
GNU Bayonne: telephony application server of the GNU project

David Sugar<sugar@gnu.org>
http://www.gnu.org/software/bayonne

Abstract

GNU Bayonne is a freely licensed middle-ware telephony server that can be used
to create and deploy application script driven telephony application services. These
services interact with users automatically over the public telephone network. Using
commodity PC hardware and CTI cards running under GNU/Linux available from
numerous vendors, GNU Bayonne can be used to create carrier applications like
Voice Mail and calling card systems, as well as enterprise applications such as uni-
fied messaging, and even complete stand-alone commercial telephone systems. It
can be used to provide voice response for e-commerce systems and has been used
in this role in various e-gov projects. GNU Bayonne can also be used to telephony
enable existing scripting languages such as perl and python.

1 Introduction

Even without considering all the various reasons of why we
must have Free Software as part of the telecommunications
infrastructure, it is important to consider what the goals and
platform needs are for a telephony platform. Historically,
telephony services platforms had been the domain of real-
time operating systems. While it is true recent advances in
computer telephony hardware has made it possible to offload
much of this requirement to hardware making it practical for
even low performance systems running efficient kernels to
provide such services for many concurrent users, this has not
eliminated issues related to realtime services.

While hardware has improved much, new technologies, such
as wide deployment of packetized voice at the end user
level, have also, in fact created a whole new set of real-time
constraints, and these need to be addressed by modern freely
licensed operating systems wishing to be used for telephony
applications. Finally, with the ever increasing power of cpu’s,
there has been a move to simplify commodity computer
telephony hardware by offloading dsp processing back to the
host cpu.

In addition to real-time constraints, telephony servers are
usually housed in phone closets or other closed and isolated
areas. As such, remote maintainability, and high reliability
are both important platform requirements as well. The ability

to integrate with and use standard networking protocols is
also becoming very important in traditional telephony, and
certainly is a key requirement for next generation telephony
platforms.

So we can summarize; low latency/high performance kernels,
remote manageability without the need for a desktop environ-
ment, high reliability, and open networking protocols. This
sounds like an ideal match for a GNU/Linux system. For
these reason we choose to build telephony services such as
GNU Bayonne primarily under GNU/Linux.

Our goal for GNU Bayonne 1.0 was primarily to make
telephony services as easy to program and deploy as a
web server is today. We choose to make this server easily
programmable through server scripting. We also desired to
have it highly portable, and allow it to integrate with existing
application scripting tools so that one could leverage not just
the core server but the entire platform to deliver telephony
functionality and integrate with other resources like databases.

Since each vendor of telephony hardware has chosen to create
their own unique and substantial application library interface,
we faced another key issue in designing a generic telephony
middleware server. We needed GNU Bayonne to sit above
these and be able to abstract them. Ultimately we choose
to create a driver plug-in architecture to do this. What this
means is that you can get a card and API from Aculab, for



example, write your application in GNU Bayonne using it,
and later choose, say, to use Intel telephony hardware, and
still have your application run, unmodified. This has never
been done in the industry widely because many of these same
telephony hardware manufacturers like to produce their own
middle-ware solutions that lock users into their products. This
ability to abstract and replace hardware without changing ap-
plication services also became a key requirement for Bayonne.

2 Real-time constraints

GNU Bayonne, as a telephony server, imposes some very real
and unique design constraints. For example, we must provide
interactive voice response in real-time. “real-time” in this case
may mean what a person might tolerate, or delay of 1/10th of
a second, rather than what one might measure in milliseconds
in other kinds of real-time applications. However, this still
means that the service cannot block, for, after all, you cannot
flow control people speaking.

Human speech is almost universally encoded as either a-law
or u-law audio by the public telephone networks. The quality
of copper circuits vary, but the old telephone network was
never designed for carrying high bandwidth or high fidelity
audio over copper. In fact, 8 bit pcm encoded audio, at 8khz
sample range, is about the limit one can expect, and some
places do not even achieve this.

When recording real-time audio, then, this means that for
every second of audio, 8K of data must be stored somewhere.
In many older systems, even this modest requirement can be a
challenge, especially if it needs to be done for several hundred
different concurrent sessions. Disk bandwidth of older IDE
drives (and older SCSI systems) was typically in the range of
100 to 200Kbytes of data per second, and before that, there
was MFM systems with the then standard drive interface that
did even poorer.

