

Keeping Track
Managing Messages With gnats

The gnu Problem Report Management System
Version 4.0-beta1

December 2001

Jeffrey M. Osier
Brendan Kehoe
Cygnus Support
Revised for GNATS 4 by Yngve Svendsen

Copyright c© 1993, 1995, 2001 Free Software Foundation, Inc.
Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.
Permission is granted to copy and distribute modified versions of this manual under the
conditions for verbatim copying, provided also that the entire resulting derived work is
distributed under the terms of a permission notice identical to this one.
Permission is granted to copy and distribute translations of this manual into another lan-
guage, under the above conditions for modified versions.

i

Table of Contents

Overview . 1

1 Introducing gnats . 3
1.1 The database paradigm . 3
1.2 Flowchart of gnats activities . 4
1.3 States of Problem Reports . 5
1.4 Problem Report format . 6

1.4.1 Field datatypes reference . 7
1.4.2 Mail header fields . 8
1.4.3 Problem Report fields . 8

2 The gnats User Tools . 13
2.1 Environment variables and gnats tools 13
2.2 Submitting Problem Reports . 13

2.2.1 Creating new Problem Reports 13
2.2.2 Using send-pr from within Emacs 16
2.2.3 Invoking send-pr from the shell 16
2.2.4 Submitting a Problem Report via direct e-mail. . . 17
2.2.5 Helpful hints . 18

2.3 Editing existing Problem Reports. 18
2.3.1 Invoking edit-pr from the shell 19

2.4 Querying the database . 20
2.4.1 Invoking query-pr . 20
2.4.2 Formatting query-pr output 24
2.4.3 Query expressions . 25
2.4.4 Example queries . 26

2.5 The Emacs interface to gnats . 27
2.5.1 Viewing Problem Reports . 27
2.5.2 Querying Problem Reports . 27
2.5.3 Submitting new Problem Reports 28
2.5.4 Editing Problem Reports . 29
2.5.5 The Problem Report editing buffer 29
2.5.6 Changing the database . 30
2.5.7 dbconfig mode . 30
2.5.8 Other commands . 30
2.5.9 Customization . 30

ii Keeping Track

3 Installing gnats . 31
3.1 Configuring and compiling the software 32
3.2 Installing the utilities . 34
3.3 Installing the default database . 35
3.4 Setting up periodic jobs. 36
3.5 Setting up mail aliases . 36
3.6 Installing the daemon. 37
3.7 Installing the user tools . 38
3.8 Upgrading from older versions . 38

3.8.1 Overview . 38
3.8.2 Upgrading . 39

4 gnats Administration . 43
4.1 Overview of gnats configuration . 44
4.2 The databases file . 45
4.3 The dbconfig file . 46

4.3.1 Overall database configuration 46
4.3.2 Individual field configuration 47
4.3.3 Field datatypes . 49
4.3.4 Edit controls . 51
4.3.5 Named query definitions . 52
4.3.6 Audit-trail formats . 53
4.3.7 Outgoing email formats . 53
4.3.8 Index file description . 56
4.3.9 Initial PR input fields . 57

4.4 Other database-specific config files . 57
4.4.1 The categories file . 57
4.4.2 The responsible file . 58
4.4.3 The submitters file . 59
4.4.4 The states file . 60
4.4.5 The addresses file . 60
4.4.6 The classes file . 61

4.5 Administrative data files . 61
4.5.1 The index file . 61
4.5.2 The current file . 62

4.6 Administrative utilities . 62
4.6.1 Adding another database . 62
4.6.2 Adding a problem category . 62
4.6.3 Removing a problem category 63
4.6.4 Regenerating the index . 63
4.6.5 Checking database health . 64
4.6.6 Managing user passwords. 64

4.7 Internal utilities . 65
4.7.1 Handling incoming traffic. 65
4.7.2 Processing incoming traffic . 65
4.7.3 Timely reminders . 67
4.7.4 The edit-pr driver . 67
4.7.5 The diff-prs tool . 70

iii

4.7.6 The pr-age tool . 71

Appendix A Where gnats lives 73
A.1 prefix . 73
A.2 exec-prefix . 73
A.3 The ‘gnats-adm’ directory . 74
A.4 Default installation locations . 75

Appendix B The gnats network server – gnatsd
. 79
B.1 Description of gnatsd . 79
B.2 gnatsd options . 79
B.3 gnatsd command protocol . 80
B.4 gnatsd commands . 81
B.5 gnatsd environment variables . 91

Appendix C Controlling access to databases . . 93
C.1 Overview. 93
C.2 Overall gnatsd access level . 93
C.3 Overall access levels per host . 93
C.4 Access levels per user . 94
C.5 Privileged gnatsd commands . 95

Appendix D Querying using regular expressions
. 97

Appendix E gnats support 99

Index . 101

iv Keeping Track

Overview 1

Overview

This manual documents gnats, the gnu Problem Report Management System, version
4.0-beta1. gnats is a bug-tracking tool designed for use at a central Support Site. Users
who experience problems use electronic mail, web-based or other clients communicating
with the gnats network daemon running at the support site or direct database submis-
sions to communicate these problems to maintainers at that Support Site. gnats partially
automates the tracking of these Problem Reports (PRs) by:
• organizing problem reports into a database and notifying responsible parties of sus-

pected bugs;
• allowing support personnel and their managers to edit and query accumulated bugs;

and
• providing a reliable archive of problems (and their subsequent solutions) with a given

program.

gnats offers many of the same features offered by more generalized databases, including
editing, querying, and basic reporting. The gnats database itself is an ordered repository
for problem reports; each PR receives a unique, incremental PR number which identifies
it throughout its lifetime. For a discussion on the working system adopted by gnats, see
Section 1.1 [The database paradigm], page 3.

You can access the submitting, editing, and querying functions of gnats from within
gnu Emacs. See Chapter 2 [The gnats user tools], page 13.

Note on this version of the manual

This manual is in the process of being revised for version 4 of gnats. The status of the
different sections is as follows:
• Chapter 1 Introducing gnats

Version 4 complete, except for mention of the Cases, Keywords, Quarter and Release
Note fields which may or may not make it into final version 4.

• Chapter 2 The gnats User Tools
Version 4 complete, except for the sections on send-pr.

• Chapter 3 Installing gnats
Version 4 complete, except for info on installing the user tools at remote locations
which is yet to be written.

• Chapter 4 gnats Administration
Version 4 complete, except for treatment of the still-to-be-written gnats-passwd.

• Appendix A Where gnats lives
Version 4 complete.

• Appendix B The gnats network server – gnatsd
Version 4 complete.

• Appendix C Controlling access to databases
Version 4 complete.

• Appendix D Querying using regular expressions
Version 4 complete.

2 Keeping Track

Chapter 1: Introducing gnats 3

1 Introducing gnats

Any support organization realizes that a large amount of data flows back and forth
between the maintainers and the users of their products. This data often takes the form
of problem reports and communication via electronic mail. gnats addresses the problem
of organizing this communication by defining a database made up of archived and indexed
problem reports.

gnats was designed as a tool for software maintainers. It consists of several utilities
which, when used in concert, formulate and administer a database of Problem Reports
grouped by site-defined problem categories. It allows a support organization to keep track
of problems (hence the term Problem Report) in an organized fashion. Essentially, gnats
acts as an active archive for field-separated textual data.

1.1 The database paradigm

It is in your best interest as the maintainer of a body of work to organize the feedback
you receive on that work, and to make it easy for users of your work to report problems
and suggestions.

gnats makes this easy by automatically filing incoming problem reports into appropri-
ate places, by notifying responsible parties of the existence of the problem and (optionally)
sending an acknowledgment to the submitter that the report was received, and by mak-
ing these Problem Reports accessible to queries and easily editable. gnats is a database
specialized for a specific task.

gnats was designed for use at a Support Site that handles a high level of problem-
related traffic. It maintains Problem Reports in the form of text files with defined fields
(see Section 1.4 [gnats data fields], page 6). The location of the database, as well as
the categories it accepts as valid, the maintainers for whom it provides service, and the
submitters from whom it accepts Problem Reports, are all definable by the Support Site.
See Chapter 4 [gnats administration], page 43.

Each PR is a separate file within a main repository (see Appendix A [Where gnats
lives], page 73). Editing access to the database is regulated to maintain consistency. To
make queries on the database faster, an index is kept automatically (see Section 4.5.1 [The
index file], page 61).

We provide several software tools so that users may submit new Problem Reports, edit
existing Problem Reports, and query the database.
• send-pr is used by both product maintainers and the end users of the products they

support to submit PRs to the database.
• edit-pr is used by maintainers when editing problem reports in the database.
• Maintainers, managers and administrators can use query-pr to make inquiries about

individual PRs or groups of PRs.

Other interfaces to gnats include Gnatsweb, a web-based tool which provides features
for submitting and editing PRs and querying the database, and TkGnats, a Tcl/Tk-based
frontend. These tools are distributed together with gnats.

At the Support Site, a gnats administrator is charged with the duty of maintaining
gnats. These duties are discussed in detail in Chapter 4 [gnats Administration], page 43,

4 Keeping Track

and generally include configuring gnats for the Support Site, editing PRs that gnats can-
not process, pruning log files, setting up new problem categories, backing up the database,
and distributing send-pr so that others may submit Problem Reports.

Responsibility for a given Problem Report initially depends on the category of the prob-
lem. Optionally, an automated reminder can be sent to the responsible person if a problem
report is neglected for a requisite time period. See Section 4.1 [GNATS configuration],
page 44.

gnats does not have the ability to decipher random text. If there is no default category
set, any problem reports which arrive in a format gnats does not recognize are placed in a
separate directory pending investigation by the gnats administrator (see Chapter 4 [gnats
Administration], page 43).

Once a problem is recorded in the database, work can begin toward a solution. A
problem’s initial state is open (see Section 1.3 [States of Problem Reports], page 5). An
acknowledgment may be sent to the originator of the bug report (depending on whether
this feature has been switched on in the gnats configuration). gnats forwards copies of
the report to the party responsible for that problem category and to the person responsible
for problems arriving from that submitter.

When a problem has been identified, the maintainer can change its state to analyzed, and
then to feedback when a solution is found. gnats may be configured so that each time the
state of a PR changes, the submitter of the problem report is notified of the reason for the
change. If the party responsible for the PR changes, the previous responsible party and the
new responsible party receive notice of the change. The change and reason are also recorded
in the ‘Audit-Trail’ field of the Problem Report. (See Section 2.3 [Editing existing Problem
Reports], page 18. For information on the ‘Audit-Trail’ field, see Section 1.4 [Problem
Report format], page 6.)

When the originator of the Problem Report confirms that the solution works, the main-
tainer can change the state to closed. If the PR cannot be closed, the maintainer can change
its state to suspended as a last resort. (For a more detailed description of the standard
states, see Section 1.3 [States of Problem Reports], page 5.)

It should be emphasized that what we describe here is the default way that gnats works,
but as of version 4, gnats is extremely customizable, allowing sites to tailor almost every
aspect of its behavior. See Section 4.3 [The dbconfig file], page 46.

1.2 Flowchart of gnats activities

This informal flowchart shows the relationships of the gnats tools to each other and to
the files with which they interoperate.

Chapter 1: Introducing gnats 5

GNATS
gnatsd

DATABASEDIR/gnats−queue/

queue−pr −q

queue−pr −r

GNATS Database
DATABASEDIR/category/PR−number

DATABASEDIR/pending/PR−number

query−predit−pr

administrator maintainers

edit−pr

/etc/aliases

Yes

No

file−pr

valid

?
>Category:

Support Site

User Site

gnatsd client

User Site

send−pr

E−mail

User Site

Web client

Web server

1.3 States of Problem Reports

Each PR goes through a defined series of states between origination and closure. By
default, the originator of a PR receives notification automatically of any state changes.

Unless your site has customized states (see Section 4.4.4 [states file], page 60), gnats
uses these states:

open The initial state of a Problem Report. This means the PR has been filed and
the responsible person(s) notified.

analyzed The responsible person has analyzed the problem. The analysis should contain
a preliminary evaluation of the problem and an estimate of the amount of time
and resources necessary to solve the problem. It should also suggest possible
workarounds.

6 Keeping Track

feedback The problem has been solved, and the originator has been given a patch or
other fix. The PR remains in this state until the originator acknowledges that
the solution works.

closed A Problem Report is closed (“the bug stops here”) only when any changes have
been integrated, documented, and tested, and the submitter has confirmed the
solution.

suspended Work on the problem has been postponed. This happens if a timely solution is
not possible or is not cost-effective at the present time. The PR continues to
exist, though a solution is not being actively sought. If the problem cannot be
solved at all, it should be closed rather than suspended.

1.4 Problem Report format

The format of a PR is designed to reflect the nature of gnats as a database. Information
is arranged into fields, and kept in individual records (Problem Reports).

A Problem Report contains two different types of fields: Mail Header fields, which are
used by the mail handler for delivery, and Problem Report fields, which contain information
relevant to the Problem Report and its submitter. A Problem Report is essentially a
specially formatted electronic mail message.

Problem Report fields are denoted by a keyword which begins with ‘>’ and ends with ‘:’,
as in ‘>Confidential:’. Fields belong to one of eight data types as listed in Section 1.4.1
[Field datatypes reference], page 7. As of version 4 of gnats all characteristics of fields,
such as field name, data type, allowed values, permitted operations, on-change actions etc.
are configurable.

For details, see see Section 4.3 [The dbconfig file], page 46.

Example Problem Report

The following is an example Problem Report with the fields that would be present in
a standard gnats configuration. Mail headers are at the top, followed by gnats fields,
which begin with ‘>’ and end with ‘:’. The ‘Subject:’ line in the mail header and the
‘>Synopsis:’ field are usually duplicates of each other.

Chapter 1: Introducing gnats 7

® ©
Message-Id: message-id
Date: date
From: address
Reply-To: address
To: bug-address
Subject: subject

>Number: gnats-id
>Category: category
>Synopsis: synopsis
>Confidential: yes or no
>Severity: critical, serious, or non-critical
>Priority: high, medium or low
>Responsible: responsible
>State: open, analyzed, suspended, feedback, or closed
>Class: sw-bug, doc-bug, change-request, support,
duplicate, or mistaken
>Submitter-Id: submitter-id
>Arrival-Date: date
>Originator: name
>Organization: organization
>Release: release
>Environment:

environment
>Description:

description
>How-To-Repeat:

how-to-repeat
>Fix:

fix
>Audit-Trail:
appended-messages. . .
State-Changed-From-To: from-to
State-Changed-When: date
State-Changed-Why:

reason
Responsible-Changed-From-To: from-to
Responsible-Changed-When: date
Responsible-Changed-Why:

reason
>Unformatted:

miscellaneous
 ª

1.4.1 Field datatypes reference

The following is a short reference to the characteristics of the different field types.

For details, see Section 4.3.3 [Field datatypes], page 49.

text A one-line text string.

8 Keeping Track

multitext
Multiple lines of text.

enum The value in this field is required to be from a list of specified values, defined
at the Support Site.

(See Section 4.3 [The dbconfig file], page 46, for details.

multienum
Similar to the enum datatype, except that the field can contain multiple values.

enumerated-in-file
Similar to enum, but the allowed field values are listed in a separate file on the
gnats server.

multi-enumerated-in-file
Similar to enumerated-in-file, except that the field can contain multiple
values.

date Used to hold dates.

integer Used to hold integer numbers.

1.4.2 Mail header fields

A Problem Report may contain any mail header field described in the Internet standard
RFC-822. The send-pr tool can be configured either to submit PRs to the support site by
e-mail or by talking directly to the gnatsd network daemon on the gnats server. This is
also true for other client tools such as Gnatsweb. Even when these tools are set up submit
PRs directly to gnatsd, they will still include mail header fields that identify the sender
and the subject in the submitted PR:

To: The mail address for the Support Site, automatically supplied by the tool used
to submit the PR or by the originator if plain e-mail was used.

Subject: A terse description of the problem. This field normally contains the same
information as the ‘Synopsis’ field.

From: Supplied automatically when PRs are submitted by plain e-mail and when well-
behaved tools such as send-pr are used; should always contain the originator’s
e-mail address.

Reply-To:
A return address to which electronic replies can be sent; in most cases, the same
address as the From: field.

One of the configurable options for gnats is whether or not to retain ‘Received-By:’
headers, which often consume a lot of space and are not often used. See Section 4.3 [The
dbconfig file], page 46.

1.4.3 Problem Report fields

Chapter 1: Introducing gnats 9

Field descriptions

In a standard gnats installation, certain fields will always be present in a Problem
Report. If a PR arrives without one or more of these fields, gnats will add them, and if
they have default values set by the configuration at the Support Site, they will be filled in
with these values. Certain tools such as send-pr are set up to provide sensible defaults for
most fields.

(TODO: Make cross-reference to treatment of send-pr.conf)
In the list below, the field type (text, multitext, enumerated, etc.) is supplied in

parantheses. The different field types are explained briefly in Section 1.4.1 [Field datatypes
reference], page 7.

Submitter-Id
(enumerated-in-file) A unique identification code assigned by the Support
Site. It is used to identify all Problem Reports coming from a particular
site. Submitters without a value for this field can invoke send-pr with the
‘--request-id’ option to apply for one from the support organization. Prob-
lem Reports from those not affiliated with the support organization should use
the default value of ‘net’ for this field.
See Section 4.4.3 [The submitters file], page 59, for details.

Originator
(text) Originator’s real name. Note that the Submitter and Originator might
not be the same person/entity in all cases.

Organization
(multitext) The originator’s organization.

Confidential
(enum) Use of this field depends on the originator’s relationship with the sup-
port organization; contractual agreements often have provisions for preserving
confidentiality. Conversely, a lack of a contract often means that any data
provided will not be considered confidential. Submitters should be advised to
contact the support organization directly if this is an issue.
If the originator’s relationship to the support organization provides for confiden-
tiality, then if the value of this field is ‘yes’ the support organization treats the
PR as confidential; any code samples provided are not made publicly available.

Synopsis (text) One-line summary of the problem. send-pr copies this information to
the ‘Subject:’ line when you submit a Problem Report.

Severity (enum) The severity of the problem. By default, accepted values include:

critical The product, component or concept is completely non-operational
or some essential functionality is missing. No workaround is known.

serious The product, component or concept is not working properly or
significant functionality is missing. Problems that would other-
wise be considered ‘critical’ are usually rated ‘serious’ when a
workaround is known.

10 Keeping Track

non-critical
The product, component or concept is working in general, but lacks
features, has irritating behavior, does something wrong, or doesn’t
match its documentation.

Priority (enumerated) How soon the originator requires a solution. Accepted values
include:

high A solution is needed as soon as possible.

medium The problem should be solved in the next release.

low The problem should be solved in a future release.

Category (enumerated-in-file) The name of the product, component or concept where
the problem lies. The values for this field are defined by the Support Site. See
Section 4.4.1 [The categories file], page 57, for details.

Class (enumerated-in-file) The class of a problem in a default gnats installation
can be one of the following:

sw-bug A general product problem. (‘sw’ stands for “software”.)

doc-bug A problem with the documentation.

change-request
A request for a change in behavior, etc.

support A support problem or question.

duplicate (pr-number)
Duplicate PR. pr-number should be the number of the original PR.

mistaken No problem, user error or misunderstanding. This value can only
be set by tools at the Support Site, since it has no meaning for
ordinary submitters.

See Section 4.4.6 [The classes file], page 61, for details.

Release (text) Release or version number of the product, component or concept.

Environment
(multitext) Description of the environment where the problem occurred: ma-
chine architecture, operating system, host and target types, libraries, path-
names, etc.

Description
(multitext) Precise description of the problem.

How-To-Repeat
(multitext) Example code, input, or activities to reproduce the problem. The
support organization uses example code both to reproduce the problem and
to test whether the problem is fixed. Include all preconditions, inputs, out-
puts, conditions after the problem, and symptoms. Any additional important
information should be included. Include all the details that would be necessary

Chapter 1: Introducing gnats 11

for someone else to recreate the problem reported, however obvious. Sometimes
seemingly arbitrary or obvious information can point the way toward a solution.
See also Section 2.2.5 [Helpful hints], page 18.

Fix (multitext) A description of a solution to the problem, or a patch which solves
the problem. (This field is most often filled in at the Support Site; we provide
it to the submitter in case he or she has solved the problem.)

gnats adds the following fields when the PR arrives at the Support Site:

Number (enumerated) The incremental identification number for this PR. This is in-
cluded in the automated reply to the submitter (if that feature of gnats is
activated; see Section 4.3 [The ‘dbconfig’ file], page 46). It is also included in
the copy of the PR that is sent to the maintainer.
The Number field is often paired with the Category field as

category/number

in subsequent email messages. This is gnats’ way of tracking followup messages
that arrive by mail so that they are filed as part of the original PR.

State (enumerated) The current state of the PR. In default gnats installations, ac-
cepted values are:

open The PR has been filed and the responsible person notified.

analyzed The responsible person has analyzed the problem.

feedback The problem has been solved, and the originator has been given
a patch or other fix. Support organizations may also choose to
temporarily ”park” PRs that are awaiting further input from the
submitter under this state.

closed The changes have been integrated, documented, and tested, and
the originator has confirmed that the solution works.

suspended
Work on the problem has been postponed.

The initial state of a PR is ‘open’. See Section 1.3 [States of Problem Reports],
page 5.

Responsible
(text) The person at the Support Site who is responsible for this PR. gnats
retrieves this information from the ‘categories’ file (see Section 4.4.1 [The
categories file], page 57).

Arrival-Date
(date) The time that this PR was received by gnats. The date is provided
automatically by gnats.

Date-Required
(date) The date by which a fix is required. This is up to the maintainers at
the Support Site to determine, so this field is not available until after the PR
has been submitted.

12 Keeping Track

Audit-Trail
(multitext) Tracks related electronic mail as well as changes in the State and
Responsible fields with the sub-fields:

State-Changed-<From>-<To>: oldstate>-<newstate
The old and new State field values.

Responsible-Changed-<From>-<To>: oldresp>-<newresp
The old and new Responsible field values.

State-Changed-By: name
Responsible-Changed-By: name

The name of the maintainer who effected the change.

State-Changed-When: timestamp
Responsible-Changed-When: timestamp

The time the change was made.

State-Changed-Why: reason. . .
Responsible-Changed-Why: reason. . .

The reason for the change.

The Audit-Trail field also contains any mail messages received by gnats re-
lated to this PR, in the order received. gnats needs to find a category/number
at the beginning of the Subject field of received e-mail in order to be able to
file it correctly.

Unformatted
(multitext) Any random text found outside the fields in the original Problem
Report.

During a Problem Report’s journey from ‘open’ to ‘closed’, two more fields, Last-
Modified and Closed Date (both of type date) will be added.

