
Guile-GNOME: GConf
version 2.16.2, updated 9 December 2011

Havoc Pennington

This manual is for (gnome gconf) (version 2.16.2, updated 9 December 2011)

Copyright 1999-2007 Havoc Pennington

Permission is granted to copy, distribute and/or modify this document under
the terms of the GNU General Public License, Version 2 or any later version
published by the Free Software Foundation.

i

Short Contents

1 Overview . 1

2 GConfClient . 2

3 GConf Core Interfaces . 9

4 GConfChangeSet . 11

5 GConfEngine . 12
6 GError . 13

7 GConfSchema . 14

8 GConfValue, GConfEntry, GConfMetaInfo 17

9 Undocumented . 18

Type Index . 19

Function Index . 20

Chapter 1: Overview 1

1 Overview

(gnome gconf) wraps the GNOME configuration library for Guile. It is a part of Guile-
GNOME.

1.1 Example code

(define *gconf-client* (gconf-client-get-default))

(define *gconf-dir* "/apps/my-app")

(gconf-client-add-dir gconf-client gconf-dir ’preload-onelevel)

(define (gconf-key s)

(string-append gconf-dir "/" (symbol->string s)))

(define (state-ref key default)

(catch #t

(lambda ()

(gconf-client-get *gconf-client* (gconf-key key)))

(lambda args default)))

(define (state-set! key val)

(gconf-client-set *gconf-client* (gconf-key key) val))

(define (value-changed client cnxn-id key val)

(format #t "~a: ~a\n" key val))

(gconf-client-add-notify *gconf-client* "/apps/my-app"

value-changed)

Note that the value-changed procedure will only be called if you have a main loop
running.

See the documentation for (gnome gobject) for more information on Guile-GNOME.

Chapter 2: GConfClient 2

2 GConfClient

convenience wrapper

2.1 Overview

<g-conf-client> adds the following features to plain GConf:

A client-side cache for a specified list of directories you’re interested in. You can
"preload" entire directories into the cache, speeding things up even more.

Some automatic error handling, if you request it.

Signals when a value changes or an error occurs.

If you use <g-conf-client>, you should not use the underlying <g-conf-engine> di-
rectly, or you’ll break things. This is why there’s no gconf-client-get-engine function;
in fact, if you create the <g-conf-client> with gconf-client-get-default, there is no
(legitimate) way to obtain a pointer to the underlying <g-conf-engine>. If you create a
<g-conf-client> from an existing engine, you’ll have to be disciplined enough to avoid
using that engine directly.

This is all a white lie; some direct <g-conf-engine> operations are safe. But it’s
complicated to know which, and if an operation isn’t safe the resulting bugs will mangle
the cache and cause weird bugs at an indeterminate time in the future; you don’t want to
risk this situation.

A <g-conf-client> has a list of directories that it "watches." These directories are
optionally pre-loaded into the cache, and monitored in order to emit the <value-changed>
signal. The <g-conf-client> can also be used to access directories not in the list, but
those directories won’t be preloaded and the "value changed" signal won’t be emitted for
them.

There are two error-related signals in <g-conf-client>. The first is plain "error"; it’s
emitted anytime an error occurs. The second is "unreturned error"; this signal is emitted if
you pass as the <g-error>** to any <g-conf-client> function. The idea is that you can
have a global error handler attached to the "unreturned error" signal; if you want to use
this handler, you don’t need to use the normal GConf error handling mechanism. However,
if you ever need to handle errors for a specific function call, you can override the global
handler by passing a non-<g-error>** to the function. If you want an error handler that’s
always invoked, use the "error" signal.

The "value changed" signal is emitted whenever the server notifies your client program
that a value has changed in the GConf database. There’s one problem with this signal: the
signal handler has to use strcmp to determine whether the changed value is the one it was
interested in. If you are interested in lots of values, then every time a value changes you’ll be
making lots of calls to strcmp and getting O(n) performance. gconf-client-notify-add
is a superior interface in most cases for this reason. Note that calling gconf-client-set

and its relatives will cause "value changed" to be emitted, but "value changed" is also
emitted if another process changes the value.