When one talks about recording concurrent voice, one is also
talking about being able to do so from multiple sessions, and
most ancient drives, in the days before cache, would have
both rotational and seek latencies that would further delay
the ability to write voice data timely from current sessions.
Outside of SCSI, most ancient drives could not do multiple
I/O drive requests.

In this environment, while a comfortably 100-200k of poten-
tial bandwidth existed for writing of voice files, in fact the
actual disk I/O performance might restrict actual bandwidth
achieved by a magnitude. In that most early hardware was
ram miserly, and most early systems had little ram available
for pre-buffering of audio before recording to disk, this was
often a great technical challenge. Considering that humans
cannot be flow controlled, and 8k per channel per second
needed to be recorded regardless of all these limitations,
this is clearly a task that could be scheduled and defined
by a deterministic real-time system, and many clever things
were done in systems in the past to get around these storage
performance issues.

Certainly there were things that could be done to improve
this scenario starting with voice compression. Most early
hardware was fairly limited in what it could do, but basic
linear codec’s such as 3-4-5 bit ADPCM can and were used
for sampling speech to be recorded, and often at a reduced
sample rate. This would reduce the requirements from 8k per
second to as little as 3k.

Even so, the final bottleneck was often the file system itself.
File systems have complex meta structures, including index
blocks that need to be updated when files expand. These
introduce additional block seeks and additional latencies to the
process of recording an audio file. To get around this problem
completely, early voice processing systems would often use a
special partition organized as disk blocks, with a very simple
meta-structure to maintain housekeeping. One would then
perform physical I/O directly to known disk blocks rather than
through a file system, and hence early hardware would also
provide audio in chunks that were typically aligned to disk
blocks, such as in 4096 or 16384 byte chunks.

So to write audio to disk, one would setup a time constrained
real-time process that would take a block of encoded audio,
and write it to physical blocks on a storage system. As
systems grew in complexity and were asked to do other tasks
as well, the need for priority scheduling to assure these disk
i/o requests would also be completed became very important.
While many early voice processing systems were written
as custom systems, commercial realtime systems, such as
QNX, where often used for building automated telephony
applications because they could offer deterministic scheduling
with very low latency and also act as a generic platform one
could support non-time constrained tasks on top of.

Today the mere act of writing audio samples to disk is not
such a great challenge. Many modern voice processing



systems now use the luxury of writing to the file system
rather than trying to optimize raw I/O operations. However,
the time constrained nature of recording human speech still
exists. While hard real-time systems are no longer necessary,
it can still be desirable to have deterministic scheduling for
such a task. This can be achieved within the limited goals
of soft-real-time that are offered to process scheduling in the
modern Linux kernel when applied correctly to this problem,
and enables us to use a standard GNU Linux system to run
GNU Bayonne even for very large capacity systems. Today,
doing so is more a matter of overall system performance
tuning rather than a hard requirement.

3 C++ core development

To create GNU Bayonne we needed a portable foundation
written in C++. I wanted to use C++ for several reasons. First,
the highly abstract nature of the driver interfaces seemed
very natural to use class encapsulation for. Second, I found
I personally could write C++ code faster and more bug free
than I could write C code.

Why we choose not to use an existing framework is also
simple to explain. We knew we needed threading, and
socket support, and a few other things. There were no single
framework that did all these things except a few that were very
large and complex which did far more than we needed. We
wanted a small footprint for Bayonne, and the most adaptable
framework that we found at the time typically added several
megabyte of core image just for the runtime library.

GNU Common C++ (originally APE) was created to provide
a very easy to comprehend and portable class abstraction for
threads, sockets, semaphores, exceptions, etc. This has since
grown into it’s own and is now used as a foundation of a
number of projects as well as being a part of GNU.

4 C++ scripting engine

In addition to having portable C++ threading, we needed
a scripting engine. This scripting system had to operate in
conjunction with a non-blocking state-transition call pro-
cessing system. It also had to offer immediate call response,
and support several hundred to a thousand instances running

concurrently in one server image.

Many extension languages assume a separate execution
instance (thread or process) for each interpreter instance.
These were unsuitable. Many extension languages assume
expression parsing with non-deterministic run time. An
expression could invoke recursive functions or entire sub-
programs for example. Again, since we wanted not to have
a separate execution instance for each interpreter instance,
and have each instance respond to the leading edge of an
event callback from the telephony driver as it steps through
a state machine, none of the existing common solutions like
tcl, perl, guile, etc, would immediately work for us. Instead,
we created a non-blocking and deterministic scripting engine,
GNU ccScript.

