Guile-GNOME: GObject

version 2.16.0, updated 12 June 2008

Andy Wingo (wingo at pobox.com)
Martin Baulig (baulig at suse.de)

mailto:wingo at pobox.com
mailto:baulig at suse.de

This manual is for Guile-GNOME: GObject (version 2.16.0, updated 12 June 2008)
Copyright 2003,2004,2005,2006,2007,2008 Free Software Foundation

Permission is granted to copy, distribute and/or modify this document under
the terms of the GNU General Public License, Version 2 or any later version
published by the Free Software Foundation.

Short Contents

T (gnome-2) ..o 1
2 (gnome gobJect) ...t 3
3 (gnome gobject GtypPe) « . vttt 7
4 (gnome gobject gvalue) i 8
5 (gnome gobject gparameter) 11
6 (gnome gobject gclosure) i 13
7 (gnome gobject gsignal) Lo i 14
8 (gnome gobject gobject) 16
9 (gnome gobject generics)vuiii i 19
10 (gnome gobject utils) 22
11 (gnome gw GENeriCs)vvuvumin oot nn .. 23
12 (gnome gw support gobject) i i, 24
13 (gnome gw support defs) il 28
14 (gnome gw support gtk-doc)o i 30
15 (gnome gw support modules)............ 33
Typelndex.o e 34

Function Indexo 35

Chapter 1: (gnome-2) 1

1 (gnome-2)

1.1 Overview

Selects version 2 of the Guile-GNOME libraries. This module is used for its side effects; it
exports no procedures.

1.2 Rationale

Farly in the development of guile-gnome, we realized that at some point we might need
to make incompatible changes. Of course, we would not want to force a correctly-written
program to break when guile-gnome gets upgraded. For this reason, we decided to make
guile-gnome parallel-installable. A program is completely specified when it indicates which
version of guile-gnome it should use.

Guile-gnome has the concept of an API version, which indicates a stable API series. For
example, a program written against API version 2 of guile-gnome will continue to work
against all future releases of that API version. It is permitted to add interfaces within a
stable series, but never to remove or change them incompatibly.

Changing the API version is expected to be a relatively infrequent operation. The current
API version is 2.

There are two manners for a program to specify the guile-gnome version:
1. Via importing the (gnome-version) module.

This special module alters guile’s load path to include the path of the specified API
version of guile-gnome. For example:

(use-modules (gnome-2))

2. Via invoking guile as guile-gnome-version.

This shell script is installed when building a particular version of guile-gnome, and
serves to automatically load the (gnome-apiversion) module. For example, to get a
repl ready for guile-gnome:

$ guile-gnome-2

To load a script with a particular version of guile-gnome:
$ guile-gnome-2 -s script args...
To specify the guile-gnome version in a script, you might begin the file with:
#! /bin/sh
—*- scheme —*-
exec guile-gnome-2 -s $0
1#
;; scheme code here...

A program must select the guile-gnome version before importing any guile-gnome mod-
ules. Indeed, one cannot even import (gnome gobject) before doing so.

For a further rationale on parallel installability, see http://ometer.com/parallel.html.Jj

http://ometer.com/parallel.html

Chapter 1: (gnome-2)

1.3 Usage

Chapter 2: (gnome gobject) 3

2 (gnome gobject)

2.1 Overview

This is the Guile wrapper of 1ibgobject, an implementation of a runtime, dynamic type
system for C. Besides providing an object system to C, libgobject’s main design goal was
to increase the ease with which C code can be wrapped by interpreted languages, such as
Guile or Perl.

This module, (gnome gobject), just re-exports procedures from other modules, so its
documentation seems an opportune spot for a more tutorial-like introduction. So open up
a Guile session and let’s begin.

First, if you haven’t done it, load the appropriate version of Guile-GNOME:

guile> (use-modules (gnome-2))

(gnome gobject) is based heavily on GOOPS, Guile’s object system, so go ahead and
load up that too:

guile> (use-modules (oop goops))

We will leave off the guile> prompt in the rest of this tutorial. When we want to show
the value of an expression, we use =

(+ 3 5)
= 8

2.2 Basic types

When communicating with 1ibgobject, most values need to be strictly-typed. There
is a type class corresponding to each basic type in C: <gchar>, <guchar>, <gboolean>,
<gint>, <guint>, <glong>, <gulong>, <gint64>, <guint64>, <gfloat>, <gdouble>, and
<gchararray>.

You can make instances of these class with make:

(make <gboolean> #:value #f)
= #<gvalue <gboolean> 40529040 #f>

(make <guint> #:value 85)
= #<gvalue <guint> 4054040 85>

(make <gfloat> #:value 3.1415)
= #<gvalue <gfloat> 40556af0 3.1414999961853>

(make <gchararray> #:value "Hello World!")
= #<gvalue <gchararray> 4055af90 Hello World!>

You can get the normal Scheme values back with gvalue->scm:

Chapter 2: (gnome gobject) 4

(gvalue->scm (make <gchararray> #:value "Hello World!"))
= "Hello World!"