Chapter 2: The gnats User Tools 13

2 The gnats User Tools

This chapter describes the user tools distributed with gnats. The gnats administrative
and internal tools tools are described in Chapter 4 [gnats Administration], page 43. The
user tools provide facilities for initial submission, querying and editing of Problem Reports:

send-pr Used by anyone who has a problem with a body of work to submit a report
of the problem to the maintainers of that work (see Section 2.2 [Submitting
Problem Reports], page 13).

query-pr Used to query the gnats database (see Section 2.4 [Querying the database],
page 20).

edit-pr Used to edit Problem Reports (to record new data, to change the responsible
party, etc.) (see Section 2.3 [Editing existing Problem Reports], page 18).

2.1 Environment variables and gnats tools

All the gnats user tools honor the GNATSDB environment variable which is used to
determine which database to use. For a local database, it contains the name of the database
to access.

For network access via gnatsd, it contains a colon-separated list of strings that describe
the remote database in the form

server:port:databasename:username:password

Any of the fields may be omitted except for server, but at least one colon must appear;
otherwise, the value is assumed to be the name of a local database.

If GNATSDB is not set and no command-line options are used to specify the database, it
is assumed that the database is local and that its name is ‘default’.

2.2 Submitting Problem Reports

Use send-pr to submit Problem Reports to the database. send-pr is a shell script which
composes a template for submitters to complete.

You can invoke send-pr from a shell prompt, or from within gnu Emacs using
‘M-x send-pr’.

2.2.1 Creating new Problem Reports

Invoking send-pr presents a PR template with a number of fields already filled in.
Complete the template as thoroughly as possible to make a useful bug report. Submit only
one bug with each PR.

A template consists of three sections:

Comments
The top several lines of a blank template consist of a series of comments that
provide some basic instructions for completing the Problem Report, as well
as a list of valid entries for the ‘>Category:’ field. These comments are all
preceded by the string ‘SEND-PR:’ and are erased automatically when the PR

14 Keeping Track

is submitted. The instructional comments within ‘<’ and ‘>’ are also removed.
(Only these comments are removed; lines you provide that happen to have those
characters in them, such as examples of shell-level redirection, are not affected.)

Mail Header
send-pr creates a standard mail header. send-pr completes all fields except the
‘Subject:’ line with default values. (See Section 1.4 [Problem Report format],
page 6.)

gnats fields
These are the informational fields that gnats uses to route your Problem Re-
port to the responsible party for further action. They should be filled out as
completely as possible. (See Section 1.4 [Problem Report format], page 6. Also
see Section 2.2.5 [Helpful hints], page 18.)

The default template contains your preconfigured ‘>Submitter-Id:’. send-pr attempts
to determine values for the ‘>Originator:’ and ‘>Organization:’ fields (see Section 1.4
[Problem Report format], page 6). send-pr will set the ‘>Originator:’ field to the value
of the NAME environment variable if it has been set; similarly, ‘>Organization:’ will be set
to the value of ORGANIZATION. send-pr also attempts to find out some information about
your system and architecture, and places this information in the ‘>Environment:’ field if it
finds any.

You may submit problem reports to different Support Sites from the default site by
specifying the alternate site when you invoke send-pr. See Section 2.2.3 [send-pr from
the shell], page 16. Each site has its own list of categories for which it accepts Problem
Reports.

send-pr also provides the mail header section of the template with default values in the
‘To:’, ‘From:’, and ‘Reply-To:’ fields. The ‘Subject:’ field is empty.

The template begins with a comment section:

SEND-PR: -*- send-pr -*-
SEND-PR: Lines starting with ‘SEND-PR’ will be removed
SEND-PR: automatically as well as all comments (the text
SEND-PR: below enclosed in ‘<’ and ‘>’).
SEND-PR:
SEND-PR: Please consult the document ‘Reporting Problems
SEND-PR: Using send-pr’ if you are not sure how to fill out
SEND-PR: a problem report.
SEND-PR:
SEND-PR: Choose from the following categories:

and also contains a list of valid >Category: values for the Support Site to whom you are
submitting this Problem Report. One (and only one) of these values should be placed in
the >Category: field.

The mail header is just below the comment section. Fill out the ‘Subject:’ field, if
it is not already completed using the value of ‘>Synopsis:’. The other mail header fields
contain default values.

Chapter 2: The gnats User Tools 15

To: support-site
Subject: complete this field
From: your-login@your-site
Reply-To: your-login@your-site
X-send-pr-version: send-pr 4.0-beta1

where support-site is an alias on your local machine for the Support Site you wish to submit
this PR to.

The rest of the template contains gnats fields. Each field is either automatically com-
pleted with valid information (such as your ‘>Submitter-Id:’) or contains a one-line in-
struction specifying the information that field requires in order to be correct. For example,
the ‘>Confidential:’ field expects a value of ‘yes’ or ‘no’, and the answer must fit on one
line; similarly, the ‘>Synopsis:’ field expects a short synopsis of the problem, which must
also fit on one line. Fill out the fields as completely as possible. See Section 2.2.5 [Helpful
hints], page 18, for suggestions as to what kinds of information to include.

In this example, words in italics are filled in with pre-configured information:

>Submitter-Id: your submitter-id
>Originator: your name here
>Organization:

your organization
>Confidential:<[yes | no] (one line)>
>Synopsis: <synopsis of the problem (one line)>
>Severity: <[non-critical | serious | critical](one line)>
>Priority: <[low | medium | high] (one line)>
>Category: <name of the product (one line)>
>Class: <[sw-bug | doc-bug | change-request | support]>
>Release: <release number (one line)>
>Environment:

<machine, os, target, libraries (multiple lines)>

>Description:
<precise description of the problem (multiple lines)>

>How-To-Repeat:
<code/input/activities to reproduce (multiple lines)>

>Fix:
<how to correct or work around the problem, if known
(multiple lines)>

When you finish editing the Problem Report, send-pr mails it to the address named in
the ‘To:’ field in the mail header. send-pr checks that the complete form contains a valid
‘>Category:’.

If your PR has an invalid value in one of the Enumerated fields (see Section 1.4
[Problem Report format], page 6), send-pr places the PR in a temporary file named
‘/tmp/pbadnnnn’ on your machine. nnnn is the process identification number given to
your current send-pr session. If you are running send-pr from the shell, you are prompted
as to whether or not you wish to try editing the same Problem Report again. If you are
running send-pr from Emacs, the Problem Report is placed in the buffer ‘*gnats-send*’;
you can edit this file and then submit it with C-c C-c.

16 Keeping Track

Any further mail concerning this Problem Report should be carbon-copied to the gnats
mailing address as well, with the category and identification number in the ‘Subject:’ line
of the message.

Subject: Re: PR category/gnats-id: original message subject

Messages which arrive with ‘Subject:’ lines of this form are automatically appended to the
Problem Report in the ‘>Audit-Trail:’ field in the order received.

2.2.2 Using send-pr from within Emacs

You can use an interactive send-pr interface from within gnu Emacs to fill out your
Problem Report. We recommend that you familiarize yourself with Emacs before using this
feature (see section “Introduction” in GNU Emacs).

Call send-pr with ‘M-x send-pr’.1 send-pr responds with a Problem Report template
preconfigured for the Support Site to which you are going to send the report.

You may also submit problem reports to different Support Sites from the default site.
To use this feature, invoke send-pr with

C-u M-x send-pr

send-pr prompts you for the name of a site. site is an alias on your local machine
which points to an alternate Support Site. The Emacs interface to gnats is described in a
separate section, See Section 2.5 [Emacs], page 27.

2.2.3 Invoking send-pr from the shell

send-pr [site]
[-f problem-report | --file problem-report]
[-t mail-address | --to mail-address]
[--request-id]
[-L | --list] [-P | --print]
[-V | --version] [-h | --help]

site is an alias on your local machine which points to an address used by a Support
Site. If this argument is not present, the default site is usually the site which you received
send-pr from, or your local site if you use gnats locally.

Invoking send-pr with no options calls the editor named in your environment variable
EDITOR on a default PR template. If the environment variable PR_FORM is set, its value
is used as a file name which contains a valid template. If PR_FORM points to a missing or
unreadable file, or if the file is empty, send-pr generates an error message and opens the
editor on a default template.

-f problem-report
--file problem-report

Specifies a file, problem-report, where a completed Problem Report already
exists. send-pr sends the contents of the file without invoking an editor. If
problem-report is ‘-’, send-pr reads from standard input.

1 If typing ‘M-x send-pr’ doesn’t work, see your system administrator for help loading ‘gnats.el’ into
Emacs.

Chapter 2: The gnats User Tools 17

-t mail-address
--to mail-address

Sends the PR to mail-address. The default is preset when send-pr is config-
ured. This option is not recommended ; instead, use the argument site on the
command line.

-c mail-address
--cc mail-address

Places mail-address in the Cc: header field of the message to be sent.

--request-id
Sends a request for a >Submitter-Id: to the Support Site.

-L
--list Prints the list of valid >Category: values on standard output. No mail is sent.

-s severity
--severity severity

Sets the initial value of the >Severity: field to severity.

-P
--print Displays the PR template. If the variable PR_FORM is set in your environment,

the file it specifies is printed. If PR_FORM is not set, send-pr prints the standard
blank form. If the file specified by PR_FORM doesn’t exist, send-pr displays an
error message. No mail is sent.

-V
--version

Displays the send-pr version number and a usage summary. No mail is sent.

-h
--help Displays a usage summary for send-pr. No mail is sent.

2.2.4 Submitting a Problem Report via direct e-mail

In addition to using send-pr, there is another way to submit a problem report. You can
simply send an e-mail message to the support site.

To do this, look at the address in the ‘To:’ field of the send-pr template. When you
send unformatted e-mail to this address, gnats processes the message as a new problem
report, filling in as many fields from defaults as it can:

Synopsis The ‘>Synopsis’ field is filled in by the ‘Subject:’ header.

Submitter ID
gnats will try to derive the ‘>Submitter’ field from the address in the ‘From:’
header.

Description
All of the text in the body of the e-mail message is put into the ‘>Description’
field. Each line of the text is indented by one space, indicating that it is "quoted
text" from the sender.

Other fields, such as category, version, severity, etc. are set to default values (if the
gnats administrator has set them).

18 Keeping Track

2.2.5 Helpful hints

There is no orthodox standard for submitting effective bug reports, though you might
do well to consult the section on submitting bugs for gnu gcc in section “Reporting Bugs”
in Using and Porting GNU CC, by Richard Stallman. This section contains instructions on
what kinds of information to include and what kinds of mistakes to avoid.

In general, common sense (assuming such an animal exists) dictates the kind of infor-
mation that would be most helpful in tracking down and resolving problems in software.
• Include anything you would want to know if you were looking at the report from the

other end. There’s no need to include every minute detail about your environment,
although anything that might be different from someone else’s environment should be
included (your path, for instance).

• Narratives are often useful, given a certain degree of restraint. If a person responsible
for a bug can see that A was executed, and then B and then C, knowing that sequence
of events might trigger the realization of an intermediate step that was missing, or
an extra step that might have changed the environment enough to cause a visible
problem. Again, restraint is always in order (“I set the build running, went to get a
cup of coffee (Columbian, cream but no sugar), talked to Sheila on the phone, and then
THIS happened. . .”) but be sure to include anything relevant.

• Richard Stallman writes, “The fundamental principle of reporting bugs usefully is this:
report all the facts. If you are not sure whether to state a fact or leave it out, state
it!” This holds true across all problem reporting systems, for computer software or
social injustice or motorcycle maintenance. It is especially important in the software
field due to the major differences seemingly insignificant changes can make (a changed
variable, a missing semicolon, etc.).

• Submit only one problem with each Problem Report. If you have multiple problems,
use multiple PRs. This aids in tracking each problem and also in analyzing the problems
associated with a given program.

• It never hurts to do a little research to find out if the bug you’ve found has already
been reported. Most software releases contain lists of known bugs in the Release Notes
which come with the software; see your system administrator if you don’t have a copy
of these.

• The more closely a PR adheres to the standard format, the less interaction is required
by a database administrator to route the information to the proper place. Keep in
mind that anything that requires human interaction also requires time that might be
better spent in actually fixing the problem. It is therefore in everyone’s best interest
that the information contained in a PR be as correct as possible (in both format and
content) at the time of submission.

2.3 Editing existing Problem Reports

Use edit-pr to make changes to existing PRs in the database. This tool can be invoked
both from a shell prompt or from within GNU Emacs using ‘M-x edit-pr’.

edit-pr first examines the PR you wish to edit and locks it if it is not already locked.
This is to prevent you from editing a PR at the same time as another user. If the PR you

Chapter 2: The gnats User Tools 19

wish to edit is already in the process of being edited, edit-pr tells you the name of the
person who owns the lock.

You may edit any non-readonly fields in the database. We recommend that you avoid
deleting any information in the Text and MultiText fields (such as ‘>Description:’ and
‘>How-To-Repeat:’ (see Section 1.4 [Problem Report format], page 6). We also recommend
that you record the final solution to the problem in the ‘>Fix:’ field for future reference.

After the PR has been edited, the PR is then resubmitted to the database, and the index
is updated (see Section 4.5.1 [The index file], page 61). For information on pr-edit, the
main driver for edit-pr, see Section 4.7 [Internal utilities], page 65.

If you change a field that requires a reason for the change, such as the ‘>Responsible:’
or ‘>State:’ fields in the default configuration, edit-pr prompts you to supply a reason
for the change. A message is then appended to the ‘>Audit-Trail:’ section of the PR with
the changed values and the change reason.

Depending on how the database is configured, editing various fields in the PR may also
cause mail to be sent concerning these changes. In the default configuration, any fields
that generate ‘>Audit-Trail:’ entries will also cause a copy of the new ‘>Audit-Trail:’
message to be sent.

2.3.1 Invoking edit-pr from the shell

The usage for edit-pr is:
edit-pr [-V | --version] [-h | --help]

[-d database | --database database] PR Number

Network-mode-only options:
[--host host | -H host] [--port port]
[--user user | -v user]
[--passwd passwd | -w passwd]

The options have the following meaning:

-h, --help
Prints a brief usage message for edit-pr.

-V, --version
Prints the version number for edit-pr.

-d, --database
Specifies the database containing the PR to be edited; if no database is specified,
the database named ‘default’ is assumed. This option overrides the database
specified in the GNATSDB environment variable.

--host host, -H host
Specifies the hostname of the gnatsd server to communicate with. This overrides
the value in the GNATSDB environment variable.

--port port
Specifies the port number of the gnatsd server to communicate with. This
overrides the value in the GNATSDB environment variable.

20 Keeping Track

--user user, -v user
Specifies the username to login with when connecting to the gnatsd server. This
overrides the value in the GNATSDB environment variable.

--passwd passwd, -w passwd
Specifies the password to login with when connecting to the gnatsd server. This
overrides the value in the GNATSDB environment variable.

edit-pr calls the editor specified in your environment variable EDITOR on a temporary
copy of that PR. (If you don’t have the variable EDITOR defined in your environment, the
default editor vi is used.)

Edit the PR, changing any relevant fields or adding to existing information. When you
exit the editor, edit-pr prompts you on standard input for a reason if you have changed a
field that requires specifying a reason for the change.

2.4 Querying the database

Obtain information from the database by using the program query-pr. query-pr uses
search parameters you provide to find matching Problem Reports in the database. You can
invoke query-pr from the shell or from within Emacs. query-pr uses the same arguments
whether it is invoked from the shell or from Emacs.

PRs may be selected via the use of the --expr option, directly by number, or by the use
of the (now deprecated) field-specific query operators.

By default, query options are connected with a logical AND. For example,

query-pr --category=foo --responsible=bar

only prints PRs which have a Category field of ‘foo’ and a Responsible field of ‘bar’.

The --or option may be used to connect query options with a logical OR. For example,

query-pr --category=baz --or --responsible=blee

prints PRs which have either a Category field of ‘baz’ or a Responsible field of ‘blee’.

It should be emphasized, however, that the use of these field-specific options is strongly
discouraged, since they exist only for compatibility with older versions of gnats and are
likely to be deleted in the next release. The expressions specified by the --expr option are
much more flexible (see below).

2.4.1 Invoking query-pr

From the shell, simply type query-pr, followed by any search parameters you wish to
exercise. From Emacs, type M-x query-pr. query-pr prompts you for search parameters
in the minibuffer.

query-pr can also be accessed by electronic mail, if your version of gnats is configured
for this. To use this feature, simply send mail to the address ‘query-pr@your-site’ with
command line arguments or options in the ‘Subject:’ line of the mail header. gnats
replies to your mail with the results of your query. The default settings for the query-pr
mail server are

Chapter 2: The gnats User Tools 21

--restricted --state="open|analyzed|feedback|suspended"

To override the ‘--state’ parameter, specify ‘--state=state’ in the Subject: line of the
mail header. You can not query on confidential Problem Reports by mail.

The usage for query-pr is:
query-pr [--debug | -D] [--help | -h] [--version | -V]

[--output file | -o file] [--list-databases]
[--list-fields] [--list-input-fields]
[--responsible-address address] [--field-type type]
[--field-description description]
[--valid-values values] [--format format | -f format]
[--full | -F] [--summary | -q]
[--database database | -d database] [--and | -&]
[--or | -|] [--expr expr] [PR Number]

Non-network-mode options:
[--print-sh-vars] [--print-directory-for-database]

Network-mode-only options:
[--host host | -H host] [--port port]
[--user user | -v user] [--passwd passwd | -w passwd]

Deprecated Options:
[--list-categories | -j] [--list-states | -T]
[--list-responsible | -k] [--list-submitters | -l]
[--category category | -c category]
[--synopsis synopsis | -y synopsis]
[--confidential confidential | -C confidential]
[--multitext multitext | -m multitext]
[--originator originator | -O originator]
[--release release | -A release]
[--class class | -L class] [--cases cases | -E cases]
[--quarter quarter | -Q quarter]
[--keywords keywords | -K keywords]
[--priority priority | -p priority]
[--responsible responsible | -r responsible]
[--restricted | -R] [--severity severity | -e severity]
[--skip-closed | -x] [--sql | -i] [--sql2 | -I]
[--state state | -s state]
[--submitter submitter | -S submitter]
[--text text | -t text]
[--required-before date | -u date]
[--required-after date | -U date]
[--arrived-before date | -b date]
[--arrived-after date | -a date]
[--modified-before date | -B date]
[--modified-after date | -M date]
[--closed-before date | -z date]
[--closed-after date | -Z date]

The options have the following meaning:

22 Keeping Track

--help, -h
Prints a help message.

--version, -V
Displays the program version to stdout.

--output file, -o file
The results of the query will be placed in this file.

--database database, -d database
Specifies the database to be used for the query. If no database is specified,
the database named default is assumed. (This option overrides the database
specified in the GNATSDB environment variable; see Section 2.1 [Environment],
page 13 for more information.)

--list-categories, -j
Lists the available PR categories for the selected database.

--list-states, -T
Lists the valid PR states for PRs in this database.

--list-responsible, -k
Lists the users that appear in the database’s responsible list.

--list-submitters, -l
Lists the valid submitters for this database.

The previous –list-* options are deprecated and may be removed in future releases of
gnats; their functionality can be replaced with

query-pr --valid-values field

where field is one of ‘Category’, ‘Class’, ‘Responsible’, ‘Submitter-Id’, or ‘State’.

--list-databases
Lists the known databases.

--list-fields
Lists the entire set of field names for PRs in the selected database.

--list-input-fields
Lists the fields that should be provided when creating a new PR for the
currently-specified database. The fields are listed in an order that would make
sense when used in a template or form.

--field-type field
Returns the data type contained in PR field field. The current set of data
types includes ‘text’, ‘multitext’, ‘enum’, ‘multienum’, ‘integer’, ‘date’, and
‘text-with-regex-qualifier’.

--field-description field
Returns a human-readable description of the intended purpose of field.

--valid-values field
For fields of type ‘enum’, a list of valid values (one per line) is returned. Other-
wise, a regular expression is returned that describes the legal values in field.

Chapter 2: The gnats User Tools 23

--responsible-address name
The mail address of name is returned; name is assumed to be a name either
appearing in the database’s responsible list, or is otherwise a user on the system.

--print-sh-vars
A set of ‘/bin/sh’ variables is returned that describe the selected database.
They include:
GNATSDB

The name of the currently-selected database.
GNATSDB_VALID

Set to 1 if the selected database is valid.
GNATSDBDIR

The directory where the database contents are stored.
DEBUG_MODE

Set to 1 if debug mode has been enabled for the database.
DEFAULTCATEGORY

The default category for PRs in the database.
DEFAULTSTATE

The default state for PRs in the database.

--print-directory-for-database
Returns the directory where the selected database is located.

--format format, -f format
Used to specify the format of the output PRs, See Section 2.4.2 [Formatting
query-pr output], page 24 for a complete description.

--full, -F
When printing PRs, the entre PR is displayed. This is exactly equivalent to

query-pr --format full

--summary, -q
When printing PRs, a summary format is used. This is exactly equivalent to

query-pr --format summary

--debug, -D
Enables debugging output for network queries.

--host host, -H host
Specifies the hostname of the gnatsd server to communicate with. This overrides
the value in the GNATSDB environment variable.

--port port
Specifies the port number of the gnatsd server to communicate with. This
overrides the value in the GNATSDB environment variable.

--user user, -v user
Specifies the username to login with when connecting to the gnatsd server. This
overrides the value in the GNATSDB environment variable.

24 Keeping Track

--passwd passwd, -w passwd
Specifies the password to login with when connecting to the gnatsd server. This
overrides the value in the GNATSDB environment variable.

--and, -&, --or, -|
These options are used when connecting multiple query operators together.
They specify whether the previous and subsequent options are to be logically
ANDed or logically ORed.

--expr expr
Specifies a query expression to use when searching for PRs. See Section 2.4.3
[Query expressions], page 25.

The remaining deprecated options are not described here, since their use is fairly obvious
and their functionality is completely replaced by the use of the --expr option.

2.4.2 Formatting query-pr output

Printing formats for PRs are in one of three forms:

formatname
This is a named format which is described by the database (specifically, these
formats are described in the ‘dbconfig’ file associated with the database). The
default configuration contains five such formats: ‘standard’, ‘full’, ‘summary’,
‘sql’, and ‘sql2’.
The first three are the ones most commonly used when performing queries.
standard is the format used by default if no other format is specified.
Use of the latter two are discouraged; they are merely kept for historical pur-
poses. Other named formats may have been added by the database adminis-
trator.

fieldname A single field name may appear here. Only the contents of this field will be
displayed.

