warning categories on a per-file basis. You can also setup some warnings
for your entire project; for instance try AM_INIT_AUTOMAKE([-Wall]) in your
configure.in.

Unrecognized options are diagnosed by automake.

If you want an option to apply to all the files in the tree, you can use the AM_INIT_

AUTOMAKE macro in configure.in. See Section 5.6 [Macros], page 17.



Chapter 18: Miscellaneous Rules 64

18 Miscellaneous Rules

There are a few rules and variables that didn’t fit anywhere else.

18.1 Interfacing to etags

Automake will generate rules to generate TAGS files for use with GNU Emacs under some
circumstances.

If any C, C++ or Fortran 77 source code or headers are present, then tags and TAGS

targets will be generated for the directory.

At the topmost directory of a multi-directory package, a tags target file will be generated
which, when run, will generate a TAGS file that includes by reference all TAGS files from
subdirectories.

The tags target will also be generated if the variable ETAGS_ARGS is defined. This
variable is intended for use in directories which contain taggable source that etags does
not understand. The user can use the ETAGSFLAGS to pass additional flags to etags; AM_
ETAGSFLAGS is also available for use in Makefile.am.

Here is how Automake generates tags for its source, and for nodes in its Texinfo file:

ETAGS_ARGS = automake.in --lang=none \

--regex=’/^@node[ \t]+\([^,]+\)/\1/’ automake.texi

If you add filenames to ‘ETAGS_ARGS’, you will probably also want to set
‘TAGS_DEPENDENCIES’. The contents of this variable are added directly to the dependencies
for the tags target.

Automake also generates a ctags target which can be used to build vi-style tags files.
The variable CTAGS is the name of the program to invoke (by default ‘ctags’); CTAGSFLAGS
can be used by the user to pass additional flags, and AM_CTAGSFLAGS can be used by the
Makefile.am.

Automake will also generate an ID target which will run mkid on the source. This is
only supported on a directory-by-directory basis.

Automake also supports the GNU Global Tags program (http://www.gnu.org/
software/global/). The GTAGS target runs Global Tags automatically and puts the result
in the top build directory. The variable GTAGS_ARGS holds arguments which are passed to
gtags.

18.2 Handling new file extensions

It is sometimes useful to introduce a new implicit rule to handle a file type that Automake
does not know about.

For instance, suppose you had a compiler which could compile ‘.foo’ files to ‘.o’ files.
You would simply define an suffix rule for your language:

.foo.o:

foocc -c -o $@ $<

Then you could directly use a ‘.foo’ file in a ‘_SOURCES’ variable and expect the correct
results:

bin_PROGRAMS = doit

http://www.gnu.org/software/global/
http://www.gnu.org/software/global/


Chapter 19: Include 65

doit_SOURCES = doit.foo

This was the simpler and more common case. In other cases, you will have to help
Automake to figure which extensions you are defining your suffix rule for. This usually
happens when your extensions does not start with a dot. Then, all you have to do is to put
a list of new suffixes in the SUFFIXES variable before you define your implicit rule.

For instance the following definition prevents Automake to misinterpret ‘.idlC.cpp:’
as an attempt to transform ‘.idlC’ into ‘.cpp’.

SUFFIXES = .idl C.cpp

.idlC.cpp:

# whatever

As you may have noted, the SUFFIXES variable behaves like the .SUFFIXES special target
of make. You should not touch .SUFFIXES yourself, but use SUFFIXES instead and let
Automake generate the suffix list for .SUFFIXES. Any given SUFFIXES go at the start of
the generated suffixes list, followed by Automake generated suffixes not already in the list.

18.3 Support for Multilibs

Automake has support for an obscure feature called multilibs. A multilib is a library which
is built for multiple different ABIs at a single time; each time the library is built with a
different target flag combination. This is only useful when the library is intended to be
cross-compiled, and it is almost exclusively used for compiler support libraries.

The multilib support is still experimental. Only use it if you are familiar with multilibs
and can debug problems you might encounter.

19 Include

Automake supports an include directive which can be used to include other Makefile

fragments when automake is run. Note that these fragments are read and interpreted by
automake, not by make. As with conditionals, make has no idea that include is in use.

There are two forms of include:

include $(srcdir)/file

Include a fragment which is found relative to the current source directory.

include $(top_srcdir)/file

Include a fragment which is found relative to the top source directory.

Note that if a fragment is included inside a conditional, then the condition applies to
the entire contents of that fragment.

Makefile fragments included this way are always distributed because there are needed to
rebuild Makefile.in.



Chapter 20: Conditionals 66

20 Conditionals

Automake supports a simple type of conditionals.

Before using a conditional, you must define it by using AM_CONDITIONAL in the
configure.in file (see Section 5.6 [Macros], page 17).

[Macro]AM_CONDITIONAL (conditional, condition)
The conditional name, conditional, should be a simple string starting with a letter
and containing only letters, digits, and underscores. It must be different from ‘TRUE’
and ‘FALSE’ which are reserved by Automake.

The shell condition (suitable for use in a shell if statement) is evaluated when
configure is run. Note that you must arrange for every AM_CONDITIONAL to be
invoked every time configure is run – if AM_CONDITIONAL is run conditionally (e.g.,
in a shell if statement), then the result will confuse automake.

Conditionals typically depend upon options which the user provides to the configure

script. Here is an example of how to write a conditional which is true if the user uses the
‘--enable-debug’ option.

AC_ARG_ENABLE(debug,

[ --enable-debug Turn on debugging],

[case "${enableval}" in

yes) debug=true ;;

no) debug=false ;;

*) AC_MSG_ERROR(bad value ${enableval} for --enable-debug) ;;

esac],[debug=false])

AM_CONDITIONAL(DEBUG, test x$debug = xtrue)

Here is an example of how to use that conditional in Makefile.am:

if DEBUG

DBG = debug

else

DBG =

endif

noinst_PROGRAMS = $(DBG)

This trivial example could also be handled using EXTRA PROGRAMS (see
Section 9.1.4 [Conditional Programs], page 27).

You may only test a single variable in an if statement, possibly negated using ‘!’. The
else statement may be omitted. Conditionals may be nested to any depth. You may
specify an argument to else in which case it must be the negation of the condition used
for the current if. Similarly you may specify the condition which is closed by an end:

if DEBUG

DBG = debug

else !DEBUG

DBG =

endif !DEBUG

Unbalanced conditions are errors.



Chapter 22: The effect of --cygnus 67

Note that conditionals in Automake are not the same as conditionals in GNU Make.
Automake conditionals are checked at configure time by the configure script, and affect
the translation from Makefile.in to Makefile. They are based on options passed to
configure and on results that configure has discovered about the host system. GNU
Make conditionals are checked at make time, and are based on variables passed to the make
program or defined in the Makefile.

Automake conditionals will work with any make program.

21 The effect of --gnu and --gnits

The ‘--gnu’ option (or ‘gnu’ in the ‘AUTOMAKE_OPTIONS’ variable) causes automake to check
the following:

• The files INSTALL, NEWS, README, AUTHORS, and ChangeLog, plus one of COPYING.LIB,
COPYING.LESSER or COPYING, are required at the topmost directory of the package.

• The options ‘no-installman’ and ‘no-installinfo’ are prohibited.

Note that this option will be extended in the future to do even more checking; it is
advisable to be familiar with the precise requirements of the GNU standards. Also, ‘--gnu’
can require certain non-standard GNU programs to exist for use by various maintainer-only
targets; for instance in the future pathchk might be required for ‘make dist’.

The ‘--gnits’ option does everything that ‘--gnu’ does, and checks the following as
well:

• ‘make installcheck’ will check to make sure that the --help and --version really
print a usage message and a version string, respectively. This is the std-options

option (see Chapter 17 [Options], page 61).

• ‘make dist’ will check to make sure the NEWS file has been updated to the current
version.

• ‘VERSION’ is checked to make sure its format complies with Gnits standards.

• If ‘VERSION’ indicates that this is an alpha release, and the file README-alpha appears
in the topmost directory of a package, then it is included in the distribution. This
is done in ‘--gnits’ mode, and no other, because this mode is the only one where
version number formats are constrained, and hence the only mode where Automake
can automatically determine whether README-alpha should be included.

• The file THANKS is required.

22 The effect of --cygnus

Some packages, notably GNU GCC and GNU gdb, have a build environment originally
written at Cygnus Support (subsequently renamed Cygnus Solutions, and then later pur-
chased by Red Hat). Packages with this ancestry are sometimes referred to as “Cygnus”
trees.