2.3 Enums and flags

Enumerated values and bitflags are an essential part of many C APIs, and so they are
specially wrapped in the GLib type system. You can create new enumerated types in
Scheme by subclassing <genum>:

(define-class <foo> (<genum>)
#:vtable ’#((hello "Hello World" 1) (test "Test" 2)))

Instances are created with make, just like with the other types:

(make <foo> #:value ’hello)
(make <foo> #:value "Hello World")
(make <foo> #:value 1)

;; These three all do the same thing
= #<gvalue <foo> 406275f8 (hello Hello World 1)>

If there is an already existing enum or flags class, you can get information about it:

(genum—class—>value—table <foo>)
= #((hello "Hello World" 1) (test "Test" 2))

Enums and flags have a special representation on the Scheme side. You can convert
them to Scheme values as symbols, names, or as a numeric value.

(define foo (make <foo> #:value ’hello))
(genum->symbol foo)

= hello

(genum->name foo)

= "Hello World"

(genum->value foo)

=1

2.4 GType

All of the types that GLib knows about are available to Guile, regardless of which language
defined them. GLib implements this via a type system, where every type has a name. So if
you make a type called “Foo” in C, you can get to it in Scheme via gtype-name->class:
;3 Retrieve the type for the foo enum we made earlier in the tutorial
(define copy-of-<foo> (gtype-name->class "Foo"))
(eq? <foo> copy-of-<foo>)
= #t

(make copy-of-<foo> #:value 2)

Chapter 2: (gnome gobject) 5

= #<gvalue <foo> 40535e50 (test Test 2)>

2.5 GObject

<gobject> (GObject in C) is the basic object type in 1ibgobject. (gnome gobject) allows
you to access existing GObject types, as well as to create new GObject types in Scheme.

Before we start, let’s pull in some generic functions that reduce the amount of typing we
have to do:

(use-modules (gnome gobject generics))

Let’s assume we start with <gtk-window> from (gnome gtk). The keyword arguments
to make are interpreted as GObject properties to set:

(define window (make <gtk-window>
#:type ’toplevel #:title "Hello, World!"))

You can connect to signals on the new instance:

(connect window ’delete-event
(lambda (window event)
;; Returns #t to ignore this event
#t))

;; connect is a generic function implemented by
;; gtype-instance-signal-connect

And get and set properties...

(get window ’title)
= "Hello, World!"
(set window ’resizable #f)

;; get and set are also generics, implemented by gobject-get-property
;; and gobject-set-property

2.6 Deriving your own GObject types

You can create new GObject types directly from Scheme, deriving either from a C object
type or one you made in Scheme.
;; deriving from <gobject>
(define-class <test> (<gobject>)
;; a normal object slot
my-data

;; an object slot exported as a gobject property
(pub-data #:gparam (list <gparam-long> #:name ’test))

Chapter 2: (gnome gobject) 6

;; a signal with no arguments and no return value
#:gsignal ’(frobate #f))

;; deriving from <test> -- also inherits properties and signals
(define-class <hungry> (<test>))

Adding a signal automatically defines the default method:

;5 This is the default handler for this signal.
(define-method (test:frobate (object <test>))
(format #t "Frobating “A\n" object))

;; We can override it for subclasses
(define-method (test:frobate (object <hungry>))
(next-method) ;; chain up
(format #t "I’m hungry\n"))

(emit (make <hungry>) ’frobate)
;5 Try it!

You can override the initialize, gobject:get-property, and gobject:set-property

methods. For an extended example, see tic-tac-toe.scm in the gtk/examples/gtk direc-
tory of the distribution.

2.7 Usage

Chapter 3: (gnome gobject gtype) 7

3 (gnome gobject gtype)

3.1 Overview

Base support for the GLib type system.

The GLib runtime type system is broken into a number of modules, of which GType is
the base. A GType is a simply a named type. Some types are fundamental and cannot be
subclassed, such as integers. Others can form the root of complicated object hierarchies,
such as <gobject>.

One can obtain the class for a type if you know its name. For example,

(gtype-name->class "guint64") = #<<gvalue-class> <guint64>>

A more detailed reference on the GLib type system may be had at
http://library.gnome.org/devel/gobject/stable/.

3.2 Usage

<gtype-class> [Class]
The metaclass of all GType classes. Ensures that GType classes have a gtype slot,
which records the primitive GType information for this class.

<gtype-instance> [Class]
The root class of all instantiatable GType classes. Adds a slot, gtype-instance, to
instances, which holds a pointer to the C value.

gtype-name->class name [Primitive]
Return the <gtype-class> associated with the GType, name.

class—name->gtype-name class-name [Function]
Convert the name of a class into a suitable name for a GType. For example:

(class-name->gtype-name ’<foo-bar>) = "FooBar"

gruntime-error format-string . args [Function]
Signal a runtime error. The error will be thrown to the key gruntime-error.

gtype-instance-destroy! instance [Primitive]
Release all references that the Scheme wrapper instance has on the underlying C
value, and release pointers associated with the C value that point back to Scheme.

Normally, you don’t need to call this function, because garbage collection will take care
of resource management. However some <gtype-class> instances have semantics
that require this function. The canonical example is that when a <gtk-object>
emits the destroy signal, all code should drop their references to the object. This is,
of course, handled internally in the (gnome gtk) module.

http://library.gnome.org/devel/gobject/stable/

Chapter 4: (gnome gobject gvalue) 8

4 (gnome gobject gvalue)

4.1 Overview

GLib supports generic typed values via its GValue module. These values are wrapped in
Scheme as instances of <gvalue-class> classes, such as <gint>, <gfloat>, etc.