"printf string" fieldname fieldname ...
This provides a very flexible mechanism for formatting PR output. (The for-
matting is identical to that provided by the named formats described by the
database configuration, See Section 4.3.5 [Named query definitions], page 52.
The printf string can contain the following % sequences:
%[positionalspecifiers]s: Prints the field as a string. The positional spec-
ifiers are similar to those of printf, as +, - and digit qualifiers can be used to
force a particular alignment of the field contents.
%[positionalspecifiers]S: Similar to %s, except that the field contents are
terminated at the first space character.
%[positionalspecifiers]d: Similar to %s, except that the field contents are
written as a numeric value. For integer fields, the value is written as a number.
For enumerated fields, the field is converted into a numeric equivalent (i.e. if
the field can have two possible values, the result will be either 1 or 2). For date
fields, the value is written as seconds since Jan 1, 1970.

Chapter 2: The gnats User Tools 25

%F: The field is written as it would appear within a PR, complete with field
header.
%D: For date fields, the date is written in a standard gnats format.
%Q: For date fields, the date is written in an arbitrary "SQL" format.

2.4.3 Query expressions

Query expressions are used to select specific PRs based on their field contents. The general
form is

fieldname|"value" operator fieldname|"value" [booleanop ...]

value is a literal string or regular expression; it must be surrounded by double quotes,
otherwise it is interpreted as a fieldname.

fieldname is the name of a field in the PR.
operator is one of:

= The value of the left-hand side of the expression must exactly match the regular
expression on the right-hand side of the expression. See Appendix D [Querying
using regular expressions], page 97.

~ Some portion of the left-hand side of the expression must match the regular
expression on the right-hand side.

== The value of the left-hand side must be equal to the value on the right-hand
side of the expression.
The equality of two values depends on what type of data is stored in the field(s)
being queried. For example, when querying a field containing integer values,
literal strings are interpreted as integers. The query expression

Number == "0123"

is identical to
Number == "123"

as the leading zero is ignored. If the values were treated as strings instead of
integers, then the two comparisons would return different results.

!= The not-equal operator. Produces the opposite result of the == operator.

<,> The left-hand side must have a value less than or greater than the right-hand
side. Comparisons are done depending on the type of data being queried; in
particular, integer fields and dates use a numeric comparison, and enumerated
fields are ordered depending on the numeric equivalent of their enumerated
values.

booleanop is either ‘|’ (logical or), or ‘&’ (logical and). The query expression
Category="baz" | Responsible="blee"

selects all PRs with a Category field of ‘baz’ or a Responsible field of ‘blee’.
The not operator ‘!’ may be used to negate a test:

! Category="foo"

searches for PRs where the category is not equal to the regular expression foo.
Parentheses may be used to force a particular interpretation of the expression:

26 Keeping Track

!(Category="foo" & Submitter-Id="blaz")

skips PRs where the Category field is equal to ‘foo’ and the Submitter-Id field is equal to
‘blaz’. Parentheses may be nested to any arbitrary depth.

Fieldnames can be specified in several ways. The simplest and most obvious is just a
name:

Category="foo"

which checks the value of the category field for the value foo.
A fieldname qualifier may be prepended to the name of the field; a colon is used to

separate the qualifier from the name. To refer directly to a builtin field name:
builtin:Number="123"

In this case, ‘Number’ is interpreted as the builtin name of the field to check. (This is
useful if the fields have been renamed. For further discussion of builtin field names, see
Section 4.3 [The dbconfig file], page 46.

To scan all fields of a particular type, the fieldtype qualifier may be used:
fieldtype:Text="bar"

This searches all text fields for the regular expression ‘bar’.
Note that it is not required that the right-hand side of the expression be a literal string.

To query all PRs where the PR has been modified since it was closed, the expression
Last-Modified != Closed-Date

will work; for each PR, it compares the value of its Last-Modified field against its Closed-
Date field, and returns those PRs where the values differ. However, this query will also
return all PRs with empty Last-Modified or Closed-Date fields. To further narrow the
search:

Last-Modified != Closed-Date & Last-Modified != "" & Closed-Date != ""

In general, comparing fields of two different types (an integer field against a date field, for
example) will probably not do what you want.

Also, a field specifier may be followed by the name of a subfield in braces:
State[type] != "closed"

or even
builtin:State[type] != "closed"

Subfields are further discussed in Section 4.3 [The dbconfig file], page 46.

2.4.4 Example queries

The following simple query:
query-pr --expr ’Category~"rats" & State~"analyzed"

& Responsible~"fred"’

yields all PRs in the database which contain the field values:
>Category: rats and
>Responsible: fred and
>State: analyzed

The following query:

Chapter 2: The gnats User Tools 27

query-pr --expr ’State~"open|analyzed"’

yields all PRs in the database whose ‘>State:’ values match either ‘open’ or ‘analyzed’
(see Appendix D [Querying using regular expressions], page 97. This search is useful as a
daily report that lists all Problem Reports which require attention.

The following query:
query-pr --expr ’fieldtype:Text="The quick.*brown fox"’

yields all PRs whose Text fields contain the text ‘The quick’ followed by ‘brown fox’
within the same field. See Appendix D [Querying using regular expressions], page 97, which
also contains further useful examples of query expressions.

2.5 The Emacs interface to gnats

Emacs interface to gnats provides basic access to gnats databases, i.e. sending, editing,
and querying Problem Reports. It also defines a simple major mode for editing ‘dbconfig’
files.

This section provides an overview of using gnats with Emacs. It does not describe the
use of Emacs itself, for detailed instructions on using Emacs, see section “Top” in GNU
Emacs. For installation instructions of the gnats Emacs mode, see Section 3.2 [Installing
utils], page 34.

Please note the Emacs interface was completely rewritten between gnats 3 and gnats 4.
It now uses gnatsd, Appendix B [gnatsd], page 79, exclusively for its operations and uses
modern Emacs features like faces. Its features are not complete though, you can send
your suggestions and patches to the appropriate gnats mailing list, Appendix E [Support],
page 99.

2.5.1 Viewing Problem Reports

To view a particular Problem Report, use the command M-x view-pr. It asks for a
Problem Report number and displays that Problem Report.

The displayed buffer is put in the view mode, section “Misc File Ops” in GNU Emacs. If
you decide to edit the displayed Problem Report, use the command e (gnats-view-edit-
pr).

gnats-view-mode-hook
Hook run when gnats-view-mode is entered.

2.5.2 Querying Problem Reports

Querying the database is performed by the M-x query-pr command. The command
prompts for the query expression, Section 2.4.3 [Query expressions], page 25, and displays
a buffer with the list of the matching Problem Reports.

The list of the Problem Reports is displayed in the ‘summary’ query format, Section 2.4.2
[Formatting query-pr output], page 24. Currently, the display format cannot be changed
and it must output each Problem Report’s number in the first column.

The Problem Report list buffer is put in the view mode, section “Misc File Ops” in GNU
Emacs. You can use most of the standard view mode commands in it. Additionally, the
following special commands are available:

28 Keeping Track

v

RET

mouse-2 View the current Problem Report (gnats-query-view-pr), Section 2.5.1
[Emacs viewing], page 27.

e Edit the current Problem Report (gnats-query-edit-pr), Section 2.5.4
[Emacs editing], page 29.

g Update the Problem Report list (gnats-query-reread). The last performed
query is executed again and the buffer is filled with the new results.

G Perform new query (query-pr).

s Send new Problem Report (send-pr), Section 2.5.3 [Emacs submitting],
page 28.

D Change the current database (gnats-change-database), Section 2.5.6 [Emacs
and databases], page 30.

q Bury buffer, the buffer is put at the end of the list of all buffers. This is useful
for quick escape of the buffer, without killing it.

If the value of the variable gnats-query-reverse-listing is non-nil, the listing appears in
the reversed order, i.e. with the Problem Reports of the highest number first, in the buffer.

Similarly to other gnats Emacs modes, there is a hook available for the Problem Report
list.

gnats-query-mode-hook
Hook run when gnats-query-mode is entered.

2.5.3 Submitting new Problem Reports

You can submit new Problem Reports with the command M-x send-pr. The command
puts you to the problem editing buffer, Section 2.5.4 [Emacs editing], page 29. The buffer
is prefilled with the initial report fields and their default values, if defined. You can use the
usual Problem Report editing commands, Section 2.5.4 [Emacs editing], page 29. When
you have filled in all the fields, you can send the Problem Report by presing C-c C-c.

If you run M-x send-pr with a prefix argument, it runs the gnats-change-database
command before putting you to the editing buffer, Section 2.5.6 [Emacs and databases],
page 30.

You can set the following variables to get some fields pre-filled:

gnats-default-organization
Default value of the ‘Organization’ field used in new Problem Reports.

gnats-default-submitter
Default value of the ‘Submitter-Id’ field used in new Problem Reports.

Chapter 2: The gnats User Tools 29

2.5.4 Editing Problem Reports

To edit a particular Problem Report, use the command M-x edit-pr. It asks for a
Problem Report number and puts the given Problem Report in the editing buffer. See
Section 2.5.5 [Emacs editing buffer], page 29, for information how to edit the Problem
Report in the buffer and how to submit your changes.

Note you can also start editing of a selected Problem Report directly from within the
viewing buffer, Section 2.5.1 [Emacs viewing], page 27, or the query result buffer, Sec-
tion 2.5.2 [Emacs querying], page 27.

2.5.5 The Problem Report editing buffer

When you invoke a Problem Report editing command, the Problem Report is put into
a special editing buffer. The Problem Report is formatted similarly to the query-pr -F
output, Section 2.4.2 [Formatting query-pr output], page 24. Field identifiers are formatted
as

>Field:

with the text of the field following the identifier on the same line for single-line fields or
starting on the next line for multi-line fields.

The Problem Report editing mode tries to prevent you from violating the Problem
Report format and the constraints put on the possible field values. Generally, you can
use usual editing commands, some of them have a slightly modified behavior though. (If
you encounter a very strange behavior somewhere, please report it as a bug, Appendix E
[Support], page 99.)

You can move between fields easily by pressing the TAB (gnats-next-field) or M-TAB

(gnats-previous-field) keys.

The field tags are read-only and you cannot edit them nor delete them. If you want to
“remove” a field, just make its value empty.

Editing a field value depends on the type of the edited field, Section 4.3.3 [Field
datatypes], page 49. For text fields, you can edit the value directly, assuming you preserve
the rule about single-line and multi-line values mentioned above.

For enumerated fields, you cannot edit the value directly. You can choose it from the
list of the allowed values, either from the menu popped up by pressing the middle mouse
button or from within minibuffer by pressing any key on the field’s value. If the pressed
key matches any of the allowed field values, that value is put as the default value after
the minibuffer prompt. You can also cycle through the allowed field values directly in the
editing buffer using the SPACE key. Enumerated field values are marked by a special face to
not confuse you; you must have enabled font lock mode to benefit from this feature, section
“Font Lock” in GNU Emacs.

Some field values can be read-only, you cannot edit them at all.

Once you have edited the Problem Report as needed, you can send it to the server with
the C-c C-c command (gnats-apply-or-submit). Successful submission is reported by a
message and the buffer modification flag in mode line is cleared. Then you can either kill
the buffer or continue with further modifications.

30 Keeping Track

gnats-edit-mode-hook
Hook run when gnats-edit-mode is entered.

2.5.6 Changing the database

By default, the Emacs interface connects to the default database, Section 4.2 [databases
file], page 45. If you want to connect to another database, use the command M-x gnats-

change-database. It will ask you for the database name to use, server and port it can be
accessed on, and your login name.

If you want to use the gnatsd command, Appendix B [gnatsd], page 79, directly, without
connecting to a remote server or the localhost connection port, provide your local file system
full path to gnatsd as the server name. Port number does not matter in this case.

If the database requires a password to allow you the access to it, you are prompted for
the password the first time you connect to the database. If you provide an invalid password,
you cannot connect to the database anymore and you have to run the M-x gnats-change-

database command again.

2.5.7 dbconfig mode

The Emacs interface defines a simple major mode gnats-dbconfig-mode for editing
‘dbconfig’ files, Section 4.3 [dbconfig file], page 46. It defines basic mode attributes like
character syntax and font lock keywords, it does not define any special commands now.

gnats-dbconfig-mode-hook
Hook run when gnats-dbconfig-mode is entered.

2.5.8 Other commands

M-x unlock-pr

Ask for a Problem Report number and unlock that Problem Report. This
function is useful if connection to a gnats server was interrupted during an
editing operation and further modifications of the Problem Report are blocked
by a stealth lock.

2.5.9 Customization

All the user variables can be customized in the customization group gnats, section “Easy
customization” in GNU Emacs.

Chapter 3: Installing gnats 31

3 Installing gnats

See also Appendix A [Where the tools and utilities reside], page 73.

There are several steps you need to follow to fully configure and install gnats on your
system. You need root access in order to create a new account for gnats and to install the
gnats utilities. You may need root access on some systems in order to set up mail aliases
and to allow this new account access to cron and at.

If you are updating an older version of gnats rather than installing from scratch, see
Section 3.8 [Upgrading from older versions], page 38.

gnats installation relies on two other freely available software packages, which should be
installed before you go on to configure and build gnats. These are gnu make and Texinfo.
Both are available from the gnu FTP site at ftp://ftp.gnu.org.

To build gnats, you must:

• Run configure, with correct options if the defaults are unsuitable for your site. See
Section 3.1 [Configuring and compiling the software], page 32. Default installation
locations are in Appendix A [Where gnats lives], page 73.

• Compile the gnats programs on your system. See Section 3.1 [Configuring and com-
piling the software], page 32.

• Create an initial database by using the mkdb command. See Section 3.3 [Setting up the
default database], page 35.

• Set up periodic jobs, using cron, to handle Problem Reports arriving by mail. See
Section 3.4 [Setting up periodic jobs], page 36.

• Set up mail aliases for gnats. See Section 3.5 [Setting up mail aliases], page 36.

• Install the gnats tools and utilities locally, and install the user tools (query-pr, edit-
pr, send-pr) on every machine in your local network. See Section 3.7 [Installing the
user tools], page 38.

• Install the gnats daemon ‘gnatsd’. See Section 3.6 [Installing the daemon], page 37.

• Update the local configuration files

dbconfig categories submitters
responsible gnatsd.access states
classes addresses

in ‘DATABASEDIR/gnats-adm’, as well as the files

gnatsd.host_access databases

in ‘SYSCONFDIR/gnats’ (usually ‘/usr/local/etc/gnats’).

• If there are people outside your organization who will be submitting PRs or who are
supposed to be able to query and/or edit PRs, you may need to instruct them to
obtain and build the GNATS tools query-pr, edit-pr and send-pr for their systems.
However, for many sites, setting up a remote access interface to GNATS, such as
Gnatsweb is a better solution since this requires no configuration on the remote side.

32 Keeping Track

3.1 Configuring and compiling the software

1. First, unpack your distribution. We provide source code in a tar file which was com-
pressed using gzip. The code can be extracted into a directory unpackdir using

cd unpackdir
gunzip gnats-4.0-beta1.tar.gz
tar xvf gnats-4.0-beta1.tar

The sources reside in a directory called ‘gnats-4.0-beta1’ when unpacked. We call
this the top level of the source directory, or srcdir. The sources for the gnats tools
are in the subdirectory ‘gnats-4.0-beta1/gnats/*’. Lists of files included in the
distribution are in each directory in the file ‘MANIFEST’.

2. As of gnats version 4, having Emacs installed on the gnats server is no longer a
requirement. If you do not have Emacs installed, disregard this step altogether.
You may wish to alter the installation directory for the Emacs lisp files.
If your Emacs lisp library is not in ‘prefix/share/emacs/site-lisp’, edit
the file srcdir/gnats/Makefile.in. Change the variable lispdir from
‘prefix/emacs/site-lisp’ to the directory containing your Emacs lisp library. For
information on prefix, see Section A.1 [prefix], page 73.

3. Create an account for the gnats user. You can actually name this user whatever you
want to, as long as it is a valid username on your system, but we strongly recommend
that you call the user gnats. If you do decide to give it some other name, remember
to use the option --with-gnats-user when running configure below. Below, we will
anyway refer to this user by the name gnats.
This user must have an entry in the file ‘/etc/passwd’. As for ordinary users, cre-
ate a standard home directory for the gnats user. The default PATH for this user
should contain ‘exec-prefix/bin’ and ‘exec-prefix/libexec/gnats’. The exec-prefix
value is configurable with the --exec-prefix configure option described below, but
for standard installations, these two directories correspond to ‘/usr/local/bin’ and
‘/usr/local/libexec/gnats’.

4. Run configure. You can nearly always run configure with the simple command
./configure

and the “Right Thing” happens:
• gnats is configured in the same directory you unpacked it in;
• when built, gnats runs on the machine you’re building it on;
• when installed, files are installed under ‘/usr/local’ (see Appendix A [Where

gnats lives], page 73).
• all gnats utilities operate on the default database, assumed to be named default

and to be located in ‘/usr/local/com/default’, unless you invoke the utilities
with -d databasename or --directory=databasename, or set the GNATSDB en-
vironment variable to point to some other database.

The most common options to configure are listed below:
configure [--prefix=prefix]

[--exec-prefix=exec-prefix]
[--with-gnats-service=service-name]

Chapter 3: Installing gnats 33

[--with-gnats-user=username]
[--with-gnatsd-user-access-file=path]
[--with-gnatsd-host-access-file=path]
[--with-gnats-dblist-file=path]
[--with-gnats-default-db=path]
[--with-kerberos] [--with-krb4]
[--verbose]

--prefix=prefix
All host-independent programs and files are to be installed under prefix.
(Host-dependent programs and files are also installed in prefix by default.)
The default for prefix is ‘/usr/local’. See Appendix A [Where gnats
lives], page 73.

--exec-prefix=exec-prefix
All host-dependent programs and files are to be installed under exec-prefix.
The default for exec-prefix is prefix. See Appendix A [Where gnats lives],
page 73.

--with-gnats-service=service-name
Set service-name to be the gnats network service. Default name is sup-
port.

--with-gnats-user=username
Set username to be the user name for gnats. Default username is gnats.

--with-gnatsd-user-access-file=path
Set global (across all databases) gnatsd user access file to path. Default is
‘/usr/local/etc/gnats/gnatsd.access’. Per-database user access per-
missions are set in a ‘gnatsd.access’ file in the ‘gnats-adm’ subdirectory
of each database.

--with-gnatsd-host-access-file=path
Set global (across all databases) gnatsd host access file to path. Default
is ‘/usr/local/etc/gnats/gnatsd_host.access’. There is currently no
way to specify host access permissions on a per-database basis.

--with-gnats-dblist-file=path
Specify the file containing the list of databases.

Default is ‘prefix/etc/gnats/databases’.

--with-gnats-default-db=path
Specify the default database to use when gnats tools are invoked without
the -d or --databasename option, and when the GNATSDB envrionment
variable hasn’t been set. Default is ‘/prefix/com/gnatsdb’.

--with-kerberos
Include code for Kerberos authentication.

--with-krb4
Support Kerberos 4.

34 Keeping Track

--verbose
Give verbose output while configure runs.

configure supports several more options which allow you to specify in great detail
where files are installed. For a complete list of options, run ./configure --help in
the source directory.
You can build gnats in a different directory (objdir) from the source code by calling
the configure program from the new directory, as in

mkdir objdir
cd objdir
srcdir/configure ...

By default, make compiles the programs in the same directory as the sources (srcdir).
5. Make sure you have gnu make, then run

make all info

from the directory where configure created a ‘Makefile’ (this is objdir if you used it,
otherwise srcdir.) These targets indicate:

all Compile all programs

info Create ‘info’ files using makeinfo.

3.2 Installing the utilities

The following steps are necessary for a complete installation. You may need root access
for these.
1. Install the utilities by invoking

make install install-info

These targets indicate:

install Installs all programs into their configured locations (see Appendix A
[Where gnats lives], page 73).

install-info
Installs ‘info’ files into their configured locations (see Appendix A [Where
gnats lives], page 73).

After you have installed gnats, you can remove the object files with
make clean

2. If you do not have Emacs installed on your gnats server, this step should be skipped.
Place the following lines in the file ‘default.el’ in your Emacs lisp library, or instruct
your local responsible parties to place the lines in their ‘.emacs’:

(autoload ’send-pr "gnats"
"Command to create and send a problem report." t)

(autoload ’edit-pr "gnats"
"Command to edit a problem report." t)

(autoload ’view-pr "gnats"
"Command to view a problem report." t)

(autoload ’query-pr "gnats"

Chapter 3: Installing gnats 35

"Command to query information about problem reports." t)
(autoload ’unlock-pr "gnats"

"Unlock a problem report." t)
(autoload ’gnats-dbconfig-mode "gnats"
"Major mode for editing the ‘dbconfig’ GNATS configuration file." t)

(add-to-list ’auto-mode-alist ’("\\<dbconfig$" . gnats-dbconfig-mode))

3.3 Installing the default database

For the following steps, log in as the user gnats.

We are now going to initialize the default gnats database. Run the following command:

mkdb default

This creates a database named default, with all its data stored below the
directory ‘prefix/com/gnatsdb’, in a default installation this corresponds to
‘/usr/local/com/gnatsdb’. If you specified the --with-gnats-default-db option
when running configure, the default database will be created under the directory you
specified instead. mkdb creates the database directory itself, together with three different
subdirectories1:

• A directory for the mandatory gnats category pending.

• A ‘gnats-queue’ directory for queueing new messages to gnats before they are pro-
cessed by file-pr.

• The administrative directory ‘gnats-adm’. This directory is populated with default
configuration files from the ‘prefix/etc/gnats/defaults’ directory.

The next configuration step is to edit the default files copied to the database’s
‘gnats-adm’ directory by mkdb.

The default ‘dbconfig’ file installed by mkdb provides a good basis for many gnats
databases. The default file causes similar behaviour to the 3.x versions of gnats. However,
even if this might be precisely what you want, you should still go through the file and check
that the default settings suit your needs. See Section 4.3 [The ‘dbconfig’ file], page 46.

Then edit the files ‘categories’, ‘responsible’, and ‘submitters’ in the ‘gnats-adm’
directory (see Section 4.4 [Other database-specific config files], page 57) to reflect your local
needs. For special configurations, you may also have to edit the ‘states’ and ‘classes’
files.

If you used the --with-gnats-default-db option in the pre-build configure to
change the location of the default database, you need to edit the ‘databases’ config
file, see Section 4.2 [The ‘databases file’], page 45. This file is by default located
in the ‘prefix/etc/gnats’ directory, but may have been changed by the option
--with-gnats-dblist-file option during configure.

1 Upgraders from older versions of gnats should note that category directories are now created “on-the-fly”
as needed by default.

36 Keeping Track

3.4 Setting up periodic jobs

Allow the new user gnats access to cron and at. To do this, add the name
gnats to the files ‘cron.allow’ and ‘at.allow’, which normally reside in the directory
‘/var/spool/cron’. If these files do not exist, make sure gnats does not appear in either
of the files ‘cron.deny’ and ‘at.deny’ (in the same directory). If you changed the name of
the gnats user during configure, remember to substitute as appropriate in the previous
steps.

