
GNU recutils
for version 1.7, 25 March 2014

by Jose E. Marchesi and John Darrington

This manual is for GNU recutils (version 1.7, 25 March 2014).

Copyright c© 2009-2014 Jose E. Marchesi

Copyright c© 1994-2014 Free Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document under the
terms of the GNU Free Documentation License, Version 1.3 or any later version
published by the Free Software Foundation; with no Invariant Sections, no Front-
Cover Texts, and no Back-Cover Texts. A copy of the license is included in the
section entitled “GNU Free Documentation License”.

i

Table of Contents

1 Introduction . 1
1.1 Purpose . 1
1.2 A Little Example . 1

2 The Rec Format . 4
2.1 Fields . 4
2.2 Records . 4
2.3 Comments . 5
2.4 Record Descriptors . 5

2.4.1 Record Sets . 6
2.4.2 Naming Record Types . 7
2.4.3 Documenting Records . 7
2.4.4 Record Sets Properties . 8

3 Querying Recfiles . 10
3.1 Simple Selections . 10
3.2 Selecting by Type . 12
3.3 Selecting by Position . 13
3.4 Random Records . 14
3.5 Selection Expressions . 14

3.5.1 Selecting by predicate . 14
3.5.2 SEX Operands . 16

3.5.2.1 Numeric Literals . 16
3.5.2.2 String Literals . 16
3.5.2.3 Field Values . 16
3.5.2.4 Parenthesized Expressions . 17

3.5.3 Operators . 17
3.5.3.1 Arithmetic Operators . 17
3.5.3.2 Boolean Operators . 17
3.5.3.3 Comparison Operators . 17
3.5.3.4 Date Comparison Operators . 17
3.5.3.5 Field Operators . 18
3.5.3.6 String Operators . 18
3.5.3.7 Conditional Operator . 18

3.5.4 Evaluation of Selection Expressions . 18
3.6 Field Expressions . 18
3.7 Sorted Output . 20

4 Editing Records . 23
4.1 Inserting Records . 23

4.1.1 Adding Records With recins . 23
4.1.2 Replacing Records With recins . 24
4.1.3 Adding Anonymous Records . 24

4.2 Deleting Records . 25
4.3 Sorting Records . 26

ii

5 Editing Fields . 27
5.1 Adding Fields . 27
5.2 Setting Fields . 27
5.3 Deleting Fields . 27
5.4 Renaming Fields . 28

6 Field Types . 29
6.1 Declaring Types . 29
6.2 Types and Fields . 30
6.3 Scalar Field Types . 30
6.4 String Field Types . 31
6.5 Enumerated Field Types . 32
6.6 Date and Time Types . 32
6.7 Other Field Types . 32

7 Constraints on Record Sets . 34
7.1 Mandatory Fields . 34
7.2 Prohibited Fields . 34
7.3 Allowed Fields . 35
7.4 Keys and Unique Fields . 35
7.5 Size Constraints . 36
7.6 Arbitrary Constraints . 36

8 Checking Recfiles . 38
8.1 Syntactical Errors . 38
8.2 Semantic Errors . 38

9 Remote Descriptors . 39

10 Grouping and Aggregates . 40
10.1 Grouping Records . 40
10.2 Aggregate Functions . 42

11 Queries which Join Records . 45
11.1 Foreign Keys . 46
11.2 Joining Records . 47

12 Auto-Generated Fields . 49
12.1 Counters . 50
12.2 Unique Identifiers . 50
12.3 Time-Stamps . 51

13 Encryption . 52
13.1 Confidential Fields . 52
13.2 Encrypting Files . 53
13.3 Decrypting Data . 53

14 Generating Reports . 55
14.1 Templates . 56

iii

15 Interoperability . 57
15.1 CSV Files . 57
15.2 Importing MDB Files . 58

16 Bash Builtins . 60
16.1 readrec . 60

17 Invoking the Utilities . 62
17.1 Invoking recinf . 62
17.2 Invoking recsel . 62
17.3 Invoking recins . 64
17.4 Invoking recdel . 66
17.5 Invoking recset . 67
17.6 Invoking recfix . 68
17.7 Invoking recfmt . 69
17.8 Invoking csv2rec . 69
17.9 Invoking rec2csv . 70
17.10 Invoking mdb2rec . 70

18 Regular Expressions . 71

19 Date input formats . 72
19.1 General date syntax . 72
19.2 Calendar date items . 73
19.3 Time of day items . 74
19.4 Time zone items . 74
19.5 Combined date and time of day items . 75
19.6 Day of week items . 75
19.7 Relative items in date strings . 75
19.8 Pure numbers in date strings . 76
19.9 Seconds since the Epoch . 76
19.10 Specifying time zone rules . 77
19.11 Authors of parse_datetime . 77

Appendix A GNU Free Documentation License 78

Concept Index . 85

Chapter 1: Introduction 1

1 Introduction

1.1 Purpose

GNU recutils is a set of tools and libraries to access human-editable, text-based databases
called recfiles. The data is stored as a sequence of records, each record containing an arbitrary
number of named fields. Advanced capabilities usually found in other data storage systems are
supported: data types, data integrity (keys, mandatory fields, etc.) as well as the ability of
records to refer to other records (sort of foreign keys). Despite its simplicity, recfiles can be used
to store medium-sized databases.

So, yet another data storage system? The mere existence of this package deserves an expla-
nation. There is a rich set of already available free data storage systems, covering a broad range
of requirements. Big systems having complex data storage requirements will probably make use
of some full-fledged relational system such as MySQL or PostgreSQL. Less demanding appli-
cations, or applications with special deployment requirements, may find it more convenient to
use a simpler system such as SQLite, where the data is stored in a single binary file. XML files
are often used to store configuration settings for programs, and to encode data for transmission
through networks.

So it looks like all the needs are covered by the existing solutions . . . but consider the
following characteristics of the data storage systems mentioned in the previous paragraph:

− The stored data is not directly human readable.

− The stored data is definitely not directly writable by humans.

− They are program dependent.

− They are not easily managed by version control systems.

Regarding the first point (human readability), while it is clearly true for the binary files, some
may argue XML files are indeed human readable. . . well. . . <bar><foo tag="val">try</foo>

to r&iamp;ead <p>this</p></bar>. YAML1 is an example of a hierarchical data storage for-
mat which is much more readable than XML. The problem with YAML is that it was designed
as a “data serialization language” and thus to map the data constructs usually found in pro-
gramming languages. That makes it too complex for the simple task of storing plain lists of
items.