A Cygnus tree has slightly different rules for how a Makefile.in is to be constructed.
Passing ‘--cygnus’ to automake will cause any generated Makefile.in to comply with
Cygnus rules.



Chapter 23: When Automake Isn’t Enough 68

Here are the precise effects of ‘--cygnus’:

• Info files are always created in the build directory, and not in the source directory.

• texinfo.tex is not required if a Texinfo source file is specified. The assumption is that
the file will be supplied, but in a place that Automake cannot find. This assumption
is an artifact of how Cygnus packages are typically bundled.

• ‘make dist’ is not supported, and the rules for it are not generated. Cygnus-style trees
use their own distribution mechanism.

• Certain tools will be searched for in the build tree as well as in the user’s ‘PATH’. These
tools are runtest, expect, makeinfo and texi2dvi.

• --foreign is implied.

• The options ‘no-installinfo’ and ‘no-dependencies’ are implied.

• The macros ‘AM_MAINTAINER_MODE’ and ‘AM_CYGWIN32’ are required.

• The check target doesn’t depend on all.

GNU maintainers are advised to use ‘gnu’ strictness in preference to the special Cygnus
mode. Some day, perhaps, the differences between Cygnus trees and GNU trees will disap-
pear (for instance, as GCC is made more standards compliant). At that time the special
Cygnus mode will be removed.

23 When Automake Isn’t Enough

Automake’s implicit copying semantics means that many problems can be worked around
by simply adding some make targets and rules to Makefile.in. Automake will ignore these
additions.

There are some caveats to doing this. Although you can overload a target already used
by Automake, it is often inadvisable, particularly in the topmost directory of a package with
subdirectories. However, various useful targets have a ‘-local’ version you can specify in
your Makefile.in. Automake will supplement the standard target with these user-supplied
targets.

The targets that support a local version are all, info, dvi, ps, pdf, check,
install-data, install-exec, uninstall, installdirs, installcheck and the various
clean targets (mostlyclean, clean, distclean, and maintainer-clean). Note that
there are no uninstall-exec-local or uninstall-data-local targets; just use
uninstall-local. It doesn’t make sense to uninstall just data or just executables.

For instance, here is one way to install a file in /etc:

install-data-local:

$(INSTALL_DATA) $(srcdir)/afile $(DESTDIR)/etc/afile

Some targets also have a way to run another target, called a hook, after their work is
done. The hook is named after the principal target, with ‘-hook’ appended. The targets
allowing hooks are install-data, install-exec, uninstall, dist, and distcheck.

For instance, here is how to create a hard link to an installed program:

install-exec-hook:

ln $(DESTDIR)$(bindir)/program$(EXEEXT) \



Chapter 25: Automake API versioning 69

$(DESTDIR)$(bindir)/proglink$(EXEEXT)

Although cheaper and more portable than symbolic links, hard links will not work every-
where (for instance OS/2 does not have ln). Ideally you should fall back to cp -p when ln

does not work. An easy way, if symbolic links are acceptable to you, is to add AC_PROG_LN_S

to configure.in (see Section “Particular Program Checks” in The Autoconf Manual) and
use $(LN_S) in Makefile.am.

For instance, here is how you could install a versioned copy of a program using $(LN_S):

install-exec-hook:

cd $(DESTDIR)$(bindir) && \

mv -f prog$(EXEEXT) prog-$(VERSION)$(EXEEXT) && \

$(LN_S) prog-$(VERSION)$(EXEEXT) prog$(EXEEXT)

Note that we rename the program so that a new version will erase the symbolic link, not
the real binary. Also we cd into the destination directory in order to create relative links.

24 Distributing Makefile.ins

Automake places no restrictions on the distribution of the resulting Makefile.ins. We still
encourage software authors to distribute their work under terms like those of the GPL, but
doing so is not required to use Automake.

Some of the files that can be automatically installed via the --add-missing switch do
fall under the GPL. However, these also have a special exception allowing you to distribute
them with your package, regardless of the licensing you choose.

25 Automake API versioning

New Automake releases usually include bug fixes and new features. Unfortunately they
may also introduce new bugs and incompatibilities. This makes four reasons why a package
may require a particular Automake version.

Things get worse when maintaining a large tree of packages, each one requiring a different
version of Automake. In the past, this meant that any developer (and sometime users) had
to install several versions of Automake in different places, and switch ‘$PATH’ appropriately
for each package.

Starting with version 1.6, Automake installs versioned binaries. This means you can
install several versions of Automake in the same ‘$prefix’, and can select an arbitrary
Automake version by running ‘automake-1.6’ or ‘automake-1.7’ without juggling with
‘$PATH’. Furthermore, Makefile’s generated by Automake 1.6 will use ‘automake-1.6’
explicitly in their rebuild rules.

Note that ‘1.6’ in ‘automake-1.6’ is Automake’s API version, not Automake’s version.
If a bug fix release is made, for instance Automake 1.6.1, the API version will remain 1.6.
This means that a package which work with Automake 1.6 should also work with 1.6.1;
after all, this is what people expect from bug fix releases.

Note that if your package relies on a feature or a bug fix introduced in a release, you can
pass this version as an option to Automake to ensure older releases will not be used. For
instance, use this in your configure.in:

AM_INIT_AUTOMAKE(1.6.1) dnl Require Automake 1.6.1 or better.



Chapter 26: Frequently Asked Questions about Automake 70

or, in a particular Makefile.am:

AUTOMAKE_OPTIONS = 1.6.1 # Require Automake 1.6.1 or better.

Automake will print an error message if its version is older than the requested version.

What is in the API

Automake’s programming interface is not easy to define. Basically it should include at least
all documented variables and targets that a ‘Makefile.am’ author can use, any behavior
associated with them (e.g. the places where ‘-hook’’s are run), the command line interface
of ‘automake’ and ‘aclocal’, . . .

What is not in the API

Every undocumented variable, target, or command line option, is not part of the API. You
should avoid using them, as they could change from one version to the other (even in bug
fix releases, if this helps to fix a bug).

If it turns out you need to use such a undocumented feature, contact automake@gnu.org
and try to get it documented and exercised by the test-suite.

26 Frequently Asked Questions about Automake

This chapter covers some questions that often come up on the mailing lists.

26.1 CVS and generated files

26.1.1 Background: distributed generated files

Packages made with Autoconf and Automake ship with some generated files like configure
or Makefile.in. These files were generated on the developer’s host and are distributed
so that end-users do not have to install the maintainer tools required to rebuild them.
Other generated files like Lex scanners, Yacc parsers, or Info documentation, are usually
distributed on similar grounds.

Automake outputs rules in Makefiles to rebuild these files. For instance make will run
autoconf to rebuild configure whenever configure.in is changed. This makes develop-
ment safer by ensuring a configure is never out-of-date with respect to configure.in.

As generated files shipped in packages are up-to-date, and because tar preserves time-
stamps, these rebuild rules are not triggered when a user unpacks and builds a package.

26.1.2 Background: CVS and timestamps

Unless you use CVS keywords (in which case files must be updated at commit time), CVS
preserves timestamps during cvs commit and cvs import -d operations.

When you check out a file using cvs checkout its timestamp is set to that of the revision
which is being checked out.

However, during cvs update, files will have the date of the update, not the original
timestamp of this revision. This is meant to make sure that make notices sources files have
been updated.

mailto:automake@gnu.org


Chapter 26: Frequently Asked Questions about Automake 71

This timestamp shift is troublesome when both sources and generated files are kept
under CVS. Because CVS processes files in alphabetical order, configure.in will appear
older than configure after a cvs update that updates both files, even if configure was
newer than configure.in when it was checked in. Calling make will then trigger a spurious
rebuild of configure.

26.1.3 Living with CVS in Autoconfiscated projects

There are basically two clans amongst maintainers: those who keep all distributed files
under CVS, including generated files, and those who keep generated files out of CVS.

All files in CVS

• The CVS repository contains all distributed files so you know exactly what is dis-
tributed, and you can checkout any prior version entirely.

• Maintainers can see how generated files evolve (for instance you can see what happens
to your Makefile.ins when you upgrade Automake and make sure they look OK).

• Users do not need the autotools to build a checkout of the project, it works just like a
released tarball.

• If users use cvs update to update their copy, instead of cvs checkout to fetch a fresh
one, timestamps will be inaccurate. Some rebuild rules will be triggered and attempt
to run developer tools such as autoconf or automake.

