Next: Complex Arithmetic, Up: Arithmetic [Contents][Index]

- Mapping Function:
**exp***(*`x`) Compute

`e^x`

for each element of`x`. To compute the matrix exponential, see Linear Algebra.**See also:**log.

- Mapping Function:
**expm1***(*`x`) Compute

`exp (`

accurately in the neighborhood of zero.`x`) - 1**See also:**exp.

- Mapping Function:
**log***(*`x`) Compute the natural logarithm,

`ln (`

, for each element of`x`)`x`. To compute the matrix logarithm, see Linear Algebra.

- Function File:
**reallog***(*`x`) Return the real-valued natural logarithm of each element of

`x`. Report an error if any element results in a complex return value.

- Mapping Function:
**log1p***(*`x`) Compute

`log (1 +`

accurately in the neighborhood of zero.`x`)

- Mapping Function:
**log10***(*`x`) Compute the base-10 logarithm of each element of

`x`.

- Mapping Function:
**log2***(*`x`) - Mapping Function:
*[*`f`,`e`] =**log2***(*`x`) Compute the base-2 logarithm of each element of

`x`.If called with two output arguments, split

`x`into binary mantissa and exponent so that`1/2 <= abs(f) < 1`

and`e`is an integer. If`x = 0`

,`f = e = 0`

.

- Mapping Function:
**pow2***(*`x`) - Mapping Function:
**pow2***(*`f`,`e`) With one argument, computes 2 .^ x for each element of

`x`.With two arguments, returns f .* (2 .^ e).

- Function File:
**nextpow2***(*`x`) If

`x`is a scalar, return the first integer`n`such that 2^n ≥ abs (x).If

`x`is a vector, return`nextpow2 (length (`

.`x`))

- Function File:
**realpow***(*`x`,`y`) Compute the real-valued, element-by-element power operator. This is equivalent to

, except that`x`.^`y``realpow`

reports an error if any return value is complex.

- Mapping Function:
**sqrt***(*`x`) Compute the square root of each element of

`x`. If`x`is negative, a complex result is returned. To compute the matrix square root, see Linear Algebra.

- Function File:
**realsqrt***(*`x`) Return the real-valued square root of each element of

`x`. Report an error if any element results in a complex return value.

- Mapping Function:
**cbrt***(*`x`) Compute the real cube root of each element of

`x`. Unlike

, the result will be negative if`x`^(1/3)`x`is negative.**See also:**nthroot.

- Function File:
**nthroot***(*`x`,`n`) -
Compute the n-th root of

`x`, returning real results for real components of`x`. For example:nthroot (-1, 3) ⇒ -1 (-1) ^ (1 / 3) ⇒ 0.50000 - 0.86603i

`x`must have all real entries.`n`must be a scalar. If`n`is an even integer and`X`has negative entries, an error is produced.

Next: Complex Arithmetic, Up: Arithmetic [Contents][Index]