Create a crontab entry that periodically runs the program queue-pr with the ‘--run’
option (see Section 4.7.1 [queue-pr], page 65). For example, to run ‘queue-pr --run’ every
ten minutes, create a file called ‘.mycron’ in the home directory of the user gnats which
contains the line:

0,10,20,30,40,50 * * * * exec-prefix/libexec/gnats/queue-pr --run

(Specify the full path name for queue-pr.) Then run
crontab .mycron

See the man pages for cron and crontab for details on using cron.

3.5 Setting up mail aliases

The following mail aliases must be added on the machine where the gnats server is
installed. The instructions below are for Sendmail or Sendmail-like mail systems. If these
instructions don’t fit your system, particularly if you do not have an ‘aliases’ file, ask your
mail administrator for advice.

The following aliases should be placed in the file ‘/etc/aliases’. Yoy may need root
access to add these aliases:
• Create an alias for the gnats administrator. This address should point to the address

of the person in charge of administrating gnats:
gnats-admin: address

• Create an alias to redirect incoming Problem Reports. This alias should redirect in-
coming mail via a pipe to the program ‘queue-pr -q’. For example, if Problem Reports
coming to your site are to arrive at the address ‘bugs@your.company.com’, create an
alias to the effect of:

bugs: "| exec-prefix/libexec/gnats/queue-pr -q"

This places incoming Problem Reports in the ‘gnats-queue’ directory of your database.
Remember to fill in the full path of the queue-pr command as appropriate for your
installation.

• You may also wish to forward a copy of each incoming Problem Report to a log. This
can be accomplished with something like:

bug-q: "| exec-prefix/libexec/gnats/queue-pr -q"
bug-log: /some/path/bugs.log
bugs: bug-q, bug-log

This configuration archives incoming Problem Reports in the file ‘bug.log’, and also
feeds them to the program queue-pr. (Remember, ‘bug.log’ needs to be world-
writable, and should be pruned regularly; see Chapter 4 [gnats Administration],

Chapter 3: Installing gnats 37

page 43.) In order for the log file to protect fully against data loss in case a disk
runs full, try to place it on a different disk volume than the gnats database.

• If you want your users to be able to query the database by mail, use the following alias:
query-pr: "| exec-prefix/libexec/gnats/mail-query"

The mail-query program uses ‘--restricted’ to search on the database, and by
default only searches for PRs that aren’t closed (see Section 2.4 [Querying the database],
page 20).

3.6 Installing the daemon

By default, the daemon and clients are set to use port 1529. Add the line
support 1529/tcp # GNATS

to your ‘/etc/services’ file. If you want a different service name, configure gnats with
--with-gnats-service=servicename

In your ‘inetd.conf’ file, add the line
support stream tcp nowait gnats /usr/local/libexec/gnats/gnatsd gnatsd

adjusting the path accordingly if you used configure options to make changes to the defaults.
To make inetd start spawning the gnats daemon when connected on that port, send it a
hangup signal (HUP).

Some operating systems have replaced inetd with the more modern xinetd. Instead
of editing ‘inetd.conf’, you should create the file ‘/etc/xinetd.d/support’, containing
something like the following:

service support
{

disable=no
socket_type=stream
protocol=tcp
wait=no
user=gnats
server=/usr/local/libexec/gnats/gnatsd
server_args=gnatsd

}

If you specified a different service name when running configure, you need to give the
file the same name as the service name, and you need to adjust the service line above. If
the --prefix or --exec-prefix options were passed to configure, adjust the server line
above, and if you used the --with-gnats-user option, adjust the user line.

Then restart xinetd to make the new configuration current.
If you use an Internet superserver different from inetd or xinetd, please refer to its

documentation for information how to configure it.
At this point, you will probably want to set the access permissions of the different hosts

that are going to be accessing your databases. The access permissions can currently only be
set on a global scale (that is, across all the databases on a gnats server). The location and
name of the global host access configuration file can be set during the pre-build configure as
shown above, but by default the file is ‘/usr/local/etc/gnats/gnatsd_host.access’. It

38 Keeping Track

lists the hosts allowed to access your server, and what their default access levels are. Each
line in the file denotes one server, or one part of a network domain. There are three fields
on each line, but only two are currently used. To grant all hosts from the domain site.com
edit access, use this line:

site.com:edit

If you run a gnats web interface or similar tool on the same machine as the server is
running on, you probably want to grant localhost edit access:

localhost:edit

If you are using Kerberos, the ‘gnatsd_host.access’ file shows the sites that don’t
require Kerberos authentication.

The third field might in the future be used for things like controlling what categories,
submitter-id’s PRs, etc., can be accessed from that site. Access attempts that are denied
are logged to the syslog messages file (‘/var/adm/messages’ on many systems).

3.7 Installing the user tools

When you install the gnats utilities, the user tools are installed by default on the host
machine. If your machine is part of a network, however, you may wish to install the user
tools on each machine in the network so that responsible parties on those machines can
submit new Problem Reports, query the database, and edit existing PRs. To do this, follow
these steps on each new host. You may need root access on each machine.

(still to be written...)

3.8 Upgrading from older versions

The following procedure covers an upgrade from all gnats 3 versions newer than 3.108.
If your installation is an older 3.10x version, or even the ancient 3.2 version, you need to
review the ‘UPGRADING.old’ file in the gnats distribution before carrying out the steps
detailed here.

3.8.1 Overview

Although almost all of the gnats internals have been redesigned and rewritten for gnats
4, little has changed in the format and structure of the database data. The only change
that needs to be taken into account when upgrading is the fact that the database index
format is binary in a default installation of gnats 4. Thus, you will need to regenerate
your database index by using the gen-index tool.

Apart from building and installing new binaries, the major changes which impinge on
the upgrade procedure are all on the configuration side. The main database configuration
file, ‘dbconfig’, is far more complex and powerful than the old ‘config’ file, and while
the installation process creates a sensible set of default values which are similar to gnats
3.11x’s defaults, you still need to migrate any changes you may have made to your own
local configuration.

Another aspect which needs consideration are remote submitter sites. Such sites either
need to be instructed to upgrade their locally installed copies of the gnats user tools

Chapter 3: Installing gnats 39

(send-pr, edit-pr and query-pr), or they should be given access through interfaces such
as Gnatsweb.

Since the gnats network daemon has been completely reworked, with an entirely new
command set, all network-based interfaces, such as Gnatsweb and TkGnats need to be
upgraded to versions that support gnats 4. The ‘contrib’ directory of this distribution
contains some third-party interfaces, and the ‘README’ file contains pointers to where you
can obtain the newest versions of these tools.

This document only deals with upgrading gnats itself. Third-party tools should have
separate upgrading instructions in their distributions.

3.8.2 Upgrading

1. Before you begin, make a backup of your entire gnats database directory hierar-
chy, the gnats executables directory and the gnats user tools (send-pr, query-pr
etc.) The locations of these may vary, but in a default gnats 3 installation, the
database(s) reside under ‘/usr/local/share/gnats’, the executables are located in
‘/usr/local/libexec/gnats’ and the user tools reside in ‘/usr/local/bin’.

2. (optional) In order to avoid confusing your users, you may want to remove the old
gnats 3 executables and tools, escpecially if you plan to install gnats 4 in a different
location than version 3.

3. Build and install gnats 4. See Chapter 3 [Installing gnats], page 31. It is recom-
mended that you use the --with-gnats-default-db option when running configure,
in order to set the default database to be one of your already existing gnats 3
databases.

4. Edit the gnats ‘databases’ file, located in ‘SYSCONFDIR/gnats’. In a default gnats
4 installation this is ‘/usr/local/etc/gnats’. Add entries for all your old gnats 3
databases. See Section 4.2 [The ‘databases’ file], page 45.

5. In gnats 3, the file ‘gnatsd.conf’ specifies minimum access levels for the different hosts
accessing the gnats daemon, gnatsd. There is one ‘gnatsd.conf’ for each database.
In gnats 4, these files have been replaced by a single file named ‘gnatsd.host_access’
which contains settings that apply across all the databases on the server. This file is lo-
cated in the same directory as the ‘databases’ file. You need to combine the host access
settings from all your gnats 3 databases and add them to the ‘gnatsd.host_access’
file. Note that you are no longer able to control host access on a per-database basis.
Optionally, you may delete the old ‘gnatsd.conf’ files. See Appendix C [Controlling
access to gnats databases], page 93.

6. Next, you need to migrate the settings in the old ‘config’ files of your
databases to corresponding ‘dbconfig’ files. The database you specified with the
--with-gnats-default-db configure option got a default ‘dbconfig’ installed. This
default file contains field definitions etc. which makes this version of gnats behave
almost exactly like older versions. Copy this default file to the ‘gnats-adm’ directories
of any other gnats databases that you may have on your host before you proceed to
migrate your old configuration settings.
The following is a list of the configuration directives that may be present in a ‘config’
file and their counterparts (if any) in gnats 4.

40 Keeping Track

GNATS ADDR
This setting has no counterpart in gnats 4, since gnats no longer needs
to know its own mail address.

GNATS ADMIN
This setting is now set in the ‘responsible’ file in the ‘gnats-adm’ direc-
tory of your database(s).

GNATS SITE
gnats 4 has no concept of a named ‘site’, so this directive is obsolete.

SUBMITTER
Obsolete, since it relates to GNATS SITE.

DEFAULT RELEASE
DEFAULT ORGANIZATION

The gnats 4 ‘dbconfig’ file has separate configuration sections for each
defined field. Field defaults are set with the default keyword in these
sections. See Section 4.3 [The ‘dbconfig’ file], page 46.

NOTIFY Controlled by the notify-about-expired-prs setting in the ‘dbconfig’
file.

ACKNOWLEDGE
Controlled by the send-submitter-ack setting in the ‘dbconfig’ file.

DEFAULT SUBMITTER
The default submitter is now always the first entry in the ‘submitters’ file
of your database.

KEEP RECEIVED HEADERS
Controlled by the keep-all-received-headers setting in the ‘dbconfig’
file.

DEBUG MODE
Controlled by the debug-mode setting in the ‘dbconfig’ file.

BDAY START
BDAY END
BWEEK START
BWEEK END

Controlled by the settings business-day-hours and business-week-days
in the ‘dbconfig’ file.

DEFINE CATEGORY
The default category for PRs that arrive without one is now the first cat-
egory listed in the ‘categories’ file of your database.

After your are done migrating the settings, you may optionally delete the old ‘config’
files. Since there are many more configuration settings available in the gnats 4
‘dbconfig’ file, you should take some time to review them all before proceeding. See
Section 4.3 [The ‘dbconfig’ file], page 46.

7. gnats 4 uses a different password format in the ‘gnatsd.access’ file than older ver-
sions, since it supports crypt() and MD5 passwords (see Appendix C [Controlling

Chapter 3: Installing gnats 41

access to gnats databases], page 93). You need to translate your old ‘gnatsd.access’
files to the new format by using the gnats-pwconv tool which was installed in the
‘EXEC-PREFIX/libexec/gnats’ directory, typically ‘/usr/local/libexec/gnats’.
See Section 4.6.6 [Managing user passwords], page 64.

8. The final step involves regenerating the indexes of your databases. For this, log in as
the user gnats. Then run the gen-index command for each of your databases. See
Section 4.6 [Administrative Utilities], page 62 for details on how to use gen-index.

9. Sit back and enjoy your new gnats 4 setup...

42 Keeping Track

Chapter 4: gnats Administration 43

4 gnats Administration

In daily usage, gnats is self-maintaining. However, there are various administrative
duties which need to be performed periodically. Also, requirements may change with time,
so it may be necessary to make changes to the gnats configuration at some point:

emptying the pending directory
If a Problem Report arrives with a ‘>Category:’ value that is unrecognized
by the ‘categories’ file, or if that field is missing, gnats places the PR in
the ‘pending’ directory (see Appendix A [Where the tools and utilities reside],
page 73). PRs submitted in free-form by email will always be filed in the
‘pending’ directory. If so configured, gnats sends a notice to the gnats-admin
and to the party responsible for that submitter (as listed in the ‘submitters’
file) when this occurs.

To have these "categoryless" PRs filed correctly, you can then use a gnats
tool such as edit-pr to set the correct category of each PR in the ‘pending’
directory.

In order to protect yourself from problems caused by full disks, you should
arrange to have all mail that is sent to the gnats database copied to a log file
(Section 3.5 [Setting up mail aliases], page 36). Then, should you run out of
disk space, and an empty file ends up in the database’s ‘pending’ directory, you
need only look in the log file, which should still contain the full message that
was submitted.

adding another database
gnats supports multiple databases. If you find at some point that you need to
add another database to your server, the mkdb tool does most of the work for
you. See Section 4.6.1 [Adding another database], page 62.

adding new categories
Most installations of gnats will only require you to add a new line to the
‘categories’ file. The category directory will then be created automatically as
needed. However, if automatic directory creation has been switched off in the
‘dbconfig’ file (see Section 4.3 [The dbconfig file], page 46), you need to use
the ‘mkcat’ program.

removing categories
To remove a category, you need to make sure the relevant subdirectory is empty
(in other words, make sure no PRs exist for the category you wish to remove).
You can then remove the category listing from the ‘categories’ file, and invoke

rmcat category. . .

to remove category (any number of categories may be specified on the command
line to rmcat, so long as they abide by the above constraints).

adding and removing maintainers
Edit the ‘responsible’ file to add a new maintainer or to remove an existing
maintainer. See Section 4.4.2 [The responsible file], page 58.

44 Keeping Track

building a new index
If your index becomes corrupted, or if you wish to generate a new one for some
reason, use the program gen-index (see Section 4.6.4 [Regenerating the index],
page 63).

pruning log files
Log files often grow to unfathomable proportions. As with gardening, it is best
to prune these as they grow, lest they take over your disk and leave you with
no room to gather more Problem Reports. If you keep log files, be sure to keep
an eye on them. (See Section 3.5 [Setting up mail aliases], page 36.)

BACKING UP YOUR DATA
Any database is only useful if its data remains uncorrupted and safe. Performing
periodic backups ensures that problems like disk crashes and data corruption
are reversible.

See Appendix A [Where gnats lives], page 73.

4.1 Overview of gnats configuration

See Appendix A [Where gnats lives], page 73.
gnats has two different kinds of configuration file. The site-wide configuration files

determine overall behaviour across all the databases on your machine, while the database-
specific configuration files determine how gnats behaves when dealing with a specific
database. These files can be edited at any time — the next time a gnats tool is invoked,
the new parameters will take effect.

These are the site-wide configuration files used by gnats:

databases
Specifies database names and their associated parameters, such as in which
directory they are located. This file is used by the gnats clients to determine
the location of a database referred to by name. See Section 4.2 [The databases
file], page 45.

gnatsd.host_access
Controls access levels for the different machines that will do lookups in the
databases on this machine. See Appendix C [gnats access control], page 93.

The database-specific configuration is determined by the following files in the ‘gnats-adm’
subdirectory of the database directory.

dbconfig Controls most aspects of how gnats behaves when dealing with your database.
See Section 4.3 [The dbconfig file], page 46.

categories
The list of categories that gnats accepts as valid for the ‘>Category:’ field,
and the maintainers responsible for each category. Update this file whenever
you have a new category, or whenever a category is no longer valid. You must
also update this file whenever responsibility for a category changes, or if a
maintainer is no longer valid. See Section 4.4.1 [The categories file], page 57.

Chapter 4: gnats Administration 45

responsible
An alias list mapping names to their associated mailing addresses. The names in
this list can have multiple email addresses associated with them. If a responsible
user does not show up in this list, they are assumed to be a user local to the
system. This list is not associated with just the responsible user field; all email
addresses are mapped through this file whenever mail is sent from gnats. See
Section 4.4.2 [The responsible file], page 58.

submitters
Lists sites from whom gnats accepts Problem Reports. The existence of this
file is mandatory, although the feature it provides is not; see Section 4.4.3 [The
submitters file], page 59.

addresses
Mappings between submitter IDs and submitters’ e-mail addresses. Use of this
file is optional. If you get Problem reports where the ‘>Submitter’ field is not
filled in, gnats will use entries in this file to try to derive the submitter ID
from the e-mail headers. See Section 4.4.5 [The addresses file], page 60.

states Lists the possible states for Problem Reports, typically ranging from open to
closed. See Section 4.4.5 [The states file], page 60.

classes Lists the possible classes of Problem Report. This provides an easy way to
have “subcategories”, for example by setting up classes such as sw-bug, doc-
bug, change-request etc. See Section 4.4.6 [The classes file], page 61.

gnatsd.access
Specify the access levels for different users to your database. See Appendix C
[gnats access control], page 93.

4.2 The databases file

The ‘databases’ configuration file is a site-wide configuration file containing the list of
gnats databases that are available either on the host itself or remotely over the network,
together with some parameters associated with each database.

The file contains one line for each database. For databases located on the host itself,
each line consists of three fields separated by colons:

database name:short description of database:path/to/database

The first field is the database name. This is the name used to identify the database when
invoking programs such as query-pr or send-pr, either by using the --database option of
the program or by setting the GNATSDB environment variable to the name of the database.
The second field is a short human-readable description of the database contents, and the
final field is the directory where the database contents are kept.

For a database that is located across a network, but which should be accessible from
this host, the entry for the database should look like this:

database name:short description of database::hostname:port

The first two fields are the same as for local databases, the third field is empty (notice
the two adjacent ‘:’ symbols, indicating an empty field), the fourth field is the hostname of

46 Keeping Track

the remote gnats server, and the fifth field is the port number that the remote gnats is
running on.

If gnats was built with default options, the ‘databases’ file will be located in the
‘/usr/local/etc/gnats’ directory. However, if the option --with-gnats-dblist-file
was used during building of gnats, the ‘databases’ file has the name and location given
to this option. A sample ‘databases’ file is installed together with gnats.

Note that if you add a new local database, you must create its data directory, including
appropriate subdirectories and administrative files. This is to be best done using the mkdb
tool, See Section 4.6.1 [mkdb], page 62.

4.3 The dbconfig file

The ‘dbconfig’ configuration file controls the configuration of a gnats database. Each
database has its own individual copy of this file, which is located in the ‘gnats-adm’ subdi-
rectory of the database.

The file consists of standard plain text. Whitespace is completely optional and is ignored.
Sets of braces ‘@’ are used to delimit the different sections, and all non-keyword values must
be surrounded with double quotes. The values in ‘dbconfig’ can be changed at any time;
the new values take effect for all subsequent iterations of gnats tools.

The ‘dbconfig’ file contains 6 major sections, which must appear in the following order:
• Overall database configuration
• Individual field configuration
• Named query definitions
• Audit-trail and outgoing email formats
• Index file description
• Initial Problem Report input fields

The different sections are described below. While reading the following sections, it will
be useful to refer to the sample ‘dbconfig’ file which is installed when a new database is
initialized with the mkdb tool. In fact, the sample file provides a configuration that should
be usable for a great range of sites, since it reproduces the behaviour of the older, less
customizable 3.x versions of gnats.

4.3.1 Overall database configuration

The overall database options are controlled by settings in the database-info section of
the ‘dbconfig’ file. The following is the general format of this section:

database-info {
[options]

}

The following options and values may be used in the database-info section:

debug-mode true | false
If set to true, the database is placed into debug mode. This causes all outgoing
email to be sent to the gnats-admin user listed in the ‘responsible’ file of the
database. The default value is false.

Chapter 4: gnats Administration 47

keep-all-received-headers true | false
If set to true, all of the Received: headers for PRs submitted via email are kept
in the PR. Otherwise, only the first one is kept. The default value is false.

notify-about-expired-prs true | false
If set to true, notification email about expired PRs is sent via the at-pr com-
mand. Otherwise, required times for PR fixes are not used. The default value
is false.

send-submitter-ack true | false
When new PRs are submitted to the database, an acknowledgment email will be
sent to the submitter of send-submitter-ack is set to true. This is in addition
to the normal notification mail to the person(s) responsible for the new PR.
The default value is false.

libexecdir "directory"
Specifies the directory where the gnats administrative executables are located.
In particular, at-pr and mail-pr are invoked from this directory. The default
value is the empty string, which is unlikely to be useful.

business-day-hours day-start - day-end
Used to specify the hours that define a business day. The values are inclusive
and should be given in 24-hour format, with a dash separating them. gnats
uses these values to determine whether the required completion time for a PR
has passed. The default values are 8 for day-start and 17 for day-end.

business-week-days week-start - week-end
Specifies the start and ending days of the business week, where 0 is Sunday, 1 is
Monday, etc. The days are inclusive, and the values should be given with a dash
separating them. gnats uses these values to determine whether the required
completion time for a PR has passed. The default values are 1 for week-start
and 5 for week-end.

create-category-dirs true | false
If set to true, database directories for categories are automatically created as
needed. Otherwise, they must be created manually (usually with the mkcat
script). It is recommended that the default value of true be kept.

category-dir-perms mode
Standard octal mode-specification specifying the permissions to be set on auto-
created category directories. Default is 0750, yielding user read, write and
execute, and group read and execute.

4.3.2 Individual field configuration

Each type of field in a PR must be described with a field section in the ‘dbconfig’ file.
These sections have the following general structure:

field "fieldname" {
description "string"
[field-options ...]
datatype [datatype-options ...]

48 Keeping Track

[on-change { edit-options ... }]
}

fieldname is used as the field header in the PR. The characters > and : are used
internally as field markers by gnats, so they must not be used in fieldnames.

The order in which the field sections appear in the ‘dbconfig’ file determines the order
in which they appear in the PR text. There is no required order, unlike previous versions
of gnats — the Unformatted field and multitext fields may appear anywhere in the PR.

The following field-options may be present within a field section:

builtin-name "name"
Indicates that this field corresponds to one of the gnats built-in fields.
gnats has several fields which are required to be present in a PR, and this
option is used to map their external descriptions to their internal usage. The
external field names are:

number The PR’s unique numeric identifier

category The category that the PR falls into

synopsis The one-line description of the PR

confidential
If set to yes, the PR is confidential

severity Severity of the problem described by the PR

priority Priority of the PR

responsible
The person responsible for handling the PR

state The current state of the PR

submitter
The user that submitted the PR

arrival-date
The arrival date of the PR

last-modified
The date the PR was last modified

audit-trail
The audit-trail recording changes to the PR

For these built-in fields, a matching field description must appear in the
‘dbconfig’ file. Otherwise, the configuration will be considered invalid, and
errors will be generated from the gnats clients and gnatsd.

description "description text"
A one-line human-readable description of the field. Clients can use this string
to describe the field in a help dialog. The string is returned from the FDSC
command in gnatsd and is also available via the --field-description option
in query-pr.
This entry must be present in the field description, and there is no default value.