Actually, calls to such tools are all wrapped into a call to the missing script discussed
later (see Section 26.2 [maintainer-mode], page 72). missing will take care of fixing
the timestamps when these tools are not installed, so that the build can continue.

• In distributed development, developers are likely to have different version of the main-
tainer tools installed. In this case rebuilds triggered by timestamp lossage will lead to
spurious changes to generated files. There are several solutions to this:

• All developers should use the same versions, so that the rebuilt files are identical
to files in CVS. (This starts to be difficult when each project you work on uses
different versions.)

• Or people use a script to fix the timestamp after a checkout (the GCC folks have
such a script).

• Or configure.in uses AM_MAINTAINER_MODE, which will disable all these rebuild
rules by default. This is further discussed in Section 26.2 [maintainer-mode],
page 72.

• Although we focused on spurious rebuilds, the converse can also happen. CVS’s time-
stamp handling can also let you think an out-of-date file is up-to-date.

For instance, suppose a developer has modified Makefile.am and rebuilt Makefile.in,
and then decide to do a last-minute change to Makefile.am right before checking in
both files (without rebuilding Makefile.in to account for the change).

This last change to Makefile.am make the copy of Makefile.in out-of-date. Since
CVS processes files alphabetically, when another developer cvs update his or her tree,
Makefile.in will happen to be newer than Makefile.am. This other developer will
not see Makefile.in is out-of-date.



Chapter 26: Frequently Asked Questions about Automake 72

Generated files out of CVS

One way to get CVS and make working peacefully is to never store generated files in CVS,
i.e., do not CVS-control files which are Makefile targets (or derived files in Make termi-
nology).

This way developers are not annoyed by changes to generated files. It does not
matter if they all have different versions (assuming they are compatible, of course).
And finally, timestamps are not lost, changes to sources files can’t be missed as in the
Makefile.am/Makefile.in example discussed earlier.

The drawback is that the CVS repository is not an exact copy of what is distributed
and that users now need to install various development tools (maybe even specific versions)
before they can build a checkout. But, after all, CVS’s job is versioning, not distribution.

Allowing developers to use different versions of their tools can also hide bugs during
distributed development. Indeed, developers will be using (hence testing) their own gen-
erated files, instead of the generated files that will be released actually. The developer
who prepares the tarball might be using a version of the tool that produces bogus output
(for instance a non-portable C file), something other developers could have noticed if they
weren’t using their own versions of this tool.

26.1.4 Third-party files

Another class of files not discussed here (because they do not cause timestamp issues) are
files which are shipped with a package, but maintained elsewhere. For instance tools like
gettextize and autopoint (from Gettext) or libtoolize (from Libtool), will install or
update files in your package.

These files, whether they are kept under CVS or not, raise similar concerns about version
mismatch between developers’ tools. The Gettext manual has a section about this, see
Section “Integrating with CVS” in GNU gettext tools.

26.2 missing and AM_MAINTAINER_MODE

26.2.1 missing

The missing script is a wrapper around several maintainer tools, designed to warn users if a
maintainer tool is required but missing. Typical maintainer tools are autoconf, automake,
bison, etc. Because file generated by these tools are shipped with the other sources of a
package, these tools shouldn’t be required during a user build and they are not checked for
in configure.

However, if for some reason a rebuild rule is triggered and involves a missing tool,
missing will notice it and warn the user. Besides the warning, when a tool is missing,
missing will attempt to fix timestamps in a way which allow the build to continue. For
instance missing will touch configure if autoconf is not installed. When all distributed
files are kept under CVS, this feature of missing allows user with no maintainer tools to
build a package off CVS, bypassing any timestamp inconsistency implied by cvs update.

If the required tool is installed, missing will run it and won’t attempt to continue after
failures. This is correct during development: developers love fixing failures. However, users
with wrong versions of maintainer tools may get an error when the rebuild rule is spuriously



Chapter 26: Frequently Asked Questions about Automake 73

triggered, halting the build. This failure to let the build continue is one of the arguments
of the AM_MAINTAINER_MODE advocates.

26.2.2 AM_MAINTAINER_MODE

AM_MAINTAINER_MODE disables the so called "rebuild rules" by default. If you have AM_

MAINTAINER_MODE in configure.ac, and run ./configure && make, then make will *never*
attempt to rebuilt configure, Makefile.ins, Lex or Yacc outputs, etc. I.e., this disables
build rules for files which are usually distributed and that users should normally not have
to update.

If you run ./configure --enable-maintainer-mode, then these rebuild rules will be
active.

People use AM_MAINTAINER_MODE either because they do want their users (or themselves)
annoyed by timestamps lossage (see Section 26.1 [CVS], page 70), or because they simply
can’t stand the rebuild rules and prefer running maintainer tools explicitly.

AM_MAINTAINER_MODE also allows you to disable some custom build rules conditionally.
Some developers use this feature to disable rules that need exotic tools that users may not
have available.

Several years ago François Pinard pointed out several arguments against AM_

MAINTAINER_MODE. Most of them relate to insecurity. By removing dependencies you get
non-dependable builds: change to sources files can have no effect on generated files and
this can be very confusing when unnoticed. He adds that security shouldn’t be reserved
to maintainers (what --enable-maintainer-mode suggests), on the contrary. If one user
has to modify a Makefile.am, then either Makefile.in should be updated or a warning
should be output (this is what Automake uses missing for) but the last thing you want is
that nothing happens and the user doesn’t notice it (this is what happens when rebuild
rules are disabled by AM_MAINTAINER_MODE).

Jim Meyering, the inventor of the AM_MAINTAINER_MODE macro was swayed by François’s
arguments, and got rid of AM_MAINTAINER_MODE in all of his packages.

Still many people continue to use AM_MAINTAINER_MODE, because it helps them working
on projects where all files are kept under CVS, and because missing isn’t enough if you
have the wrong version of the tools.

26.3 Why doesn’t Automake support wildcards?

Developers are lazy. They often would like to use wildcards in Makefile.ams, so they don’t
need to remember they have to update Makefile.ams every time they add, delete, or rename
a file.

There are several objections to this:

• When using CVS (or similar) developers need to remember they have to run cvs add

or cvs rm anyway. Updating Makefile.am accordingly quickly becomes a reflex.

Conversely, if your application doesn’t compile because you forgot to add a file in
Makefile.am, it will help you remember to cvs add it.

• Using wildcards makes easy to distribute files by mistake. For instance some code a
developer is experimenting with (a test case, say) but which should not be part of the
distribution.



Chapter 26: Frequently Asked Questions about Automake 74

• Using wildcards it’s easy to omit some files by mistake. For instance one developer
creates a new file, uses it at many places, but forget to commit it. Another developer
then checkout the incomplete project and is able to run ‘make dist’ successfully, even
though a file is missing.

• Listing files, you control *exactly* what you distribute. If some file that should be
distributed is missing from your tree, make dist will complain. Besides, you don’t
distribute more than what you listed.

• Finally it’s really hard to forget adding a file to Makefile.am, because if you don’t
add it, it doesn’t get compiled nor installed, so you can’t even test it.

Still, these are philosophical objections, and as such you may disagree, or find enough
value in wildcards to dismiss all of them. Before you start writing a patch against Automake
to teach it about wildcards, let’s see the main technical issue: portability.

Although $(wildcard ...) works with GNU make, it is not portable to other make

implementations.

The only way Automake could support $(wildcard ...) is by expending $(wildcard

...) when automake is run. Resulting Makefile.ins would be portable since they would
list all files and not use $(wildcard ...). However that means developers need to remember
they must run automake each time they add, delete, or rename files.

Compared to editing Makefile.am, this is really little win. Sure, it’s easier and faster
to type automake; make than to type emacs Makefile.am; make. But nobody bothered
enough to write a patch add support for this syntax. Some people use scripts to generated
file lists in Makefile.am or in separate Makefile fragments.

Even if you don’t care about portability, and are tempted to use $(wildcard ...)

anyway because you target only GNU Make, you should know there are many places where
Automake need to know exactly which files should be processed. As Automake doesn’t
know how to expand $(wildcard ...), you cannot use it in these places. $(wildcard

...) is a black box comparable to AC_SUBSTed variables as far Automake is concerned.

You can get warnings about $(wildcard ...) constructs using the -Wportability flag.

26.4 Files left in build directory after distclean

This is a diagnostic you might encounter while running make distcheck.