Recfiles are human-readable, human-writable and still easy to parse and to manipulate au-
tomatically. Obviously they are not suitable for any task (for example, it can be difficult to
manage hierarchies in recfiles) and performance is somewhat sacrificed in favor of readability.
But they are quite handy to store small to medium simple databases.

The GNU recutils suite comprises:

− This Texinfo manual, describing the Rec format and the accompanying software.

− A C library (librec) that provides a rich set of functions to manipulate rec data.

− A set utilities that can be used in shell scripts and in the command line to operate on rec
files.

− An emacs mode, rec-mode.

1.2 A Little Example

Everyone loves to grow a nice book collection at home. Unfortunately, in most cases the man-
agement of our private books gets uncontrolled: some books get lost, some of them may be

1 Yet Another Markup Language

Chapter 1: Introduction 2

loaned to some friend, there are some duplicated (or even triplicated!) titles because we forgot
about the existence of the previous copy, and many more details.

In order to improve the management of our little book collection we could make use of a
complex data storage system such as a relational database. The problem with that approach, as
explained in the previous section, is that the tool is too complicated for the simple task: we do
not need the full power of a relational database system to maintain a simple collection of books.

With GNU recutils it is possible to maintain such a little database in a text file. Let’s call it
‘books.rec’. The following table resumes the information items that we want to store for each
title, along with some common-sense restrictions.

− Every book has a title, even if it is “No Title”.

− A book can have several titles.

− A book can have more than one author.

− For some books the author is not known.

− Sometimes we don’t care about who the author of a book is.

− We usually store our books at home.

− Sometimes we loan books to friends.

− On occasions we lose track of the physical location of a book. Did we loan it to anyone?
Was it lost in the last move? Is it in some hidden place at home?

The contents of the rec file follows:

-*- mode: rec -*-

%rec: Book

%mandatory: Title

%type: Location enum loaned home unknown

%doc:

+ A book in my personal collection.

Title: GNU Emacs Manual

Author: Richard M. Stallman

Publisher: FSF

Location: home

Title: The Colour of Magic

Author: Terry Pratchett

Location: loaned

Title: Mio Cid

Author: Anonymous

Location: home

Title: chapters.gnu.org administration guide

Author: Nacho Gonzalez

Author: Jose E. Marchesi

Location: unknown

Title: Yeelong User Manual

Location: home

End of books.rec

Chapter 1: Introduction 3

Simple. The file contains a set of records separated by blank lines. Each record comprises a
set of fields with a name and a value.

The GNU recutils can then be used to access the contents of the file. For example, we could
get a list of the names of loaned books by invoking recsel in the following way:

$ recsel -e "Location = ’loaned’" -P Title books.rec

The Colour of Magic

Chapter 2: The Rec Format 4

2 The Rec Format

A recfile is nothing but a text file which conforms to a few simple rules. This chapter shows you
how, by observing these rules, recfiles of arbitrary complexity can be written.

2.1 Fields

A field is the written form of an association between a label and a value. For example, if we
wanted to associate the label Name with the value Ada Lovelace we would write:

Name: Ada Lovelace

The separator between the field name and the field value is a colon followed by a blank
character (space and tabs, but not newlines). The name of the field shall begin in the first
column of the line.

A field name is a sequence of alphanumeric characters plus underscores (_), starting with a
letter or the character %. The regular expression denoting a field name is:

[a-zA-Z%][a-zA-Z0-9_]*

Field names are case-sensitive. Foo and foo are different field names.

The following list contains valid field names (the final colon is not part of the names):

Foo:

foo:

A23:

ab1:

A_Field:

The value of a field is a sequence of characters terminated by a single newline character (\n).

Sometimes a value is too long to fit in the usual width of terminals and screens. In that case,
depending on the specific tool used to access the file, the readability of the data would not be
that good. It is therefore possible to physically split a logical line by escaping a newline with a
backslash character, as in:

LongLine: This is a quite long value \

comprising a single unique logical line \

split in several physical lines.

The sequence \n (newline) + (PLUS) and an optional _ (SPACE) is interpreted as a newline
when found in a field value. For example, the C string "bar1\nbar2\n bar3" would be encoded
in the following way in a field value:

Foo: bar1

+ bar2

+ bar3

2.2 Records

A record is a group of one or more fields written one after the other:

Name1: Value1

Name2: Value2

Name2: Value3

It is possible for several fields in a record to share the same name or/and the field value. The
following is a valid record containing three fields:

Name: John Smith

Email: john.smith@foomail.com

Email: john@smith.name

Chapter 2: The Rec Format 5

The size of a record is defined as the number of fields that it contains. A record cannot be
empty, so the minimum size for a record is 1. The maximum number of fields for a record is
only limited by the available physical resources. The size of the previous record is 3.

Records are separated by one or more blank lines. For instance, the following example shows
a file named ‘personalities.rec’ featuring three records:

Name: Ada Lovelace

Age: 36

Name: Peter the Great

Age: 53

Name: Matusalem

Age: 969

2.3 Comments

Any line having an # (ASCII 0x23) character in the first column is a comment line.

Comments may be used to insert information that is not part of the database but useful in
other ways. They are completely ignored by processing tools and can only be seen by looking
at the recfile itself.

It is also quite convenient to comment-out information from the recfile without having to
remove it in a definitive way: you may want to recover the data into the database later! Comment
lines can be used to comment-out both full registers and single fields:

Name: Jose E. Marchesi

Occupation: Software Engineer

Severe lack of brain capacity

Fired on 02/01/2009 (without compensation)

Occupation: Unoccupied

Comments are also useful for headers, footers, comment blocks and all kind of markers:

-*- mode: rec -*-

#

TODO

#

This file contains the Bugs database of GNU recutils.

#

Blah blah...

...

End of TODO

Unlike some file formats, comments in recfiles must be complete lines. You cannot start a
comment in the middle of a line. For example, in the following record, the # does not start a
comment:

Name: Peter the Great # Russian Tsar

Age: 53

2.4 Record Descriptors

Certain properties of a set of records can be specified by preceding them with a record descriptor.
A record descriptor is itself a record, and uses fields with some predefined names to store
properties.