Chapter 4: gnats Administration 49

query-default exact-regexp | inexact-regexp
Used to specify the default type of searches performed on this field. This is
used when the ^ search operator appears in a query, and is also used for queries
in query-pr that use the old --field query options.
If the option is not given, the default search is exact-regexp.

textsearch
If this option is present, the field will be searched when the user performs a
--text search from query-pr. The field is also flagged as a textsearch field
in the set of field flags returned by the FIELDFLAGS command in gnatsd.
By default, fields are not marked as textsearch fields.

read-only
When this option is present, the field contents may not be edited — they must
be set when the PR is initially created. In general, this should only be used for
fields that are given as internal values rather than fields supplied by the user.
By default, editing is allowed.

4.3.3 Field datatypes

Each field description has to contain a datatype declaration which describes what data
are to be store in the field. The general format for such a declaration is

datatype [options ...]

The available datatypes are:

text [matching { "regexp" ["regexp" ...] }]
The text datatype is the most commonly used type; it is a one-line text string.
If the matching qualifier is present, the data in the field must match at least
one of the specified regexps. This provides an easy and flexible way to limit
what text is allowed in a field. If no matching qualifier is present, no restriction
is placed on what values may appear in the field.

multitext [{ default "string" }]
The field can contain multiple lines of text.
If the default option is present, the field will default to the specified string
if the field is not given a value when the PR is initially created. Otherwise, the
field will be left empty.

enum {
values {
"string" ["string" ...]

}
[default "string"]

} Defines an enumerated field, where the values in the PR field must match an
entry from a list of specified values. The list of allowed values is given with the
values option. The values option is required for an enumerated field.

50 Keeping Track

If a default option is present, it is used to determine the initial value of the
field if no entry for the field appears in an initial OR (or if the value in the initial
PR is not one of the acceptable values). However, the value in the default
statement is not required to be one of the accepted values; this can be used to
allow the field to be initially empty, for example.
If no default option is specified, the default value for the field is the first value
in the values section.

multienum {
values {
"string" ["string" ...]

}
[separators "string"]
[default "string"]

} The multienum datatype is similar to the enum datatype, except that the field
can contain multiple values, separated by one or more characters from the
separators list. If no separators option is present, the default separators are
space (‘ ’) and colon (‘:’).
The values in the default string for this field type should be separated by one
of the defined separators. An example clarifies this. If we have a field named
ingredients where the default values should be ‘sugar’, ‘flour’ and ‘baking
powder’ and the separator is a colon ‘:’, the following sets these defaults:

default "sugar:flour:baking powder"

enumerated-in-file {
path "filename"
fields {
"name" ["name" ...]

} key "name"
[allow-any-value]

} The enumerated-in-file type is used to describe an enumerated field with an
associated administrative file which lists the legal values for the field, and may
optionally contain additional fields that can be examined by query clients or
used for other internal purposes. It is similar to the enum datatype, except that
the list of legal values is stored in a separate file.
filename is the name of a file in the ‘gnats-adm’ administrative directory for
the database.
The format of the administrative file should be simple ASCII. Subfields within
the file are separated with colons (‘:’). Lines beginning with a hash sign (‘#’)
are ignored as comments. Records within the file are separated with newlines.
The field option is used to name the subfields in the administrative file. There
must be at least one subfield, which is used to list the legal values for the field.
If the administrative file is empty (or does not contain any non-empty non-
comment lines), the PR field must be empty.
The key option is used to designate which field in the administrative file should
be used to list the legal values for the PR field. The value must match one of
the field names in the field option.

Chapter 4: gnats Administration 51

If the allow-any-value option is present, the value of the PR field is not
required to appear in the administrative file — any value will be accepted.

Note that there is no default keyword for enumerated-in-file. These fields
get their default value from the first entry in the associated administrative file.

multi-enumerated-in-file {
path "filename"
fields {
"name" ["name" ...]

} key "name"
[default "string"]
[allow-any-value]
[separators "string"]

}

multi-enumerated-in-file is to multienum what enumerated-in-file is to
enum. Its options have the same meaning as their counterparts in the multienum
and enumerated-in-file fields.

NOTE : Keywords may appear in any sequence, with one exception – the
separators keyword, if present, has to come last. This rule only applies to
fields of type multi-enumerated-in-file.

date The date datatype is used to hold dates. Date fields must either be empty or
contain a correctly formatted date.

No defaults or other options are available. The field is left empty if no value
for the field is given in the initial PR.

integer [{ default "integer" }]
Integer fields are used to hold numbers. They must either be empty or contain
a value composed entirely of digits, with an optional leading sign.

If the default option is present, the field will have the value of integer if the
field is not given a value when the PR is initially created. Otherwise, the field
will be left empty.

4.3.4 Edit controls

The on-change subsection of a fields section specifies one or more actions to be per-
formed when the field value is edited by the user. It has the general form

on-change ["query-expression"] {

[add-audit-trail]

[audit-trail-format {
format "formatstring"
[fields { "fieldname" ... }]

}]

52 Keeping Track

[require-change-reason]

[set-field | append-to-field "fieldname" {
"format-string" [fieldlist]

}]
}

The optional query-expression controls whether or not the actions in the on-change
section are taken. If the expression fails to match, the actions are skipped.

The add-audit-trail option indicates that an entry should be appended to the PR’s
audit-trail when this field is changed. The format of the entry is controlled by the optional
audit-trail-format section within the field, or by the global audit-trail-format sec-
tion. See Section 4.3.6 [Audit-trail formats], page 53 and Section 4.3.7 [Outgoing email
formats], page 53.

The require-change-reason option specifies that a change reason must be present in
the PR when this field is edited. This option only makes sense if an audit-trail entry is
required, as the change reason is otherwise unused.

The set-field and append-to-field options are used to change the value of the field
fieldname in the PR. The supplied format is used to format the value that will be placed
in the field.

append-to-field appends the resulting formatted string to the existing, while set-
field completely replaces the contents.

Any field may be edited by the set-field or append-to-field option (the read-only
option on a field is ignored). However, the changes are subject to the usual field content
checks.

There is also a global on-change section that is executed once for each PR edit. A
typical use for such a section is to set the last-modified date of the PR.

4.3.5 Named query definitions

When queries are performed via query-pr, they can refer to a query format described
by a query section in the ‘dbconfig’ file:

query "queryname" {
format "formatstring"
[fields { "fieldname" ["fieldname" ...] }]

}

formatstring is as described in Section 2.4.2 [Formatting query-pr output], page 24. It
basically contains a string with printf-like % escapes. The output of the query is formatted
as specified by this format string.

The fields option lists the fields to be used with the format string. If the fields
option is present without a format option, the contents of the listed fields are printed out,
separated by newlines.

Chapter 4: gnats Administration 53

The named query formats full, standard amd summary must be present in the ‘dbconfig’
file. full and summary correspond to the query-pr options --full and --summary, while
standard is used when no format option is given to query-pr.

4.3.6 Audit-trail formats

These formats are similar to the named query formats, but they include more options.
They are used for formatting audit-trail entries and for outgoing email messages.

There is currently only one audit-trail format, defined by the audit-trail-format
option:

audit-trail-format {
format "formatstring"
[fields { "fieldname" ["fieldname" ...] }]

}

For those fields that require an audit-trail entry, the audit-trail text to be appended
is formatted as described by this format. The per-field audit-trail-format is used in
preference to this one, if it exists.

formatstring and fieldname are similar to those used by the named query format.
fieldname may also be a format parameter, which is a context-specific value. (Format
parameters are distinguished from fieldnames by a leading dollar sign (‘$’)).

The following format parameters are defined for audit-trail-format entries:

$Fieldname
The name of the field for which an audit-trail entry is being created.

$OldValue
The old value of the field.

$NewValue
The new field value.

$EditUserEmailAddr
The email address of the user editing the field. Set by the EDITADDR gnatsd
command or from the ‘responsible’ file; if not available, user’s local address
is used.

$CurrentDate
The current date.

$ChangeReason
The reason for the change; may be blank if no reason was supplied.

These parameters may be used anywhere a fieldname can appear.

4.3.7 Outgoing email formats

During the life of a PR, gnats can be configured to send out a range of email messages.
When a PR first arrives, an acknowledgment message is sent out if the send-submitter-
ack parameter above is set to true. Certain edits to the PR may also cause email to be
sent out to the various parties, and if a PR is deleted, gnats may send notification email.

54 Keeping Track

The formats of the email messages are controlled by mail-format sections in the
‘dbconfig’ file. The general structure of a mail-format section is as follows:

mail-format "format-name" {
from-address {
[fixed-address "address"]
[email-header-name | [mail-header-name | ...]]

}
to-address {
[fixed-address "address"]
["email-header-name" | ["mail-header-name" | ...]]

}
reply-to {
[fixed-address "address"]
["email-header-name" | ...] | ["gnats-field-name" | ...]

}
header {
format "formatstring"
[fields { "fieldname" ["fieldname" ...] }]

}
body {
format "formatstring"
[fields { "fieldname" ["fieldname" ...] }]

}
}

gnats recognizes and uses 6 different format-name values:

initial-response-to-submitter
Format of the message used when mailing an initial response back to the PR
submitter. This message will only be sent if send-submitter-ack in the overall
database configuration is set to true.

initial-pr-notification
Format of the message sent to the responsible parties when a new PR with
category different from “pending” arrives.

initial-pr-notification-pending
Format of the message sent to the responsible parties when a new PR that ends
up with category “pending” arrives.

appended-email-response
Format of the notification message sent out when a response to a PR is received
via email.

audit-mail
Format of the message sent out when a PR edit generates an Audit-Trail entry.

deleted-pr-mail
Format of the message sent out when a PR is deleted.

The from-address, to-address and reply-to subsections of a mail-format section
specify the contents of the To:, From: and Reply-To: headers in outgoing email. There are

Chapter 4: gnats Administration 55

two ways to specify the contents: by using a fixed-address specification, or by specifying
email-header-names or gnats-field-names.

When an email-header-name or gnats-field-name value is given, gnats will attempt
to extract an email address from the specified location. If several values are given on the
same line, separated by ‘|’ characters, gnats will try to extract an address from each
location in turn until it finds a header or field which is nonempty. The following example
should clarify this:

mail-format "initial-response-to-submitter" {
from-address {
fixed-address "gnats-admin"

}
to-addresses {
"Reply-To:" | "From:" | "Submitter-Id"

} ...

This partial mail-format section specifies the format of the address headers in the email
message that is sent out as an acknowledgment of a received PR. The From: field of the
message will contain the email address of the gnats administrator, as specified by the
gnats-admin line in the ‘responsible’ file. To fill in the To: header, gnats will first look
for the mail header Reply-To: in the PR and use the contents of that, if any. If that header
doesn’t exist or is empty, it will look for the contents of the From: email header, and if that
yields nothing, it will look for the gnats Submitter-Id field and use the contents of that.

Other email headers to be included in messages sent out by gnats can be specified by
header subsections of the mail-header section. formatstring and fieldname are similar
to those used by the named query format. Each header line must have a newline character
(‘\n’) at the end.

The email message body is specified in the body subsection of the mail-format section.
Just as for a header section, the body section must contain a formatstring and fieldname
values.

For some of the formats that gnats recognizes, special variables are available for use.
The following table lists the formats that provide special variables. See the example below
for an illustration of how they are used.

appended-email-response

$MailFrom
The From: line of the original message.

$MailTo The To: line of the original message.

$MailSubject
The Subject: line of the original message.

$MailCC The CC: line of the original message.

$NewAuditTrail
The text of the new audit trail entry (corresponds to the body of
the message).

audit-mail

56 Keeping Track

$EditUserEmailAddr
The email address of the user editing the PR. Set by the EDITADDR
gnatsd command or from the ‘responsible’ file; if not available,
user’s local address is used.

$OldResponsible
The previous Responsible field entry, if it was changed.

$NewAuditTrail
The Audit-Trail: entries that have been appended by the edits.

deleted-pr-mail

$EditUserEmailAddr
The email address of the user deleting the PR. Set by the EDITADDR
gnatsd command or from the ‘responsible’ file; if not available,
user’s local address is used.

$PRNum The number of the PR that was deleted.

The following example illustrates the use of these special variables:
mail-format "deleted-pr-mail" {
from-address {
"$EditUserEmailAddr"

}
to-addresses {
fixed-address "gnats-admin"

}
header {
format "Subject: Deleted PR %s\n"
fields { "$PRNum" }

}
body {
format "PR %s was deleted by user %s.\n"
fields { "$PRNum" "$EditUserEmailAddr" }

}
}

This mail-format section specifies the format of the email message that is sent out when
a PR is deleted. The From: field is set to the email address field of the user who deleted the
PR, the subject of the message contains the number of the deleted PR, and the message
body contains both the PR number and the user’s email address.

4.3.8 Index file description

The index section of the ‘dbconfig’ file lists the fields that appear in the database index.
The index is always keyed by PR number. The general format for the index section is

index {
path "file"
fields { "fieldname" ["fieldname" ...] }
binary-index true | false
[separator "symbol"]

Chapter 4: gnats Administration 57

}

The path parameter gives the name of the index file in the ‘gnats-adm’ directory of the
database. Only one index is allowed per database, so only one path entry is allowed.

The fields parameter controls what fields will appear, and in what order, in the index.
Fields are listed by their names, separated by spaces (‘ ’). Fields will appear in the order
they are listed.

The binary-index parameter controls whether the index is supposed to be in plaintext
or binary format. Binary format is recommended, as it avoids potential problems when
field separators appear as bona-fide field contents.

When plaintext format is used, by setting binary-index false, the symbol (‘|’) is used
as a field separator in the index, unless the optional separator parameter is used to redefine
the separator character.

4.3.9 Initial PR input fields

An initial-entry section in the ‘dbconfig’ file is used to describe which fields should
be present on initial PR entry; this is used by tools such as send-pr to determine which
fields to include in a “blank” PR template. The general format for the initial-entry
section is

initial-entry {
fields { "fieldname" ["fieldname" ...] }

}

4.4 Other database-specific config files

4.4.1 The categories file

The ‘categories’ file contains a list of problem categories, specific to the database, which
gnats tracks. This file also matches responsible people with these categories. You must
edit this file initially, creating valid categories. In most installations, gnats is configured
to create directories on disk for valid categories automatically as needed (see Section 4.3.1
[Overall database configuration], page 46). If gnats isn’t set up to do this, you need to run
mkcat to create the corresponding subdirectories of the database directory. For instructions
on running mkcat, see Section 4.6.2 [Adding a problem category], page 62.

To create a new category, log in as gnats, add a line to this file, and run mkcat if
applicable. Lines beginning with ‘#’ are ignored.

A line in the ‘categories’ file consists of four fields delimited by colons, as follows:
category:description:responsible:notify

category A unique category name, made up of text characters. This name cannot contain
spaces or any of the following characters:

! $ & * () { } [] ‘ ’ " ; : < > ~

Ideally, category names should not contain commas or begin with periods. Each
line has a corresponding subdirectory in the database directory.

58 Keeping Track

description
A terse textual description of the category.

responsible
The name tag of the party responsible for this category of problems, as listed
in the ‘responsible’ file (see Section 4.4.2 [The responsible file], page 58).

notify One or more other parties which should be notified when a Problem Report with
this category arrives, such as a project manager, other members of the same
project, other interested parties, or even log files. These should be separated
with commas.

A good strategy for configuring this file is to have a different category for each product
your organization supports or wishes to track information for.

rock:ROCK program:me:myboss,fred
stone:STONE utils:barney:fred
iron:IRON firewall:me:firewall-log

In the above example, the nametags ‘myboss’, ‘me’, ‘fred’, and ‘barney’ must be defined
in the ‘responsible’ file (see Section 4.4.2 [The responsible file], page 58).

Problem Reports with a category of ‘rock’ are sent to the local mail address (or alias)
‘me’, and also sent to the addresses ‘myboss’ and ‘fred’. PRs with a category of ‘stone’
are sent to the local addresses ‘barney’ and ‘fred’ only, while PRs with the category ‘iron’
are sent only to ‘me’, and are also filed in firewall-log (in this case, a mail alias should
be set up, see Section 3.5 [Setting up mail aliases], page 36.

If you want to separate PRs in each problem category into specific subsets, say docu-
mentation and software bugs, using the ‘classes’ file is recommended. See Section 4.4.6
[The ‘classes’ file], page 61.

Only one category must be present for gnats to function:
pending:Non-categorized PRs:gnats-admin:

The ‘pending’ directory is created automatically when you run mkdb to initialize a new
database. (see Section 3.1 [Configuring and compiling the software], page 32).

4.4.2 The responsible file

This file contains a list of the responsible parties. Lines beginning with ‘#’ are ignored.
Each entry contains three fields, separated by colons:

responsible:full-name:mail-address

responsible
A name-tag description of the party in question, such as her or his user name,
or the name of the group. This name is listed in the PR in the ‘>Responsible:’
field.

full-name The full name of the party (“Charlotte Bronte”; “Compiler Group”).

mail-address
The full, valid mail address of the party. This field is only necessary if the
responsible party has no local mail address or alias.

A sample ‘responsible’ listing might be:

Chapter 4: gnats Administration 59

ren:Ren Hoek:
stimpy:Stimpson J. Cat:stimpy@lederhosen.org

Here, ren is a local user. stimpy is remote, so his full address must be specified.
The following entry must be present for gnats to function:

gnats-admin:GNATS administrator:

gnats-admin is usually defined as a mail alias when gnats is installed, so for this purpose
gnats-admin is a local address. However, this line can alos be used to redefine the email
address of the gnats administrator, by adding the desired address at the end of the line.

4.4.3 The submitters file

This is a database of sites which submit bugs to your support site. It contains six fields
delineated by colons. Lines beginning with ‘#’ will be ignored.

Entries are of the format:
submitter-id:name:type:resp-time:contact:notify

submitter-id
A unique identifier for a specific site or other entity who submits Problem
Reports. The first submitter-id listed in the file will be the default for PRs
that arrive with invalid or empty submitter fields.

name The full name or a description of this entity.

type Optional description for the type of relationship of this submitter to your sup-
port site. This could indicate a contract type, a level of expertise, etc., or it
can remain blank.

resp-time Optional quoted response time in business hours. If the database ‘dbconfig’
file has the notify-about-expired-prs entry set to true (see Section 4.3.1
[Overall database configuration], page 46, GNATS will use this field to schedule
when gnats should notify the gnats-admin, responsible person and submitter
contact that the PR wasn’t analyzed within the agreed response time. Business
hours and business-week days are set in the ‘dbconfig’ file. For information on
at-pr, the program which sends out this reminder, see Section 4.7.3 [Timely
Reminders], page 67.

contact The name tag of the main contact at the Support Site for this submitter. This
contact should be in the ‘responsible’ file (see Section 4.4.2 [The responsible
file], page 58). Incoming bugs from submitter are sent to this contact. Option-
ally, this field can be left blank.

notify Any other parties who should receive copies of Problem Reports sent in by
submitter. They need not be listed in the ‘responsible’ file.

A few example entries in the ‘submitters’ file:
univ-hell:University of Hades:eternal:3:beelzebub:lucifer
tta:Telephones and Telegraphs of America:support:720:dave:

In this example, when a PR comes in from the University of Hades (who has an eternal
contract), it should have ‘univ-hell’ in its ‘Submitter-Id’ field. This Problem Report goes

60 Keeping Track

to beelzebub (who should be in the ‘responsible’ file), and if it is not analyzed within
three business hours a reminder message is sent. lucifer also receives a copy of the bug,
and a copy of the reminder message as well (if it is sent). When Telephones and Telegraphs
of America utilizes their support contract and submits a bug, a copy is sent only to dave,
who has 720 business hours to return an analysis before a reminder is sent.

To disable the feature of gnats which tracks the ‘>Submitter-Id:’, simply alter the
‘submitters’ file to only contain one submitter-id value, and instruct your submitters to
ignore the field.

4.4.4 The states file

This file lists the possible states for Problem Reports. Each line consists of a state,
followed optionally by colon and a one-line description of what the state means. Lines
beginning with ‘#’ will be ignored.

state:optional descriptive text

State names can contain any alphanumeric character, ‘-’ (hyphen), ‘_’ (underscore), or
‘.’ (period), but no other characters. The state name ends with a newline, or else with a
colon followed by optional descriptive text. The descriptive text, if present, can contain any
character except newline, which marks the end of the description. Empty or all-whitespace
descriptions are allowed. This is not recommended, however, since although gnats doesn’t
use this field, external tools might.

The first state listed will be the state automatically assigned to Problem Reports when
they arrive; by default this is named "open". The last state listed is the end state for
Problem Reports — one should usually assume that a PR in this state is not being actively
worked on; by default this state is named "closed".

It is probably best to leave "open" as the first state and "closed" as the last, otherwise
some external tools looking for those two states by name may be fooled.

4.4.5 The addresses file

This file contains mappings between submitter IDs and corresponding e-mail addresses.
When a PR comes in without a submitter ID (if someone sends unformatted e-mail to

the PR submission email address), gnats will try to derive the submitter ID from the
address in the "From:" header. The entries in this file consist of two fields, separated by a
colon:

submitter-id:address-fragment

submitter-id
A valid submitter ID

address-fragment
Part of all of the e-mail address to be matched

Here is an example of an addresses file:
Addresses for Yoyodine Inc
yoyodine:yoyodine.com
yoyodine:yoyodine.co.uk

Chapter 4: gnats Administration 61

Addresses for Foobar Inc.
foobar1:sales.foobar.com
foobar2:admin.foobar.com
foobar3:clark@research.foobar.com

gnats checks each line in the addresses file, comparing address-fragment to the end of
the "From:" header, until it finds a match. If no match is found, gnats uses the default
submitter ID.

You can only have one address fragment per line, but you can have more than one line
for a given submitter ID. An address fragment can be a domain (i.e. yoyodine.com), a
machine location (admin.foobar.com), or a full e-mail address (clark@research.foobar.com).

gnats can match addresses in three e-mail formats:

‘From: name@address.com’
The address by itself without a full name, not enclosed in brackets

‘From: Real Person <name@address.com>’
A full name (optional, with or without quotation marks), followed by the ad-
dress enclosed in angle brackets

‘From: name@address.com (Real Person)’
An address, followed by a name or comment in parentheses

If gnats sees other e-mail address formats, it uses the default submitter ID.

4.4.6 The classes file

This file lists the possible classes of Problem Reports. Each line consists of a class name,
followed by a colon and an optional class type name (the class type name is not used for
anything in the current implementation of gnats, so it may be left blank. The class and
class-type-name fields may only contain alphanumerics, ‘-’, ‘_’, and ‘.’, but no other
characters.

Then comes another colon, followed by an optional one-line description of the class.
gnats itself does not use the class description, but external tools such as Gnatsweb and
TkGnats may use it. Therefore, a line in this file should at least contain the following:

class::class description

Lines beginning with ‘#’ will be ignored, and the first listed class is the default class for
an incoming Problem Report.

4.5 Administrative data files

The following files are database-specific and are located in the ‘gnats-adm’ subdirectory
of the database directory. These files are maintained by gnats; you should never need to
touch them.