As explained in Chapter 15 [Dist], page 57, make distcheck attempts to build and check
your package for errors like this one.

make distcheck will perform a VPATH build of your package, and then call make

distclean. Files left in the build directory after make distclean has run are listed after
this error.

This diagnostic really covers two kinds of errors:

• files that are forgotten by distclean;

• distributed files that are erroneously rebuilt.

The former left-over files are not distributed, so the fix is to mark them for cleaning (see
Chapter 14 [Clean], page 57), this is obvious and doesn’t deserve more explanations.

The latter bug is not always easy to understand and fix, so let’s proceed with an example.
Suppose our package contains a program for which we want to build a man page using



Chapter 26: Frequently Asked Questions about Automake 75

help2man. GNU help2man produces simple manual pages from the --help and --version

output of other commands (see Section “Overview” in The Help2man Manual). Because
we don’t to force want our users to install help2man, we decide to distribute the generated
man page using the following setup.

# This Makefile.am is bogus.

bin_PROGRAMS = foo

foo_SOURCES = foo.c

dist_man_MANS = foo.1

foo.1: foo$(EXEEXT)

help2man --output=foo.1 ./foo$(EXEEXT)

This will effectively distribute the man page. However, make distcheck will fail with:

ERROR: files left in build directory after distclean:

./foo.1

Why was foo.1 rebuilt? Because although distributed, foo.1 depends on a non-
distributed built file: foo$(EXEEXT). foo$(EXEEXT) is built by the user, so it will always
appear to be newer than the distributed foo.1.

make distcheck caught an inconsistency in our package. Our intent was to distribute
foo.1 so users do not need installing help2man, however since this our rule causes this file
to be always rebuilt, users do need help2man. Either we should ensure that foo.1 is not
rebuilt by users, or there is no point in distributing foo.1.

More generally, the rule is that distributed files should never depend on non-distributed
built files. If you distribute something generated, distribute its sources.

One way to fix the above example, while still distributing foo.1 is to not depend on
foo$(EXEEXT). For instance, assuming foo --version and foo --help do not change
unless foo.c or configure.ac change, we could write the following Makefile.am:

bin_PROGRAMS = foo

foo_SOURCES = foo.c

dist_man_MANS = foo.1

foo.1: foo.c $(top_srcdir)/configure.ac

$(MAKE) $(AM_MAKEFLAGS) foo$(EXEEXT)

help2man --output=foo.1 ./foo$(EXEEXT)

This way, foo.1 will not get rebuilt every time foo$(EXEEXT) changes. The make call
makes sure foo$(EXEEXT) is up-to-date before help2man. Another way to ensure this would
be to use separate directories for binaries and man pages, and set SUBDIRS so that binaries
are built before man pages.

We could also decide not to distribute foo.1. In this case it’s fine to have foo.1

dependent upon foo$(EXEEXT), since both will have to be rebuilt. However it would be
impossible to build the package in a cross-compilation, because building foo.1 involves an
execution of foo$(EXEEXT).

Another context where such errors are common is when distributed files are built by
tools which are built by the package. The pattern is similar:

distributed-file: built-tools distributed-sources



Chapter 26: Frequently Asked Questions about Automake 76

build-command

should be changed to

distributed-file: distributed-sources

$(MAKE) $(AM_MAKEFLAGS) built-tools

build-command

or you could choose not to distribute distributed-file, if cross-compilation does not
matter.

The points made through these examples are worth a summary:� �
• Distributed files should never depend upon non-distributed built files.

• Distributed files should be distributed will all their dependencies.

• If a file is intended be rebuilt by users, there is no point in distributing it.
 	
For desperate cases, it’s always possible to disable this check by setting distcleancheck_

listfiles as documented in Chapter 15 [Dist], page 57. Make sure you do understand the
reason why make distcheck complains before you do this. distcleancheck_listfiles is
a way to hide errors, not to fix them. You can always do better.

26.5 Why are object files sometimes renamed?

This happens when per-target compilation flags are used. Object files need to be renamed
just in case they would clash with object files compiled from the same sources, but with
different flags. Consider the following example.

bin_PROGRAMS = true false

true_SOURCES = generic.c

true_CPPFLAGS = -DEXIT_CODE=0

false_SOURCES = generic.c

false_CPPFLAGS = -DEXIT_CODE=1

Obviously the two programs are built from the same source, but it would be bad if they
shared the same object, because generic.o cannot be built with both -DEXIT_CODE=0

*and* -DEXIT_CODE=1. Therefore automake outputs rules to build two different objects:
true-generic.o and false-generic.o.

automake doesn’t actually look whether sources files are shared to decide if it must
rename objects. It will just rename all objects of a target as soon as it sees per-target
compilation flags are used.

It’s OK to share object files when per-target compilation flags are not used. For instance
true and false will both use version.o in the following example.

AM_CPPFLAGS = -DVERSION=1.0

bin_PROGRAMS = true false

true_SOURCES = true.c version.c

false_SOURCES = false.c version.c

Note that the renaming of objects is also affected by the _SHORTNAME variable (see
Section 9.4 [Program and Library Variables], page 33).



Macro and Variable Index 77

Macro and Variable Index

_LDADD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
_LDFLAGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
_LIBADD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
_SOURCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
_TEXINFOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

A
AC_CANONICAL_HOST . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
AC_CANONICAL_SYSTEM . . . . . . . . . . . . . . . . . . . . . . . . . . 13
AC_CONFIG_AUX_DIR . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
AC_CONFIG_FILES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
AC_CONFIG_HEADERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
AC_DEFUN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
AC_F77_LIBRARY_LDFLAGS . . . . . . . . . . . . . . . . . . . . . . 14
AC_LIBOBJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13, 32
AC_LIBSOURCE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
AC_LIBSOURCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
AC_OUTPUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
AC_PREREQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
AC_PROG_CXX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
AC_PROG_F77 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
AC_PROG_LEX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
AC_PROG_LIBTOOL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
AC_PROG_RANLIB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
AC_PROG_YACC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
AC_SUBST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
ACLOCAL_AMFLAGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
am_cv_sys_posix_termios . . . . . . . . . . . . . . . . . . . . . 19
AM_C_PROTOTYPES . . . . . . . . . . . . . . . . . . . . . . . 14, 17, 44
AM_CFLAGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
AM_CONDITIONAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
AM_CONFIG_HEADER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
AM_CPPFLAGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
AM_CXXFLAGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
AM_ETAGSFLAGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
AM_FFLAGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
AM_GCJFLAGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
AM_GNU_GETTEXT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
AM_HEADER_TIOCGWINSZ_NEEDS_SYS_IOCTL . . . . . . 17
AM_INIT_AUTOMAKE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
AM_INSTALLCHECK_STD_OPTIONS_EXEMPT . . . . . . . . 63
AM_JAVACFLAGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
AM_LDFLAGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25, 37
AM_MAINTAINER_MODE . . . . . . . . . . . . . . . . . . . . . . . 14, 73
AM_MAKEINFOFLAGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
AM_PATH_LISPDIR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
AM_PROG_GCJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
AM_RFLAGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
AM_RUNTESTFLAGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
AUTOCONF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
AUTOMAKE_OPTIONS . . . . . . . . . . . . . . . . . . . . . . 44, 45, 61

B
bin_PROGRAMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
bin_SCRIPTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
build_alias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
BUILT_SOURCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

C
CC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
CCAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
CCASFLAGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
CFLAGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
check_LTLIBRARIES . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
check_PROGRAMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
check_SCRIPTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
CLASSPATH_ENV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
CLEANFILES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
COMPILE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
CPPFLAGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
CXX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
CXXCOMPILE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
CXXFLAGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
CXXLINK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

D
data_DATA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
DATA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4, 47
DEFS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
DEJATOOL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
DESTDIR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
dist_ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
dist_lisp_LISP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
dist_noinst_LISP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
DIST_SUBDIRS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22, 58
DISTCHECK_CONFIGURE_FLAGS . . . . . . . . . . . . . . . . . . . 59
distcleancheck_listfiles . . . . . . . . . . . . . . . . 59, 76
DISTCLEANFILES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
distuninstallcheck_listfiles . . . . . . . . . . . . . . . 59

E
ELCFILES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
ETAGS_ARGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
ETAGSFLAGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
EXPECT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
EXTRA_DIST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
EXTRA_PROGRAMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27



Macro and Variable Index 78

F
F77 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
F77COMPILE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
FFLAGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
FLINK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