Chapter 2: The Rec Format 6

2.4.1 Record Sets

The most basic property that can be specified for a set of records is their type. The special field
name %rec is used for that purpose:

%rec: Entry

Id: 1

Name: Entry 1

Id: 2

Name: Entry 2

The records following the descriptors are then identified as having its type. So in the example
above we would say there are two records of type “Entry”. Or in a more colloquial way we would
say there are two “Entries” in the database.

The effect of a record descriptor ends when another descriptor is found in the stream of
records. This allows you to store different kinds of records in the same database. For example,
suppose you are maintaining a depot. You will need to keep track of both what items are
available and when they are sold or restocked.

The following example shows the usage of two record descriptors to store both kind of records:
articles and stock.

%rec: Article

Id: 1

Title: Article 1

Id: 2

Title: Article 2

%rec: Stock

Id: 1

Type: sell

Date: 20 April 2011

Id: 2

Type: stock

Date: 21 April 2011

The collection of records having same types in recfiles are known as record sets in recutils
jargon. In the example above two record sets are defined: one containing articles and the other
containing stock movements.

Nothing prevents having empty record sets in databases. This is in fact usually the case
when a new recfile is written but no data exists yet. In our depot example we could write a first
version of the database containing just the record descriptors:

%rec: Article

%rec: Stock

Special records are not required, and many recfiles do not have them. This is because all
the records contained in the file are of the same type, and their nature can usually be inferred
from both the file name and their contents. For example, ‘contacts.rec’ could simply contain
records representing contacts without an explicit %rec: Contact record descriptor. In this case
we say that the type of the anonymous records stored in the file is the default record type.

Chapter 2: The Rec Format 7

Another possible situation, although not usual, is to have a recfile containing both non-typed
(default) and typed record types:

Id: 1

Title: Blah

Id: 2

Title: Bleh

%rec: Movement

Date: 13-Aug-2012

Concept: 20

Date: 24-Sept-2012

Concept: 12

In this case the records preceding the movements are of the “default” type, whereas the records
following the record descriptor are of type Movement. Even though it is supported by the format
and the utilities, it is generally not recommended to mix non-typed and typed records in a
recfile.

2.4.2 Naming Record Types

It is up to you how to name your record sets. Any string comprising only alphanumeric characters
or underscores, and that starts with a letter will be a legal name. However, it is recommended
to use the singular form of a noun in order to describe the “type” of the records in the records
set. Examples are Article, Contributor, Employee and Movement.

The used noun should be specific enough in order to characterize the property of the records
which matters. For example, in a contributor’s database it would be better to have a record set
named Contributor than Person.

The reason of using singular nouns instead of their plural forms is that it works better with
the utilities: it is more natural to read recsel -t Contributor (-t is for “type”) than recsel

-t Contributors.

2.4.3 Documenting Records

As well as a name, it is a good idea to provide a description of the record set. This is sometimes
called the record set’s documentation and is specified using the %doc field.

Whereas the name is usually short and can contain only alphanumeric characters and under-
scores, no such restriction applies to the documentation. The documentation is typically more
verbose than the name provided by the %rec field and may contain arbitrary characters such as
punctuation and parentheses. It is somewhat similar to a comment (see Section 2.3 [Comments],
page 5), but it can be managed more easily in a programmatic way. Unlike a comment, the %doc
field is recognized by tools such as recinf (see Section 17.1 [Invoking recinf], page 62) which
processes record descriptors. For example, you might have two record sets with %rec and %doc

fields as follows:

%rec: Contact

%doc: Family, friends and acquaintances (other than business).

Name: Granny

Phone: +12 23456677

Name: Edwina

Chapter 2: The Rec Format 8

Phone: +55 0923 8765

%rec: Associate

%doc: Colleagues and other business contacts

Name: Karl Schmidt

Phone: +49 88234566

Name: Genevieve Curie

Phone: +33 34 87 65

2.4.4 Record Sets Properties

Besides determining the type of record that follows in the stream, record descriptors can be used
to describe other properties of those records. This can be done by using special fields, which
have special names from a predefined set. Consider for example the following database, where
record descriptors are used to specify a (optional) numeric ‘Id’ and a mandatory ‘Title’ field:

%rec: Item

%type: Id int

%mandatory: Title

Id: 10

Title: Notebook (big)

Id: 11

Title: Fountain Pen

Note that the names of special fields always start with the character %. Also note that it is
also possible to use non-special fields in a record descriptor, but such fields will have no effect
on the described record set.

Every record set must contain one, and only one, field named %rec. It is not mandated that
that field must occupy the first position in the record. However, it is considered a good style to
place it as the first field in the record set, in order for the casual reader to easily identify the
type of the records.

The following list briefly describes the special fields defined in the recutils format, along with
references to the sections of this manual describing their usage in deep.

%rec Naming record types. Also, they allow using external and remote descriptors. See
Chapter 9 [Remote Descriptors], page 39.

%mandatory, %allowed and %prohibit

Requiring or forbidding specific fields. See Section 7.1 [Mandatory Fields], page 34.
See Section 7.2 [Prohibited Fields], page 34. See Section 7.3 [Allowed Fields],
page 35.

%unique and %key

Working with keys. See Section 7.4 [Keys and Unique Fields], page 35.

%doc Documenting your database. See Section 2.4.3 [Documenting Records], page 7.

%typedef and %type

Field types. See Chapter 6 [Field Types], page 29.

%auto Auto-counters and time-stamps. See Chapter 12 [Auto-Generated Fields], page 49.

%sort Keeping your record sets sorted. See Section 3.7 [Sorted Output], page 20.

Chapter 2: The Rec Format 9

%size Restricting the size of your database. See Section 7.5 [Size Constraints], page 36.

%constraint

Enforcing arbitrary constraints. See Section 7.6 [Arbitrary Constraints], page 36.

%confidential

Storing confidential information. See Chapter 13 [Encryption], page 52.

Chapter 3: Querying Recfiles 10

3 Querying Recfiles

Since recfiles are always human readable, you could lookup data simply by opening an editor
and searching for the desired information. Or you could use a standard tool such as grep to
extract strings matching a pattern. However, recutils provides a more powerful and flexible way
to lookup data. The following sections explore how the recutils can be used in order to extract
data from recfiles, from very basic and simple queries to quite complex examples.