Most of the <g-conf-client> interface mirrors the functions you’d use to manipulate a
<g-conf-engine> (gconf-engine-get and gconf-client-get, for example). These should

Chapter 2: GConfClient 3

all work just like the <g-conf-engine> versions, except that they use the cache from <g-

conf-client> and emit the <g-conf-client> signals.

As always with GConf, applications based on <g-conf-client> should use a model-
controller-view architecture. Typically, this means that areas of your application affected
by a setting will monitor the relevant key and update themselves when necessary. The
preferences dialog will simply change keys, allowing GConf to notify the rest of the appli-
cation that changes have occurred. Here the application proper is the "view," GConf is the
"model", and the preferences dialog is the "controller." In no case should you do this: This
breaks if a setting is changed outside your application—or even from a different
part of your application. The correct way (in pseudo-code) is: See the example programs
that come with GConf for more details.

gconf_client_set(client, key, value);

application_update_to_reflect_setting();

/* At application startup */

gconf_client_notify_add(client, key, application_update_to_reflect_setting, data);

/* From preferences dialog */

gconf_client_set(client, key, value);

2.2 Usage

[Function]gconf-client-get-default ⇒ (ret <g-conf-client>)
Creates a new <g-conf-client> using the default <g-conf-engine>. Normally this
is the engine you want. If someone else is already using the default <g-conf-client>,
this function returns the same one they’re using, but with the reference count incre-
mented. So you have to unref either way.

It’s important to call g-type-init before using this GObject, to initialize the type
system.

ret a new <g-conf-client>. g-object-unref when you’re done.

[Function]gconf-client-add-dir (self <g-conf-client>) (dir mchars)
(preload <g-conf-client-preload-type>)

Add a directory to the list of directories the <g-conf-client> will watch. Any
changes to keys below this directory will cause the "value changed" signal to be
emitted. When you add the directory, you can request that the <g-conf-client>

preload its contents; see <g-conf-client-preload-type> for details.

Added directories may not overlap. That is, if you add "/foo", you may not add
"/foo/bar". However you can add "/foo" and "/bar". You can also add "/foo"
multiple times; if you add a directory multiple times, it will not be removed until you
call gconf-client-remove-dir an equal number of times.

client a <g-conf-client>.

dir directory to add to the list.

Chapter 2: GConfClient 4

preload degree of preload.

err the return location for an allocated <g-error>, or #f to ignore errors.

[Function]gconf-client-remove-dir (self <g-conf-client>) (dir mchars)
Remove a directory from the list created with gconf-client-add-dir. If any notifi-
cations have been added below this directory with gconf-client-notify-add, those
notifications will be disabled until you re-add the removed directory. Note that if
a directory has been added multiple times, you must remove it the same number of
times before the remove takes effect.

client a <g-conf-client>.

dir directory to remove.

err the return location for an allocated <g-error>, or #f to ignore errors.

[Function]gconf-client-notify-add (self <g-conf-client>)
(namespace section mchars) (proc scm) ⇒ (ret unsigned-int)

Request notification of changes to namespace-section. This includes the key
namespace-section itself, and any keys below it (the behavior is identical to
gconf-engine-notify-add, but while gconf-engine-notify-add places a
notification request on the server for every notify function, <g-conf-client>

requests server notification for directories added with gconf-client-add-dir and
keeps the list of <g-conf-client-notify-func> on the client side).

For the notification to happen, namespace-section must be equal to or below one of
the directories added with gconf-client-add-dir. You can still call gconf-client-
notify-add for other directories, but no notification will be received until you add a
directory above or equal to namespace-section. One implication of this is that gconf-
client-remove-dir temporarily disables notifications that were below the removed
directory.

The function returns a connection ID you can use to call gconf-client-notify-
remove.

See the description of <g-conf-client-notify-func> for details on how the notifi-
cation function is called.

client a <g-conf-client>.

namespace-section
where to listen for changes.

func function to call when changes occur.

user-data user data to pass to func.

destroy-notify
function to call on user-data when the notify is removed or the <g-conf-
client> is destroyed, or #f for none.

err the return location for an allocated <g-error>, or #f to ignore errors.

ret a connection ID for removing the notification.

