
DDD—A Free Graphical Front-End

for UNIX Debuggers

Andreas Zeller and Dorothea Lütkehaus

@

Informatik-Bericht No. 95-07

7. August 1995

Copyright c

 1995 Institut für Programmiersprachen und Informationssysteme

Abteilung Softwaretechnologie

Technische Universität Braunschweig

Gaußstraße 17

D-38092 Braunschweig/Germany

DDD—A Free Graphical Front-End for UNIX Debuggers

Andreas Zeller and Dorothea Lütkehaus∗

Abteilung Softwaretechnologie

Technische Universität Braunschweig, Germany

Abstract

The Data Display Debugger (DDD) is a novel graphical

user interface to GDB and DBX, the popular UNIX debug-

gers. Besides “usual” features such as viewing source

texts and breakpoints, DDD provides a graphical data dis-

play, where data structures are displayed as graphs. A sim-

ple mouse click dereferences pointers or reveals structure

contents. Complex data structures can be explored incre-

mentally and interactively, using automatic layout if pre-

ferred. Each time the program stops, the data display re-

flects the current variable values. DDD has been designed

to compete with well-known commercial debuggers; how-

ever, it is free software, protected by the GNU general pub-

lic license. In this paper, we give a quick presentation of

DDD and describe its architecture and basic functionality

from a technical point of view.

Key words: Software Engineering, Debugging Aids, Di-

agnostics, User Interfaces

1 Introduction

A key part of the compile-edit-debug cycle is the debug-

ging phase. A specialized debugging tool (a debugger)

can significantly help to examine the dynamic behaviour

of a program. Debuggers can be viewed as program inter-

preters; they provide support for inspecting the execution

state in a symbolic way, and they allow for executing pro-

grams step-by-step or until a specific condition arises.

In the UNIX world, the GNU debugger (GDB) [9] is

one of the most popular debuggers. The basic GDB pro-

vides a large range of functionality for all debugging pur-

poses. Unfortunately, the GDB user interface is not suit-

able for casual and inexperienced users, since GDB rec-

ognizes more than one hundred of basic commands, each

with its own set of options and gadgets. Such users may

∗ Authors’ current address: Technische Universität Braunschweig,

Abteilung Softwaretechnologie, Gaußstr. 17, D-38092 Braunschweig,

Germany. E-mail: ddd@ips.cs.tu-bs.de.

prefer a graphical user interface, emphasizing the most fre-

quently used commands and providing direct manipula-

tion facilities. Various graphical user interfaces for GDB

are available today, notably XXGDB [2], TGDB [8] and

GUI for GDB [3]. These GDB extensions provide sepa-

rate windows for viewing the current source code location,

manipulating breakpoints, and invoking frequently needed

commands through push buttons. The original GDB com-

mand interface remains for experienced users and complex

tasks.

In the last few years, graphical debugging interfaces

showed up another advantage, namely graphical data dis-

plays. The SoftBench program debugger [4] and the Code-

Center environment [1] introduced facilities to display

program data as graphs, allowing for simple exploration

of complex data structures. Unfortunately, each of these

debuggers comes with its own environment and, which is

worse, with its own proprietary compiler.

Being a research institute, we rely on powerful and fre-

quently updated software tools while suffering from a low

budget. What we longed for was a comfortable debug-

ging environment for little or no cost. In earlier projects,

we had already developed a simple graph editor, a library

to visualize program and data structures, and an adap-

tive UNIX interprocess communication library. By reusing

these packages, we found it feasible to develop a com-

fortable graphical user interface for GDB in less than ten

man-months; to make it publicly available required an-

other two man-months. The resulting product, called DDD

for Data Display Debugger [6, 7] is a free full-fledged de-

bugging environment with an estimated 15,000 to 20,000

users three months after its publication.

2 A Quick Glance at DDD

Let us first take a look at DDD, as it presents itself to the

user. In figure 1, we see three windows. The command

window realizes the basic GDB command line interface, re-

flecting its editing and completion capabilities. The source

window, below, shows the source code as well as a break-

point (indicated by #1#) and the current execution posi-

1

Figure 1: The Data Display Debugger

tion (highlighted). Arbitrary symbols and expressions can

be selected in the program code and displayed by choosing

a “Display” action from a popup menu or from the button

box below.