GNU ccScript is unique in several ways. It is step executed,
and is non-blocking. Statements either execute and return
immediately, or they schedule their completion for a later time
with the executive. A given ”step” is executed, rather than
linearly. This allows a single thread to invoke and manage
multiple interpreter instances. While GNU Bayonne can
support interacting with hundreds of simultaneous telephone
callers on high density carrier scale hardware, we do not
require hundreds of native ”thread” instances running in the
server, and we have a very modest CPU load.

Another way GNU ccScript is unique is in support for
memory loaded scripts. To avoid delay or blocking while
loading scripts, all scripts are loaded and parsed into a
virtual machine structure in memory. When we wish to
change scripts, a brand new virtual machine instance is
created to contain these scripts. Calls currently in progress
continue under the old virtual machine and new callers are
offered the new virtual machine. When the last old call
terminates, the entire old virtual machine is then disposed of.
This allows for 100% uptime even while services are modified.

Finally, GNU ccScript allows direct class extension of the
script interpreter. This allows one to easily create a derived
dialect specific to a given application, or even specific to a
given GNU Bayonne driver, simply by deriving it from the
core language through standard C++ class extension.



5 TGI support and plug-ins

To be able to create useful applications, it is necessary to have
more than just a scripting language. It requires a means to be
extended so that it can incorporate database access libraries or
other functions that fall outside of the scope of the scripting
language itself. These extensions should be loaded on demand
only when used, and should be specified at runtime so that
new ones can easily be added without the need to recompile
the entire server.

To support scripting extensions we have the ability to create
direct command extensions to the native GNU Bayonne
scripting languages. These command extensions can be
processed through plug-in modules which can be loaded at
runtime, and offer both scripting language visible interface
extensions, and, within the plug-in, the logic necessary to
support the operation being represented to the scripting
system. These are much more tightly coupled to the internal
virtual machine environment and a well written plug-in could
make use of thread pools or other resources in a very efficient
manner for high port capacity applications.

When writing command extensions, it is necessary to consider
the need for non-blocking operations. GNU Bayonne uses
ccScript principally to assure non-blocking scripting, and
so any plug-in must be written so that if it must block, it
does so by scheduling a state operation such as ”sleep” and
performs potentially blocking operations in separate threads.
This makes it both hard and complex to correctly create script
extensions in this manner.

The constrained nature of GNU ccScript does not fully allow
it’s use as a complete telephony server application solution.
It cannot communicate with databases directly as these oper-
ations can block, as in one example of it’s limitations. While
GNU Bayonne’s server scripting can support the creation of
complete telephony applications, it was not designed to be a
general purpose programming language or to integrate with
external libraries the way traditional languages do. The re-
quirement for non-blocking requires any module extensions
created for GNU Bayonne are written highly custom. We
wanted a more general purpose way to create script extensions
that could interact with databases or other system resources,
and we choose a model essentially similar to how a web server.

The TGI model for GNU Bayonne is very similar to how
CGI works for a web server. In TGI, a separate process
is started, and it is passed information on the phone caller
through environment variables. Environment variables are

used rather than command line arguments to prevent snooping
of transactions that might include things like credit card
information and which might be visible to a simple “ps”
command.

The TGI process is tethered to GNU Bayonne through stdout
and any output the TGI application generates is used to invoke
server commands. These commands can do things like set
return values, such as the result of a database lookup, or they
can do things like invoke new sessions to perform outbound
dialing. A “pool” of available processes are maintained
for TGI gateways so that it can be treated as a restricted
resource, rather than creating a gateway for each concurrent
call session. It is assumed gateway execution time represents a
small percentage of total call time, so it is efficient to maintain
a small process pool always available for quick TGI startup
and desirable to prevent stampeding if say all the callers hit a
TGI at the exact same moment.

6 Bayonne Architecture

With the realization that GNU/Linux systems today could be
effectively used to create telephony application services, we
set out to create GNU Bayonne, and came up with a common
architecture to define the operations of a telephony middle-
ware server. As noted earlier, GNU Bayonne had to interact
with telephony devices and many concurrent users, and deal
with the potential realtime requirements that this involves. At
the same time, it has to be able to provide application logic,
which, while potentially computativily intensive, or, more
often, disk intensive, such as when performing a database
query, is generally not an activity scheduled on a realtime or
time constrained basis.