Chapter 2: GConfClient 5

[Function]gconf-client-notify-remove (self <g-conf-client>)
(cnxn unsigned-int)

Remove a notification using the ID returned from gconf-client-notify-add. In-
vokes the destroy notify function on the notification’s user data, if appropriate.

client a <g-conf-client>.

cnxn connection ID.

[Function]gconf-client-notify (self <g-conf-client>) (key mchars)
Emits the "value-changed" signal and notifies listeners as if key had been changed

client a <g-conf-client>.

key the key that has changed.

Since 2.4.

[Function]gconf-client-set-error-handling (self <g-conf-client>)
(mode <g-conf-client-error-handling-mode>)

Controls the default error handling for <g-conf-client>. See <g-conf-client-

error-handling-mode> and <g-conf-client-parent-window-func> for details on
this.

client a <g-conf-client>.

mode error handling mode.

[Function]gconf-client-clear-cache (self <g-conf-client>)
Dumps everything out of the <g-conf-client> client-side cache. If you know you’re
done using the <g-conf-client> for a while, you can call this function to save some
memory.

client a <g-conf-client>.

[Function]gconf-client-preload (self <g-conf-client>) (dirname mchars)
(type <g-conf-client-preload-type>)

Preloads a directory. Normally you do this when you call gconf-client-add-dir,
but if you’ve called gconf-client-clear-cache there may be a reason to do it again.

client a <g-conf-client>.

dirname directory to preload.

type degree of preload.

err the return location for an allocated <g-error>, or #f to ignore errors.

[Function]gconf-client-set (self <g-conf-client>) (key mchars)
(val <g-conf-value>)

Sets the value of a configuration key. Just like gconf-engine-set, but uses <g-

conf-client> caching and error-handling features. The val argument will not be
modified.

client a <g-conf-client>.

Chapter 2: GConfClient 6

key key to set.

val new value.

err the return location for an allocated <g-error>, or #f to ignore errors.

[Function]gconf-client-get (self <g-conf-client>) (key mchars)
⇒ (ret <g-conf-value>)

Gets the value of a configuration key. Just like gconf-engine-get, but uses <g-

conf-client> caching and error-handling features.

client a <g-conf-client>.

key key to get.

err the return location for an allocated <g-error>, or #f to ignore errors.

ret newly-allocated <g-conf-value>, or #f if unset and no default exists.

[Function]gconf-client-get-without-default (self <g-conf-client>)
(key mchars) ⇒ (ret <g-conf-value>)

Gets the value of a configuration key. Just like gconf-client-get but doesn’t look
for a default value if the key is unset.

client a <g-conf-client>.

key key to get.

err the return location for an allocated <g-error>, or #f to ignore errors.

ret newly-allocated <g-conf-value>, or #f if unset (even if a default exists).

[Function]gconf-client-unset (self <g-conf-client>) (key mchars)
⇒ (ret bool)

Unsets the value of key ; if key is already unset, has no effect. An error of note is
‘GCONF_OVERRIDDEN’, indicating that the system administrator has "forced" a value
for this key. Just like gconf-engine-unset, but uses <g-conf-client> caching and
error-handling features.

client a <g-conf-client>.

key key to unset.

err the return location for an allocated <g-error>, or #f to ignore errors.

ret #t on success, #f on error.

[Function]gconf-client-recursive-unset (self <g-conf-client>)
(key mchars) (flags unsigned-int) ⇒ (ret bool)

Unsets all keys below key, including key itself. If any unset fails, continues on to
unset as much as it can. The first failure is returned in err. Just like gconf-engine-
recursive-unset, but uses <g-conf-client> caching and error-handling features.

client a <g-conf-client>.

key a key or directory name to be unset.

flags change how the unset is done.

Chapter 2: GConfClient 7

err the return location for an allocated <g-error>, or #f to ignore errors.

ret #t on success, #f on error.

Since 2.4.