Here is a simple example of DDD usage. User Lisa

has executed a program up to a breakpoint and wishes

to investigate the date ptrs array, an array of pointers

to Date record structures. She selects an occurrence of

date ptrs and chooses the display action, as shown

in figure 2.

Figure 2: Selecting a symbol

The value of date ptrs is displayed in a node in the

data window. Since the size of date ptrs is known at

compile time and thus passed on to the debugger, GDB

and DDD can show all four array elements (figure 3). If

date ptrswere a dynamically allocated array, then Lisa

would have to specify the array size explicitly, using the

GDB “artificial array” feature.

Figure 3: A data node

The array elements have not yet been initialized. This is

done two lines later, which Lisa executes step-by-step by

pressing the Next button. Each time the debugged pro-

gram stops (or is stopped by GDB), the data display re-

flects the current variable values. Lisa focuses her inter-

est on the second element, date ptrs[1], and selects

Dereference from the popup menu (figure 4).

2

Figure 4: The node menu

The dereferenced element, *date ptrs[1],

is shown in a dependent node (figure 5), a node referred

from the originating node, date ptrs.

Figure 5: A dependent node

After the other elements have been initialized and dis-

played in a similar fashion, Lisa lets DDD layout the graph

such that she can examine the entire date ptrs struc-

ture, shown in figure 6.

Figure 6: The entire date ptrs structure

When the current function returns, date ptrs no

more exists; GDB and DDD automatically disable all nodes

containing date ptrs. They will be automatically re-

enabled and shown with their current values the next time

the current function is entered.

Besides the eye-pleasing data display, DDD provides

today’s standards of debugging environments as well as

some unique features such as hypertext source navigation

and lookup or debugging on remote hosts. In short, DDD

has been designed to compete with well-known commer-

cial debuggers.

3 A Debugger Front-End

When we started to design DDD, the first question that

arised was: should we touch GDB code or not? The main

problem was that free software like GDB undergoes far

more changes than commercial software, simply because

the source code is freely available. We thus decided to

keep the coupling of DDD and GDB as low as possible,

such that making changes to GDB does not necessarily im-

ply recompiling or even changing DDD. Hence, DDD runs

GDB as a separate process, interacting through the GDB

command-line interface.

The communication channels between the user, DDD,

GDB, and the debugged process are shown in figure 7.

In order to minimize DDD response time, all communica-

tion between DDD and GDB is performed asynchronously.

GDB commands issued from DDD are tagged with a call-

back routine and then placed into a command queue. The

callback routine processes the GDB output when available.

For instance, if the user enters a GDB command manu-

ally, DDD tags the command with a callback routine that

displays GDB output; as soon as the GDB command is

DDD

GDB

Event
Loop

Display

GDB
Commands

Keyboard
Events

Mouse
Events

GDB
Output

Callbacks
.
.
.

Debugged Program

Program
Output

Program
Input

Figure 7: DDD Communication

3

completed, the callback routine is invoked and the GDB

output is shown in the DDD command window.

The main DDD event loop simultaneously waits for user

input, GDB output, and for GDB to become ready for input.

When GDB becomes ready, the next command is taken

from the queue and sent to GDB. Incoming GDB output is

processed by the callback routine associated with the last

command sent. This asynchronous scheme avoids DDD

being blocked while waiting for GDB output; incoming

events can be processed any time.

The separation of GDB and DDD processes makes DDD

run slower, due to the time needed to interpret GDB re-

sponses. However, this approach turned out to have sev-

eral advantages. For instance, we could replace GDB by

debuggers whose source code was not available, such as

Sun’s DBX [10]. Another fortunate effect was that we

could run DDD and GDB on separate machines, using a

long-distance remote TTY connection, or run DDD and

GDB in parallel on a multi-processor machine.

4 Boxes and Display Functions

All data displayed in the DDD data window is maintained

by the underlying GDB debugger. GDB provides a dis-

play list, holding symbolic expressions to be evaluated

and printed on standard output at each program stop. The

GDB command display tree adds tree to the dis-

play list and makes GDB print the value of tree as tree
= (Tree *)0x20e98, for instance, at each program

stop. This GDB output is processed by DDD and displayed

in the data window.

Each element of the display list, as transmitted by GDB,

is read by DDD and translated into a box. Boxes are rectan-

gular entities with a specific content that can be displayed

in the data window. We distinguish atomic boxes and com-

posite boxes. An atomic box holds white or black space, a

line, or a string. Composite boxes are horizontal or verti-

cal alignments of other boxes. Each box has a size and an

extent that determines how it fits into a larger surrounding

space.