Furthermore, while the functional requirements are actually
fairly simple, as noted earlier, each vendor of computer tele-
phony hardware has chosen to create their own unique and sub-
stantial application library interface, thus requiring extreme
abstraction between the lower level telephony driver or api and
the Bayonne application environment. These differing roles
and requirements lend themselves to a somewhat complex ar-
chitecture, as can be seen here:

As can be seen, we bring all these elements together into a
GNU Bayonne server, which then executes as a single core
image. The server itself exports a series of base classes which
are then derived in plug-ins. In this way, the core server itself
acts as a “library” as well as a system image. What is unique



Figure 1: Architecture of GNU Bayonne

about this is that When the server comes up, it creates new
objects by loading plugins. The plugins themselves use base
classes found in the server and derived objects that are defined
for static storage. This means when the plugin object is
mapped thru dload, it’s constructor is immediately executed,
and the object’s base class found in the server image registers
the object with the rest of GNU Bayonne. Using this method,
plugins in effect automatically register themselves thru the
server as they are loaded, rather than thru a separate runtime
operation.

To couple the realtime requirements of the telephony world
with lazier application logic, two approaches are found in Bay-
onne. First, a state machine represents the operation of the
abstracted driver interface. This state machine is executed in a
non-blocking manner over multiple threads through event call-
back, and in conjunction with GNU ccScript, which, as noted
earlier, behaves as a non-blocking and step driven script sys-
tem, which is then executed directly from the state machine
driver.

Since GNU Bayonne has to interact with telephone users over
the public telephone network or private branch exchange,
there must be hardware used to interconnect GNU Bayonne
to the telephone network. There are many vendors that supply
this kind of hardware and often as PC add-on cards. Some
of these cards are single line telephony devices such as the
Quicknet LineJack card, and others might support multiple
T1 spans. Some of these cards have extensive on-board
DSP resources and TDM buses to allow interconnection and
switching.

GNU Bayonne tries to abstract the hardware as much as
possible and supports a very broad range of hardware already.

GNU Bayonne offers support for /dev/phone Linux kernel
telephony cards such as the Quicknet LineJack, for multiport
analog DSP cards from VoiceTronix and Dialogic, and digital
telephony cards including CAPI 2.0 (CAPI4Linux) compliant
cards, and digital span cards from Intel/Dialogic and Aculab.
We are always looking to broaden this range of card support.

At present both voice modem and OpenH323 support is
being worked on. Voice modem support will allow one to
use generic low cost voice modems as a GNU Bayonne
telephony resource. The openh323 driver will actually require
no hardware but will enable GNU Bayonne to be used as
an application server for telephone networks and softswitch
equipment built around the h323 protocol family. At the time
of this writing I am not sure if either or both of these will be
completed in time for the next stable (1.2) release.

7 Current Status

The 1.0 release of GNU Bayonne was distributed in Septem-
ber of 2002. This release represented several years of active
development and has standardized how GNU Bayonne
operates and is deployed. In November, we choose to make
a 1.1 release available which demonstrated the ability for
GNU Bayonne to operate as a complete small office telephone
system. Current development today includes the ability to
embed sql and database access services into Bayonne, and
to improve it’s usability as a platform for telephony enabling
web services, as well as work on supporting next generation
telephone networks with GNU Bayonne.

GNU Bayonne does not exist alone but is part of a larger
meta-project, “GNUCOMM”. The goals of GNUCOMM
is to provide telephony services for both current and next
generation telephone networks using freely licensed software.
These services could be defined as services that interact with
desktop users such as address books that can dial phones
and softphone applications, services for telephone switching
such as the IPSwitch GNU softswitch project and GNU
oSIP proxy registrar, services for gateways between current
and next generation telephone networks such as troll and
proxies between firewalled telephone networks such as Ogre,
real-time database transaction systems like preViking Infotel
and BayonneDB, and voice application services such as those
delivered through GNU Bayonne.



Figure 2: Enterprise Applications

8 Enterprise and Carrier Applications

GNU Bayonne 1.0, with the help of other components being
developed as part of GNUCOMM, does enable one to create
and deploy scalable enterprise and carrier class applications
using GNU/Linux systems.