[Function]gconf-client-all-dirs (self <g-conf-client>) (dir mchars)
⇒ (ret gslist-of)

Lists the subdirectories in dir. The returned list contains allocated strings. Each
string is the absolute path of a subdirectory. You should g-free each string in the
list, then g-slist-free the list itself. Just like gconf-engine-all-dirs, but uses
<g-conf-client> caching and error-handling features.

client a <g-conf-client>.

dir directory to get subdirectories from.

err the return location for an allocated <g-error>, or #f to ignore errors.

ret List of allocated subdirectory names.

[Function]gconf-client-suggest-sync (self <g-conf-client>)
Suggests to gconfd that you’ve just finished a block of changes, and it would be an
optimal time to sync to permanent storage. This is only a suggestion; and gconfd will
eventually sync even if you don’t call gconf-engine-suggest-sync. This function is
just a "hint" provided to gconfd to maximize efficiency and minimize data loss. Just
like gconf-engine-suggest-sync.

client a <g-conf-client>.

err the return location for an allocated <g-error>, or #f to ignore errors.

[Function]gconf-client-dir-exists (self <g-conf-client>) (dir mchars)
⇒ (ret bool)

Queries whether the directory dir exists in the GConf database. Returns #t or #f.
Just like gconf-engine-dir-exists, but uses <g-conf-client> caching and error-
handling features.

client a <g-conf-client>.

dir directory to check for

err the return location for an allocated <g-error>, or #f to ignore errors.

ret #t or #f.

[Function]gconf-client-key-is-writable (self <g-conf-client>)
(key mchars) ⇒ (ret bool)

Checks whether the key is writable.

client a <g-conf-client>.

key the value to be changed.

err the return location for an allocated <g-error>, or #f to ignore errors.

ret #t if the key is writable, #f if the key is read only.

Chapter 2: GConfClient 8

[Function]gconf-client-value-changed (self <g-conf-client>) (key mchars)
(value <g-conf-value>)

Emits the "value changed" signal. Rarely useful.

client a <g-conf-client>.

key key to pass to signal handlers.

value value of key to pass to signal handlers.

Chapter 3: GConf Core Interfaces 9

3 GConf Core Interfaces

Basic functions to initialize GConf and get/set values

3.1 Overview

These functions initialize GConf, and communicate with the server via a <g-conf-engine>

object. You can install a notification request on the server, get values, set values, list
directories, and associate schema names with keys.

Most of this interface is replicated in the <gobject> wrapper (<g-conf-client> object);
an alternative to the value-setting functions is the <g-conf-change-set> interface.

3.2 Usage

[Function]gconf-valid-key (key mchars) ⇒ (ret bool) (why invalid mchars)
Asks whether a key is syntactically correct, that is, it ensures that the key consists
of slash-separated strings and contains only legal characters. Normally you shouldn’t
need to call this function; the GConf functions all check this for you and return an
error if the key is invalid. However, it may be useful to validate input to an entry field
or the like. If you pass a non-#f address as the why-invalid argument, an allocated
string is returned explaining why the key is invalid, if it is. If the key is valid the
why-invalid argument is unused.

key key to check.

why-invalid
return location for an explanation of the problem, if any. g-free the
returned string.

ret #t if the key is valid, or #f if not.

[Function]gconf-key-is-below (above mchars) (below mchars) ⇒ (ret bool)
Asks whether the key below would be found below the key above, were they both to
exist in the database. For example, /foo is always found below / and above /foo/bar.
This probably isn’t useful but GConf uses it internally so here it is if you need it.

above the key on the "left hand side" of the predicate.

below the key on the "right hand side."

ret #t or #f.

[Function]gconf-concat-dir-and-key (dir mchars) (key mchars)
⇒ (ret mchars)

Concatenates the dir and key passed removing the unnecessary ’/’ characters and
returns the new string.

dir the directory.

key the key.

ret the newly concatenated string.

Chapter 3: GConf Core Interfaces 10

[Function]gconf-unique-key ⇒ (ret mchars)
Generates a new and unique key using serial number, process id, current time and a
random number generated.

ret a newly created key, a <gchar> value.