G
GCJFLAGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
GTAGS_ARGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

H
HEADERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4, 47
host_alias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
host_triplet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

I
include_HEADERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
INCLUDES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
info_TEXINFOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

J
JAVA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
JAVAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
JAVACFLAGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
JAVAROOT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

L
LDADD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
LDFLAGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
lib_LIBRARIES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
lib_LTLIBRARIES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
LIBADD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
libexec_PROGRAMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
libexec_SCRIPTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
LIBOBJS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13, 32
LIBRARIES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
LIBS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
LINK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
lisp_LISP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
LISP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4, 51
localstate_DATA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
LTLIBOBJS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

M
MAINTAINERCLEANFILES . . . . . . . . . . . . . . . . . . . . . . . . 57
MAKE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
MAKEFLAGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
MAKEINFO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
MAKEINFOFLAGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
man_MANS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
MANS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4, 55
MOSTLYCLEANFILES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

N
nodist_ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
noinst_HEADERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
noinst_LIBRARIES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
noinst_LISP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
noinst_LTLIBRARIES . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
noinst_PROGRAMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
noinst_SCRIPTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

O
oldinclude_HEADERS . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

P
PACKAGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
PACKAGE, directory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
PACKAGE, prevent definition . . . . . . . . . . . . . . . . . 18
pkgdata_DATA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
pkgdata_SCRIPTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
pkgdatadir . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
pkginclude_HEADERS . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
pkgincludedir . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
pkglib_LIBRARIES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
pkglib_LTLIBRARIES . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
pkglib_PROGRAMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
pkglibdir . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
pkgpyexecdir . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
pkgpythondir . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
PROGRAMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3, 4
pyexecdir . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
PYTHON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4, 52
PYTHON_EXEC_PREFIX . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
PYTHON_PLATFORM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
PYTHON_PREFIX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
PYTHON_VERSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
pythondir . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

R
RFLAGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
RUNTEST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
RUNTESTDEFAULTFLAGS . . . . . . . . . . . . . . . . . . . . . . . . . . 61
RUNTESTFLAGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

S
sbin_PROGRAMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
sbin_SCRIPTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
SCRIPTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4, 46
sharedstate_DATA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
SOURCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
SUBDIRS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
SUFFIXES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
sysconf_DATA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47



Macro and Variable Index 79

T
TAGS_DEPENDENCIES . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
target_alias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
TESTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
TESTS_ENVIRONMENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
TEXINFO_TEX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
TEXINFOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4, 53, 54

V
VERSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
VERSION, prevent definition . . . . . . . . . . . . . . . . . 18

W
WARNINGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
WITH_DMALLOC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
WITH_REGEX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

X
XFAIL_TESTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Y
YACC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14



General Index 80

General Index

#
## (special Automake comment) . . . . . . . . . . . . . . . 2

–
--acdir . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
--add-missing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
--copy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
--cygnus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
–enable-debug, example . . . . . . . . . . . . . . . . . . . . . . . . 66
--enable-maintainer-mode . . . . . . . . . . . . . . . . . . . . 14
--force-missing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
--foreign . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
--gnits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
–gnits, complete description . . . . . . . . . . . . . . . . . . . . 67
--gnu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
–gnu, complete description . . . . . . . . . . . . . . . . . . . . . 67
–gnu, required files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
--help . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10, 15
--include-deps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
--libdir . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
--no-force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
--output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
--output-dir . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
--print-ac-dir . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
--verbose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11, 15
--version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11, 15
--warnings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
--with-dmalloc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
--with-regex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
-a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
-c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
-f . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
-hook targets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
-i . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
-I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
-local targets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
-module, libtool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
-o . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
-v . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
-W . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

.

.la suffix, defined . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

DATA primary, defined . . . . . . . . . . . . . . . . . . . . . . . 47
DEPENDENCIES, defined . . . . . . . . . . . . . . . . . . . . 25
HEADERS primary, defined . . . . . . . . . . . . . . . . . . . 47
JAVA primary, defined . . . . . . . . . . . . . . . . . . . . . . . . 51
LDFLAGS, defined . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
LDFLAGS, libtool . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
LIBADD primary, defined . . . . . . . . . . . . . . . . . . . . . 28
LIBADD, libtool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
LIBRARIES primary, defined . . . . . . . . . . . . . . . . . 28
LISP primary, defined . . . . . . . . . . . . . . . . . . . . . . . . . 51
LTLIBRARIES primary, defined . . . . . . . . . . . . . . 29
MANS primary, defined . . . . . . . . . . . . . . . . . . . . . . . 55
PROGRAMS primary variable . . . . . . . . . . . . . . . . . 3
PYTHON primary, defined . . . . . . . . . . . . . . . . . . . . 52
SCRIPTS primary, defined . . . . . . . . . . . . . . . . . . . . 46
SOURCES and header files . . . . . . . . . . . . . . . . . . . . 25
SOURCES primary, defined . . . . . . . . . . . . . . . . . . . 25
TEXINFOS primary, defined . . . . . . . . . . . . . . . . . . 53

A
AC_SUBST and SUBDIRS . . . . . . . . . . . . . . . . . . . . . . . . . 23
acinclude.m4, defined . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
aclocal program, introduction . . . . . . . . . . . . . . . . . . . 6
aclocal search path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
aclocal, extending . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
aclocal, Invoking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
aclocal, Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
aclocal.m4, preexisting . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Adding new SUFFIXES . . . . . . . . . . . . . . . . . . . . . . . . 64
all . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
all-local . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
ALLOCA, special handling . . . . . . . . . . . . . . . . . . . . . . . 36
AM_CONDITIONAL and SUBDIRS . . . . . . . . . . . . . . . . . . 22
AM INIT AUTOMAKE, example use . . . . . . . . . . . 6
AM MAINTAINER MODE, purpose . . . . . . . . . . 73
ansi2knr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
ansi2knr and LIBOBJS . . . . . . . . . . . . . . . . . . . . . . . . . 45
ansi2knr and LTLIBOBJS . . . . . . . . . . . . . . . . . . . . . . . 45
Append operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
autogen.sh and autoreconf . . . . . . . . . . . . . . . . . . . . . 32
Automake constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Automake options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Automake requirements . . . . . . . . . . . . . . . . . . . . . 1, 12
Automake, invoking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Automake, recursive operation . . . . . . . . . . . . . . . . . . 2
Automatic dependency tracking . . . . . . . . . . . . . . . . 45
Automatic linker selection . . . . . . . . . . . . . . . . . . . . . . 43
autoreconf and libtoolize . . . . . . . . . . . . . . . . . . . . . . . 32
Auxiliary programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Avoiding path stripping . . . . . . . . . . . . . . . . . . . . . . . . 24



General Index 81

B
bootstrap.sh and autoreconf . . . . . . . . . . . . . . . . . . . . 32
BUGS, reporting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
BUILT SOURCES, defined . . . . . . . . . . . . . . . . . . . . 47

C
C++ support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
canonicalizing Automake variables . . . . . . . . . . . . . . . 4
cfortran . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
check . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
check primary prefix, definition . . . . . . . . . . . . . . . . . . 4
check-local . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
clean . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
clean-local . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Comment, special to Automake . . . . . . . . . . . . . . . . . 2
Complete example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Conditional example, –enable-debug . . . . . . . . . . . . 66
conditional libtool libraries . . . . . . . . . . . . . . . . . . . . . 29
Conditional programs . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Conditional subdirectories . . . . . . . . . . . . . . . . . . . . . . 22
Conditional SUBDIRS . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Conditionals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
config.guess . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
configure.in, from GNU Hello . . . . . . . . . . . . . . . . . . . 6
configure.in, scanning . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Constraints of Automake . . . . . . . . . . . . . . . . . . . . . . . . 1
convenience libraries, libtool . . . . . . . . . . . . . . . . . . . 30
cpio example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
cvs-dist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
cvs-dist, non-standard example . . . . . . . . . . . . . . . . . . 1
CVS and generated files . . . . . . . . . . . . . . . . . . . . . . . . 71
CVS and third-party files . . . . . . . . . . . . . . . . . . . . . . 72
CVS and timestamps . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Cygnus strictness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

