Next: Debye Functions, Previous: Coupling Coefficients, Up: Special Functions [Index]

The Dawson integral is defined by *\exp(-x^2) \int_0^x dt
\exp(t^2)*. A table of Dawson’s integral can be found in Abramowitz &
Stegun, Table 7.5. The Dawson functions are declared in the header file
`gsl_sf_dawson.h`.

- Function:
*double***gsl_sf_dawson***(double*`x`) - Function:
*int***gsl_sf_dawson_e***(double*`x`, gsl_sf_result *`result`) These routines compute the value of Dawson’s integral for

`x`.