3.1 Simple Selections

recsel is an utility whose primary purpose is to select records from a recfile and print them on
standard output. Consider the following example record set, which we shall assume is saved in
a recfile called ‘acquaintances.rec’:

This database contains a list of both real and fictional people

along with their age.

Name: Ada Lovelace

Age: 36

Name: Peter the Great

Age: 53

Name: Matusalem

Age: 969

Name: Bart Simpson

Age: 10

Name: Adrian Mole

Age: 13.75

If we invoke recsel acquaintances.rec we will get a list of all the records stored in the file in
the terminal:

$ recsel acquaintances.rec

Name: Ada Lovelace

Age: 36

Name: Peter the Great

Age: 53

Name: Bart Simpson

Age: 10

Name: Adrian Mole

Age: 13.75

Note that the commented out parts of the file, in this case the explanatory header and the record
corresponding to Matusalem, are not part of the output produced by recsel. This is because
recsel is concerned only with the data.

recsel will also “pack” the records so any extra empty lines that may be between records
are not echoed in the output:

Chapter 3: Querying Recfiles 11

acquaintances.rec:

Name: Peter the Great

Age: 53

Note the extra empty lines.

Name: Bart Simpson

Age: 10

$ recsel acquaintances.rec

Name: Peter the Great

Age: 53

Name: Bart Simpson

Age: 10

It is common to store data gathered in several recfiles. For example, we could have a
‘contacts.rec’ file containing general contact records, and also a ‘work-contacts.rec’ file
containing business contacts:

contacts.rec:

Name: Granny

Phone: +12 23456677

Name: Doctor

Phone: +12 58999222

work-contacts.rec:

Name: Yoyodyne Corp.

Email: sales@yoyod.com

Phone: +98 43434433

Name: Robert Harris

Email: robert.harris@yoyod.com

Note: Sales Department.

Both files can be passed to recsel in the command line. In that case recsel will simply
process them and output their records in the same order they were specified:

$ recsel contacts.rec work-contacts.rec

Name: Granny

Phone: +12 23456677

Name: Doctor

Phone: +12 58999222

Name: Yoyodyne Corp.

Email: sales@yoyod.com

Phone: +98 43434433

Name: Robert Harris

Email: robert.harris@yoyod.com

Note: Sales Department.

As mentioned above, the output follows the ordering on the command line, so recsel work-

contacts.rec contacts.rec would output the records of ‘work-contacts.rec’ first and then
the ones from ‘contacts.rec’.

Note however that recsel will merge records from several files specified in the command line
only if they are anonyomuse. If the contacts in our files were typed:

Chapter 3: Querying Recfiles 12

contacts.rec:

%rec: Contact

Name: Granny

Phone: +12 23456677

Name: Doctor

Phone: +12 58999222

work-contacts.rec:

%rec: Contact

Name: Yoyodyne Corp.

Email: sales@yoyod.com

Phone: +98 43434433

Name: Robert Harris

Email: robert.harris@yoyod.com

Note: Sales Department.

Then we would get the following error message:

$ recsel contacts.rec work-contacts.rec

recsel: error: duplicated record set ’Contact’ from work-contacts.rec.

3.2 Selecting by Type

As we saw in the section discussing record descriptors, it is possible to have several different
types of records in a single recfile. Consider for example a ‘gnu.rec’ file containing information
about maintainers and packages in the GNU Project:

%rec: Maintainer

Name: Jose E. Marchesi

Email: jemarch@gnu.org

Name: Luca Saiu

Email: positron@gnu.org

%rec: Package

Name: GNU recutils

LastRelease: 12 February 2014

Name: GNU epsilon

LastRelease: 10 March 2013

If recsel is invoked in that file it will complain:

$ recsel gnu.rec

recsel: error: several record types found. Please use -t to specify one.

This is because recsel does not know which records to output: the maintainers or the packages.
This can be resolved by using the -t command line option:

$ recsel -t Package gnu.rec

Name: GNU recutils

LastRelease: 12 February 2014

Name: GNU epsilon

LastRelease: 10 March 2013

By default recsel never outputs record descriptors. This is because most of the time the user
is only interested in the data. However, with the -d command line option, the record descriptor
of the selected type is printed preceding the data records:

Chapter 3: Querying Recfiles 13

$ recsel -d -t Maintainer gnu.rec

%rec: Maintainer

Name: Jose E. Marchesi

Email: jemarch@gnu.org

Name: Luca Saiu

Email: positron@gnu.org

Note that at the moment it is not possible to select non-typed (default) records when other
record sets are stored in the same file. This is one of the reasons why mixing non-typed records
and typed records in a single recfile is not recommended.

Note also that if a nonexistent record type is specified in -t then recsel does nothing.

3.3 Selecting by Position

As was explained in the previous sections, recsel outputs all the records of some record set.
The records are echoed in the same order they are written in the recfile. However, often it is
desirable to select a subset of the records, determined by the position they occupy in their record
set.

The -n command line option to recsel supports doing this in a natural way. This is how
we would retrieve the first contact listed in a contacts database using recsel:

$ recsel -n 0 contacts.rec

Name: Granny

Phone: +12 23456677

Note that the index is zero-based. If we want to retrieve more records we can specify several
indexes to -n separated by commas. If a given index is too big, it is simply ignored:

$ recsel -n 0,1,999 contacts.rec

Name: Granny

Phone: +12 23456677

Name: Doctor

Phone: +12 58999222

With -n, the order in which the records are echoed does not depend on the order of the indexes
passed to -n. For example, the output of recsel -n 0,1 will be identical to the output of
recsel -n 1,0.

Ranges of indexes can also be used to select a subset of the records. For example, the
following call would also select the first three contacts of the database:

$ recsel -n 0-2 contacts.rec

Name: Granny

Phone: +12 23456677

Name: Doctor

Phone: +12 58999222

Name: Dad

Phone: +12 88229900

It is possible to mix single indexes and index ranges in the same call. For example, recsel -n

0,5-6 would select the first, sixth and seventh records.

Chapter 3: Querying Recfiles 14

3.4 Random Records

Consider a database in which each record is a cooking recipe. It is always difficult to decide
what to cook each day, so it would be nice if we could ask recsel to pick up a random recipe.
This can be achieved using the -m (--random) command line option of recsel:

$ recsel -m 1 recipes.rec

Title: Curry chicken

Ingredient: A whole chicken

Ingredient: Curry

Preparation: ...