D
DATA primary, defined . . . . . . . . . . . . . . . . . . . . . . . . 47
de-ANSI-fication, defined . . . . . . . . . . . . . . . . . . . . . . . 44
dejagnu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
depcomp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
dependencies and distributed files . . . . . . . . . . . . . . 74
Dependency tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Dependency tracking, disabling . . . . . . . . . . . . . . . . . 45
dirlist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Disabling dependency tracking . . . . . . . . . . . . . . . . . 45
dist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
dist-bzip2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
dist-gzip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
dist-hook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58, 68
dist-shar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
dist-tarZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
dist-zip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
dist and nobase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
DIST_SUBDIRS, explained . . . . . . . . . . . . . . . . . . . . . . . 23
distcheck . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
distclean . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68, 74

distclean, diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
distclean-local . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
distcleancheck . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59, 74
dmalloc, support for . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
dvi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
dvi-local . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

E
E-mail, bug reports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
EDITION Texinfo flag . . . . . . . . . . . . . . . . . . . . . . . . . 53
else . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
endif . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Example conditional –enable-debug . . . . . . . . . . . . 66
Example of recursive operation . . . . . . . . . . . . . . . . . . 2
Example of shared libraries . . . . . . . . . . . . . . . . . . . . 29
Example, EXTRA PROGRAMS . . . . . . . . . . . . . . . . 3
Example, false and true . . . . . . . . . . . . . . . . . . . . . . . . . 8
Example, GNU Hello . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Example, handling Texinfo files . . . . . . . . . . . . . . . . . 7
Example, mixed language . . . . . . . . . . . . . . . . . . . . . . 42
Example, regression test . . . . . . . . . . . . . . . . . . . . . . . . . 7
Executable extension . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Exit status 77, special interpretation . . . . . . . . . . . 60
Expected test failure . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Extending aclocal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Extending list of installation directories . . . . . . . . . 3
Extension, executable . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Extra files distributed with Automake . . . . . . . . . . 10
EXTRA , prepending . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
EXTRA prog SOURCES, defined . . . . . . . . . . . . . . 26
EXTRA PROGRAMS, defined . . . . . . . . . . . . . . 3, 27

F
false Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Files distributed with Automake . . . . . . . . . . . . . . . 10
First line of Makefile.am . . . . . . . . . . . . . . . . . . . . . . . . 2
FLIBS, defined . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
foreign strictness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Fortran 77 support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Fortran 77, mixing with C and C++ . . . . . . . . . . . . 41
Fortran 77, Preprocessing . . . . . . . . . . . . . . . . . . . . . . 40

G
generated files and CVS . . . . . . . . . . . . . . . . . . . . . . . . 71
generated files, distributed . . . . . . . . . . . . . . . . . . . . . 70
Gettext support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
gnits strictness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
gnu strictness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
GNU Gettext support . . . . . . . . . . . . . . . . . . . . . . . . . . 51
GNU Hello, configure.in . . . . . . . . . . . . . . . . . . . . . . . . . 6
GNU Hello, example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
GNU make extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
GNU Makefile standards . . . . . . . . . . . . . . . . . . . . . . . . 1



General Index 82

H
Header files in SOURCES . . . . . . . . . . . . . . . . . . . . . 25
HEADERS primary, defined . . . . . . . . . . . . . . . . . . . . 47
HEADERS, installation directories . . . . . . . . . . . . . 47
Hello example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Hello, configure.in . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
hook targets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
HP-UX 10, lex problems . . . . . . . . . . . . . . . . . . . . . . . 19
HTML support, example . . . . . . . . . . . . . . . . . . . . . . . . 3

I
id . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
if . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
include . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
INCLUDES, example usage . . . . . . . . . . . . . . . . . . . . . 8
Including Makefile fragment . . . . . . . . . . . . . . . . . . . . 65
info . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62, 68
info-local . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
install . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56, 68
Install hook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Install, two parts of . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
install-data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
install-data-hook . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
install-data-local . . . . . . . . . . . . . . . . . . . . . . . 56, 68
install-exec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56, 68
install-exec-hook . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
install-exec-local . . . . . . . . . . . . . . . . . . . . . . . 56, 68
install-info . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54, 62
install-info target . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
install-man . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55, 62
install-man target . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
install-strip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Installation directories, extending list . . . . . . . . . . . . 3
Installation support . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
installcheck . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
installcheck-local . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
installdirs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57, 68
installdirs-local . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Installing headers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Installing scripts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
installing versioned binaries . . . . . . . . . . . . . . . . . . . . 69
Invoking aclocal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Invoking Automake . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

J
Java support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
JAVA primary, defined . . . . . . . . . . . . . . . . . . . . . . . . . 51
JAVA restrictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

L
lex problems with HP-UX 10 . . . . . . . . . . . . . . . . . . . 19
lex, multiple lexers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
LIBADD primary, defined . . . . . . . . . . . . . . . . . . . . . . 28
libltdl, introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
LIBOBJS and ansi2knr . . . . . . . . . . . . . . . . . . . . . . . . . 45
LIBOBJS, special handling . . . . . . . . . . . . . . . . . . . . . . 36
LIBRARIES primary, defined . . . . . . . . . . . . . . . . . . 28
libtool convenience libraries . . . . . . . . . . . . . . . . . . . . 30
libtool libraries, conditional . . . . . . . . . . . . . . . . . . . . 29
libtool library, definition . . . . . . . . . . . . . . . . . . . . . . . 28
libtool modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
libtool, introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
libtoolize and autoreconf . . . . . . . . . . . . . . . . . . . . . . . 32
libtoolize, no longer run by Automake . . . . . . . . . . 32
Linking Fortran 77 with C and C++ . . . . . . . . . . . . 41
LISP primary, defined . . . . . . . . . . . . . . . . . . . . . . . . . . 51
LN S example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
local targets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
LTLIBOBJS and ansi2knr . . . . . . . . . . . . . . . . . . . . . . . 45
LTLIBOBJS, special handling . . . . . . . . . . . . . . . . . . . . 32
LTLIBRARIES primary, defined . . . . . . . . . . . . . . . 29
ltmain.sh not found . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

M
Macro search path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Macros Automake recognizes . . . . . . . . . . . . . . . . . . . 12
make check . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
make clean support . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
make dist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
make distcheck . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
make distcleancheck . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
make distuninstallcheck . . . . . . . . . . . . . . . . . . . . . . . . 59
make install support . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
make installcheck . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Make targets, overriding . . . . . . . . . . . . . . . . . . . . . . . . 2
Makefile fragment, including . . . . . . . . . . . . . . . . . . . 65
Makefile.am, first line . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
MANS primary, defined . . . . . . . . . . . . . . . . . . . . . . . . 55
mdate-sh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
missing, purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Mixed language example . . . . . . . . . . . . . . . . . . . . . . . 42
Mixing Fortran 77 with C and C++ . . . . . . . . . . . . . 41
Mixing Fortran 77 with C and/or C++ . . . . . . . . . . 41
modules, libtool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
mostlyclean . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
mostlyclean-local . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Multiple configure.in files . . . . . . . . . . . . . . . . . . . . . . . . 9
Multiple lex lexers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Multiple yacc parsers . . . . . . . . . . . . . . . . . . . . . . . . . . 38



General Index 83

N
no-dependencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
no-installinfo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
no-installman . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
no-texinfo.tex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
nobase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
nobase and dist or nodist . . . . . . . . . . . . . . . . . . . 24
nodist and nobase . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
noinst primary prefix, definition . . . . . . . . . . . . . . . . . 4
noinstall-info target . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
noinstall-man target . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Non-GNU packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Non-standard targets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

O
Objects in subdirectory . . . . . . . . . . . . . . . . . . . . . . . . 33
Option, ansi2knr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Option, check-news . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Option, cygnus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Option, dejagnu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Option, dist-bzip2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Option, dist-shar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Option, dist-tarZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Option, dist-zip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Option, foreign . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Option, gnits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Option, gnu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Option, no-define . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Option, no-dependencies . . . . . . . . . . . . . . . . . . . . . . . 62
Option, no-exeext . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Option, no-installinfo . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Option, no-installman . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Option, no-texinfo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Option, nostdinc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Option, readme-alpha . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Option, version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Option, warnings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Options, aclocal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Options, Automake . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Options, std-options . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Overriding make targets . . . . . . . . . . . . . . . . . . . . . . . . . 2
Overriding make variables . . . . . . . . . . . . . . . . . . . . . . . 2