Through construction of larger and larger boxes, DDD

constructs a graph node from the GDB data structure in a

similar way a typesetting system like TEX [5] builds words

from letters and pages from paragraphs. In figure 8, we

see how a framed text is built from five rectangular boxes.

First, a horizontal alignment is built containing a vertical

line, the text, and another vertical line. This composite box

is then vertically aligned with two horizontal lines, result-

ing in a framed text.

Such constructions are easily expressed by means of

functions mapping boxes onto boxes. These display func-

tions can be specified by the user and interpreted by DDD,

using an applicative language called VSL for visual struc-

ture language [11]. VSL functions can be specified by

AbcAbc

Figure 8: Building a frame from atomic boxes

the DDD user, leaving much room for extensions and cus-

tomization. A VSL display function putting a frame around

its argument looks like this:

// Put a frame around TEXT
frame(text) = hrule()
| vrule() & text & vrule()
| hrule();

Here, hrule() and vrule() are primitive functions

returning horizontal and vertical lines, respectively. The

& and | operators construct horizontal and vertical align-

ments from their arguments.

VSL provides basic facilities like pattern matching and

variable numbers of function arguments. The halign()
function, for instance, builds a horizontal alignment from

an arbitrary number of arguments, matched by three dots

(...):

// Horizontal alignment
halign(x) = x;
halign(x, ...) = x & halign(...);

Frequently needed functions like halign() are

grouped into a standard VSL library.

5 Building Boxes from Data

To visualize data structures, each atomic type and each

type constructor from the programming language is as-

signed a VSL display function. Atomic values like num-

bers, characters, enumerations, or character strings are dis-

played using string boxes holding their value; the VSL

function to display them leaves them unchanged:

// Atomic Values
simple_value(value) = value;

Composite values require more attention. An array, for

instance, may be displayed using a horizontal alignment:

// Array
array(...) = frame(halign(...));

4

When GDB sends DDD the value of an array, the VSL

function array() is invoked with array elements as

values. A GDB array expression f1, 2, 3g is thus

evaluated in VSL as array(simple value("1"),
simple value("2"), simple value("3")),

which equals "1" & "2" & "3", a composite box

holding a horizontal alignment of three string boxes.

The actual VSL function used in DDD also puts delim-

iters between the elements and comes in a vertical variant

as well, as shown in figure 9.

1: days_of_week

Sun

Mon

Tue

Wed

Thu

Fri

Sat

2: days_of_week

Sun Mon Tue Wed Thu Fri Sat

Figure 9: Simple arrays in DDD

Nested structures like multi-dimensional arrays are dis-

played by applying the array() function in a bottom-up

fashion. First, array() is applied to the innermost struc-

tures; the resulting boxes are then passed as arguments to

another array() invocation. The GDB output

{{"A", "B", "C"}, {"D", "E", "F"}}

representing a 2 × 3 array of character strings, is eval-

uated in VSL as array(array("A", "B", "C"),
array("A", "B", "C")), resulting in a horizontal

alignment of two more alignments representing the inner

arrays.

The actual DDD display is shown in figure 10. As

demonstrated in the left display, the user can hide details

of nested arrays to save space.

5: twodim

[...]

[...]

6: twodim

0x2500 "Pioneering"

0x2510 "women"

0x2518 "in"

0x2520 "computer"

0x2530 "science"

0x2538 "!"

Figure 10: Nested arrays in DDD

Record structures are built in a similar manner, using a

display function struct member rendering the record

members. Names and values are separated by an equality

sign:

// Member of a record structure
struct_member (name, value) =
name & " = " & value;

The display function struct renders the record itself,

using the valign() function. valign() is similar to

halign(), but builds a vertical alignment.

// Record structure
struct(...) = frame(valign(...));

Record structures, as displayed by DDD, are shown in

figure 11. The actual VSL function takes care to align the

equality signs; again, the user can hide the details of a

nested structure.

7: new_years_eve

<Date> = {...}
name = 0x27c0 "May all acquaintance be forgot"

10: new_years_eve

<Date> =

day_of_week = Sat
day = 31
month = 12
year = 1994
_vptr$ = 0x1e240 <Holiday virtual table>

name = 0x27c0 "May all acquaintance be forgot"

Figure 11: Record structures in DDD

6 Building Graphs from References

Using boxes is fine for displaying non-referential data

structures—that is, data structures without references or

pointers that can be denoted in a first-order term. How-

ever, referential data structures—i.e. data structures using

references or pointers—can not be displayed using boxes.