If we need two recipes, because we will be cooking at both lunch and dinner, we can pass a
different number to -m:

$ recsel -m 2 recipes.rec

Title: Fabada Asturiana

Ingredient: 300 gr of fabes.

Ingredient: Chorizo

Ingredient: Morcilla

Preparation: ...

Title: Pasta with ragu

Ingredient: 500 gr of spaghetti.

Ingredient: 2 tomatoes.

Ingredient: Minced meat.

Preparation: ...

The algorithm used to implement -m guarantees that you will never get multiple instances of the
same record. This means that if a record set has n records and you ask for n random records,
you will get all the records in a random order.

3.5 Selection Expressions

Selection expressions, also known as “sexes” in recutils jargon, are infix expressions that can be
applied to a record. A “sex” is a predicate which selects a subset of records within a recfile.
They can be simple expressions involving just one operator and a pair of operands, or complex
compound expressions with parenthetical sub-expressions and many operators and operands.
One of their most common uses is to examine records matching a particular set of conditions.

3.5.1 Selecting by predicate

Consider the example recfile ‘acquaintances.rec’ introduced earlier. It contains names of
people along with their respective ages. Suppose we want to get a list of the names of all the
children. It would not be easy to do this using grep. Neither would it, for any reasonably
large recfile, be feasible to search manually for the children. Fortunately the recsel command
provides an easy way to do such a lookup:

$ recsel -e "Age < 18" -P Name acquaintances.rec

Bart Simpson

Adrian Mole

Let us look at each of the arguments to recsel in turn. Firstly we have -e which tells recsel
to lookup records matching the expression Age < 18 — in other words all those people whose
ages are less than 18. This is an example of a selection expression. In this case it is a simple
test, but it can be as complex as needed.

Next, there is -P which tells recsel to print out the value of the Name field — because we
want just the name, not the entire record. The final argument is the name of the file from
whence the records are to come: ‘acquaintances.rec’.

Chapter 3: Querying Recfiles 15

Rather than explicitly storing ages in the recfile, a more realistic example might have the
date of birth instead (otherwise it would be necessary to update the people’s ages in the recfile
on every birthday).

Date of Birth

%type: Dob date

Name: Alfred Nebel

Dob: 20 April 2010

Email: alf@example.com

Name: Bertram Worcester

Dob: 3 January 1966

Email: bert@example.com

Name: Charles Spencer

Dob: 4 July 1997

Email: charlie@example.com

Name: Dirk Hogart

Dob: 29 June 1945

Email: dirk@example.com

Name: Ernest Wright

Dob: 26 April 1978

Email: ernie@example.com

Now we can achieve a similar result as before, by looking up the names of all those people who
were born after a particular date:

$ recfix acquaintances.rec

$ recsel -e "Dob >> ’31 July 1994’" -p Name acquaintances.rec

Name: Alfred Nebel

Name: Charles Spencer

The >> operator means “later than”, and is used here to select a date of birth after 31st July
1994. Note also that this example uses a lower case -p whereas the preceding example used the
upper case -P. The difference is that -p prints the field name and field value, whereas -P prints
just the value.

recsel accepts more than one -e argument, each introducing a selection expression, in which
case the records which satisfy all expressions are selected. You can provide more than one field
label to -P or -p in order to select additional fields to be displayed. For example, if you wanted to
send an email to all children 14 to 18 years of age, and today’s date were 1st August 2012, then
you could use the following command to get the name and email address of all such children:

$ recfix acquaintances.rec

$ recsel -e "Dob >> ’31 July 1994’ && Dob << ’01 August 1998’" \

-p Name,Email acquaintances.rec

Name: Charles Spencer

Email: charlie@example.com

As you can see, there is only one such child in our record set.

Note that the example command shown above contains both double quotes " and single
quotes ’. The double quotes are interpreted by the shell (e.g. bash) and the single quotes are
interpreted by recsel, defining a string. (And the backslash is interpreted by the shell, the
usual continuation character so that this manual doesn’t have a too-long line.)

Chapter 3: Querying Recfiles 16

3.5.2 SEX Operands

The supported operands are: numbers, strings, field names and parenthesized expressions.

3.5.2.1 Numeric Literals

The supported numeric literals are integer numbers and real numbers. The usual sign character
‘-’ is used to denote negative values. Integer values can be denoted in base 10, base 16 using
the 0x prefix, and base 8 using the 0 prefix. Examples are:

10000

0

0xFF

-0xa

012

-07

-1342

.12

-3.14

3.5.2.2 String Literals

String values are delimited by either the ’ character or the " character. Whichever delimiter is
used, the delimiter closing the literal must be the same as the delimiter used to open it.

Newlines and tabs can be part of a string literal.

Examples are:

’Hello.’

’The following example is the empty string.’

’’

The ’ and " characters can be part of a string if they are escaped with a backslash, as in:

’This string contains an apostrophe: \’.’

"This one a double quote: \"."

3.5.2.3 Field Values

The value of a field value can be included in a selection expression by writing its name. The
field name is replaced by a string containing the field value, to handle the possibility of records
with more than one field by that name. Examples:

Name

Email

long_field_name

It is possible to use the role part of a field if it is not empty. So, for example, if we are
searching for the issues opened by ‘John Smith’ in a database of issues we could write:

$ recsel -e "OpenedBy = ’John Smith’"

instead of using a full field name:

$ recsel -e "Hacker:Name:OpenedBy = ’John Smith’"

When the name of a field appears in an expression, the expression is applied to all the fields
in the record featuring that name. So, for example, the expression:

Email ~ "\\.org"

matches any record in which there is a field named ‘Email’ whose value terminates in (the literal
string) ‘.org’. If we are interested in the value of some specific email, we can specify its relative
position in the containing record by using subscripts. Consider, for example:

Chapter 3: Querying Recfiles 17

Email[0] ~ "\\.org"

Will match for:

Name: Mr. Foo

Email: foo@foo.org

Email: mr.foo@foo.com

But not for:

Name: Mr. Foo

Email: mr.foo@foo.com

Email: foo@foo.org

The regexp syntax supported in selection expressions is POSIX EREs, with several GNU
extensions. See Chapter 18 [Regular Expressions], page 71.

