
Event Handling
What is a event ?
An event is a signal that the user or another program has done something you may want to
react upon. There are currently approximately 200 predefined events known by RASCAL
all of which can be divided into 3 groups:

• Wimp events
When the user has done something affecting a program’s windows/icons the
program gets these events.

• Toolbox events
When the user has done something affecting a program’s windows/icons and these
are controlled by the Toolbox then the program gets these events.

• Messages events
Other programs and the operating system can send messages to your program.

What is a handler ?
To receive these events you must tell RASCAL what to do when such an event occurs. This
is what a Handler or Listener is for. It is a procedure associated with an event and after a
handler has been registered with RASCAL its procedure will be called every time its event
occurs.

RASCAL

Handler list:
event ...
event ...
event ...
event ...
event ...
event ...
event ...
event x
event ...
event ...

Handler ...
Handler ...

Handler ...
Handler ...

Handler ...
Handler ...
Handler ...
Handler x
Handler ...
Handler ...

Program The program receives an
event and RASCAL looks in
its handler list for a handler
for that particular event.
There is one and RASCAL
calls the handler’s procedure.

If RASCAL receives an event but can not find a handler for that event,
the event will be ignored.

Creating a handler
A handler consists of an event and a procedure, how exactly the procedure has to look is
defined in an abstract handler.

 procedure Handle (The : in Event_Listener) is abstract;

The handler procedure must be an implementation of the above this procedure. The

’Event_Listener’ is the event type and should be replaced by the type of the event you want
to handle.
All events RASCAL knows of are defined as abstract types and to use these definitions you
must therefore define a non-abstract version of them.

An example:
Let us assume you want to receive the quit message which is send by the operating system
when a user tries to quit your application from the taskmanager. The type defined by
RASCAL is ’AMEL_Message_Quit’ and defined in the ’TaskManager’ package.

with TaskManager; use TaskManager;

package Example is
 type MEL_Message_Quit is
 new AMEL_Message_Quit with null record;

 procedure Handle (The : in MEL_Message_Quit);

end Example;

Defining a event handler

All that is left now is to register this event handler with RASCAL which you should put into
the main program before the multi-tasking is started (Poll procedure call):

 Add_Listener (Main_Task, new MEL_Message_Quit);

As you may have guessed this event is a Message event. Predefined Message event types are
prefixed with ’AMEL’ meaning ’Abstract Message Event Listener’. The prefixes for Wimp
event types and Toolbox event types are ’AWEL’ and ’ATEL’.

R
A

SC
A

L
P

ro
gr

am

Abstract MEL_xxxx Abstract WEL_xxxx

MEL_xxxx TEL_xxxx

Abstract TEL_xxxx Abstract UserEventListener

Toolbox User EventToolbox EventWimp eventMessage event

WEL_xxxx Your own event

Event listener hierarchy

The predefined event types form the top row in the above diagram. The lower row consists
of your implementation of the abstract event types.

If you want to create an toolbox event handler for a user event you have created in ResEd
then you should extend the abstract UserEventListener.

Example:
Let us assume you want to handle the event ’MyOwnEvent’ which has the event nr 12345
and is a Toolbox event you have ’created’ in ResEd.

type TEL_MyOwnEvent_Type is
 new Toolbox_UserEventListener(12345,-1,-1) with null
record;

procedure Handle (The : in TEL_MyOwnEvent_Type);

And to add it to the handler list:

 Add_Listener (Main_Task, new TEL_MyOwnEvent_Type);