In our broadest view of enterprise telephony applications, we
can see using GNU Bayonne as providing a part of overall
enterprise telephony solutions. GNU Bayonne must be able
to interact with enterprise data, whether through transaction
monitors such as BayonneDB, with native sql capability,
through web services and XML document processing, or
through perl scripts executed via TGI. It may need to interact
with other services such as email when delivering voice
messages to a unified mailbox, or the local phone switch
through integration resources and other kinds of servers.

Our view of GNU Bayonne and telephony application services
are that it is a strategic and integral part of the commercial
enterprise. Proprietary solutions that are in common use today
have often been designed from the question of how to lock a
user into a specific OEM product family and control what a
user or reseller can do or integrate such products, rather than
from the question of what the enterprise user needs and how to
provide the means to enable it. This has often kept telephony
separate and walled off from the rest of the enterprise. We do
not wish to see it separate but a natural extension, whether of
web services, of contact management, of customer relations,
etc.

When we look at carrier class applications for GNU Bayonne

Figure 3: Carrier Applications

today, we typically consider applications like operator assis-
tance systems, prepaid calling platforms, and service provider
voice mail. Each of these has different requirements. What
they have in common is that a front end central office switch
might be used, such as a Lucent Excel or even a full ESS 5
switch. Application logic and control for voice processing
would then be hosted on one or more racks of GNU Bayonne
servers most likely interconnected with multiple T1 spans. If
database transactions are involved, such as in pre-paid calling,
perhaps we would distribute a BayonneDB server to provide
database connectivity for each rack. A web server may also
exist if there is some web service component.

Operator assist services are probably the easiest to understand.
Very often a carrier might need to provide directory assistance
or some other form of specialized assist service. A call will
come in from the switching center to a GNU Bayonne server,
which will then decide what to do with the call. If the caller
is from a location that is known, perhaps the call will be
re-routed by GNU Bayonne through an outgoing span to a
local service center. Online operator assistance might be done
by creating an outgoing session to locate an operator and then
bridge the callers, all on a GNU Bayonne server.

In service provider voice mail one doesn’t have to bridge calls.
Service provider voice mail is typically much simpler than
enterprise voice mail; there is no company voice directory,
there is no forwarding or replying between voice mailboxes,
there may be no external message notification. All these things
make it an easy to define application on first appearance.
What it must be is reliable, and ideally scalable.

Many applications carriers wish to deploy do not necessary



require “carrier grade” Linux to appear before they can be
used. In fact, IDT Corp, a major provider of prepaid calling in
the world today, uses over 500 rack mounted commodity PC’s
running things including a standard distribution of “RedHat”
GNU/Linux to reliably service over 20 million call minutes
per day in their main switching center. This does not mean
there is no value in the carrier grade kernel work, just that it
is not necessary to create and sell some types of GNU/Linux
voice processing solutions for carriers today. We have looked
at the issues involved in high reliability/carrier grade enhanced
Linux and we intend to address those as described a little
further.

9 GNU Bayonne and web services

Some people have chosen to create telephony services through
web scripting, which is an admirable ambition. To do this,
several XML dialects have been created, but the idea is
essentially the same. A query is made, typically to a web
server, which then does some local processing and spits back
a well formed XML document, which can then be used as a
script to interact with the telephone user. These make use of
XML to generate application logic and control much like a
scripting language, and, perhaps, is an inappropriate use of
XML, which really is designed for document presentation
and inter- exchange rather than as a scripting tool. However,
given the popularity of creating services in this manner, we do
support them in GNU Bayonne.

GNU Bayonne did not choose to be designed with a single or
specific XML dialect in mind, and as such it uses a plug-in.
The design is implemented by dynamically transcoding
an XML document that has been fetched into the internal
ccScript virtual machine instructions, and then execute the
transcoded script as if it were a native ccScript application.
This allows us to transcode different XML dialects and run
them on GNU Bayonne, or even support multiple dialects at
once.

Since we now learn that several companies are trying to force
through XML voice browsing standards which they have
patent claims in, it seems fortunate that we neither depend on
XML scripting nor are restricted to a specific dialect at this
time. My main concern is if the W3C will standardize voice
browsing itself only to later find out that the very process
of presenting a document in XML encoded scripting to a
telephone user may turn out to have a submarine patent, rather
than just the specific attempts to patent parts of the existing

W3C voice browsing standard efforts.

In addition to being able to process information from web
sites, we had wished to enable GNU Bayonne itself to be
invoked from other web services. To achieve this, we have
been working on RPC services, particularly based on ”soap”,
to enable web services to make RPC requests to a Bayonne
server. These requests can take several forms.