In most cases, use of <gvalue> is transparent to the Scheme user. Values which can be
represented directly as Scheme values are normally given to the user in their Scheme form,
e.g. #\a instead of #<gvalue <gchar> 3020c708 a>. However, when dealing with low-level
routines it is sometimes necessary to have values in <gvalue> form. The conversion between
the two is performed via the scm->gvalue and gvalue->scm functions.

The other set of useful procedures exported by this module are those dealing with enu-
merated values and flags. These objects are normally represented on the C side with
integers, but they have symbolic representations registered in the GLib type system.

On the Scheme side, enumerated and flags values are canonically expressed as <gvalue>
objects. They can be converted to integers or symbols using the conversion procedures
exported by this module. It is conventional for Scheme procedures that take enumerated
values to accept any form for the values, which can be canonicalized using (make <your-
enum-type> #:value value), where value can be an integer, a symbol (or symbol list in
the case of flags), or the string “nickname” (or string list) of the enumerated/flags value.

4.2 Usage
<gvalue> [Class]
<gboolean> [Class]

A <gvalue> class for boolean values.

<gchar> [Class]
A <gvalue> class for signed 8-bit values.

<guchar> [Class]
A <gvalue> class for unsigned 8-bit values.

<gint> [Class]
A <gvalue> class for signed 32-bit values.

<guint> [Class|
A <gvalue> class for unsigned 32-bit values.

<glong> [Class]
A <gvalue> class for signed “long” (32- or 64-bit) values.

<gulong> [Class]
A <gvalue> class for unsigned “long” (32- or 64-bit) values.

<gint64> [Class]
A <gvalue> class for signed 64-bit values.

Chapter 4: (gnome gobject gvalue) 9

<guint64> [Class|
A <gvalue> class for unsigned 64-bit values.

<gfloat> [Class]
A <gvalue> class for 32-bit floating-point values.

<gdouble> [Class]
A <gvalue> class for 64-bit floating-point values.

<gchararray> [Class]
A <gvalue> class for arrays of 8-bit values (C strings).

<gboxed> [Class]
A <gvalue> class for “boxed” types, a way of wrapping generic C structures. You
won’t see instances of this class, only of its subclasses.

<gboxed-scm> [Class|
A <gboxed> class for holding arbitrary Scheme objects.

<gvalue-array> [Class]
A <gvalue> class for arrays of <gvalue>.

<gpointer> [Class]
A <gvalue> class for opaque pointers.

<genum> [Class]
A <gvalue> base class for enumerated values. Users may define new enumerated value
types via subclssing from <genum>, passing #:vtable table as an initarg, where table
should be in a format suitable for passing to genum-register-static.

<gflags> [Class]
A <gvalue> base class for flag values. Users may define new flag value types via
subclssing from <gflags>, passing #:vtable table as an initarg, where table should
be in a format suitable for passing to gflags-register-static.

genum-register-static name vtable [Primitive]
Creates and registers a new enumerated type with name name with the C runtime.
There must be no type with name name when this function is called.

The new type can be accessed by using gtype-name->class.

vtable is a vector describing the new enum type. Each vector element describes one
enum element and must be a list of 3 elements: the element’s nick name as a symbol,
its name as a string, and its integer value.

(genum-register-static "Test"
#((foo "Foo" 1) (bar "Bar" 2) (baz "Long name of baz" 4)))

gflags-register-static name vtable [Primitive]
Creates and registers a new flags <gtype-class> with name name with the C runtime.

The vtable should be in the format described in the documentation for genum-
register-static.

Chapter 4: (gnome gobject gvalue) 10

genum-class->value-table class [Primitive]
Return a table of the values supported by the enumerated <gtype-class> class. The
return value will be in the format described in genum-register-static.

gflags-class->value-table class [Primitive]
Return a table of the values supported by the flag <gtype-class> class. The return
value will be in the format described in gflags-register-static.

scm->gvalue class scm [Primitive]
Convert a Scheme value into a <gvalue> of type class. If the conversion is not possible,
raise a gruntime-error.

gvalue->scm value [Primitive]
Convert a <gvalue> into it normal scheme representation, for example unboxing
characters into Scheme characters. Note that the Scheme form for some values is the
<gvalue> form, for example with boxed or enumerated values.

genum->symbol obj [Function]
Convert the enumerated value obj from a <gvalue> to its symbol representation (its
“nickname”).

genum->name obj [Function]
Convert the enumerated value obj from a <gvalue> to its representation as a string
(its “name”).

genum->value value [Primitive]
Convert the enumerated value obj from a <gvalue> to its representation as an integer.

gflags->value value [Primitive]
Convert the flags value obj from a <gvalue> to its representation as an integer.

gflags->symbol-1list obj [Function]
Convert the flags value obj from a <gvalue> to a list of the symbols that it represents.

gflags->name-1list obj [Function]
Convert the flags value obj from a <gvalue> to a list of strings, the names of the
values it represents.

gflags->value-list obj [Function]
Convert the flags value obj from a <gvalue> to a list of integers, which when logand’d
together yield the flags’ value.

Chapter 5: (gnome gobject gparameter) 11

5 (gnome gobject gparameter)

5.1 Overview

Parameters are constraints for values, both in type and in range. This module wraps the
parameters code of the GLib type system, allowing parameters to be manipulated and
created from Scheme.