P
Path stripping, avoiding . . . . . . . . . . . . . . . . . . . . . . . . 24
pdf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
pdf-local . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
per-target compilation flags, defined . . . . . . . . . . . . 35
pkgdatadir, defined . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
pkgincludedir, defined . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
pkglibdir, defined . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
POSIX termios headers . . . . . . . . . . . . . . . . . . . . . . . . 19
Preprocessing Fortran 77 . . . . . . . . . . . . . . . . . . . . . . . 40
Primary variable, DATA . . . . . . . . . . . . . . . . . . . . . . . 47
Primary variable, defined . . . . . . . . . . . . . . . . . . . . . . . . 3
Primary variable, HEADERS . . . . . . . . . . . . . . . . . . 47

Primary variable, JAVA . . . . . . . . . . . . . . . . . . . . . . . . 51
Primary variable, LIBADD . . . . . . . . . . . . . . . . . . . . . 28
Primary variable, LIBRARIES . . . . . . . . . . . . . . . . . 28
Primary variable, LISP . . . . . . . . . . . . . . . . . . . . . . . . 51
Primary variable, LTLIBRARIES . . . . . . . . . . . . . . 29
Primary variable, MANS . . . . . . . . . . . . . . . . . . . . . . . 55
Primary variable, PROGRAMS . . . . . . . . . . . . . . . . . 3
Primary variable, PYTHON . . . . . . . . . . . . . . . . . . . . 52
Primary variable, SCRIPTS . . . . . . . . . . . . . . . . . . . . 46
Primary variable, SOURCES . . . . . . . . . . . . . . . . . . . 25
Primary variable, TEXINFOS . . . . . . . . . . . . . . . . . . 53
prog LDADD, defined . . . . . . . . . . . . . . . . . . . . . . . . . 25
Programs, auxiliary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Programs, conditional . . . . . . . . . . . . . . . . . . . . . . . . . . 27
PROGRAMS primary variable . . . . . . . . . . . . . . . . . . 3
PROGRAMS, bindir . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
ps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
ps-local . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
PYTHON primary, defined . . . . . . . . . . . . . . . . . . . . . 52

R
Ratfor programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
README-alpha . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
rebuild rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Recognized macros by Automake . . . . . . . . . . . . . . . 12
Recursive operation of Automake . . . . . . . . . . . . . . . . 2
regex package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Regression test example . . . . . . . . . . . . . . . . . . . . . . . . . 7
Reporting BUGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Requirements of Automake . . . . . . . . . . . . . . . . . . . . . 12
Requirements, Automake . . . . . . . . . . . . . . . . . . . . . . . . 1
Restrictions for JAVA . . . . . . . . . . . . . . . . . . . . . . . . . . 51
rx package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

S
Scanning configure.in . . . . . . . . . . . . . . . . . . . . . . . . . . 12
SCRIPTS primary, defined . . . . . . . . . . . . . . . . . . . . . 46
SCRIPTS, installation directories . . . . . . . . . . . . . . 46
Selecting the linker automatically . . . . . . . . . . . . . . 43
Shared libraries, support for . . . . . . . . . . . . . . . . . . . . 28
site.exp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
SOURCES primary, defined . . . . . . . . . . . . . . . . . . . . 25
Special Automake comment . . . . . . . . . . . . . . . . . . . . . 2
Strictness, command line . . . . . . . . . . . . . . . . . . . . . . . . 9
Strictness, defined . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Strictness, foreign . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Strictness, gnits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Strictness, gnu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Subdirectories, building conditionally . . . . . . . . . . . 22
Subdirectory, objects in . . . . . . . . . . . . . . . . . . . . . . . . 33
SUBDIRS and AC_SUBST . . . . . . . . . . . . . . . . . . . . . . . . . 23
SUBDIRS and AM_CONDITIONAL . . . . . . . . . . . . . . . . . . 22
SUBDIRS, conditional . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
SUBDIRS, explained . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
suffix .la, defined . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
suffix .lo, defined . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28



General Index 84

SUFFIXES, adding . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Support for C++ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Support for Fortran 77 . . . . . . . . . . . . . . . . . . . . . . . . . 40

Support for GNU Gettext . . . . . . . . . . . . . . . . . . . . . . 51

Support for Java . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

T
tags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

TAGS support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Target, install-info . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Target, install-man . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Target, noinstall-info . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Target, noinstall-man . . . . . . . . . . . . . . . . . . . . . . . . . . 55

termios POSIX headers . . . . . . . . . . . . . . . . . . . . . . . . 19

Test suites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Tests, expected failure . . . . . . . . . . . . . . . . . . . . . . . . . 60

Texinfo file handling example . . . . . . . . . . . . . . . . . . . . 7

Texinfo flag, EDITION . . . . . . . . . . . . . . . . . . . . . . . . . 53

Texinfo flag, UPDATED . . . . . . . . . . . . . . . . . . . . . . . 53

Texinfo flag, UPDATED-MONTH . . . . . . . . . . . . . . 53

Texinfo flag, VERSION . . . . . . . . . . . . . . . . . . . . . . . . 53

texinfo.tex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

TEXINFOS primary, defined . . . . . . . . . . . . . . . . . . . 53

third-party files and CVS . . . . . . . . . . . . . . . . . . . . . . 72

timestamps and CVS . . . . . . . . . . . . . . . . . . . . . . . . . . 70

true Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

U
underquoted AC DEFUN . . . . . . . . . . . . . . . . . . . . . . 20
Uniform naming scheme . . . . . . . . . . . . . . . . . . . . . . . . . 3
uninstall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57, 68
uninstall-hook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
uninstall-local . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
UPDATED Texinfo flag . . . . . . . . . . . . . . . . . . . . . . . . 53
UPDATED-MONTH Texinfo flag . . . . . . . . . . . . . . 53
user variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

V
Variables, overriding . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
variables, reserved for the user . . . . . . . . . . . . . . . . . . 4
VERSION Texinfo flag . . . . . . . . . . . . . . . . . . . . . . . . . 53
versioned binaries, installing . . . . . . . . . . . . . . . . . . . 69

W
wildcards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Windows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Y
yacc, multiple parsers . . . . . . . . . . . . . . . . . . . . . . . . . . 38
ylwrap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Z
zardoz example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6



i

Table of Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 General ideas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2.1 General Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2.2 Strictness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.3 The Uniform Naming Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.4 How derived variables are named . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.5 Variables reserved for the user . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.6 Programs automake might require . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Some example packages . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.1 A simple example, start to finish . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.2 A classic program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.3 Building true and false . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4 Creating a Makefile.in . . . . . . . . . . . . . . . . . . . . . . . . . . 9

5 Scanning configure.in . . . . . . . . . . . . . . . . . . . . . . . . . 12
5.1 Configuration requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
5.2 Other things Automake recognizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
5.3 Auto-generating aclocal.m4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.4 aclocal options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.5 Macro search path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

5.5.1 Modifying the macro search path: --acdir . . . . . . . . . . . . . . . . 16
5.5.2 Modifying the macro search path: -I dir . . . . . . . . . . . . . . . . . 16
5.5.3 Modifying the macro search path: dirlist . . . . . . . . . . . . . . . . 16

5.6 Autoconf macros supplied with Automake . . . . . . . . . . . . . . . . . . . . . 17
5.6.1 Public macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.6.2 Private macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5.7 Writing your own aclocal macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

6 The top-level Makefile.am . . . . . . . . . . . . . . . . . . . . . . 21
6.1 Recursing subdirectories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
6.2 Conditional subdirectories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

6.2.1 Conditional subdirectories with AM_CONDITIONAL . . . . . . . . . . 22
6.2.2 Conditional subdirectories with AC_SUBST . . . . . . . . . . . . . . . . . 23
6.2.3 How DIST_SUBDIRS is used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

7 An Alternative Approach to Subdirectories . . 23



ii

8 Rebuilding Makefiles . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

9 Building Programs and Libraries . . . . . . . . . . . . . 24
9.1 Building a program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

9.1.1 Defining program sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
9.1.2 Linking the program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
9.1.3 Conditional compilation of sources . . . . . . . . . . . . . . . . . . . . . . . . 26

9.1.3.1 Conditional compilation using _LDADD substitutions . . 26
9.1.3.2 Conditional compilation using Automake conditionals . . 26

9.1.4 Conditional compilation of programs . . . . . . . . . . . . . . . . . . . . . . 27
9.1.4.1 Conditional programs using configure substitutions . . 27
9.1.4.2 Conditional programs using Automake conditionals . . . 27

9.2 Building a library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
9.3 Building a Shared Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