3.5.2.4 Parenthesized Expressions

Parenthesis characters ((and)) can be used to group sub expressions in the usual way.

3.5.3 Operators

The supported operators are arithmetic operators (addition, subtraction, multiplication, division
and modulus), logical operators, string operators and field operators.

3.5.3.1 Arithmetic Operators

Arithmetic operators for addition (+), subtraction (-), multiplication (*), integer division (/)
and modulus (%) are supported with their usual meanings.

These operators require either numeric operands or string operands whose value can be
interpreted as numbers (integer or real).

3.5.3.2 Boolean Operators

The boolean operators and (&&), or (||) and not (!) are supported with the same semantics as
their C counterparts.

A compound boolean operator => is also supported in order to ease the elaboration of con-
straints in records: A => B, which can be read as “A implies B”, translates into !A || (A &&

B).

The boolean operators expect integer operands, and will try to convert any string operand
to an integer value.

3.5.3.3 Comparison Operators

The compare operators less than (<), greater than (>), less than or equal (<=), greater than or
equal (>=), equal (=) and unequal (!=) are supported with their usual meaning.

Strings can be compared with the equality operator (=).

The match operator (~) can be used to match a string with a given regular expression (see
Chapter 18 [Regular Expressions], page 71).

3.5.3.4 Date Comparison Operators

The compare operators before (<<), after (>>) and same time (==) can be used with fields and
strings containing parseable dates.

See Chapter 19 [Date input formats], page 72.

Chapter 3: Querying Recfiles 18

3.5.3.5 Field Operators

Field counters are replaced by the number of occurrences of a field with the given name in the
record. For example:

#Email

The previous expression is replaced with the number of fields named Email in the record. It
can be zero if the record does not have a field with that name.

3.5.3.6 String Operators

The string concatenation operator (&) can be used to concatenate any number of strings and
field values.

’foo’ & Name & ’bar’

3.5.3.7 Conditional Operator

The ternary conditional operator can be used to select alternatives based on the value of some
expression:

expr1 ? expr2 : expr3

If expr1 evaluates to true (i.e. it is an integer or the string representation of an integer and
its value is not zero) then the operator yields expr2. Otherwise it yields expr3.

3.5.4 Evaluation of Selection Expressions

Given that:

− It is possible to refer to fields by name in selection expressions.

− Records can have several fields with the same name.

It is clear that some backtracking mechanism is needed in the evaluation of the selection expres-
sions. For example, consider the following expression that is deciding whether a “registration”
in a webpage should be rejected:

((Email ~ "foomail\.com") || (Age <= 18)) && !#Fixed

The previous expression will be evaluated for every possible permutation of the fields “Email”,
“Age” and “Fixed” present in the record, until one of the combinations succeeds. At that point
the computation is interrupted.

When used to decide whether a record matches some criteria, the goal of a selection expression
is to act as a boolean expression. In that case the final value of the expression depends on both
the type and the value of the result launched by the top-most subexpression:

− If the result is an integer, the expression is true if its value is not zero.

− If the result is a real, or a string, the expression evaluates to false.

Sometimes a selection expression is used to compute a result instead of a boolean. In that case
the returned value is converted to a string. This is used when replacing the slots in templates
(see Section 14.1 [Templates], page 56).

3.6 Field Expressions

Field expressions (also known as “fexes”) are a way to select fields of a record. They also allow
you to do certain transformations on the selected fields, such as changing their names.

A FEX comprises a sequence of elements separated by commas:

ELEM_1,ELEM_2,...,ELEM_N

Each element makes a reference to one or more fields in a record identified by a given name
and an optional subscript:

Chapter 3: Querying Recfiles 19

Field_Name[min-max]

min and max are zero-based indexes. It is possible to refer to a field occupying a given position.
For example, consider the following record:

Name: Mr. Foo

Email: foo@foo.com

Email: foo@foo.org

Email: mr.foo@foo.org

We would select all the emails of the record with:

Email

The first email with:

Email[0]

The third email with:

Email[2]

The second and the third email with:

Email[1-2]

And so on. It is possible to select the same field (or range of fields) more than once just by
repeating them in a field expression. Thus, the field expression:

Email[0],Name,Email

will print the first email, the name, and then all the email fields including the first one.

It is possible to include a rewrite rule in an element of a field expression, which specifies an
alias for the selected fields:

Field_Name[min-max]:Alias

For example, the following field expression specifies an alias for the fields named Email in a
record:

Name,Email:ElectronicMail

Since the rewrite rules only affect the fields selected in a single element of the field expression,
it is possible to define different aliases to several fields having the same name but occupying
different positions:

Name,Email[0]:PrimaryEmail,Email[1]:SecondaryEmail

When that field expression is applied to the following record:

Name: Mr. Foo

Email: primary@email.com

Email: secondary@email.com

Email: other@email.com

the result will be:

Name: Mr. Foo

PrimaryEmail: primary@email.com

SecondaryEmail: secondary@email.com

Email: other@email.com

It is possible to use the dot notation in order to refer to field and sub-fields. This is mainly
used in the context of joins, where new fields are created having compound names such as
Foo_Bar. A reference to such a field can be done in the fex using dot notation as follows:

Foo.Bar

Chapter 3: Querying Recfiles 20

3.7 Sorted Output

This special field sets sorting criteria for the records contained in a record set. Its usage is:

%sort: field1 field2 ...

Meaning that the desired order for the records will be determined by the contents of the fields
named in the %sort value. The sorting is always done in ascending order, and there may be
records that lack the involved fields, i.e. the sorting fields need not be mandatory.

It is an error to have more than one %sort field in the same record descriptor, as only one
field list can be used as sorting criteria.

Consider for example that we want to keep the records in our inventory system ordered by
entry date. We could achieve that by using the following record descriptor in the database:

%rec: Item

%type: Date date

%sort: Date

Id: 1

Title: Staplers

Date: 10 February 2011

Id: 2

Title: Ruler Pack 20

Date: 2 March 2009

...

As you can see in the example above, the fact we use %sort in a database does not mean that
the database will be always physically ordered. Unsorted record sets are not a data integrity
problem, and thus the diagnosis tools must not declare a recfile as +invalid because of this. The
utility recfix provides a way +to physically order the fields in the file (see Section 17.6 [Invoking
recfix], page 68).