There is a parameter class for each type of parameter: <gparam-int>, <gparam-object>,
ete.

5.2 Usage

<gparam> [Class]
The base class for GLib parameter objects. (Doc slots)

<gparam-char> [Class]
Parameter for <gchar> values.

<gparam-uchar> [Class]
Parameter for <guchar> values.

<gparam-boolean> [Class]
Parameter for <gboolean> values.

<gparam-int> [Class]
Parameter for <gint> values.

<gparam-uint> [Class|
Parameter for <guint> values.

<gparam-long> [Class]
Parameter for <glong> values.

<gparam-ulong> [Class]
Parameter for <gulong> values.

<gparam-int64> [Class]
Parameter for <gint64> values.

<gparam-uint64> [Class|
Parameter for <guint64> values.

<gparam-float> [Class]
Parameter for <gfloat> values.

<gparam-double> [Class]
Parameter for <gdouble> values.

<gparam-unichar> [Class]
Parameter for Unicode codepoints, represented as <guint> values.

Chapter 5: (gnome gobject gparameter) 12

<gparam-pointer> [Class|
Parameter for <gpointer> values.

<gparam-string> [Class]
Parameter for <gchararray> values.

<gparam-boxed> [Class]
Parameter for <gboxed> values.

<gparam-enum> [Class]
Parameter for <genum> values.

<gparam-flags> [Class]
Parameter for <gflags> values.

<gparam-spec-flags> [Class]
A <gflags> type for the flags allowable on a <gparam>: read, write, construct,
construct-only, and lax-validation.

arameter:uint-max Variable
gp

arameter:int-min Variable
gp

arameter:int-max Variable
gp
gparameter:ulong-max [Variable]

arameter:long-min Variable
gp g

arameter:long-max Variable
gp g
gparameter:uint64-max [Variable]

arameter:int64-min Variable
gp

arameter:int64-max Variable
gp

arameter:float-max Variable
gp

arameter:float-min Variable
gp

arameter:double-max Variable
gp

arameter:double-min ariable
gp doubl i [Variable]
gparameter:byte-order [Variable]

Chapter 6: (gnome gobject gclosure) 13

6 (gnome gobject gclosure)

6.1 Overview

The GLib type system supports the creation and invocation of “closures”, objects which
can be invoked like procedures. Its infrastructure allows one to pass a Scheme function to
C, and have C call into Scheme, and vice versa. In Scheme, <gclosure> holds a Scheme
procedure, the <gtype> of its return value, and a list of the <gtype>’s of its arguments.
Closures can be invoked with gclosure-invoke.

However since on the C level, closures do not carry a description of their argument and
return types, when we invoke a closure we have to be very explicit about the types involved.
For example:

(gclosure-invoke (make <gclosure>
#:return-type <gint>
#:param-types (list <gulong>)
#:func (lambda (x) (* x x)))
<gulong>
(scm->gvalue <gulong> 10))

= 100

6.2 Usage

<gclosure> [Class]
The Scheme representation of a GLib closure: a typed procedure object that can be
passed to other languages.

gclosure-invoke closure return_type args [Primitive]
Invoke a closure.

A <gclosure> in GLib’s abstraction for a callable object. This abstraction carries no
type information, so the caller must supply all arguments as typed <gvalue> instances,
which may be obtained by the scheme procedure, scm->gvalue.

As you can see, this is a low-level function. In fact, it is not used internally by the
guile-gobject bindings.

Chapter 7: (gnome gobject gsignal) 14

7 (gnome gobject gsignal)

7.1 Overview

GSignal is a mechanism by which code, normally written in C, may expose extension points
to which closures can be connected, much like Guile’s hooks. Instantiatable types can have
signals associated with them; for example, <gtk-widget> has an expose signal that will be
“fired” at certain well-documented points.

Signals are typed. They specify the types of their return value, and the types of their
arguments.

This module defines routines for introspecting, emitting, connecting to, disconnecting
from, blocking, and unblocking signals. Additionally it defines routines to define new signal
types on instantiatable types.

7.2 Usage

<gsignal> [Class]
A <gsignal> describes a signal on a <gtype-instance>: its name, and how it should
be called.

gtype-class-get-signals class tail [Primitive]

Returns a list of signals belonging to class and all parent types.

gtype-class-get-signal-names class [Function]
Returns a vector of signal names belonging to class and all parent classes.

gtype-instance-signal-emit object name args [Primitive]
gtype-instance-signal-connect object name func . after? [Function]

Connects func as handler for the <gtype-instance> object’s signal name.

name should be a symbol. after is boolean specifying whether the handler is run
before (#f) or after (#t) the signal’s default handler.

Returns an integer number which can be used as arugment of gsignal-handler-
block, gsignal-handler-unblock, gsignal-handler-disconnect and gsignal-
handler-connected?.

gtype-instance-signal-connect-after object name func [Function]
Convenience function for calling gtype-instance-signal-connect with after = #t.

gsignal-handler-block instance handler_id [Primitive]
gsignal-handler-unblock instance handler_id [Primitive]
gsignal-handler-disconnect instance handler_id [Primitive]
gsignal-handler-connected? instance handler_id [Primitive]
gtype-class-create-signal class name return-type param-types [Function]

Create a new signal associated with the <gtype-class> class.