9.3.1 The Libtool Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
9.3.2 Building Libtool Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
9.3.3 Building Libtool Libraries Conditionally . . . . . . . . . . . . . . . . . . 29
9.3.4 Libtool Libraries with Conditional Sources . . . . . . . . . . . . . . . . 30
9.3.5 Libtool Convenience Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
9.3.6 Libtool Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
9.3.7 LIBADD and LDFLAGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
9.3.8 LTLIBOBJS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
9.3.9 Common Issues Related to Libtool’s Use . . . . . . . . . . . . . . . . . . 32

9.3.9.1 required file ‘./ltmain.sh’ not found . . . . . . . . . . . 32
9.3.9.2 Objects created with both libtool and without . . . 32

9.4 Program and Library Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
9.5 Special handling for LIBOBJS and ALLOCA . . . . . . . . . . . . . . . . . . 36
9.6 Variables used when building a program . . . . . . . . . . . . . . . . . . . . . . . 36
9.7 Yacc and Lex support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
9.8 C++ Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
9.9 Assembly Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
9.10 Fortran 77 Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

9.10.1 Preprocessing Fortran 77 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
9.10.2 Compiling Fortran 77 Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
9.10.3 Mixing Fortran 77 With C and C++ . . . . . . . . . . . . . . . . . . . . . 41

9.10.3.1 How the Linker is Chosen . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
9.10.4 Fortran 77 and Autoconf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

9.11 Java Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
9.12 Support for Other Languages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
9.13 Automatic de-ANSI-fication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
9.14 Automatic dependency tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
9.15 Support for executable extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45



iii

10 Other Derived Objects . . . . . . . . . . . . . . . . . . . . . . . 46
10.1 Executable Scripts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
10.2 Header files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
10.3 Architecture-independent data files . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
10.4 Built sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

10.4.1 Built sources example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
First try . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Using BUILT_SOURCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Recording dependencies manually . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Build bindir.h from configure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Build bindir.c, not bindir.h. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Which is best? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

11 Other GNU Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
11.1 Emacs Lisp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
11.2 Gettext . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
11.3 Libtool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
11.4 Java . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
11.5 Python . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

12 Building documentation . . . . . . . . . . . . . . . . . . . . . . 53
12.1 Texinfo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
12.2 Man pages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

13 What Gets Installed . . . . . . . . . . . . . . . . . . . . . . . . . . 55
13.1 Basics of installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
13.2 The two parts of install . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
13.3 Extending installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
13.4 Staged installs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
13.5 Rules for the user . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

14 What Gets Cleaned . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

15 What Goes in a Distribution . . . . . . . . . . . . . . . . 57
15.1 Basics of distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
15.2 Fine-grained distribution control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
15.3 The dist hook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
15.4 Checking the distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
15.5 The types of distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

16 Support for test suites . . . . . . . . . . . . . . . . . . . . . . . . 60
16.1 Simple Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
16.2 DejaGnu Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
16.3 Install Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61



iv

17 Changing Automake’s Behavior . . . . . . . . . . . . . 61

18 Miscellaneous Rules . . . . . . . . . . . . . . . . . . . . . . . . . . 64
18.1 Interfacing to etags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
18.2 Handling new file extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
18.3 Support for Multilibs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

19 Include . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

20 Conditionals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

21 The effect of --gnu and --gnits . . . . . . . . . . . . . . 67

22 The effect of --cygnus . . . . . . . . . . . . . . . . . . . . . . . . 67

23 When Automake Isn’t Enough . . . . . . . . . . . . . . . 68

24 Distributing Makefile.ins . . . . . . . . . . . . . . . . . . . . 69

25 Automake API versioning . . . . . . . . . . . . . . . . . . . . 69

26 Frequently Asked Questions about Automake . . 70
26.1 CVS and generated files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

26.1.1 Background: distributed generated files . . . . . . . . . . . . . . . . . . 70
26.1.2 Background: CVS and timestamps . . . . . . . . . . . . . . . . . . . . . . . 70
26.1.3 Living with CVS in Autoconfiscated projects . . . . . . . . . . . . . 71
26.1.4 Third-party files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

26.2 missing and AM_MAINTAINER_MODE . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
26.2.1 missing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
26.2.2 AM_MAINTAINER_MODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

26.3 Why doesn’t Automake support wildcards? . . . . . . . . . . . . . . . . . . . 73
26.4 Files left in build directory after distclean . . . . . . . . . . . . . . . . . . . . . 74
26.5 Why are object files sometimes renamed? . . . . . . . . . . . . . . . . . . . . . 76

Macro and Variable Index . . . . . . . . . . . . . . . . . . . . . . . . . 77

General Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80


	1 Introduction
	2 General ideas
	General Operation
	Strictness
	The Uniform Naming Scheme
	How derived variables are named
	Variables reserved for the user
	Programs automake might require

	3 Some example packages
	A simple example, start to finish
	A classic program
	Building true and false

	4 Creating a Makefile.in
	5 Scanning configure.in
	Configuration requirements
	Other things Automake recognizes
	Auto-generating aclocal.m4
	aclocal options
	Macro search path
	Modifying the macro search path: --acdir
	Modifying the macro search path: -I dir
	Modifying the macro search path: dirlist

	Autoconf macros supplied with Automake
	Public macros
	Private macros

	Writing your own aclocal macros

	6 The top-level Makefile.am
	Recursing subdirectories
	Conditional subdirectories
	Conditional subdirectories with AM_CONDITIONAL
	Conditional subdirectories with AC_SUBST
	How DIST_SUBDIRS is used


	7 An Alternative Approach to Subdirectories
	8 Rebuilding Makefiles
	9 Building Programs and Libraries
	Building a program
	Defining program sources
	Linking the program
	Conditional compilation of sources
	Conditional compilation using _LDADD substitutions
	Conditional compilation using Automake conditionals

	Conditional compilation of programs
	Conditional programs using configure substitutions
	Conditional programs using Automake conditionals


	Building a library
	Building a Shared Library
	The Libtool Concept
	Building Libtool Libraries
	Building Libtool Libraries Conditionally
	Libtool Libraries with Conditional Sources
	Libtool Convenience Libraries
	Libtool Modules
	_LIBADD and _LDFLAGS
	LTLIBOBJS
	Common Issues Related to Libtool's Use
	required file `./ltmain.sh' not found
	Objects created with both libtool and without


	Program and Library Variables
	Special handling for LIBOBJS and ALLOCA
	Variables used when building a program
	Yacc and Lex support
	C++ Support
	Assembly Support
	Fortran 77 Support
	Preprocessing Fortran 77
	Compiling Fortran 77 Files
	Mixing Fortran 77 With C and C++
	How the Linker is Chosen

	Fortran 77 and Autoconf

	Java Support
	Support for Other Languages
	Automatic de-ANSI-fication
	Automatic dependency tracking
	Support for executable extensions

	10 Other Derived Objects
	Executable Scripts
	Header files
	Architecture-independent data files
	Built sources
	Built sources example
	First try
	Using BUILT_SOURCES
	Recording dependencies manually
	Build bindir.h from configure
	Build bindir.c, not bindir.h.
	Which is best?


	11 Other GNU Tools
	Emacs Lisp
	Gettext
	Libtool
	Java
	Python

	12 Building documentation
	Texinfo
	Man pages

	13 What Gets Installed
	Basics of installation
	The two parts of install
	Extending installation
	Staged installs
	Rules for the user

	14 What Gets Cleaned
	15 What Goes in a Distribution
	Basics of distribution
	Fine-grained distribution control
	The dist hook
	Checking the distribution
	The types of distributions

	16 Support for test suites
	Simple Tests
	DejaGnu Tests
	Install Tests

	17 Changing Automake's Behavior
	18 Miscellaneous Rules
	Interfacing to etags
	Handling new file extensions
	Support for Multilibs

	19 Include
	20 Conditionals
	21 The effect of --gnu and --gnits
	22 The effect of --cygnus
	23 When Automake Isn't Enough
	24 Distributing Makefile.ins
	25 Automake API versioning
	26 Frequently Asked Questions about Automake
	CVS and generated files
	Background: distributed generated files
	Background: CVS and timestamps
	Living with CVS in Autoconfiscated projects
	Third-party files

	missing and AM_MAINTAINER_MODE
	missing
	AM_MAINTAINER_MODE

	Why doesn't Automake support wildcards?
	Files left in build directory after distclean
	Why are object files sometimes renamed?

	Macro and Variable Index
	General Index