Instead, DDD displays a graph structure visualizing refer-

ences as edges between the non-referential data nodes.

Whether data references other data is undecidable in

general. Instead, the user decides about references when

he creates a new data node. Each new data node can op-

tionally be created as a dependent node, that is, with an

edge originating from an already existing node to the new

node. The by far most common operation to create a de-

pendent node is to dereference a pointer value and thus cre-

ating a dependent node holding the value of the derefer-

enced pointer. In figure 12, an edge leads from the origi-

nating pointer value to the dereferenced value.

11: tree
(Tree *) 0x20e98

12: *tree

value = 7
name = 0x2290 "Ada"

date =

day_of_week = Thu
day = 1
month = 1
year = 1970
_vptr$ = 0x1e258 <Date virtual table>

left = 0x20ec8
right = 0x20f58

Figure 12: Dependent nodes in DDD

5

Besides simple pointer dereferencing, the DDD user

may also modify the expression of the dependent node—

to insert an additional type cast, for instance, or to visu-

alize more complex references. DDD provides immediate

creation of dereferenced nodes by a simple mouse click as

well as dialog windows to enter and modify arbitrary de-

pendent expressions. Since the resulting graphs may be-

come large, the user can select, move and align nodes man-

ually, but also invoke automatic graph layout procedures,

as shown in the initial example.

7 Experiences

Writing a graphical front-end for GDB involved work at

various levels. We had to implement a graphical display,

where we could rely on the VSL library for easy creation

of data displays and an existing graph editor. We had to

code the DDD-GDB communication, where we could reuse

an existing TTY-based interprocess communication pack-

age. The remainder was straight-forward programming of

graphical user interfaces; after ten man-months of work,

we had a full-fledged debugging environment. Only two

additional man-months were required to make DDD gen-

erally available; most of the time was spent to adapt DDD

to various platforms and implementing automatic config-

uration.

Today, DDD is the debugging environment we origi-

nally wanted: easy to use, with nice data exploration facil-

ities, and relying on a powerful, robust, and freely avail-

able debugger, GDB. Besides fixing remaining bugs, our

future work will focus on some enhancements to DDD.

These enhancements, suggested by DDD users, shall in-

clude assembler support, an improved display structure

merging displays with identical memory locations, and

type-dependent displays allowing abstract views of ab-

stract data types.1

As a conclusion, our experiences show that little dis-

tinguishes a well-written student implementation from a

good software product; we wish to encourage academic in-

stitutions to enforce professional software standards from

the very beginning and to promote sharing their efforts

with others, as we did with DDD.

The DDD source code is available from several FTP

servers around the globe. The FTP server of the X con-

sortium, ftp.x.org, contains the most recent DDD source

code in /contrib/utilities/ddd-*; please try a closer mir-

ror site first. To build DDD, a recent C++ compiler such

as GCC and a OSF/MOTIF library are required. DDD bi-

naries for several platforms are available at the authors’

FTP site, ftp.ips.cs.tu-bs.de, in /pub/local/softech/ddd/.
Further information is found in the DDD WWW page,

http://www.cs.tu-bs.de/softech/software/ddd e.html.

1However, as all work on DDD is done on a volunteer base, contribu-

tions and donations for further DDD development are always welcome.

Acknowledgements. Several people contributed to the

success of DDD. Above all, we want to thank the ever

growing list of DDD testers, the first of them Carsten Kra-

biell and Petra Funk, whose support made DDD the tool it

is today.

References

[1] Centerline Software, Inc. CodeCenter Tutorial

and User’s Guide, version 4 ed. Cambridge, Mass.,

1994.

[2] Cheung, P., and Willard, P. XXGDB – X Window

System Interface to the GDB debugger, Nov. 1994.

Distributed with XXGDB.

[3] Cygnus Support. A Graphical User Interface for

the GNU Debugger. Mountain View, CA, Apr. 1995.

[4] Hewlett-Packard, Inc. SoftBench Program Con-

struction Tools—an Introduction. Palo Alto, CA,

1992.

[5] Knuth, D. E. The TEXbook. Addison Wesley Pub-

lishing Company, Reading, Massachusetts, 1984.