Chapter 7: (gnome gobject gsignal) 15

name should be a symbol, the name of the signal. return-type should be a <gtype-
class> object. param-types should be a list of <gtype-class> objects.

In a bit of an odd interface, this function will return a new generic function, which
will be run as the signal’s default handler, whose default method will silently return
an unspecified value. The user may define new methods on this generic to provide
alternative default handler implementations.

Chapter 8: (gnome gobject gobject) 16

8 (gnome gobject gobject)

8.1 Overview

GObject is what is commonly understood as the object system for GLib. This is not strictly
true. GObject is one implementation of an object system, built on the other modules:
GType, GValue, GParameter, GClosure, and GSignal.

Similarly, this Guile module provides integration with the GObject object system, built
on the Guile modules that support GType, GValue, GParameter, GClosure, and GSignal.

The main class exported by this module is <gobject>. <gobject> classes can be sub-
classed by the user, which will register new subtypes with the GType runtime type system.
<gobject> classes are are also created as needed when wrapping GObjects that come from
C, for example from a function’s return value.

Besides supporting derivation, and signals like other <gtype-instance> implementa-
tions, <gobject> has the concept of properties, which are <gvalue>’s associated with the
object. The values are constrained by <gparam>’s, which are associated with the object’s
class. This module exports the necessary routines to query, get, and set <gobject> prop-
erties.

In addition, this module defines the <ginterface> base class, whose subclasses may be
present as mixins of <gobject> classes. For example:

(use-modules (gnome gtk) (oop goops))

(class-direct-supers <gtk-widget>) =
(#<<gobject-class> <atk-implementor-iface> 3033bad0>
#<<gobject-class> <gtk-object> 3034bc90>)

In this example, we see that <gtk-widget> has two superclasses, <gtk-object> and
<atk-implementor-iface>. The second is an interface implemented by the <gtk-widget>
class. See gtype-interfaces for more details.

8.2 Usage

<gobject> [Class]
The base class for GLib’s default object system.
<gobject>’s metaclass understands a new slot option, #:gparam, which will export
a slot as a <gobject> property. The default implementation will set and access the
value from the slot, but you can customize this by writing your own methods for
gobject:set-property and gobject:get-property.
In addition, the metaclass also understands #:gsignal arguments, which define sig-
nals on the class, and define the generics for the default signal handler. See gtype-
class-define-signal for more information.

For example:
;; deriving from <gobject>
(define-class <test> (<gobject>)
;5 a normal object slot

Chapter 8: (gnome gobject gobject) 17

my-data

;; an object slot exported as a gobject property
(pub-data #:gparam (list <gparam-long> #:name ’test))

;; likewise, using non-default parameter settings

(foo-data #:gparam (list <gparam-long> #:name ’foo
#:minimum -3 #:maximum 1000
#:default-value 42))

;; a signal with no arguments and no return value
#:gsignal ’ (frobate #f)

;; a signal with arguments and a return value
#:gsignal (list ’frobate <gboolean> <gint> <glong>))

;3 deriving from <test> -- also inherits properties and signals
(define-class <hungry> (<test>))

<gobject> classes also expose a slot for each GObject property defined on the class,
if such a slot is not already defined.

<ginterface> [Class]
The base class for GLib’s interface types. Not derivable in Scheme.

<gparam-object> [Class]
Parameter for <gobject> values.

gtype-register-static name parent_class [Primitive]
Derive a new type named name from parent_class. Returns the new <gtype-class>.
This function is called when deriving from <gobject>; users do not normally call this
function directly.

gobject:get-property [Generic]
Called to get a gobject property. Only properties directly belonging to the object’s
class will come through this function; superclasses handle their own properties.

Takes two arguments: the object and the property name.

Call (next-method) in your methods to invoke the default handler

gobject:get-property (object <gobject>) (name <symbol>) [Method|
The default implementation of gobject:get-property, which calls (slot-ref obj
name).

gobject:set-property [Generic]

Called to set a gobject property. Only properties directly belonging to the object’s
class will come through this function; superclasses handle their own properties.

Takes three arguments: the object, the property name, and the value.

Call (next-method) in your methods to invoke the default handler.

Chapter 8: (gnome gobject gobject) 18

gobject:set-property (object <gobject>) (name <symbol>) (value [Method]
<top>)

The default implementation of gobject: set-property, which sets slots on the object.

gobject-class-get-properties class [Primitive]

gobject-class-find-property class name [Function]
Returns a property named name (a symbol), belonging to class or one of its parent
classes, or #f if not found.

gobject-class-get-property-names class [Primitive]

gobject-get-property object name [Primitive]
Gets a the property named name (a symbol) from object.

gobject-set-property object name value [Primitive]
Sets the property named name (a symbol) on object to init-value.

Chapter 9: (gnome gobject generics) 19
9 (gnome gobject generics)

9.1 Overview

Generic functions for procedures in the (gnome gobject) module.

9.1.1 Mapping class libraries to Scheme

Guile-GNOME exists to wrap a C library, 1ibgobject, its types, and the set of libraries
that based themselves on the GLib types.

Procedure invocation feels very similar in Scheme and in C. For example, the C gtk_
widget_show (widget) transliterates almost exactly to the Scheme (gtk-widget-show
widget).

GLib-based libraries are not random collections of functions, however. GLib-based li-
braries also implement classes and methods, insofar that it is possible in C. For example,
in the above example, show may be seen to be a method on instances of the <gtk-widget>
class.