4.5.1 The index file

The index is used to accelerate searches on the database by query-pr and edit-pr.
This file is not created until the first PR comes in. It is then kept up to date by gnats;
you should never touch this file.

62 Keeping Track

Searches on subjects contained in the index are much faster than searches which depend
on data not in the index. Inexes come in two different formats: binary and plain-text.
Binary indexes are safer, in that they avoid certain problems that may crop up if the field
separators used by plain-text indexes appear in field data.

A plain-text index contains single-line entries for all PR fields except for the multitext
fields such as Description, How-To-Repeat, etc. Fields are separated by bars (‘|’) except
for ‘>Category:’ and ‘>Number:’, which are separated by a slash (‘/’).

Binary indexes are not meant to be human-readable, but they are safer than the plain-
text variety, in that they avoid certain problems that may crop up if the field separators
used by plain-text indexes appear in field data.

The format of the index for a database is set in the ‘dbconfig’ file. See Section 4.3.8
[Index file description], page 56.

Should the ‘index’ file become corrupted, the gen-index utility can be used to regenerate
it. See Section 4.6.4 [Regenerating the index], page 63.

4.5.2 The current file

This file contains the last serial number assigned to an incoming PR. It is used internally
by gnats; you need never touch this file.

4.6 Administrative utilities

These tools are used by the gnats administrator as part of the periodic maintenance
and configuration of gnats. See Chapter 4 [gnats Administration], page 43.

4.6.1 Adding another database

To initialize a new gnats database:
1. Add a line for the new database in the ‘databases’ file (see Appendix A [Where gnats

lives], page 73.
2. Run mkdb, using

mkdb database

where database is the database you specified in the ‘databases’ file. mkdb creates
the database directory and populates it with the directories ‘pending’, ‘gnats-queue’
and ‘gnats-adm’. A full set of sample configuration files is copied to the ‘gnats-adm’
directory.

4.6.2 Adding a problem category

To add new categories to the database:
1. Add a line to for each new category to the ‘categories’ file in the gnats-adm directory

of the database. See Section 4.4.1 [The categories file], page 57.
2. Run mkcat If applicable. If create-category-dirs is set to false in the database

‘dbconfig’ file, you need to create category directories with mkcat. mkcat creates a
subdirectory under the database directory for any new categories which appear in the
‘categories’ file.

Chapter 4: gnats Administration 63

4.6.3 Removing a problem category

To remove a category from the database:

1. Remove the Problem Reports from the subdirectories corresponding to the categories
you wish to remove, or assign the PRs to new categories. All PRs for a given category
reside in a subdirectory of the database directory, with the same name as the category.

2. Run rmcat using
rmcat category [category. . .]

where category is the category you wish to remove. You can specify as many categories
as you wish as long as each category has no PRs associated with it. rmcat removes the
directory where the Problem Reports for that category had been stored.

4.6.4 Regenerating the index

If your ‘index’ file becomes corrupted, or if you need a copy of the current index for
some reason, use

gen-index [-n | --numeric]
[-d databasename | --database=databasename]

[-o filename | --outfile=filename]
[-i | --import] [-e | --export]
[-h | --help] [-V | --version]

With no options, gen-index generates an index that is sorted by the order that the cate-
gories appear in the ‘categories’ file. The index is generated in plaintext or binary format
according to the value of binary-index in the ‘dbconfig’ file (see Section 4.3.8 [Index file
description], page 56). The results are printed to standard output. The options are:

-n
--numeric

Sorts index entries numerically.

-d databasename
--database=databasename

Specifies the database to index. If this option is left out, gen-index attempts
to index the database with name taken from the the GNATSDB environment
variable, and if that is undefined, the default database, as set when gnats was
built (usually default).

-o filename
--outfile=filename

Places output in filename rather than sending it to standard output.

-i
--import Import the existing index file instead of re-indexing the database.

-e
--export Force plaintext output.

-h
--help Prints the usage for gen-index.

64 Keeping Track

-V
--version

Prints the version number for gen-index.

4.6.5 Checking database health

The ‘check-db’ script is useful for performing periodic checks on database health. It
accepts the following options:

-d databasename
--database=databasename

Determines the database which to operate on.

--all-databases
Check all gnats databases on the system. This option takes precedence over
the --database option.

If no option is given, the default database is checked.

During its operation, check-db first attempts to lock database. If this is not possible,
it repeats the locking attempts for five minutes; if it fails, it sends a mail message notifying
the administrator of the failure and exits.

Once the database is locked, the script searches the database for lock files that are more
than 24 hours old. Any old lock files are reported to the administrator in a mail message.

After checking for old lock files, it calls gen-index (see Section 4.6.4 [Regenerating the
index], page 63) and compares the results with the current ‘index’ file of the database; any
inconsistencies are reported to the administrators in a mail message.

After checking the index file for inconsistencies, the script unlocks the database and
exits.

4.6.6 Managing user passwords

Older versions of gnats, up to and including version 3.x, stored user passwords in
plaintext in the ‘gnatsd.access’ files. Version 4 has the options of storing the password as
MD5 or standard DES crypt() hashes (as most UNIX versions do in the system password
files) as well as in plaintext. Since the password strings require a prefix to indicate how
they are encrypted, one is forced to convert the old password files to a new format when
upgrading to gnats version 4. See Section 3.8 [Upgrading from older versions], page 38.

The gnats-pwconv tool takes care of converting the old password files to the new format:

gnats-pwconv [-c | --crypt] [-m | --md5] [-p | --plaintext]
[-h | --help] [-V | --version] INFILE [OUTFILE]

Unless the --version or --help options are given, exactly one encryption method must
be specified, as well as an input file. The output file parameter is optional. If one is not
specified, results will be printed on standard output.

Chapter 4: gnats Administration 65

4.7 Internal utilities

These tools are used internally by gnats. You should never need to run these by hand;
however, a complete understanding may help you locate problems with the gnats tools or
with your local implementation.

4.7.1 Handling incoming traffic

The program queue-pr handles traffic coming into gnats. queue-pr queues incoming
Problem Reports in the ‘gnats-queue’ directory of the database, and then periodically
(via cron) passes them on to file-pr to be filed in the gnats database. See Chapter 3
[Installing gnats], page 31.

The usage for queue-pr is as follows:
queue-pr [-q | --queue] [-r | --run]

[-f filename | --file=filename]
[-d databasename | --database=databasename]
[-h | --help] [-V | --version]

One of ‘-q’ or ‘-r’ (or their longer-named counterparts) must be present upon each call
to queue-pr. These options provide different functions, as described below.

-q
--queue Accepts standard input as an incoming mail message, placing this message

in an incrementally numbered file in the ‘gnats-queue’ directory under
DATABASEDIR (see Appendix A [Where gnats lives], page 73).

-r
--run Redirects files in the ‘gnats-queue’ directory into the program file-pr one by

one.

-f filename
--file=filename

Used with ‘-q’ (or ‘--queue’), accepts the file denoted by filename as input
rather than reading from standard input.

-d databasename
--directory=databasename

Specifies database to operate on. If this option is left out, the value of the
GNATSDB environment variable is used, and if that is undefined, the default
database name set when gnats was built is used (usually default).

-h
--help Prints the usage for gen-index.

-V
--version

Prints the version number for gen-index.

4.7.2 Processing incoming traffic

queue-pr hands off queued Problem Reports to file-pr one at a time. file-pr
checks each Problem Report for correct information in its fields (particularly a correct

66 Keeping Track

‘>Category:’), assigns it an identification number, and files it in the database under the
appropriate category.

If the ‘>Category:’ field does not contain a valid category value (i.e., matching a line in
the categories file; see Section 4.4.1 [The categories file], page 57), the PR is assigned
to the default category, as set in the dbconfig file. If there is no default category defined,
the PR is given a ‘>Category:’ value of ‘pending’ and is placed in the ‘pending’ directory.
The gnats administrator is notified of the unplaceable PR.

file-pr assigns the Problem Report an identification number, files it in the gnats
database (under the default, if the ‘>Category:’ field contains an invalid category), and
sends acknowledgments to appropriate parties. For the default gnats configuration, the
person responsible for that category of problem (see Section 4.4.1 [The categories file],
page 57) and the person responsible for the submitter site where the PR originated (see
Section 4.4.3 [The submitters file], page 59) receive a copy of the PR in its entirety.
Optionally, the originator of the PR receives an acknowledgment that the PR arrived and
was filed (see Section 4.1 [Changing your gnats configuration], page 44).

The usage for file-pr is as follows:

file-pr [-f filename | --file=filename]
[-d databasename | --database=databasename]

[-h | --help] [-V | --version]

network options:
[-H host | --host=host]
[-P port | --port=port]
[-v username | --user=username]
[-w password | --passwd=password]

file-pr requires no options in order to operate, and takes input from standard input
(normally, the output of ‘queue-pr -r’) unless otherwise specified. The options include:

-f filename
--filename=filename

Uses filename as input rather than standard input.

-d databasename
--database=databasename

Performs refiling operations on database. If this option is left out, the value
of the GNATSDB environment variable is used, and if that is undefined, the
default database name set when gnats was built is used (usually default).

-h
--help Prints the usage for file-pr.

-V
--version

Prints the version number for file-pr.

file-pr can file PRs across a network, talking to a remote gnatsd. The following options
relate to network access:

Chapter 4: gnats Administration 67

-H host
--host=host

Hostname of the gnats server.

-P port
--port=port

The port that the gnats server runs on.

-v username
--username=username

Username used to log into the gnats server.

-w password
--passwd=password

Password used to log into the gnats server.

4.7.3 Timely reminders

at-pr creates a queued job using at which, after an allotted response time is past, checks
the PR to see if its state has changed from ‘open’. When the PR is originally filed, file-pr
checks the notify-about-expired-prs parameter in the ‘dbconfig’ file. If this parameter
is set to true, file-pr calls at-pr, which sets up the expiry check.

The ‘submitters’ file contains the response time for each >Submitter-Id: (see Sec-
tion 4.4.3 [The submitters file], page 59). The time is determined in business hours, which
are defined in the database’s ‘dbconfig’ file (see Section 4.3.1 [Overall database configura-
tion], page 46).

If the PR is urgent and is still open after the requisite time period has passed, at-
pr sends a reminder to the gnats administrator, to the maintainer responsible for that
submitter, and to the maintainer responsible for the PR with the following message:

To: submitter-contact responsible gnats-admin
Subject: PR gnats-id not analyzed in #hours hours

PR gnats-id was not analyzed within the acknowledgment period
of #hours business hours. The pertinent information is:

Submitter-Id: submitter
Originator: full name of the submitter
Synopsis: synopsis
Person responsible for the PR: responsible

--
The GNU Problem Report Management System (GNATS)

The PR is urgent if its priority is ‘critical’ or if its priority is ‘serious’ and the severity
is ‘high’.

4.7.4 The edit-pr driver

pr-edit does the background work for edit-pr, including error-checking and refiling
newly edited Problem Reports, handling file and database locks and deletion of PRs. It can
be called interactively, though it has no usable editing interface.

68 Keeping Track

The usage for pr-edit is:
pr-edit [-l username | --lock=username] [-u | --unlockdb]

[-L | --lockdb] [-U | --unlockdb] [-c | --check]
[-C | --check-initial] [-s | --submit]
[-a field | --append field=field]
[-r field | --replace=field] [--delete-pr]
[-R reason | --reason=reason]
[-p process-id | --process=process-id]
[-d databasename | --database=databasename]
[-f filename | --filename=filename]
[-V | --version]
[-h | --help] [-v username | --user=username]
[-w passwd | --passwd=passwd]
[-H host | --host=host]
[-P port | --port=port]
[-D | --debug] [PR number]

A lock is placed on a Problem Report while the PR is being edited. The lock is simply
a file in the ‘locks’ subdirectory of the ‘gnats-adm’ directory of the database, with the
name ‘gnats-id.lock’, which contains the name of the user who created the lock. user then
“owns” the lock, and must remove it before the PR can be locked again, even by the same
user1. If a PR is already locked when you attempt to edit it, pr-edit prints an error
message giving the name of the user who is currently editing the PR.

If you do not specify PR number, pr-edit reads from standard input. You must specify
PR number for the functions which affect PR locks, ‘--lock=username’ and ‘--unlock’.

-L
--lockdb Locks the database specified with the --database or -d option. No PRs may be

edited, created or deleted while the database is locked. This option is generally
used when editing the index file.

-U
--unlockdb

Unlocks the specified database. No check is made that the invoking user actually
had locked the database in the first place; hence, it is possible for anyone to
steal a database lock.

-c
--check
-C
--check-initial

The --check options are used to verify that a proposed PR’s field contents are
valid. The PR is read in (either from stdin or a file specified with --filename),
and its fields are compared against the rules specified by the database configu-
ration of the selected database. Warnings are given for enumerated fields whose
contents do not contain one of the required values or fields that do not match
required regexps. --check-initial is used to verify initial PRs, rather than
proposed edits of existing PRs.

1 This approach may seem heavy-handed, but it ensures that changes are not overwritten.

Chapter 4: gnats Administration 69

-s
--submit Used to submit a new PR to the database. The PR is read in and verified for

content; if the PR is valid as an initial PR, it is then added to the database.
A zero exit code is returned if the submission was successful. Otherwise, the
reason(s) for the PR being rejected are printed to stdout, and a non-zero exit
code is returned.

The following options require a PR number to be given.

--delete-pr
Deletes the specified PR from the database. The PR must be in a closed state,
and not locked. Only the user gnats (or the user name specified instead of gnats
during the building of gnats) is permitted to delete PRs.

-l username
--lock=username

Locks the PR. username is associated with the lock, so the system administrator
can determine who actually placed the lock on the PR. However, anyone is
permitted to remove locks on a PR. If the optional --process or -p option is
also given, that process-id is associated with the lock.

-u
--unlock Unlocks the specified PR.

-a field
--append=field

-r field
--replace=field

--append and --replace are used to append or replace content of a specific
field within a PR. The new field content is read in from stdin (or from the file
specified with the --filename option), and either appended or replaced to the
specified field. The field contents are verified for correctness before the PR is
rewritten. If the edit is successful, a zero exit status is returned. If the edit
failed, a non-zero exit status is returned, and the reasons for the failure are
printed to stdout.

-R reason
--reason=reason

Certain PR fields are configured in the database configuration to require a short
text describing the reason of every change that happens to them, See Section 4.3
[dbconfig file], page 46. If you edit a problem and change any of such fields,
you must issue a short text, the reason of the change, through this option. If
the option is used and no change-reason requiring field is actually changed, the
option has no effect.

PR number If only a PR number is specified with no other options, a replacement PR is read
in (either from stdin or the file specified with --filename). If the PR contents
are valid and correct, the existing PR is replaced with the new PR contents.
If the edit is successful, a zero exit status is re turned. If the edit failed, a
non-zero exit status is returned, and the reasons for the failure are printed to
stdout.

70 Keeping Track

-d database
--database=database

Specifies the database which is to be manipulated. If no database is specified,
the default database name set when gnats was built is used (usually default).
This option overrides the database specified in the GNATSDB environment
variable.

-f filename
--filename=filename

For actions that require reading in a PR or field content, this specifies the name
of a file to read. If --filename is not specified, the PR or field content is read
in from stdin.

-h
--help Prints the usage for pr-edit.

-V
--version

Prints the version number for pr-edit.

pr-edit can edit PRs across a network, talking to a remote gnatsd. The following options
relate to network access:

-H host
--host=host

Hostname of the gnats server.

-P port
--port=port

The port that the gnats server runs on.

-v username
--username=username

Username used to log into the gnats server.

-w password
--passwd=password

Password used to log into the gnats server.

-D
--debug Used to debug network connections.

4.7.5 The diff-prs tool

The diff-prs tool is invoked as follows:

diff-prs prfile1 prfile2

diff-prs simply reads the PRs contained in prfile1 and prfile2 and returns a list of the
fields that are different between the two. No output is produced if the PRs are identical.

Chapter 4: gnats Administration 71

4.7.6 The pr-age tool

The pr-age tool reports the time, in days and hours, since the PR arrived. Usage is
pr-age [-d databasename | --database=databasename]

[-H host | --host=host]
[-P port | --port=port]
[-v username | --user=username]
[-w password | --passwd=password]
[-h | --help] [-V | --version]

For an explanation of the arguments listed above, please refer to the usage description
for file-pr (Section 4.7.2 [file-pr], page 65).

72 Keeping Track

Appendix A: Where gnats lives 73

Appendix A Where gnats lives

We use a few conventions when referring to the installation structure gnats uses. These
values are adjustable when you build and install gnats (see Chapter 3 [Installing gnats],
page 31).

A.1 prefix

prefix corresponds to the variable ‘prefix’ for configure, which passes it on to the
‘Makefile’ it creates. prefix sets the root installation directory for host-independent files
as follows:

database-specific configuration and database contents
‘prefix/com’

site-wide configuration files
‘prefix/etc/gnats’

man pages ‘prefix/man’

info documents
‘prefix/info’

include files
‘prefix/include’

etc. . .

The default value for prefix is ‘/usr/local’, which can be changed on the command line
to configure using

configure --prefix=prefix ...

See Section 3.1 [Configuring and compiling the software], page 32.

A.2 exec-prefix

exec-prefix corresponds to the variable ‘exec-prefix’ for configure, which passes it on
to the ‘Makefile’ it creates. exec-prefix sets the root installation for host-dependent files
as follows:

gnats user tools
‘exec-prefix/bin’

administrative and support utilities
‘exec-prefix/libexec/gnats’

compiled libraries
‘exec-prefix/lib’

etc. . .

74 Keeping Track

configure supports several more options which allow you to specify in great detail
where different files are installed. The locations given in this appendix do not take into
account highly customized installations, but fairly ordinary gnats installations should be
covered by the material here. For a complete list of options accepted by configure, run
./configure --help in the ‘gnats’ subdirectory of the distribution.

Since most installations are not intended to be distributed around a network, the default
value for exec-prefix is the value of ‘prefix’, i.e., ‘/usr/local’. However, using exec-prefix
saves space when you are installing a package on several different platforms for which many
files are identical; rather than duplicate them for each host, these files can be shared in a
common repository, and you can use symbolic links on each host to find the host-dependent
files.

Use exec-prefix in conjunction with prefix to share host-independent files, like libraries
and info documents. For example:

for each host:
configure --prefix=/usr/gnu --exec-prefix=/usr/gnu/H-host
make all install ...

Using this paradigm, all host-dependent binary files are installed into
‘/usr/gnu/H-host/bin’, while files which do not depend on the host type for
which they were configured are installed into ‘/usr/gnu’.

You can then use a different symbolic link for ‘/usr/gnu’ on each host (‘/usr’ is usually
specific to a particular machine; it is always specific to a particular architecture).

on host-1:
ln -s /usr/gnu/H-host-1 /usr/gnu

on host-2:
ln -s /usr/gnu/H-host-2 /usr/gnu

To the end user, then, placing ‘/usr/gnu/bin’ in her or his PATH simply works transparently
for each host type.

You can change exec-prefix on the command line to configure using

configure --exec-prefix=exec-prefix ...

We recommend that you consult section “Using configure” in Cygnus configure, before
attempting this.

A.3 The ‘gnats-adm’ directory

Each gnats database located on a server has its own directory, as listed in the
‘databases’ (see Section 4.2 [The databases file], page 45 and given when the mkdb
utility is invoked to initialize the database (see Section 4.6.1 [Initializing a new database],
page 62). This directory has several subdirectories, one of which is named ‘gnats-adm’.
This directory contains all configuration files related to this specific database, including the
‘categories’, ‘submitters’, ‘responsible’, ‘states’, ‘classes’, ‘dbconfig’, ‘addresses’,
‘states’ and ‘gnatsd.access’, as well as two files generated and maintained by gnats,
‘index’ and ‘current’.

Appendix A: Where gnats lives 75

A.4 Default installation locations

prefix defaults to ‘/usr/local’; change using configure (see Section 3.1 [Configuring
and compiling the software], page 32).

exec-prefix
defaults to prefix; change using configure (see Section 3.1 [Configuring and
compiling the software], page 32).

gnats installs tools, utilities, and files into the following locations.

exec-prefix/bin

send-pr See Section 2.2 [Submitting Problem Reports], page 13.

edit-pr See Section 2.3 [Editing existing Problem Reports], page 18.

query-pr See Section 2.4 [Querying the database], page 20.

exec-prefix/libexec/gnats

at-pr See Section 4.7.3 [Timely reminders], page 67.

check-db See Section 4.6.5 [Checking database health], page 64.

delete-pr
Tool for deleting PRs. Deprecated. Use the –delete-pr option of
pr-edit instead (see Section 4.7.4 [The edit-pr driver], page 67).

diff-prs See Section 4.7.5 [The diff-prs tool], page 70.

file-pr See Section 4.7.2 [Interface to pr-edit for filing new PRs], page 65.

gen-index
See Section 4.6.4 [Regenerating the index], page 63.

gnatsd The gnats daemon.

gnats-pwconv
See Section 4.6.6 [Converting old password files], page 64.

mail-query
See Section 3.5 [Setting up mail aliases], page 36.

mkcat See Section 4.6.2 [Adding a problem category], page 62.

mkdb See Section 4.6.1 [Script for creating new databases], page 62.

pr-age See Section 4.7.6 [The pr-age tool], page 71.

pr-edit See Section 4.7.4 [The main PR processor], page 67.

queue-pr See Section 4.7.1 [Handling incoming traffic], page 65.

rmcat See Section 4.6.3 [Removing categories], page 63.

exec-prefix/lib/libiberty.a
The gnu libiberty library.

prefix/etc/gnats

76 Keeping Track

‘databases’
The list of valid databases. For local databases it contains the
pathname of the database directory, and for remote databases it
has the hostname and port of the gnatsd server to connect to. (see
Section 4.2 [The databases file], page 45).

‘defaults’
A directory containing the set of default files used when a new
database is created with mkdb. (see Section 4.3 [The dbconfig
file], page 46).

‘gnatsd.host_access’
The access-level settings for the different hosts that will be ac-
cessing the databases on your server. The settings in this file
apply across all databases on the server. See Section C.3 [The
‘gnatsd.host_access’ file], page 93.

‘gnatsd.access’
The access-level settings for the users that will be accessing the
databases on your server. The settings in this file apply across all
databases on the server. See Section C.4 [The ‘gnatsd.access’
file], page 94.

prefix/share/emacs/site-lisp

‘gnats.el’
‘gnats.elc’

The Emacs versions of the programs send-pr, query-pr, edit-
pr, and view-pr. See Chapter 2 [The gnats user tools], page 13.
To change this directory you must change the lispdir variable
in ‘Makefile.in’; see Section 3.1 [Configuring and compiling the
software], page 32.

prefix/info

‘gnats.info’
‘send-pr.info’

The gnats manuals, in a form readable by info (the gnu hypertext
browser). See section “Reading GNU Online Documentation” in
GNU Online Documentation.

prefix/man/man1
prefix/man/man8

man pages for all the gnats tools and utilities.
See Chapter 2 [The gnats user tools], page 13.