[Function]gconf-escape-key (arbitrary text mchars) (len int) ⇒ (ret mchars)
Escape arbitrary-text such that it’s a valid key element (i.e. one part of the key path).
The escaped key won’t pass gconf-valid-key because it isn’t a whole key (i.e. it
doesn’t have a preceding slash), but prepending a slash to the escaped text should
always result in a valid key.

arbitrary-text
some text in any encoding or format

len length of arbitrary-text in bytes, or -1 if arbitrary-text is nul-terminated

ret a nul-terminated valid GConf key

[Function]gconf-unescape-key (escaped key mchars) (len int) ⇒ (ret mchars)
Converts a string escaped with gconf-escape-key back into its original form.

escaped-key
a key created with gconf-escape-key

len length of escaped-key in bytes, or -1 if escaped-key is nul-terminated

ret the original string that was escaped to create escaped-key

Chapter 4: GConfChangeSet 11

4 GConfChangeSet

a set of configuration changes to be made.

4.1 Overview

a <g-conf-change-set> allows you to collect a set of changes to configuration keys
(set/unset operations). You can then commit all the changes at once. This is convenient
for something like a preferences dialog; you can collect all the pending changes in
a <g-conf-change-set>, then when the user clicks "apply" send them all to the
configuration database. The <g-conf-change-set> allows you to avoid sending every
preferences setting when "apply" is clicked; you only have to send the settings the user
changed.

In the future, GConf may also have optimizations so that changing a group of values
with <g-conf-change-set> is faster than calling gconf-engine-set for each value. In the
future, <g-conf-change-set> may also represent an atomic transaction, where all or none
of the values are set; however, for now the operation is not atomic.

4.2 Usage

Chapter 5: GConfEngine 12

5 GConfEngine

a GConf "database"

5.1 Overview

A <g-conf-engine> represents a connection to the GConf database. The default <g-

conf-engine>, returned from gconf-engine-get-default, represents the user’s normal
configuration source search path. Configuration-related utilities, such as a configuration
editor tool, might wish to access a particular configuration source directly; they can obtain
a non-default <g-conf-engine> with gconf-engine-get-for-address.

Once you have a <g-conf-engine>, you can query and manipulate configuration values.

5.2 Usage

Chapter 6: GError 13

6 GError

error reporting.

6.1 Overview

The <g-error> object is used to report errors that occur in GConf library routines. All
functions that report errors work the same way:

The last argument to the function is a <g-error>**, a pointer to a location where a
<g-error>* can be placed.

This last argument may be , in which case no error will be returned.

If non-, the argument should be the address of a <g-error>* variable, which should be
initialized to .

If an error occurs, a <g-error> will be allocated and placed in the return location; the
caller must free the <g-error> with g-error-free. If no error occurs, the return location
will be left untouched. That is, the test ‘error != NULL’ should always be a reliable indicator
of whether the operation failed.

It’s also common that the return value of a function indicates whether or not an error
occurred. Typically, is returned on success. In some cases, a return value indicates failure.
Either way, if the return value indicates failure and you passed a non- value for the last
argument to the function, a <g-error> will be returned. If the return value indicates
success, then a <g-error> will never be returned. These relationships are guaranteed; that
is, you can reliably use the return value to decide whether a <g-error> was placed in the
return location. If a function does not indicate success/failure by return value, you must
check whether the <g-error> is to detect errors.

Here’s a short error handling example:

GError* err = NULL;

if (!gconf_init(&err))

{

fprintf(stderr, _("Failed to init GConf: %s\n"), err->message);

g_error_free(err);

err = NULL;

}

6.2 Usage

Chapter 7: GConfSchema 14

7 GConfSchema

A describes a

7.1 Overview

A "schema" describes a key-value pair in a GConf database. It may include information
such as default value and value type, as well as documentation describing the pair, the name
of the application that created the pair, etc.

A <g-conf-schema> duplicates some of the information about the value it describes,
such as type information. In these cases, the type information provided describes what the
type of the value should be, not what the type actually is.

7.2 Usage

[Class]<g-conf-schema>
Derives from <gboxed>.

