Next: Mathematical Constants, Previous: Rational Approximations, Up: Arithmetic [Contents][Index]

- Function File:
*[*`theta`,`r`] =**cart2pol***(*`x`,`y`) - Function File:
*[*`theta`,`r`,`z`] =**cart2pol***(*`x`,`y`,`z`) - Function File:
*[*`theta`,`r`] =**cart2pol***(*`C`) - Function File:
*[*`theta`,`r`,`z`] =**cart2pol***(*`C`) - Function File:
`P`=**cart2pol***(…)* -
Transform Cartesian coordinates to polar or cylindrical coordinates.

The inputs

`x`,`y`(, and`z`) must be the same shape, or scalar. If called with a single matrix argument then each row of`C`represents the Cartesian coordinate (`x`,`y`(,`z`)).`theta`describes the angle relative to the positive x-axis.`r`is the distance to the z-axis (0, 0, z).If only a single return argument is requested then return a matrix

`P`where each row represents one polar/(cylindrical) coordinate (`theta`,`phi`(,`z`)).

- Function File:
*[*`x`,`y`] =**pol2cart***(*`theta`,`r`) - Function File:
*[*`x`,`y`,`z`] =**pol2cart***(*`theta`,`r`,`z`) - Function File:
*[*`x`,`y`] =**pol2cart***(*`P`) - Function File:
*[*`x`,`y`,`z`] =**pol2cart***(*`P`) - Function File:
`C`=**pol2cart***(…)* Transform polar or cylindrical coordinates to Cartesian coordinates.

The inputs

`theta`,`r`, (and`z`) must be the same shape, or scalar. If called with a single matrix argument then each row of`P`represents the polar/(cylindrical) coordinate (`theta`,`r`(,`z`)).`theta`describes the angle relative to the positive x-axis.`r`is the distance to the z-axis (0, 0, z).If only a single return argument is requested then return a matrix

`C`where each row represents one Cartesian coordinate (`x`,`y`(,`z`)).

- Function File:
*[*`theta`,`phi`,`r`] =**cart2sph***(*`x`,`y`,`z`) - Function File:
*[*`theta`,`phi`,`r`] =**cart2sph***(*`C`) - Function File:
`S`=**cart2sph***(…)* Transform Cartesian coordinates to spherical coordinates.

The inputs

`x`,`y`, and`z`must be the same shape, or scalar. If called with a single matrix argument then each row of`C`represents the Cartesian coordinate (`x`,`y`,`z`).`theta`describes the angle relative to the positive x-axis.`phi`is the angle relative to the xy-plane.`r`is the distance to the origin (0, 0, 0).If only a single return argument is requested then return a matrix

`S`where each row represents one spherical coordinate (`theta`,`phi`,`r`).

- Function File:
*[*`x`,`y`,`z`] =**sph2cart***(*`theta`,`phi`,`r`) - Function File:
*[*`x`,`y`,`z`] =**sph2cart***(*`S`) - Function File:
`C`=**sph2cart***(…)* Transform spherical coordinates to Cartesian coordinates.

The inputs

`theta`,`phi`, and`r`must be the same shape, or scalar. If called with a single matrix argument then each row of`S`represents the spherical coordinate (`theta`,`phi`,`r`).`theta`describes the angle relative to the positive x-axis.`phi`is the angle relative to the xy-plane.`r`is the distance to the origin (0, 0, 0).If only a single return argument is requested then return a matrix

`C`where each row represents one Cartesian coordinate (`x`,`y`,`z`).

Next: Mathematical Constants, Previous: Rational Approximations, Up: Arithmetic [Contents][Index]