Per-database directory

‘gnats-adm’
Administration and configuration data files that define behaviour
of the particular database. The files

‘categories’

Appendix A: Where gnats lives 77

‘submitters’
‘responsible’
‘states’

‘classes’

‘dbconfig’
‘addresses’
‘states’

‘gnatsd.access’
‘index’ (This file is created by gnats.)

‘current’ (This file is created by gnats.)

exist here. See Section 4.1 [GNATS configuration], page 44, Sec-
tion 4.5 [Administrative data files], page 61 and Appendix C [Con-
trolling access to databases], page 93.

‘gnats-queue’
Incoming Problem Reports are queued here until the next itera-
tion of ‘queue-pr -r’ (see Section 4.7.1 [Handling incoming traffic],
page 65).

‘pending’ If no default category is set, problem reports without a category
are reassigned to the category ‘pending’ and placed here pending
intervention by gnats administrators. See Chapter 4 [gnats ad-
ministration], page 43.

‘category ’ Each valid category has a corresponding subdirectory in the
database. All Problem Reports associated with that category are
kept in that subdirectory.

78 Keeping Track

Appendix B: The gnats network server – gnatsd 79

Appendix B The gnats network server – gnatsd

This section describes in details how the gnats network daemon works. This information
is mainly assumed to be useful for developers of gnats client software.

B.1 Description of gnatsd

The gnatsd network daemon is used to service remote gnats requests such as querying
PRs, PR creation, deletion, and editing, and miscellaneous database queries. It uses a
simple ASCII-based command protocol (similar to SMTP or POP3) for communicating
with remote clients.

It also provides a security model based either on IP-based authentication (generally con-
sidered very weak) or username/passwords, where passwords may be in cleartext, UNIX
crypt or MD5 hash format. Access through gnatsd is granted according to certain prede-
fined access levels. Access levels are further discussed in Appendix C [Controlling access
to databases], page 93. It should be emphasized that security has not been a focus of
development until now, but future versions are expected to address this more thoroughly.

All of the gnats clients are capable of communicating via the gnats remote protocol
to perform their functions.

gnatsd is usually started from the inetd facility and should run as the ‘gnats’ user (the
actual username of this user is configurable during installation, see Section 3.1 [Configuring
and compiling the software], page 32 for details.)

B.2 gnatsd options

The daemon supports the following command-line options:
gnatsd [--database database | -d database]

[--not-inetd | -n] [--max-access-level level | -m level]
[--version | -V] [--help | -h]

-V, --version
Prints the program version to stdout and exits.

-h, --help
Prints a short help text to stdout and exits.

-d, --database
Specifies the default database which is to be serviced by this invocation of
gnatsd. (The selected database may be changed via the CHDB command; the
name set with this option is simply the default if no CHDB command is issued.)
If no database is specified, the database named default is assumed. This option
overrides the database specified in the GNATSDB environment variable.

-n, --not-inetd
As its name suggests, indicates that gnatsd is not being invoked from inetd.
This can be used when testing gnatsd, or if it is being run via ssh or some
other mechanism.

80 Keeping Track

This has the effect of using the local hostname where gnatsd is being invoked
for authentication purposes, rather than the remote address of the connecting
client.

--max-access-level, -m
Specifies the maximum access level that the connecting client can authenticate
to. Authentication is as normal but if the user or host authenticates at a higher
level, access level is still forced to this level. See Appendix C [Controlling access
to databases], page 93 for details on access levels.

B.3 gnatsd command protocol

Commands are issued to gnatsd as one or more words followed by a carriage-
return/linefeed pair. For example, the CHDB (change database) command is sent as ‘CHDB
database<CR><LF>’ (the CRLF will not be explicitly written for future examples.)

Replies from gnatsd are returned as one or more response lines containing a 3-digit
numeric code followed by a human-readable string; the line is terminated with a <CR><LF>
pair. For example, one possible response to the CHDB command above would be:

210 Now accessing GNATS database ’database’.

The three-digit code is normally followed by a single ASCII space (character 0x20).
However, if additional response lines are to be returned from the server, there will be a
single dash ‘-’ instead of the space character after the three-digit code.

Response code values are divided into ranges. The first digit reflects the general type of
response (such as ”successful” or ”error”), and the subsequent digits identify the specific
type of response.

Codes 200-299
Positive response indicating that the command was successful. No subsequent
data will be transmitted with the response. In particular, code 210 (CODE_OK)
is used as the positive result code for most simple commands.

Commands that expect additional data from the client (such as SUBM or VFLD)
use a two-step mechanism for sending the data. The server will respond to the
initial command with either a 211 (CODE_SEND_PR) or 212 (CODE_SEND_TEXT)
response line, or an error code if an error occurred with the initial command.
The client is then expected to send the remaining data using the same quoting
mechanism as described for server responses in the 300-349 range. The server
will then send a final response line to the command.

Codes 300-399
Positive response indicating that the query request was successful, and that a
PR or other data will follow. Codes 300-349 are used when transmitting PRs,
and 350-399 are used for other responses.

Codes in the 300-349 range are followed by a series of CRLF-terminated lines
containing the command response, usually a PR. The final line of the result is
a single period ‘.’. Result lines that begin with a period have an extra period
prepended to them.

Appendix B: The gnats network server – gnatsd 81

Codes in the 350-399 range use a different scheme for sending their responses.
The three-digit numeric code will be followed by either a dash ‘-’ or a single
space. If the code is followed by a dash, that indicates that another response line
will follow. The final line of the response has a single space after the three-digit
code.

In previous versions of the protocol the first line of a CODE_INFORMATION (310)
response was to be ignored. This is no longer the case. Instead, any lines
marked with code CODE_INFORMATION_FILLER (351) are to be ignored. This
allows the server to transmit additional headers or other human-readable text
that can be safely ignored by the clients.

Codes 400-599
An error occurred, usually because of invalid command parameters or invalid
input from the client, missing arguments to the command, or a command was
issued out of sequence. The human-readable message associated with the re-
sponse line describes the general problem encountered with the command.

Multiple error messages may be returned from a command; in this case the ‘-’
continuation character is used on all but the last response line.

Codes 600-799
An internal error occurred on the server, a timeout occurred reading data from
the client, or a network failure occurred. These errors are of the ”this should
not occur” nature, and retrying the operation may resolve the problem. For-
tunately, most gnats transactions are idempotent; unfortunately, locking the
database or a PR are not repeatable actions (we cannot determine if an existing
lock is the one we originally requested, or someone else’s).

B.4 gnatsd commands

Note that the set of gnats commands and their responses is somewhat inconsistent
and is very much in flux. At present the gnats clients are rather simple-minded and not
very strict about processing responses. For example, if the server were to issue a code 300
(CODE_PR_READY) response to a CHDB command, the client would happily expect to see a
PR appear (and would print it out if one was sent).

It is thus suggested that any clients that use the gnats protocol be equally flexible about
the way received responses are handled; in particular, only the first digit of the response
code should be assumed to be meaningful, although subsequent digits are needed in some
cases (codes 300-399). No attempt should be made to parse the message strings on error
response lines; they are only intended to be read by humans, and will be changed on a
regular basis.

Almost every command may result in the response 440 (CODE_CMD_ERROR). This indicates
that there was a problem with the command arguments, usually because of insufficient or
too many arguments being specified.

Access to most gnatsd commands requires a certain access level. For details of this, see
Section C.5 [Privileged gnatsd commands], page 95.

82 Keeping Track

USER [userid password]
Specifies the userid and password for database access. Either both a username
and password must be specified, or they both may be omitted; in the latter
case, the current access level is returned.
The possible server responses are:
350 (CODE_INFORMATION)
The current access level is specified.
422 (CODE_NO_ACCESS)
A matching username and password could not be found.
200 (CODE_OK)
A matching username and password was found, and the login was successful.

QUIT Requests that the connection be closed. Possible responses:
201 (CODE_CLOSING)
Normal exit.
The QUIT command has the dubious distinction of being the only command
that cannot fail.

LIST list type
Describes various aspects of the database. The lists are returned as a list of
records, one per line. Each line may contain a number of colon-separated fields.
Possible values for list type include
Categories
Describes the legal categories for the database.
Submitters
Describes the set of submitters for the database.
Responsible
Lists the names in the responsible administrative file, including their full names
and email addresses.
States
Lists the states listed in the state administrative file, including the state type
(usually blank for most states; the closed state has a special type).
Classes
Lists the set of PR classes and their associated human-readable descriptions.
FieldNames
Lists the entire set of PR fields.
InitialInputFields
Lists the fields that should be provided when a PR is initially entered.
Databases
Lists the set of databases.
The possible responses are:
301 (CODE_TEXT_READY)
Normal response, followed by the records making up the list as described above.
416 (CODE_INVALID_LIST)
The requested list does not exist.

Appendix B: The gnats network server – gnatsd 83

FTYP field [field ...]
Describes the type of data held in the field(s) specified with the command. The
currently defined data types are:

Text
A plain text field, containing exactly one line.

MultiText
A text field possibly containing multiple lines of text.

Enum
An enumerated data field; the value is restricted to one entry out of a list of
values associated with the field.

MultiEnum
The field contains one or more enumerated values. Values are separated with
spaces or colons ‘:’.

Integer
The field contains an integer value, possibly signed.

Date
The field contains a date.

TextWithRegex
The value in the field must match one or more regular expressions associated
with the field.

The possible responses are:

350 (CODE_INFORMATION)
The normal response; the supplied text is the data type.

410 (CODE_INVALID_FIELD_NAME)
The specified field does not exist.

If multiple field names were given, multiple response lines will be sent, one for
each field, using the standard continuation protocol; each response except the
last will have a dash ‘-’ immedately after the response code.

FTYPINFO field property
Provides field-type-related information. Currently, only the property
‘separators’ for MultiEnum fields is supported. When ‘separators’ is
specified, the possible return codes are:

350 (CODE_INFORMATION) A proper MultiEnum field was specified and the re-
turned text is the string of separators specified for the field in the dbconfig file
(see Section 4.3.3 [Field datatypes], page 49) quoted in ’’s.

435 (CODE_INVALID_FTYPE_PROPERTY) The ‘separators’ property is not de-
fined for this field, i.e. the specified field is not of type MultiEnum.

Currently, specifying a different property than ‘separators’ results in return
code 435 as above.

FDSC field [field ...]
Returns a human-readable description of the listed field(s). The possible re-
sponses are:

84 Keeping Track

350 (CODE_INFORMATION) The normal response; the supplied text is the field
description.
410 (CODE_INVALID_FIELD_NAME) The specified field does not exist.
Like the FVLD command, the standard continuation protocol will be used if
multiple fields were specified with the command.

FIELDFLAGS field [field ...]
Returns a set of flags describing the specified field(s). The possible responses
are either
410 (CODE_INVALID_FIELD_NAME)
meaning that the specified field is invalid or nonexistent, or
350 (CODE_INFORMATION)
which contains the set of flags for the field. The flags may be blank, which
indicate that no special flags have been set for this field.
Like the FDSC and FTYP commands, multiple field names may be listed with the
command, and a response line will be returned for each one in the order that
the fields appear on the command line.
The flags include:
textsearch
The field will be searched when a text field search is requested.
allowAnyValue
For fields that contain enumerated values, any legal value may be used in the
field, not just ones that appear in the enumerated list.
requireChangeReason
If the field is edited, a reason for the change must be supplied in the new PR
text describing the reason for the change. The reason must be supplied as a
multitext PR field in the new PR whose name is field-Changed-Why (where
field is the name of the field being edited).
readonly
The field is read-only, and cannot be edited.

FVLD field
Returns one or more regular expressions or strings that describe the valid types
of data that can be placed in field. Exactly what is returned is dependent
on the type of data that can be stored in the field. For most fields a regular
expression is returned; for enumerated fields, the returned values are the list of
legal strings that can be held in the field.
The possible responses are:
301 (CODE_TEXT_READY)
The normal response, which is followed by the list of regexps or strings.
410 (CODE_INVALID_FIELD_NAME) The specified field does not exist.

VFLD field VFLD can be used to validate a given value for a field in the database. The
client issues the VFLD command with the name of the field to validate as an
argument. The server will either respond with 212 (CODE_SEND_TEXT), or 410
(CODE_INVALID_FIELD_NAME) if the specified field does not exist.

Appendix B: The gnats network server – gnatsd 85

Once the 212 response is received from the server, the client should then send
the line(s) of text to be validated, using the normal quoting mechanism de-
scribed for PRs. The final line of text is followed by a line containing a single
period, again as when sending PR text.
The server will then either respond with 210 (CODE_OK), indicating that the
text is acceptable, or one or more error codes describing the problems with the
field contents.

INPUTDEFAULT field [field ...]
Returns the suggested default value for a field when a PR is initially created.
The possible responses are either 410 (CODE_INVALID_FIELD_NAME), meaning
that the specified field is invalid or nonexistent, or 350 (CODE_INFORMATION)
which contains the default value for the field.
Like the FDSC and FTYP commands, multiple field names may be listed with the
command, and a response line will be returned for each one in the order that
the fields appear on the command line.

RSET Used to reset the internal server state. The current query expression is cleared,
and the index of PRs may be reread if it has been updated since the start of
the session. The possible responses are:
200 (CODE_OK)
The state has been reset.
440 (CODE_CMD_ERROR)
One or more arguments were supplied to the command.
6xx (internal error)
There were problems resetting the state (usually because the index could not
be reread). The session will be immediately terminated.

LKDB Locks the main gnats database. No subsequent database locks will succeed
until the lock is removed. Sessions that attempt to write to the database will
fail. The possible responses are:
200 (CODE_OK) The lock has been established.
440 (CODE_CMD_ERROR) One or more arguments were supplied to the command.
431 (CODE_GNATS_LOCKED) The database is already locked, and the lock could
not be obtained after 10 seconds.
6xx (internal error) An internal error occurred, usually because of permis-
sion or other filesystem-related problems. The lock may or may not have been
established.

UNDB

Unlocks the database. Any session may steal a database lock; no checking of
any sort is done. The possible responses are:
200 (CODE_OK)
The lock has been removed.
432 (CODE_GNATS_NOT_LOCKED)
The database was not locked.

86 Keeping Track

440 (CODE_CMD_ERROR)
One or more arguments were supplied to the command.
6xx (internal error)
The database lock could not be removed, usually because of permissions or
other filesystem-related issues.

LOCK PR user [pid]
Locks the specified PR, marking the lock with the user name and the optional
pid. (No checking is done that the user or pid arguments are valid or meaning-
ful; they are simply treated as strings.)
The EDIT command requires that the PR be locked before it may be successfully
executed. However, it does not require that the lock is owned by the editing
session, so the usefulness of the lock is simply as an advisory measure.
The APPN and REPL commands lock the PR as part of the editing process, and
they do not require that the PR be locked before they are invoked.
The possible responses are:
440 (CODE_CMD_ERROR)
Insufficient or too many arguments were specified to the command.
300 (CODE_PR_READY)
The lock was successfully obtained; the text of the PR (using the standard
quoting mechanism for PRs) follows.
400 (CODE_NONEXISTENT_PR)
The PR specified does not exist.
430 (CODE_LOCKED_PR)
The PR is already locked by another session.
6xx (internal error)
The PR lock could not be created, usually because of permissions or other
filesystem-related issues.

UNLK PR Unlocks PR. Any user may unlock a PR, as no checking is done to determine
if the requesting session owns the lock.
The possible responses are:
440 (CODE_CMD_ERROR)
Insufficient or too many arguments were specified to the command.
200 (CODE_OK)
The PR was successfully unlocked.
433 (CODE_PR_NOT_LOCKED)
The PR was not locked.
6xx (internal error)
The PR could not be unlocked, usually because of permission or other
filesystem-related problems.

DELETE PR
Deletes the specified PR. The user making the request must have admin privi-
leges (see Appendix C [Controlling access to databases], page 93). If successful,

Appendix B: The gnats network server – gnatsd 87

the PR is removed from the filesystem and the index file; a gap will be left in
the numbering sequence for PRs. No checks are made that the PR is closed.

The possible responses are:

200 (CODE_OK)
The PR was successfully deleted.

422 (CODE_NO_ACCESS)
The user requesting the delete does not have admin privileges.

430 (CODE_LOCKED_PR)
The PR is locked by another session.

431 (CODE_GNATS_LOCKED)
The database has been locked, and no PRs may be updated until the lock is
cleared.

6xx (internal error)
The PR could not be successfully deleted, usually because of permission or
other filesystem-related problems.

CHEK [initial]
Used to check the text of an entire PR for errors. Unlike the VFLD command,
it accepts an entire PR at once instead of the contents of an individual field.

The initial argument indicates that the PR text to be checked is for a PR
that will be newly created, rather than an edit or replacement of an existing
PR.

After the CHEK command is issued, the server will respond with either a 440
(CODE_CMD_ERROR) response indicating that the command arguments were in-
correct, or a 211 (CODE_SEND_PR) response code will be sent.

Once the 211 response is received from the server, the client should send the
PR using the normal PR quoting mechanism; the final line of the PR is then
followed by a line containing a single period, as usual.

The server will then respond with either a 200 (CODE_OK) response, indicating
there were no problems with the supplied text, or one or more error codes listing
the problems with the PR.

EDIT PR Verifies the replacement text for PR. If the command is successful, the contents
of PR are completely replaced with the supplied text. The PR must previously
have been locked with the LOCK command.

The possible responses are:

431 (CODE_GNATS_LOCKED)
The database has been locked, and no PRs may be updated until the lock is
cleared.

433 (CODE_PR_NOT_LOCKED)
The PR was not previously locked with the LOCK command.

400 (CODE_NONEXISTENT_PR)
The specified PR does not currently exist. The SUBM command should be used
to create new PRs.

88 Keeping Track

211 (CODE_SEND_PR)
The client should now transmit the replacement PR text using the normal
PR quoting mechanism. After the PR has been sent, the server will respond
with either 200 (CODE_OK) indicating that the edit was successful, or one or
more error codes listing problems either with the replacement PR text or errors
encountered while updating the PR file or index.

EDITADDR address
Sets the e-mail address of the person communicating with gnatsd. The com-
mand requires at least the edit access level.
The possible responses are:
200 (CODE_OK)
The address was successfully set.
440 (CODE_CMD_ERROR)
Invalid number of arguments were supplied.

APPN PR field
REPL PR field

Appends to or replaces the contents of field in PR with the supplied text. The
command returns a 201 (CODE_SEND_TEXT) response; the client should then
transmit the new field contents using the standard PR quoting mechanism. Af-
ter the server has read the new contents, it then attempts to make the requested
change to the PR.
The possible responses are:
200 (CODE_OK)
The PR field was successfully changed.
400 (CODE_NONEXISTENT_PR)
The PR specified does not exist.
410 (CODE_INVALID_FIELD_NAME)
The specified field does not exist.
402 (CODE_UNREADABLE_PR)
The PR could not be read.
431 (CODE_GNATS_LOCKED)
The database has been locked, and no PRs may be updated until the lock is
cleared.
430 (CODE_LOCKED_PR)
The PR is locked, and may not be altered until the lock is cleared.
413 (CODE_INVALID_FIELD_CONTENTS)
The supplied (or resulting) field contents are not valid for the field.
6xx (internal error)
An internal error occurred, usually because of permission or other filesystem-
related problems. The PR may or may not have been altered.

SUBM Submits a new PR into the database. The supplied text is verified for correct-
ness, and if no problems are found a new PR is created.
The possible responses are:

Appendix B: The gnats network server – gnatsd 89

431 (CODE_GNATS_LOCKED)
The database has been locked, and no PRs may be submitted until the lock is
cleared.
211 (CODE_SEND_PR)
The client should now transmit the new PR text using the normal quoting
mechanism. After the PR has been sent, the server will respond with either a
200 (CODE_OK) response indicating that the new PR has been created (and mail
sent to the appropriate persons), or one or more error codes listing problems
with the new PR text.

CHDB database
Switches the current database to the name specified in the command.
The possible responses are:
422 (CODE_NO_ACCESS)
The user does not have permission to access the requested database.
417 (CODE_INVALID_DATABASE)
The database specified does not exist, or one or more configuration errors in
the database were encountered.
220 (CODE_OK)
The current database is now database. Any operations performed will now be
applied to database.

DBLS Lists the known set of databases.
The possible responses are:
6xx (internal error)
An internal error was encountered while trying to obtain the list of available
databases, usually due to lack of permissions or other filesystem-related prob-
lems, or the list of databases is empty.
301 (CODE_TEXT_READY)
The list of databases follows, one per line, using the standard quoting mecha-
nism. Only the database names are sent.
The gnatsd access level ‘listdb’ denies access until the user has authenticated
with the USER command. The only other command available at this access
level is DBLS. This access level provides a way for a site to secure its gnats
databases while still providing a way for client tools to obtain a list of the
databases for use on login screens etc. See Appendix C [Controlling access to
databases], page 93.

DBDESC database
Returns a human-readable description of the specified database.
Responses include:
6xx (internal error)
An internal error was encountered while trying to read the list of available
databases, usually due to lack of permissions or other filesystem-related prob-
lems, or the list of databases is empty.
350 (CODE_INFORMATION)
The normal response; the supplied text is the database description.

90 Keeping Track

417 (CODE_INVALID_DATABASE)
The specified database name does not have an entry.

EXPR query expression
Specifies a query expression used to limit which PRs are returned from the
QUER command. The expression uses the normal query expression syntax, (see
Section 2.4.3 [Query expressions], page 25).
Multiple EXPR commands may be issued; the expressions are boolean ANDed
together.
Expressions are cleared by the RSET command.
Possible responses include:
415 (CODE_INVALID_EXPR)
The specified expression is invalid, and could not be parsed.
200 (CODE_OK)
The expression has been accepted and will be used to limit the results returned
from QUER.

QFMT query format
Use the specified query format to format the output of the QUER command. The
query format may be either the name of a query format known to the server (see
Section 4.3.5 [Named query definitions], page 52), or an actual query format (see
Section 2.4.2 [Formatting query-pr output], page 24). The possible responses
are:
200 (CODE_OK)
The normal response, which indicates that the query format is acceptable.
440 (CODE_CMD_ERROR)
No query format was supplied.
418 (CODE_INVALID_QUERY_FORMAT)
The specified query format does not exist, or could not be parsed.

QUER [PR] [PR] [...]
Searches the contents of the database for PRs that match the (optional) speci-
fied expressions with the EXPR command. If no expressions were specified with
EXPR, the entire set of PRs is returned.
If one or more PRs are specified on the command line, only those PRs will be
searched and/or output.
The format of the output from the command is determined by the query format
selected with the QFMT command.
The possible responses are:
418 (CODE_INVALID_QUERY_FORMAT)
A valid format was not specified with the QFMT command prior to invoking
QUER.
300 (CODE_PR_READY)
One or more PRs will be output using the requested query format. The PR
text is quoted using the normal quoting mechanisms for PRs.