Indeed, other object-oriented languages such as Python express this pattern directly,
translating the show operation as the pleasantly brief widget.show (). However this repre-
sentation of methods as being bound to instances, while common, has a number of draw-
backs.

The largest drawback is that the method itself is not bound to a generic operation.
For example, mapping the show operation across a set of widgets cannot be done with
the straightforward map(show, set), because there is no object for the show operation.
Instead the user must locally bind each widget to a variable in order to access a method of
the abstract show operation: map(lambda widget: widget.show(), set).

Additionally, most languages which express methods as bound to instances only select the
method via the type of the first (implicit) argument. The rule for these lanugages is, “gtk-
widget-show is an applicable method of the show operation when the first argument to show
is a <gtk-widget>.” Note the lack of specification for other arguments; the same object
cannot have two applicable methods of the show operation. A more complete specification
would be, “gtk-widget-show is an applicable method of the show operation when applied
to one argument, a <gtk-widget>.” It is a fine difference, but sometimes important.

For these and other reasons, the conventional way to implement generic operations in
Lisp has been to define generic functions, and then associate specific methods with those
functions. For example, one would write the following:

;; defining a generic function, and one method implementation
(define-generic show)
(define-method (show (widget <gtk-widget>))

(gtk-widget-show widget))

;; invoking the generic function
(show my-widget)

Chapter 9: (gnome gobject generics) 20

One benefit of this approach is that method definitions can be made far away in space and
time from type definitions. This leads to a more dynamic environment, in which methods
can be added to existing types at runtime, which then can apply to existing instances.

9.1.2 The semantics of generic functions in Guile-GNOME

Naturally, there is an impedance mismatch between the conventions used in the C libraries
and their Scheme equivalents. Operations in GLib-based libraries do not form a coherent
whole, in the sense that there is no place that defines the meaning of an abstract show
operation. For example, gtk-widget-set-state, which can make a widget become uned-
itable, and gst-element-set-state, which can start a video player, would both map to the
generic function set-state, even though they have nothing to do with each other besides
their name.

There is no conflict here; the methods apply on disjoint types. However there is a
problem of modularity, in that both methods must be defined on the same generic function,
so that (set-state foo bar) picks the correct method, depending on the types of foo and
bar.

This point leads to the conclusion that generic functions in Guile-GNOME have no
abstract meaning, apart from their names. Semantically, generics in Guile-GNOME are
abbreviations to save typing, not abstract operations with defined meanings.

9.1.3 Practicalities

This module defines a number of “abbreviations”, in the form of generic functions, for oper-
ations on types defined in the (gnome gobject) modules. Generic functions for generated
bindings like (gnome gtk) are defined in another module, (gnome gw generics), which
re-exports the public bindings from this module.

9.2 Usage

get [Generic]

get (object <gobject>) (name <symbol>) [Method|
A shorthand for gobject-get-property.

set [Generic]

set (object <gobject>) (name <symbol>) (value <top>) [Method|
A shorthand for gobject-set-property.

emit [Generic]

emit (object <gtype-instance>) (name <symbol>) (args <top>)... [Method|
A shorthand for gtype-instance-signal-emit.

connect [Generic]

connect (object <gtype-instance>) (name <symbol>) (func [Method|

<procedure>)

A shorthand for gtype-instance-signal-connect.

Chapter 9: (gnome gobject generics)

connect (args <top>)..

The core Guile implementation of the connect(2) POSIX call

connect-after

connect-after (object <gtype-instance>) (name <symbol>) (func

<procedure>)
A shorthand for gtype-instance-signal-connect-after.

block

block (object <gtype-instance>) (id <top>)
A shorthand for gsignal-handler-block.

unblock

unblock (object <gtype-instance>) (id <top>)
A shorthand for gsignal-handler-unblock.

disconnect

disconnect (object <gtype-instance>) (id <top>)
A shorthand for gsignal-handler-disconnect.

connected?

connected? (object <gtype-instance>) (id <top>)
A shorthand for gsignal-handler-connected?.

invoke

invoke (closure <gclosure>) (args <top>)...
A shorthand for gclosure-invoke.

create-signal

create-signal (class <gtype-class>) (name <symbol>)
(return-type <top>) (param-types <top>)
A shorthand for gtype-class-create-signal.

get-signals

get-signals (class <gtype-class>)
A shorthand for gtype-class-get-signals.

get-properties
get-properties (class <gtype-class>)

A shorthand for gobject-class-get-properties.
get-property-names
get-property-names (class <gtype-class>)

A shorthand for gobject-class-get-property-names.
find-property

find-property (class <gtype-class>) (name <symbol>)
A shorthand for gobject-class-find-property.

21

[Method|

[Generic]
[Method]

[Generic]
[Method|

[Generic]
[Method]

[Generic]
[Method|

[Generic]
[Method]

[Generic]

[Method|

[Generic]
[Method|

[Generic]
[Method|

[Generic]
[Method|

[Generic]
[Method]

[Generic]
[Method|

Chapter 10: (gnome gobject utils) 22

10 (gnome gobject utils)

10.1 Overview

Common utility routines.