On the other hand any program listing, presenting or processing data extracted from the
recfile must honor the %sort entry. For example, when using the following recsel program in
the database above we would get the output sorted by date:

$ recsel inventory.rec

Id: 2

Title: Ruler Pack 20

Date: 2 March 2009

Id: 1

Title: Staplers

Date: 10 February 2011

The sorting of the selected field depends on its type:

− Numeric fields (integers, ranges, reals) are numerically ordered.

− Boolean fields are ordered considering that “false” values come first.

− Dates are ordered chronologically.

− Any other kind of field is ordered using a lexicographic order.

It is possible to specify several fields as the sorting criteria. In that case the records are sorted
using a lexicographic order. Consider for example the following unsorted database containing
marks for several students:

Chapter 3: Querying Recfiles 21

%rec: Marks

%type: Class enum A B C

%type: Score real

Name: Mr. One

Class: C

Score: 6.8

Name: Mr. Two

Class: A

Score: 6.8

Name: Mr. Three

Class: B

Score: 9.2

Name: Mr. Four

Class: A

Score: 2.1

Name: Mr. Five

Class: C

Score: 4

If we wanted to sort it by Class and by Score we would insert a %sort special field in the
descriptor, having:

%rec: Marks

%type: Class enum A B C

%type: Score real

%sort: Class Score

Name: Mr. Four

Class: A

Score: 2.1

Name: Mr. Two

Class: A

Score: 6.8

Name: Mr. Three

Class: B

Score: 9.2

Name: Mr. Five

Class: C

Score: 4

Name: Mr. One

Class: C

Score: 6.8

The order of the fields in the %sort field is significant. If we reverse the order in the example
above then we get a different sorted set:

Chapter 3: Querying Recfiles 22

%rec: Marks

%type: Class enum A B C

%type: Score real

%sort: Score Class

Name: Mr. Four

Class: A

Score: 2.1

Name: Mr. Five

Class: C

Score: 4

Name: Mr. Two

Class: A

Score: 6.8

Name: Mr. One

Class: C

Score: 6.8

Name: Mr. Three

Class: B

Score: 9.2

In this last case, Mr. One comes after Mr. Two because the class A comes before the class B even
though the score is the same (6.8).

Chapter 4: Editing Records 23

4 Editing Records

The simplest way of editing a recfile is to start your favourite text editor and hack the contents
of the file as desired. However, the rec format is structured enough so recfiles can be updated
automatically by programs. This is useful for writing shell scripts or when there are complex
data integrity rules stored in the file that we want to be sure to preserve.

The following sections discuss the usage of the recutils for altering recfiles in the level of
record: adding new records, deleting or commenting them out, sorting them, etc.

4.1 Inserting Records

Adding new records to a recfile is pretty trivial: open it with your text editor and just write
down the fields comprising the records. This is really the best way to add contents to a recfile
containing simple data. However, complex databases may introduce some difficulties:

Multi-line values.
It can be tedious to manually encode the several lines.

Data integrity.
It is difficult to manually maintain the integrity of data stored in the data base.

Counters and timestamps.
Some record sets feature auto-generated fields, which are commonly used to imple-
ment counters and time-stamps. See Chapter 12 [Auto-Generated Fields], page 49.

Thus, to facilitate the insertion of new data a command line utility called recins is included
in the recutils. The usage of recins is very simple, and can be used both in the command line
or called from another program. The following subsections discuss several aspects of using this
utility.

4.1.1 Adding Records With recins

Each invocation of recins adds one record to the targeted database. The fields comprising the
records are specified using pairs of -f and -v command line arguments. For example, this is
how we would add the first entry to a previously empty contacts database:

$ recins -f Name -v "Mr Foo" -f Email -v foo@bar.baz contacts.rec

$ cat contacts.rec

Name: Mr. Foo

Email: foo@bar.baz

If we invoke recins again on the same database we will be adding a second record:

$ recins -f Name -v "Mr Bar" -f Email -v bar@gnu.org contacts.rec

$ cat contacts.rec

Name: Mr. Foo

Email: foo@bar.baz

name: Mr. Bar

Email: bar@gnu.org

There is no limit on the number of -f -v pairs that can be specified to recins, other than
any limit on command line arguments which may be imposed by the shell.

The field values provided using -v are encoded to follow the rec format conventions, including
multi-line field values. Consider the following example:

$ recins -f Name -v "Mr. Foo" -f Address -v ’

Foostrs. 19

Frankfurt am Oder

Chapter 4: Editing Records 24

Germany’ contacts.rec

$ cat contacts.rec

Name: Mr. Foo

Address:

+ Foostrs. 19

+ Frankfurt am Oder

+ Germany

It is also possible to provide fields already encoded as rec data for their addition, using the
-r command line argument. This argument can be intermixed with -f -v.

$ recins -f Name -v "Mr. Foo" -r "Email: foo@bar.baz" contacts.rec

$ cat contacts.rec

Name: Mr. Foo

Email: foo@bar.baz

If the string passed to -r is not valid rec data then recins will complain with an error and
the operation will be aborted.

At this time, it is not possible to add new records containing comments.

4.1.2 Replacing Records With recins

recins can also be used to replace existing records in a database with a provided record. This
is done by specifying some criteria selecting the record (or records) to be replaced.

Consider for example the following command applied to our contacts database:

$ recins -e "Email = ’foo@bar.baz’" -f Name -v "Mr. Foo" \

-f Email -v "new@bar.baz" contacts.rec

The contact featuring an email foo@bar.baz gets replaced with the following record:

Name: Mr. Foo

Email: new@bar.baz

The records to be replaced can also be specified by index, or a range of indexes. For example,
the following command replaces the first, second and third records in a database with dummy
records:

$ recins -n 0,1-2 -f Dummy -v XXX foo.rec

$ cat foo.rec

Dummy: XXX

Dummy: XXX

Dummy: XXX

... Other records ...