Appendix B: The gnats network server – gnatsd 91

220 (CODE_NO_PRS_MATCHED)
No PRs met the specified criteria.

ADMV field key [subfield]
Returns an entry from an administrative data file associated with field. key is
used to look up the entry in the data file. If subfield is specified, only the value
of that subfield is returned; otherwise, all of the fields in the adm data file are
returned, separated by colons ‘:’.
The responses are:
410 (CODE_INVALID_FIELD_NAME) The specified field does not exist.
221 (CODE_NO_ADM_ENTRY) An adm entry matching the key was not found, or
the field does not have an adm file associated with it.
350 (CODE_INFORMATION) The normal response; the supplied text is the re-
quested field(s).

B.5 gnatsd environment variables

gnatsd supports the GNATSDB environment varable in almost the same way as the GNATS
tools do. This variable is used to determine which database to use. For a local database,
it contains the name of the database to access. gnatsd cannot service remote databases
(though it might be interesting if it could) so the database is always assumed to be local.

If GNATSDB is not set and the --database option is not supplied, it is assumed that the
database is local and that its name is ‘default’.

92 Keeping Track

Appendix C: Controlling access to databases 93

Appendix C Controlling access to databases

C.1 Overview

gnats supports granting various levels of access to the gnats databases served by the
network daemon, gnatsd.

gnats access can be controlled at these levels:

deny gnatsd closes the connection

none no further access until userid and password given

listdb only listing of available databases is allowed

view query and view PRs with Confidential=no only

viewconf query and view PRs with Confidential=yes

edit full edit access

admin full admin access

These access levels are used in the following settings:

• overall gnatsd access level
• overall access level set by host name or IP address
• overall access level set by userid and password
• per-database access level set by userid and password

C.2 Overall gnatsd access level

The overall gnatsd access level is set by starting gnatsd with the option
-m level or --maximum-access-level=level,

where level is one of the six access levels listed above. This restricts any access to the gnats
daemon to levels up to and including level, regardless of the settings in the access control
files discussed below. If this option is left out, any access levels set in the access control
files will be allowed.

The discussion below assumes that the pre-build configure of gnats was done without
altering the default values for the --with-gnatsd-user-access-file and --with-gnatsd-
host-access-file options. If non-default values were given, substitute as appropriate
below.

C.3 Overall access levels per host

The file ‘SYSCONFDIR/gnats/gnatsd.host_access’ (usually ‘/etc/gnats/gnatsd.host_access’)
controls overall access levels on a per-host basis, meaning that settings in this file apply
across all databases on the server. Entries in this file are on the following format:

host:access-level:whatever

94 Keeping Track

host is the hostname or IP address of the host contacting gnatsd. Wildcard characters are
supported: ‘*’ matches anything; ‘?’ matches any single character. By using wildcards, you
can specify access levels for entire network subnets and domains.

The second field is the access level of host. The default is deny. If the user’s hostname
isn’t in the file or its access level is set to deny, the connection is closed immediately.

gnats currently doesn’t make use of the third field. Remember to still include the
second ‘:’ on the line if you choose to leave the third field empty.

Whenever a CHDB command is processed (or defaulted), the user’s access level is set
to the level for their host, as determined by the values in the ‘gnatsd.host_access’ file.
However, even if a host is given the none access level, an individual can still give the USER
command to possibly gain a higher (but never lower) access than is set for their host. The
gnatsd USER command takes two arguments: USER <userid> <passwd>.

C.4 Access levels per user

Access levels per user can be set both across all databases on the server or on a per-
database basis. The ‘gnatsd.access’ file in a database’s ‘gnats-adm’ directory speci-
fies the user access rules for that database. If it doesn’t exist, or doesn’t contain the
user name given to gnatsd, then the file ‘SYSCONFDIR/gnats/gnatsd.access’, usually
‘/etc/gnats/gnatsd.access’, specifying the per-user access levels across all the databases
on the server is checked.

The user access files can only increase the access level defined in the host access files for
the given host, they can never lower it.

If the access level is none after processing the userid and password, the connection is
closed.

The ‘gnatsd.access’ files can contain plain text passwords, in such a case they should
be owned by the gnats user with file permission 600.

Wildcard characters are supported for the userid and password with plain text passwords.
A null string or ‘*’ matches anything; ‘?’ matches any one character.

Entries in the database-specific ‘gnatsd.access’ user access file in the ‘gnats-adm’ di-
rectory of the database have the following general format:

userid:password:access-level

password should either be in plain text, DES crypt()1 or MD5 hash format2.

If the password is in plain text format, it must be prefixed by ‘0’ and if it is in MD5
format, it needs to be prefixed by the string ‘1’. Passwords encrypted by crypt() should
have no prefix.

A gnats-passwd tool to manage ‘gnatsd.access’ files is planned. In the meantime,
crypt() passwords can be generated by using standard UNIX passwords tools, while MD5
passwords can be generated with the following little Perl snippet:

1 DES crypt is the standard password encryption format used by most UNIX systems
2 MD5 is only supported on platforms that have a crypt() function that supports MD5. Among others,

this currently includes gnu Linux and OpenBSD.

Appendix C: Controlling access to databases 95

perl -e ’use Crypt::PasswdMD5 ; print Crypt::PasswdMD5::unix_md5_crypt
"password" , time() % 100000000’

If your Perl installation doesn’t have the Crypt module installed, you need to install it. On
most systems, the following command achieves this:

perl -MCPAN -e ’install Crypt::PasswdMD5’

A tool for conversion of pre-version 4 ‘gnatsd.access’ files is distributed with gnats 4.
See Section 4.6.6 [Converting old password files], page 64.
The access-level field should contain one of the values listed at the beginning of this appen-
dix. This overrides (increases but never lowers) the access level given as the default for the
user’s host in the global gnatsd.host access file.

The following shows an example gnatsd.access file with plain text passwords:
rickm:0ruckm:edit
pablo:0pueblo:view
::none

And this is the same file with MD5-encrypted passwords:
rickm:$1$92388613$D7ZIYikzTUqd./dODTFrI.:edit
pablo:$1$92388652$QRfAhIBG5elT.FQjQKhj80:view
::none

In these examples, anybody other than rickm and pablo get denied access, assuming that
the host access level is also none. You could set the catch-all rule at the end to be *:*:view
to allow view access to anyone.

The overall user access file ‘SYSCONFDIR/gnats/gnatsd.access’, usually
‘/etc/gnats/gnatsd.access’, adds a fourth database field. This file contains a
comma-separated list of database names, as defined in the ‘databases’ file (see Section 4.2
[The databases file], page 45. Wildcard characters are supported. The databases listed in
this field are the ones to which the other settings on the same line will be applied.

C.5 Privileged gnatsd commands

Every gnatsd command has a minimum access level attached to it. If your access level
is too low for a command, you get this response:

LOCK 12
422 You are not authorized to perform this operation (LOCK).

The commands CHDB, USER and QUIT are unrestricted.
The DBLS command requires at least listdb access.
A user must have at least edit access for these commands:

LKDB lock the main gnats database.

UNDB unlock the main gnats database.

LOCK PR user pid
lock PR for user and optional pid and return PR text.

UNLK PR unlock PR.

EDIT PR check in edited PR.

96 Keeping Track

APPN PR field, REPL PR field
Appends to or replaces the contents of field in PR.

The DELETE PR command is special in that it requires admin access.
All other commands require view access.

edit-pr and query-pr accept the command line arguments -v|--user and -w|--
passwd. See Chapter 2 [The gnats User Tools], page 13.

Appendix D: Querying using regular expressions 97

Appendix D Querying using regular expressions

See also Section 2.4.3 [Query expressions], page 25.

Unfortunately, we do not have room in this manual for a complete exposition on regular
expressions. The following is a basic summary of some regular expressions you might wish
to use.

NOTE: When you use query expressions containing regular expressions as part of an
ordinary query-pr shell command line, you need to quote them with ’’, otherwise the shell
will try to interpret the special characters used, yielding highly unpredictable results.

See section “Regular Expression Syntax” in Regex, for details on regular expression
syntax. Also see section “Syntax of Regular Expressions” in GNU Emacs Manual, but
beware that the syntax for regular expressions in Emacs is slightly different.

All search criteria options to query-pr rely on regular expression syntax to construct
their search patterns. For example,

query-pr --expr ’State="open"’ --format full

matches all PRs whose ‘>State:’ values match with the regular expression ‘open’.

We can substitute the expression ‘o’ for ‘open’, according to gnu regular expression
syntax. This matches all values of ‘>State:’ which begin with the letter ‘o’.

We see that
query-pr --expr ’State="o"’ --format full

is equivalent to
query-pr --expr ’State="o"’ --format full

in this case, since the only value for ‘>State:’ which matches the expression ‘o’ is ‘open’.
‘State="o"’ also matches ‘o’, ‘oswald’, and even ‘oooooo’, but none of those values are
valid states for a Problem Report in default gnats installations.

We can also use the expression operator ‘|’ to signify a logical OR, such that
query-pr --expr ’State="o|a"’ --format full

matches all ‘open’ or ‘analyzed’ Problem Reports.

Regular expression syntax considers a regexp token surrounded with parentheses, as in
‘(regexp)’, to be a group. This means that ‘(ab)*’ matches any number (including zero)
of contiguous instances of ‘ab’. Matches include ‘’, ‘ab’, and ‘ababab’.

Regular expression syntax considers a regexp token surrounded with square brackets, as
in ‘[regexp]’, to be a list. This means that ‘Char[(ley)(lene)(broiled)’ matches any
of the words ‘Charley’, ‘Charlene’, or ‘Charbroiled’ (case is significant; ‘charbroiled’ is
not matched).

Using groups and lists, we see that
query-pr --expr ’Category="gcc|gdb|gas"’ --format full

is equivalent to
query-pr --expr ’Category="g(cc|db|as)"’ --format full

and is also very similar to

98 Keeping Track

query-pr --expr ’Category="g[cda]"’ --format full

with the exception that this last search matches any values which begin with ‘gc’, ‘gd’, or
‘ga’.

The ‘.’ character is known as a wildcard. ‘.’ matches on any single character. ‘*’ matches
the previous character (except newlines), list, or group any number of times, including zero.
Therefore, we can understand ‘.*’ to mean “match zero or more instances of any character.”

query-pr --expr ’State=".*a"’ --format full

matches all values for ‘>State:’ which contain an ‘a’. (These include ‘analyzed’ and
‘feedback’.)

Another way to understand what wildcards do is to follow them on their search for
matching text. By our syntax, ‘.*’ matches any character any number of times, including
zero. Therefore, ‘.*a’ searches for any group of characters which end with ‘a’, ignoring the
rest of the field. ‘.*a’ matches ‘analyzed’ (stopping at the first ‘a’) as well as ‘feedback’.

Note: When using ‘fieldtype:Text’ or ‘fieldtype:Multitext’ (see Section 2.4.3
[Query expressions], page 25), you do not have to specify the token ‘.*’ at the beginning
of your expression to match the entire field. For the technically minded, this is because
these queries use ‘re_search’ rather than ‘re_match’. ‘re_match’ anchors the search at
the beginning of the field, while ‘re_search’ does not anchor the search.

For example, to search in the >Description: field for the text
The defrobulator component returns a nil value.

we can use
query-pr --expr ’fieldtype:Multitext="defrobulator.*nil"’ --format full

To also match newlines, we have to include the expression ‘(.|^M)’ instead of just a dot
(‘.’). ‘(.|^M)’ matches “any single character except a newline (‘.’) or (‘|’) any newline
(‘^M’).” This means that to search for the text

The defrobulator component enters the bifrabulator routine
and returns a nil value.

we must use
query-pr --expr ’fieldtype:Multitext="defrobulator(.|^M)*nil"’

--format full

To generate the newline character ‘^M’, type the following depending on your shell:

csh ‘control-V control-M’

tcsh ‘control-V control-J’

sh (or bash)
Use the 〈RETURN〉 key, as in

(.|
)

Again, see section “Regular Expression Syntax” in Regex, for a much more complete
discussion on regular expression syntax.

Appendix E: gnats support 99

Appendix E gnats support

The gnats home page is located at http://www.gnu.org/software/gnats. It contains
all the important references to the available information about gnats and the related
software.

There is also a special page dedicated to the gnats development at
http://savannah.gnu.org/projects/gnats.

There are several gnats mailing lists. The most important ones are:

info-gnats@gnu.org
Announcements and other important information about gnats and the related
software. This is a very low volume moderated list.

bug-gnats@gnu.org
The bug reporting mailing list on the gnats itself. Please note that the pre-
ferred way to report gnats bugs is to submit them via the web interface at
http://bugs.gnu.org/cgi-bin/gnatsweb.pl?database=gnats. New bug re-
ports submitted via the web interface are copied to the mailing list automati-
cally.

help-gnats@gnu.org
General discussion about gnats. Anything related to gnats (user questions,
development, suggestions, etc.) can be discussed there.

The complete list of gnats related mailing lists is available from the web page at
http://savannah.gnu.org/project/gnats.

When you report problems concerning gnats itself, please do not forget to provide
especially the following information:
• The gnats version you are using.
• The exact way how to reproduce the bug.
• Your configuration.
• If you encounter a compilation or build problem, it is especially important to mention

the operating system, compiler and possibly other build utilities you use.

Providing this information in the initial report avoids further unnecessary communica-
tion, saves our limited development resources and helps to track down and fix the problem
soon.

100 Keeping Track

Index 101

Index

-
–with-gnats-dblist-file . 33
–with-gnats-default-db . 33
–with-gnats-service . 33
–with-gnats-user . 33
–with-gnatsd-host-access-file 33
–with-gnatsd-user-access-file 33
–with-kerberos . 33
–with-krb4 . 33

>
>Arrival-Date: . 11
>Audit-Trail: . 11
>Category: . 10
>Class: . 10
>Confidential: . 9
>Description: . 10
>Environment: . 10
>Fix: . 11
>How-To-Repeat: . 10
>Number: . 11
>Organization: . 9
>Originator: . 9
>Priority: . 10
>Release: . 10
>Responsible: . 11
>Severity: . 9
>State: . 11
>Submitter-Id: . 9, 15
>Synopsis: . 9
>Unformatted: . 12

A
adding a problem category 43, 62
adding and removing maintainers 43
adding another database . 43
addresses file . 45, 60
admin files . 61
administering gnats . 43
administrative utilities . 62
age of PR . 71
alias for incoming Problem Reports 36
aliases . 36
analyzed state . 5
appended-email-response 54
appending PRs . 12, 15
arrival-date . 48
Arrival-Date field . 11
at . 35
at-pr . 67

audit-mail . 54

audit-trail . 48

Audit-Trail field . 11

Audit-trail format . 53

autoload commands . 34

automatic notification . 5, 67

B
BACK UP YOUR DATA . 44

bad Problem Reports . 15

bug alias . 36

bug reporting . 99

building a new index . 44

building GNATS . 31

building in a different directory 34

builtin-name . 48

bury-buffer . 28

business-day-hours . 47

business-week-days . 47

C
categories file . 44, 57, 62, 63

category . 48

Category field . 10

category-dir-perms . 47

change-request class . 10

check-db . 64

Class field . 10

classes file . 45, 61

closed state . 6

command line options . 16

comment section in the PR template 14

compiling the software . 32

confidential . 48

Confidential field . 9

confidentiality in PRs . 9

configure . 32

configuring and compiling the software 32

configuring GNATS . 31

configuring gnats on a network 38

create-category-dirs . 47

creating an account for the gnats user 32

critical severity problems . 9

cron . 35

crontab . 36

current file . 62

102 Keeping Track

D
daemon . 37
database paradigm . 3
database rationale . 3
database similarities . 6
‘databases’ . 44
databases file . 45
datatype . 49
date . 51
Date-Required field . 11
Date-Required: . 11
dbconfig file . 44, 46
dbconfig mode . 30
debug-mode . 46
default installation locations 73, 75
deleted-pr-mail . 54
Description field . 10
diff-prs . 70
Direct e-mail . 17
disabling submitter-id . 60
doc-bug class . 10
driver for edit-pr . 67
duplicate class . 10
duties for gnats-admin . 43

E
edit controls . 51
edit-pr . 18, 29
edit-pr driver. 67
edit-pr from the shell . 19
effective problem reporting 18
Emacs . 27
Emacs functions . 34
Emacs lisp file installation . 32
emptying the pending directory 43
enum . 49
enumerated-in-file . 50
Environment field . 10
environment variables and GNATS tools 13
errors . 15
example Problem Report . 6
example queries . 26
exec-prefix . 33, 73

F
feedback state . 5
Field datatypes . 49
field format . 8
fields. 6
fields - list . 9

file-pr . 65

files used for gnats administration 61

final state (closed) . 6

Fix field . 11

flowchart of GNATS activities 4

foreword . 1

format . 6

format parameters . 53

format-name . 54

From: header . 8

G
gen-index . 44, 63

GNATS administrator . 3

gnats configuration. 44

GNATS database fields . 8

GNATS fields - list . 9

GNATS management . 43

gnats support . 99

gnats-adm . 74

gnats-admin alias . 36

gnats-apply-or-submit . 29

gnats-change-database 28, 30

gnats-dbconfig-mode . 30

gnats-dbconfig-mode-hook 30

gnats-default-organization . 28

gnats-default-submitter . 28

gnats-edit-mode-hook . 29

gnats-next-field . 29

gnats-previous-field . 29

gnats-pwconv . 64

gnats-query-edit-pr . 28

gnats-query-mode-hook . 28

gnats-query-reread . 28

gnats-query-reverse-listing . 28

gnats-query-view-pr . 28

gnats-view-edit-pr . 27

gnats-view-mode-hook . 27

gnatsd . 79

gnatsd command protocol . 80

gnatsd commands . 81

gnatsd description . 79

gnatsd environment variables 91

gnatsd options . 79

gnatsd startup options . 79

gnatsd, Emacs . 30

‘gnatsd.access’ . 94

gnatsd.access file . 45

‘gnatsd.host_access’ . 44, 93

Index 103

H
handling incoming traffic . 65
helpful hints . 18
high priority problems . 10
How-To-Repeat field . 10

I
incoming alias for Problem Reports 36
incoming PRs that gnats cannot parse 4
index file . 61, 63
Index file description . 56
Individual field configuration 47
information to submit . 18
Initial PR input fields . 57
initial state (open) . 5
initial-pr-notification 54
initial-pr-notification-pending 54
initial-response-to-submitter 54
initializing a database . 62
installing GNATS . 31
installing the utilities . 34
integer . 51
interactive interface . 16
internal utilities . 65
Internet standard RFC-822 . 8
introduction to GNATS . 3
invalid Problem Reports . 15
invoking edit-pr . 18
invoking query-pr . 20
invoking send-pr . 13
invoking send-pr from Emacs 16
invoking send-pr from the shell 16
invoking the gnats user tools 13

K
keep-all-received-headers 46
kinds of helpful information 18

L
last-modified . 48
libexecdir . 47
life-cycle of a Problem Report 5
lisp file installation . 32
listing valid categories . 17
loading .el files . 34
locations . 73
locks . 68
low priority problems . 10

M

mail aliases . 36

mail header fields . 8

mail header section . 14

mailing lists . 99

maintenance . 3

make . 32

managing gnats . 43

medium priority problems . 10

mistaken class . 10

mkcat . 43, 62

mkdb . 43, 62

multi-enumerated-in-file 51

multienum . 50

multitext . 49

N

Named query definitions . 52

networks . 38

new database . 62

new problem categories . 62

non-critical severity problems 9

notification of overdue PRs 67

notify-about-expired-prs 47

number . 48

Number field . 11

O

objdir . 34

open state . 5

Organization field . 9

Originator field . 9

other mail . 12, 15

Outgoing email formats . 53

Overall database configuration 46

Overview of gnats configuration 44

overview to GNATS . 1

104 Keeping Track

P
paradigm . 3

password, Emacs . 30

pending directory . 4

pending file . 58

PR confidentiality . 9

PR locks . 68

pr-age . 71

pr-edit . 67

prefix . 33, 73

priority . 48

Priority field . 10

Problem Report format . 6

Problem Report states . 5

Problem Report template . 6

processing incoming traffic . 65

pruning log files . 44

Q
query expressions . 25

query-pr . 20, 27, 28

query-pr by mail . 20

query-pr output format . 24

querying individual problem reports 20

querying using regexps . 97

queue-pr . 65

queue-pr -q . 36

R
rationale . 3

Received-By: headers . 8

regular expressions . 97

related mail . 12, 15

Release field . 10

reminder message . 67

removing a problem category 43, 63

Reply-To: header . 8

Report all the facts! . 18

reporting problems with send-pr. 13

responsible . 48

Responsible field . 11

responsible file . 44, 58

Responsible-Changed-<From>-<To> in
Audit-Trail . 12

Responsible-Changed-By in Audit-Trail 12

Responsible-Changed-When in Audit-Trail . . . 12

Responsible-Changed-Why in Audit-Trail 12

rmcat . 43, 63

S
sample Problem Report . 6

saving related mail . 12, 15

send-pr . 13, 28

send-pr fields . 15, 17

send-pr within Emacs . 16

send-submitter-ack . 47

serious severity problems . 9

setting up GNATS . 31

severity . 48

Severity field . 9

shell invocation . 16

Site wide configuration files 44

so what does it do . 3

state . 48

State field . 11

state—analyzed . 5

state—closed . 6

state—feedback . 5

state—open . 5

state—suspended . 6

State-Changed-<From>-<To> in Audit-Trail . . 12

State-Changed-By in Audit-Trail 12

State-Changed-When in Audit-Trail 12

State-Changed-Why in Audit-Trail 12

states file . 45, 60

states of Problem Reports . 5

Subject: header . 8

submitter . 48

Submitter-Id field . 9, 15

submitters file . 45, 59

Submitting a PR via e-mail 17

subsequent mail . 12, 15

support class . 10

support site . 3

suspended state . 6

sw-bug class . 10

synopsis . 48

Synopsis field . 9

syntax of regexps . 97

T
template . 13

template comment section . 14

text . 49

the section on query-by-mail needs to be relocated
. 20

timely reminders . 67

To: header . 8

Index 105

U
Unformatted field . 12
unlock-pr . 30
unpacking the distribution . 32
unparseable incoming PRs . 4
upgrade, procedure . 39
upgrading from older versions 38
upgrading, overview . 38
usage for the gnats user tools 13
Using and Porting gnu CC 18
using edit-pr . 18
using gnats over a network 37, 38
using query-pr . 20

using send-pr . 13
using send-pr from within Emacs 16

V
view-pr . 27
visual map of data flow . 4

W
what is a PR . 3
where gnats lives . 73
why GNATS . 3

106 Keeping Track