10.2 Usage

GStudlyCapsExpand nstr [Function]
Expand the StudlyCaps nstr to a more schemey-form, according to the conventions
of GLib libraries. For example:

(GStudlyCapsExpand "GSource") = g-source

(GStudlyCapsExpand "GtkIMContext") = gtk-im-context
(GStudlyCapsExpand "GtkHBox") = gtk-hbox

gtype-name->scheme-name-alist [Variable]
An alist of exceptions to the name transformation algorithm implemented in
GStudlyCapsExpand.

gtype-name->scheme-name type-name [Function]

Transform a name of a <gtype>, such as "GtkWindow", to a scheme form, such
as gtk-window, taking into account the exceptions in gtype-name->scheme-name-
alist, and trimming trailing dashes if any.

gtype-name->class-name type-name [Function]
Transform a name of a <gtype>, such as "GtkWindow", to a suitable name of a
Scheme class, such as <gtk-window>. Uses gtype-name->scheme-name.

gtype-class—-name->method-name class-name name [Function]
Generate the name of a method given the name of a <gtype> and the name of the
operation. For example:

(gtype-name->method-name "GtkFoo" "bar") = gtk-foo:bar

Uses gtype—name->scheme-name.

re—export-modules . args [Special Form]|
Re-export the public interface of a module or modules. Invoked as (re-export-
modules (mod1l) (mod2)...).

define-macro-with-docs form docs. body [Special Form]

define-with-docs name docs val [Special Form]
Define name as val, documenting the value with docs.

define-generic-with-docs name documentation [Special Form]|
Define a generic named name, with documentation documentation.

define-class-with-docs name supers docs . rest [Special Form]
Define a class named name, with superclasses supers, with documentation docs.

unless test . body [Special Form]|

with-accessors names . body [Special Form]

Chapter 11: (gnome gw generics) 23

11 (gnome gw generics)

11.1 Overview

This module exists so that all (gnome gw) modules have a common place to put their generic
functions. Whenever a wrapset is loaded, it adds method definitions to generics defined in
this module.

See the documentation for (gnome gobject generics) for more notes about generic
functions in Guile-GNOME. This module re-exports bindings from (gnome gobject
generics), so there is no need to import them both.

11.2 Usage

Chapter 12: (gnome gw support gobject) 24

12 (gnome gw support gobject)

12.1 Overview

G-Wrap support for (gnome gobject) types. Code in this module is only loaded when
generating wrapsets; as such, it is not for end users.

12.2 Usage

<gobject-wrapset-base> [Class]
The base class for G-Wrap wrapsets that use <gobject> types.

add-type-alias! [Generic]

add-type-alias! (wrapset <gobject-wrapset-base>) (alias [Method|
<string>) (name <symbol>)
Add a type alias to wrapset, that the string alias is associated with the type named
symbol. For example, "GtkWindow*" might be associated with a type named <gtk-
window>. See lookup-type-by-alias.

lookup-type-by-alias [Generic]
lookup-type-by-alias (wrapset <gobject-wrapset-base>) (name [Method]
<string>)

Lookup a type aliased name in wrapset, and all wrapsets on which wrapset depends.
This interface is used by load-defs to associate G-Wrap types with the strings parsed
out of the C header files.

add-type-rule! [Generic]

add-type-rule! (self <gobject-wrapset-base>) (param-type [Method|
<string>) (typespec <top>)
Add a type rule to wrapset, that the string param-type maps directly to the g-wrap
typespec typespec. For example, "int*" might map to the typespec (int out). See
find-type-rule.

find-type-rule [Generic]
find-type-rule (self <gobject-wrapset-base>) (param-type [Method|
<string>)

See if the parameter type param-type has a type rule present in wrapset or in any
wrapset on which wrapset depends. This interface is used by load-defs to associate
G-Wrap typespecs with the strings parsed out of the C header files.

<gobject-type-base> [Class]
A base G-Wrap type class for GLib types.

<gobject-classed-type> [Class]
A base G-Wrap type class for classed GLib types (see gtype-classed?).

Chapter 12: (gnome gw support gobject) 25

gtype-id [Generic]
gtype-id (o <gobject-custom-gvalue-type>) [Method|
gtype-id (o <gobject-custom-boxed-type>) [Method]
gtype-id (o <gobject-class-type>) [Method]
gtype-id (o <gobject-flags-type>) [Method]
gtype-id (o <gobject-enum-type>) [Method]
gtype-id (o <gobject-interface-type>) [Method]
gtype-id (o <gobject-pointer-type>) [Method|
gtype-id (o <gobject-boxed-type>) [Method|
gtype-id (o <gobject-instance-type>) [Method|
gtype-id (o <gobject-classed-pointer-type>) [Method|
gtype-id (o <gobject-classed-type>) [Method]
<gobject-classed-pointer-type> [Class]
A base G-Wrap type class for for classed GLib types whose values are pointers.
unwrap-null-checked [Generic]
unwrap-null-checked (value <gw-value>) (status-var <top>) [Method|

(code <top>)
Unwrap a value into a C pointer, optionally unwrapping #f as NULL.
This function checks the typespec options on value, which should be a <gw-value>.
If the null-ok option is set (which is only the case for value classes with null-ok in
its #:allowed-options), this function generates code that unwraps #f as NULL. If
null-ok is unset, or the value is not #£f, code is run instead.

wrap-instance! [Generic]

wrap-instance! (ws <gobject-wrapset-base>) (args <top>)... [Method|
Define a wrapper for a specific instantiatable (<gtype-instance>-derived) type in
ws. Required keyword arguments are #:ctype and #:gtype-id. For example,
(wrap-instance! ws #:ctype "GtkWidget"
#:gtype-id "GTK_TYPE_WIDGET")

Normally only called from load-defs.

wrap-boxed! [Generic]

wrap-boxed! (ws <gobject-wrapset-base>) (args <top>)... [Method|
Define a wrapper for a specific boxed type in ws. Required keyword arguments are
#:ctype and #:gtype-id, as in wrap-instance!.

wrap-pointer! [Generic]

wrap-pointer! (ws <gobject-wrapset-base>) (args <top>)... [Method|
Define a wrapper for a specific pointer type in ws. Required keyword arguments are
#:ctype and #:gtype-id, as in wrap-instance!.