Some requests can be serviced immediately. These are
typically administration requests. Such requests can be basic
things like ”stop” and ”start” the server, or more complex
things such as setting and querying real-time server informa-
tion.

In addition to manipulating the server through a web service,
it is also desirable to manipulate Bayonne applications.
For example, if one has created a web service, such as
phpgroupware, which has an online address book, it might
be desirable to use a Bayonne server to make and complete
telephone calls on behalf of address book entries. These
services do not have an immediate return because they depend
on the result of Bayonne running a script application which
itself may have an undetermined runtime and uncertain results.

To support web services that must invoke Bayonne to run
applications, we have enabled two rpc features. The first is a
transaction log. A Bayonne script can post information to a
transaction log as it is running. This could be basic success or
failure information, or even extended error codes. The second
is the introduction of an rpc method to retrieve the transaction
log entry so that the external web service can determine what
happened to the application it initiated through Bayonne.
While this method requires some polling to retrieve results, it
is not believed that the kind of applications launched require
much immediate response on the part of the web service,
and in fact, the web service could often choose to examine
the log result of a call session long after the application has
terminated rather than continually polling.

This interaction allows Bayonne to be integrated both as a
middleware telephony resource for other web services, and as
a consumer of web services published information.



Figure 4: GNU Bayonne Phone Systems

10 A Bayonne Telephone System

Throughout the entire development of GNU Bayonne, it had
been used as a middleware adjunct platform that would sit
behind a telephone switch or circuits provided by a commer-
cial carrier. When applications needed to interact with local
users, this was often done by call transfer operations initiated
through the telephone switch or using Centrex-like services.

With the availability of computer telephony hardware which
would allow one or more analog telephone to be plugged
directly into such cards, and with drivers for this hardware
available on GNU/Linux systems, we looked at the feasibility
of extending Bayonne’s ability to abstract telephony hardware
to the question of abstracting hardware that also had tele-
phones directly attached. This development was initiated over
a period of two months, and resulted in the first 1.1 release of
GNU Bayonne in early November.

In having a complete phone system under GNU Bayonne,
it is possible to have a single platform that provides both
dialtone and application services. Traditionally these had
been split among multiple boxes, and hence had a higher cost
of ownership even before the question of software cost and
proprietary licensing issues are considered.

We choose to use GNU Bayonne’s script driven channel
interface to support telephone extensions in much the same
manner that trunk ports are used. This means that the feature
set of a given telephone station can be programmed and
controlled directly through scripting. This allows one to
simulate common features found in other telephone systems,

and to create or prototype entirely new features from scratch.
This also means that telephone features can be modified as
needed to create highly integrated systems to meet the needs
of vertical markets much more easily than today’s typical
general purpose phone systems can do.

An example of meeting a vertical market need though
application scripting would be a hotel system. Imagine a
hotel system where, when one tries to dial out, the guest is
interactively prompted to confirm phone activation for billing
purposes, rather than having to call down to the front desk.
While this level of integration can be achieved in some highly
customized systems developed for target market uses that are
available today, GNU Bayonne can do this in a completely
commodity fashion on a non-custom platform simply by
constructing appropriate customized application scripting.

Supporting a complete phone system in GNU Bayonne did
require a whole bunch of new functions to be created. These
include functions to synchronize connections, to pickup and
drop lines, to provide intercom dialing, and to ring stations.
The range of common telephone system features that have
been created and demonstrated to date in GNU Bayonne 1.1
include intercom dialing, call park, automatic and announced
call transfer, call recall, call pickup, hunting, and call cover-
age. Other features can be created through further scripting.

Since all the voice processing capabilities of Bayonne are
available to be applied through scripting, it is possible to im-
pliment voice processing applications directly on a Bayonne
telephone system. This can be simple things, like a voice mail
system that announces to callers they have messages waiting
when they pick up the phone, or very complex ivr and acd
type systems, with Bayonne acting as a universal middleware
platform. In addition, we are looking to integrate desktop
functionality with GNU Bayonne telephone switches, so that
one can use address books and have them dial contacts, and
receive screen pops for incoming calls. In the end we are
looking to create a complete freely licensed turnkey system
any commercial entity can use for a complete telephone server.