[6] Lütkehaus, D. DDD – ein Debugger mit graphis-

cher Datendarstellung. Master’s thesis, Technical

University of Braunschweig, Germany, Nov. 1994.

In German.

[7] Lütkehaus, D., and Zeller, A. DDD – the Data

Display Debugger, version 1.2 ed. Technical Uni-

versity of Braunschweig, Germany, May 1995. Dis-

tributed with DDD.

[8] Schumacher, M. TGDB, a graphical frontend to

GDB, the GNU debugger. HighTec EDV-Systeme

GmbH, St. Ingbert, Germany, 1994. Distributed with

TGDB.

[9] Stallman, R. M., and Pesch, R. H. Debugging

with GDB, version 4.13 ed. Free Software Founda-

tion, Jan. 1994. Distributed with GDB.

[10] Sun Microsystems, Inc. Debugging Tools—DBX,

SunOS 4.1.1 ed. Mountain View, CA, Mar. 1990.

[11] Zeller, A. VSE – ein generischer, visueller Struk-

tureditor. Master’s thesis, Technical University of

Darmstadt, Germany, July 1991. In German.

6

Technische Universit�at Braunschweig

Informatik-Berichte ab Nr. 92-01

92-01

F.-J.Grosch, G.Snelting Polymorphic Components for Monomorphic Languages

92-02
S.Conrad, M.Gogolla, R.Herzig TROLL light : A Core Language for Specifying Objects

93-01
B.Fischer A New Feature Uni�cation Algorithm

93-02
G.Snelting Perspektiven der Softwaretechnologie

93-03

G.Snelting, A.Zeller Inferenzbasierte Werkzeuge in NORA

93-04

W.R�onsch, J.Sch�ule Parallelisierung im Wissenschaftlichen Rechnen

93-05
P.L�ohr-Richter, G.Reichwein Object Oriented Life Cycle Models

93-06
M.Krone, G.Snelting On the Inference of Con�guration Structures from

Source Code

93-07
S.Schwiderski, T.Hartmann,

G.Saake

Monitoring Temporal Preconditions in a Behaviour

Oriented Object Model

93-08
T.Hartmann, G.Saake Abstract Speci�cation of Object Interaction

93-09
G.Snelting, B.Fischer, F.-J.Grosch,

M.Kievernagel, A.Zeller

Die inferenzbasierte Softwareentwicklungsumgebung

NORA

93-10

C.Lindig STYLE { A Practical Type Checker for SCHEME

93-11

H.-D.Ehrich Beitr�age zu KORSO- und TROLL light -Fallstudien

94-01
A.Zeller Con�guration Management with Feature Logics

94-02
J.Sch�onw�alder, H.Langend�orfer Netzwerkmanagement | Beschreibung des Exponats

auf der CeBIT'94

94-03
T.Hartmann, G.Saake,

R.Jungclaus, P.Hartel, J.Kusch

Revised Version of the Modelling Language Troll

(Version 2.0)

94-04
A.Zeller, G.Snelting Incremental Con�guration Management Based on

Feature Uni�cation

94-05
S.Conrad A Basic Calculus for Verifying Properties of

Synchronously Interacting Objects

94-06
M.Gogolla, N.Vlachantonis,

R.Herzig, G.Denker, S.Conrad,

H.-D.Ehrich

The KORSO Approach to the Development of Reliable

Information Systems

94-07
C.Lindig Inkrementelle, r�uckgekoppelte Suche in

Software-Bibliotheken

94-08

B.Fischer, M.Kievernagel,

W.Struckmann

VCR: A VDM-based software component retrieval tool

95-01

V.S.Cherniavsky Philosophische Aspekte des Unvollst�andigkeitstheorems

von G�odel

95-02

G.Snelting Reengineering of Con�gurations Based on Mathematical

Concept Analysis

95-03
A.Zeller A Uni�ed Con�guration Management Model

95-04
H.Bickel, W.Struckmann The Hoare Logic of Data Types

95-05
F.-J.Grosch No Type Stamps and No Structure Stamps {

a Referentially-Transparent Higher-Order Module

Language

95-06
V.S.Cherniavsky

�

Uber semantische und formalistische Beweismethoden in

den exakten Wissenschaften

95-07
A.Zeller, D.L�utkehaus DDD - A Free Graphical Front-End for UNIX

Debuggers