This class defines no direct slots.

[Function]gconf-schema-new ⇒ (ret <g-conf-schema>)
Creates a new <g-conf-schema>.

ret newly allocated <g-conf-schema>

[Function]gconf-schema-get-locale (self <g-conf-schema>) ⇒ (ret mchars)
Returns the locale for a <g-conf-schema>. The returned string is not a copy, so
don’t try to free it. It is "owned" by the <g-conf-schema> and will be destroyed
when the <g-conf-schema> is destroyed.

schema a <g-conf-schema>

ret the locale

[Function]gconf-schema-get-short-desc (self <g-conf-schema>)
⇒ (ret mchars)

Returns the short description for a <g-conf-schema>. The returned string is not a
copy, don’t try to free it. It is "owned" by the <g-conf-schema> and will be destroyed
when the <g-conf-schema> is destroyed.

schema a <g-conf-schema>.

ret the short description.

[Function]gconf-schema-get-long-desc (self <g-conf-schema>)
⇒ (ret mchars)

Returns the long description for a <g-conf-schema>. The returned string is not a
copy, don’t try to free it. It is "owned" by the <g-conf-schema> and will be destroyed
when the <g-conf-schema> is destroyed.

schema a <g-conf-schema>

ret the long description.

Chapter 7: GConfSchema 15

[Function]gconf-schema-get-owner (self <g-conf-schema>) ⇒ (ret mchars)
Returns the owner of a <g-conf-schema>. The returned string is not a copy, don’t
try to free it. It is "owned" by the <g-conf-schema> and will be destroyed when the
<g-conf-schema> is destroyed.

schema a <g-conf-schema>.

ret the owner.

[Function]gconf-schema-get-default-value (self <g-conf-schema>)
⇒ (ret <g-conf-value>)

Returns the default value of the entry that is described by a <g-conf-schema>.

schema a <g-conf-schema>.

ret the default value of the entry.

[Function]gconf-schema-get-car-type (self <g-conf-schema>)
⇒ (ret <g-conf-value-type>)

Returns the default type of the first member of the pair in the entry (which should
be of type ‘GCONF_VALUE_PAIR’) described by schema.

schema a <g-conf-schema>.

ret the type of the first member of the pair element of the entry.

[Function]gconf-schema-get-cdr-type (self <g-conf-schema>)
⇒ (ret <g-conf-value-type>)

Returns the default type of the second member of the pair in the entry (which should
be of type ‘GCONF_VALUE_PAIR’) described by schema.

schema a <g-conf-schema>.

ret the type of the second member of the pair element of the entry.

[Function]gconf-schema-get-list-type (self <g-conf-schema>)
⇒ (ret <g-conf-value-type>)

Returns the default type of the list elements of the entry (which should be of default
type ‘GCONF_VALUE_LIST’) described by schema.

schema

ret

[Function]gconf-schema-set-type (self <g-conf-schema>)
(type <g-conf-value-type>)

Sets the <g-conf-value-type> of the <g-conf-schema> to type.

sc a <g-conf-schema>.

type the type.

[Function]gconf-schema-set-locale (self <g-conf-schema>) (locale mchars)
Sets the locale for a <g-conf-schema> to locale. locale is copied.

sc a <g-conf-schema>.

locale the locale.

Chapter 7: GConfSchema 16

[Function]gconf-schema-set-short-desc (self <g-conf-schema>)
(desc mchars)

Sets the short description of a <g-conf-schema> to desc. desc is copied.

sc a <g-conf-schema>.

desc the short description.

[Function]gconf-schema-set-long-desc (self <g-conf-schema>) (desc mchars)
Sets the long description of a <g-conf-schema> to desc. desc is copied.

sc a <g-conf-schema>.

desc the long description.

[Function]gconf-schema-set-owner (self <g-conf-schema>) (owner mchars)
Sets the "owner" of the <g-conf-schema>, where the owner is the name of the ap-
plication that created the entry.

sc a <g-conf-schema>.

owner the name of the creating application.