11 Bayonne and IP Voice networks

While Bayonne has traditionally been used to provide tele-
phony applications that operate with hardware that interfaces
to the public telephone network, it was recognized fairly early
on that one can abstract IP voice networks and protocol stacks



to Bayonne as if they were physical telephone circuits inte-
grated through multiport channel cards. This has lead to the
idea of providing plugin driver interfaces to enable GNU Bay-
onne to operate as an application server in an IP voice network.

One curious advantage to be found in using Bayonne this way
is application reusability. Bayonne applications are generally
not aware of the underlying telephony driver, and so one
can create applications that are prototyped on single analog
circuits and apply them unmodified to high density digital
spans. Similarly, one would be able to take existing Bayonne
applications developed for the wired telephone network and
re-use them unmodified in an IP voice network. This also
means a single middleware platform could exist for creating
and deploying applications for both current and next generate
telephone networks.

Early on, development has proceeded in two paths. The first
path was to integrate the existing OpenH323 project to provide
H323 call control endpoints and sessions for running Bayonne
applications. A second development path was focused on
using a RTP stack (ccRTP) for media operations and the GNU
oSIP stack for inter-operation of Bayonne with SIP based
telephone networks. Both these paths assume Bayonne will
abstract RTP sessions as if they were physical trunks and then
run existing applications unmodified.

Progress in both these paths have at times been stalled due
either to lack of time, resources, or both. I am hoping
by the time this paper is available we finally have some
demonstratable progress in IP voice networks. I believe this
is important for the future of the project, and for the future of
developing voice application services. In this environment,
since no physical hardware is required, Bayonne’s ability to
be ported to many different platforms will prove particularly
useful. We also view IP voice services as a means to provide
all kinds of voice enabled applications over the internet,
including automated personal assistants and other things not
traditionally seen as part of telephony in the past.

12 Where you can help

While Bayonne has been used commercially in many roles,
Bayonne is developed with the help of contributors world-
wide. The Bayonne development community is loosly
coordinated through a developer mailing list, and through
a number of individuals who have taken responsibility for

specific functional elements or drivers in Bayonne. We do
need more people from additional organizations who can
work on the core server features.

In addition, we are looking for individuals and groups to come
forward and work on specific Bayonne applications that can
be used out of the box. At the moment, I have contributed
a simple but complete key telephone system to demonstrate
the 1.1 feature set. In addition, we have a project based
in Macedonia that is looking for financial sponsorship to
develop Bayonne based e-government services for the blind.
In fact, we are looking for further commercial or government
sponsorship not only for specific sub-projects such as that,
but also for supporting continued Bayonne development in
general.

There are many areas outside of core development and
sponsorship where individuals can often make a difference
in Bayonne development. To support portable localization
of scripted voice applications and support multi-lingual
services, we use a phrase generation system, and we can use
contributed voices and help with defining language rules for
languages Bayonne does not directly support as yet. Currently
Bayonne directlu supports English, French, Italian, Russian,
and Bengali. We would like to add many additional languages.

Finally, we are looking for individuals to help in supporting
roles in the project. We need people to review and write or
improve documentation, and this is a very key role. We also
need individuals to come forward and help with maintaining
the Bayonne web site, or to simply write more useful Bayonne
applications.

13 Conclusion

While we have seen rapid advances in other infrastructure
technology, for many decades, progress in telephony has
been extremely slow. We believe that replacing the myriad of
complex and specialized proprietary telephone systems and
supporting platforms today with a common freely licensed
middleware that can be universally available and easily
customized to meet individual needs will make it possible to
bring telephony out of the phone closet and make it possible to
rapidly develop telecommunications the way freely licensed
software enabled rapid development of the Internet. We also
believe that by making freely licensed telephony middleware
universally available, it will finally become possible to easily



integrate telephony with and as a natural part of the rest of the
computing enterprise.

14 Acknowledgments

There are a number of contributors to GNU Bayonne. These
include Matthias Ivers who has provided a lot of good bug
fixes and new scheduler code. Matt Benjamin has provided
a new and improved TGI tokenizer and worked on Pika out-
bound dialing code. Wilane Ousmane helped with the French
phrasebook rule sets and French language audio prompts.
Henry Molina helped with the Spanish phrasebook rule sets
and Spanish language audio prompts. Kai Germanschewski
wrote the CAPI 2.0 driver for GNU Bayonne, and David Kerry
contributed the entire Aculab driver tree. Mark Lipscombe
worked extensively on the Dialogic driver tree. There have
been many additional people who have contributed to and
participated in related projects like GNU Common C++ or
who have helped in other ways.