Chapter 12: (gnome gw support gobject) 26

wrap-opaque-pointer! ws ctype [Function]
Define a wrapper for an opaque pointer with the C type ctype. It will not be possible
to create these types from Scheme, but they can be received from a library, and passed
as arguments to other calls into the library.

wrap-freeable-pointer! ws ctype free [Function]
foo

wrap-refcounted-pointer! ws ctype ref unref [Function]
foo

wrap-structure! ws ctype wrap unwrap [Function]

Define a wrapper for structure values of type ctype.

wrap and unwrap are the names of C functions to convert a C structure to Scheme
and vice versa, respectively. When in a function call, parameters of this type of the
form ‘StructName*’ are interpreted as ‘out’ parameters, while ‘const-StructName™’
are treated as ‘in’ parameters.

Note that ctype should be the type of the structure, not a pointer to the structure.

wrap-interface! [Generic]

wrap-interface! (ws <gobject-wrapset-base>) (args <top>)... [Method|
Define a wrapper for an interface type in ws. Required keyword arguments are
#:ctype and #:gtype-id, as in wrap-instance!.

wrap-flags! [Generic]
wrap-flags! (ws <gobject-wrapset-base>) (args <top>)... [Method|

Define a wrapper for a flags type in ws. Required keyword arguments are #:ctype
and #:gtype-id or #:values, as in wrap-enum!.

wrap-gobject-class! [Generic]

wrap-gobject-class! (ws <gobject-wrapset-base>) (args <top>)... [Method|
Define a wrapper for GObject class values ws. Required keyword arguments are
#:ctype and #:gtype-id, as in wrap-instance!.
#:ctype should refer to the type of the class and not the instance; e.g.
"GtkWidgetClass" and not "GtkWidget". This function will not be called by
load-defs, and should be invoked manually in a wrapset as needed.

wrap-custom-boxed! ctype gtype wrap unwrap [Special Form]
Wrap a boxed type using custom wrappers and unwrappers.

FIXME: missing a wrapset argument!

ctype and gtype are as #:ctype and #:gtype-id in wrap-instance!. wrap and
unwrap are G-Wrap forms in which scm-var and c-var will be bound to the names
of the SCM and C values, respectively. For example:
(wrap-custom-boxed!
"GdkRectangle" "GDK_TYPE_RECTANGLE"
(1ist scm-var " = "
c-var " 7 scm_gdk_rectangle_to_scm (" c-var ")"
" : SCM_BOOL_F;")
(1ist c-var " = scm_scm_to_gdk_rectangle (" scm-var ");"))

Chapter 12: (gnome gw support gobject) 27

wrap-custom-gvalue! ctype gtype wrap-func unwrap-func [Special Form]
Wrap a GValue type using custom wrap and unwrap functions.

FIXME: missing a wrapset argument!

ctype and gtype are as #:ctype and #:gtype-id in wrap-instance!. wrap-func and
unwrap-func are names of functions to convert to and from Scheme values, respec-
tively. For example:
(wrap-custom-gvalue! "GstFraction" "GST_TYPE_FRACTION"
"scm_from_gst_fraction"
"scm_to_gst_fraction")

Chapter 13: (gnome gw support defs) 28

13 (gnome gw support defs)

13.1 Overview

This module serves as a way to automatically populate G-Wrap wrapsets using information
parsed out of C header files.

First, the C header files are parsed into S-expression API description forms and written
into .defs files. These files are typically included in the distribution, and regenerated
infrequently. Then, the binding author includes a call to load-defs in their G-Wrap wrapset
definition, which loads those API definitions into the wrapset.

The .defs files are usually produced using the API scanner script, h2defs.py, included
in the Guile-GNOME source distribution.

Code in this module is only loaded when generating wrapsets; as such, it is not for end
users.

As an example, ATK is wrapped with the following code, from atk/gnome/gw/atk-
spec.scm:

(define-module (gnome gw atk-spec)
#:use-module (oop goops)
#:use-module (gnome gw support g-wrap)
#:use-module (gnome gw gobject-spec)
#:use-module (gnome gw support gobject)
#:use-module (gnome gw support defs))

(define-class <atk-wrapset> (<gobject-wrapset-base>)
#:1d ’gnome-atk
#:dependencies ’(standard gnome-glib gnome-gobject))

(define-method (global-declarations-cg (self <atk-wrapset>))
(1ist
(next-method)
"#include <atk/atk.h>\n"
"#include <atk/atk-enum-types.h>\n"))

(define-method (initialize (ws <atk-wrapset>) initargs)
(next-method ws (append ’(#:module (gnome gw a