[Function]gconf-schema-set-default-value (self <g-conf-schema>)
(val <g-conf-value>)

Sets the default value for the entry described by the <g-conf-schema>. The <g-conf-
value> is copied. Alternatively, use gconf-schema-set-default-value-nocopy.

sc a <g-conf-schema>.

val the default value.

[Function]gconf-schema-set-car-type (self <g-conf-schema>)
(type <g-conf-value-type>)

Sets the <g-conf-value-type> of the first member (car) of the entry (which should
be of type ‘GCONF_VALUE_PAIR’) described by <g-conf-schema> to type.

sc a <g-conf-schema>.

type the type.

[Function]gconf-schema-set-cdr-type (self <g-conf-schema>)
(type <g-conf-value-type>)

Sets the <g-conf-value-type> of the second member (cdr) of the entry (which should
be of type ‘GCONF_VALUE_PAIR’) described by <g-conf-schema> to type.

sc a <g-conf-schema>.

type the type.

[Function]gconf-schema-set-list-type (self <g-conf-schema>)
(type <g-conf-value-type>)

Sets the <g-conf-value-type> of the list elements of the entry (which should be of
type ‘GCONF_VALUE_LIST’) described by <g-conf-schema> to type.

sc a <g-conf-schema>.

type the type.

Chapter 8: GConfValue, GConfEntry, GConfMetaInfo 17

8 GConfValue, GConfEntry, GConfMetaInfo

A stores a dynamically-typed value. A stores a key-value pair. A stores metainformation
about a key.

8.1 Overview

<g-conf-value> stores one of the value types GConf understands; GConf uses <g-conf-
value> to pass values around because it doesn’t know the type of its values at compile
time.

A <g-conf-entry> pairs a relative key name with a value, for example if the value "10"
is stored at the key "/foo/bar/baz", the <g-conf-entry> will store "baz" and "10".

A <g-conf-meta-info> object holds metainformation about a key, such as its last mod-
ification time and the name of the schema associated with it. You should rarely if ever need
to use <g-conf-meta-info>. (In fact you can’t get the metainfo for a key using the current
API.)

8.2 Usage

[Class]<g-conf-value>
Derives from <gboxed>.

This class defines no direct slots.

Chapter 9: Undocumented 18

9 Undocumented

The following symbols, if any, have not been properly documented.

9.1 (gnome gw gconf)

[Function]gconf-client-get-default-from-schema

[Variable]gconf-schema-set-default-value-nocopy

Type Index 19

Type Index

<g-conf-schema> . 14 <g-conf-value> . 17

Function Index 20

Function Index

gconf-client-add-dir . 3
gconf-client-all-dirs . 7
gconf-client-clear-cache . 5
gconf-client-dir-exists . 7
gconf-client-get . 6
gconf-client-get-default . 3
gconf-client-get-default-from-schema 18
gconf-client-get-without-default 6
gconf-client-key-is-writable 7
gconf-client-notify . 5
gconf-client-notify-add . 4
gconf-client-notify-remove 5
gconf-client-preload . 5
gconf-client-recursive-unset 6
gconf-client-remove-dir . 4
gconf-client-set . 5
gconf-client-set-error-handling 5
gconf-client-suggest-sync 7
gconf-client-unset . 6
gconf-client-value-changed 8
gconf-concat-dir-and-key . 9
gconf-escape-key . 10

gconf-key-is-below . 9
gconf-schema-get-car-type 15
gconf-schema-get-cdr-type 15
gconf-schema-get-default-value 15
gconf-schema-get-list-type 15
gconf-schema-get-locale . 14
gconf-schema-get-long-desc 14
gconf-schema-get-owner . 15
gconf-schema-get-short-desc 14
gconf-schema-new . 14
gconf-schema-set-car-type 16
gconf-schema-set-cdr-type 16
gconf-schema-set-default-value 16
gconf-schema-set-list-type 16
gconf-schema-set-locale . 15
gconf-schema-set-long-desc 16
gconf-schema-set-owner . 16
gconf-schema-set-short-desc 16
gconf-schema-set-type . 15
gconf-unescape-key . 10
gconf-unique-key . 10
gconf-valid-key . 9