4.1.3 Adding Anonymous Records

In a previous chapter we noted that recsel interprets the absence of a -t argument depending
on the actual contents of the file. If the recfile contains records of just one type the command
assumes that the user is referring to these records.

recins does not follow this convention, and the absence of an explicit type always means to
insert (or replace) an anonymous record. Consider for example the following database:

%rec: Marks

%type: Class enum A B C

Name: Alfred

Chapter 4: Editing Records 25

Class: A

Name: Bertram

Class: B

If we want to insert a new mark we have to specify the type explicitly using -t:

$ cat marks.rec | recins -t Marks -f Name -v Xavier -f Class -v C

%rec: Marks

%type: Class enum A B C

Name: Alfred

Class: A

Name: Bertram

Class: B

Name: Xavier

Class: C

If we forget to specify the type then an anonymous record is created instead:

$ cat marks.rec | recins -f Name -v Xavier -f Class -v C

Name: Xavier

Class: C

%rec: Marks

%type: Class enum A B C

Name: Alfred

Class: A

Name: Bertram

Class: B

4.2 Deleting Records

Just as recins inserts records, the utility recdel deletes them. Consider the following recfile
‘stock.rec’:

%rec: Item

%type: Expiry date

%sort: Title

Title: First Aid Kit

Expiry: 2 May 2009

Title: Emergency Rations

Expiry: 10 August 2009

Title: Life raft

Expiry: 2 March 2009

Suppose we wanted to delete all items with an Expiry value before a certain date, we could
do this with the following command:

$ recdel -t Item -e ’Expiry << "5/12/2009"’ stock.rec

Chapter 4: Editing Records 26

After running this command, only one record will remain in the file (viz: the one titled ‘Emer-
gency Rations’) because all the others have expiry dates prior to 12 May 2009.1 The -t option
can be omitted if, and only if, there is no %rec field in the recfile.

recdel tries to warn you if you attempt to perform a delete operation which it deems to be
too pervasive. In such cases, it will refuse to run, unless you give the --force flag. However,
you should not rely upon recdel to protect you, because it cannot always correctly guess that
you might be deleting more records than intended. For this reason, it may be wise to use the
-c flag, which causes the relevant records to be commented out, rather than deleted. (And of
course backups are always wise.)

The complete options available to the recdel command are explained later. See Section 17.4
[Invoking recdel], page 66.

4.3 Sorting Records

In the example above, note the existence of the %sort: Title line. This field was discussed
previously (see Section 3.7 [Sorted Output], page 20) and, as mentioned, does not imply that
the records need to be stored in the recfile in any particular order.

However, if desired, you can automatically arrange the recfile in that order using recfix

with the --sort flag. After running the command

$ recfix --sort stock.rec

the file ‘stock.rec’ will have its records sorted in alphabetical order of the Title fields, thus:

%rec: Item

%type: Expiry date

%sort: Title

Title: Emergency Rations

Expiry: 10 August 2009

Title: First Aid Kit

Expiry: 2 May 2009

Title: Liferaft

Expiry: 2 March 2009

1 ‘5/12/2009’ means the 12th day of May 2009, not the fifth day of December, even if your LC_TIME environment
variable has been set to suggest otherwise.

Chapter 5: Editing Fields 27

5 Editing Fields

Fields of a recfile can, of course, be edited manually using an editor and this is often the easiest
way when only a few fields need to be changed or when the nature of the changes do not follow
any particular pattern. If, however, a large number of similar changes to several records are
required,the recset command can make the job easier.

The formal description of recset is presented later (see Section 17.5 [Invoking recset],
page 67). In this chapter some typical usage examples are discussed. As with recdel, recset if
used erroneously has the potential to make very pervasive changes, which could result in a large
loss of data. It is prudent therefore to take a copy of a recfile before running such commands.

5.1 Adding Fields

As mentioned above, the command recins adds new records to a recfile, but it cannot add fields
to an existing record. This task can be achieved automatically using recset with its -a flag.

Suppose that (after a stock inspection) you wanted to add an ‘Inspected’ field to all the items
in the recfile. The following command could be used.

$ recset -t Item -f Inspected -a ’Yes’ stock.rec

Here, because no record selection flag was provided, the command affected all the records of
type ‘Item’. We could limit the effect of the command using the -e, -q, -n or -m flags. For
example to add the ‘Inspected’ field to only the first item the following command would work:

$ recset -t Item -n 0 -f Inspected -a ’Yes’ stock.rec

Similarly, a selection expression could have been used with the -e flag in order to add the field
only to records which satisfy the expression.

If you use recset with the -a flag on a field that already exists, a new field (in addition to
those already present) will be appended with the given value.

5.2 Setting Fields

It is also possible to update the value of a field. This is done using recset with its -s flag.
In the previous example, an ‘Inspected’ flag was added to certain records, with the value ‘yes’.
After reflection, one might want to record the date of inspection, rather than a simple yes/no
flag. Records which have no such field will remain unchanged.

$ recset -t Item -f Inspected -s ’30 October 2006’ stock.rec

Although the above command does not have any selection criteria, it will only affect those
records for which a ‘Inspected’ field exists. This is because the -s flag only sets values of existing
fields. It will not create any fields.

If instead the -S flag is used, this will create the field (if it does not already exist) and set
its value.

$ recset -t Item -f Inspected -S ’30 October 2006’ stock.rec

5.3 Deleting Fields

You can delete fields using recset’s -d flag. For example, if we wanted to delete the Inspected
field which we introduced above, we could do so as follows:

$ recset -t Item -f Inspected -d stock.rec

This would delete all fields named Inspected from all records of type Item. It may be that, we
only wanted to delete the Inspected fields from records which satisfy a certain condition. The
following would delete the fields only from items whose Expiry date was before 2 January 2010:

$ recset -t Item -e ’Expiry << "2 January 2010"’ -f Inspected -d stock.rec

Chapter 5: Editing Fields 28

5.4 Renaming Fields

Another use of recset is to rename existing fields. This is achieved using the -r flag. To rename
all instances of the Expiry field occurring in any record of type Item to UseBy, the following
command suffices:

$ recset -t Item -f Expiry -r ’UseBy’ stock.rec

As with most operations, this could be done selectively, using the -e flag and a selection expres-
sion.

Chapter 6: Field Types 29

6 Field Types

Field values are, by default, unrestricted text strings. However, it is often useful to impose some
restrictions on the values of certain fields. For example, consider the following record:

Id: 111

Name: Jose E. Marchesi

Age: 30

MaritalStatus: single

Phone: +49 666 666 66

The values of the fields must clearly follow some structure in order to make sense. Id is
a numeric identifier for a person. Name will never use several lines. Age will typically be in
the range 0..120, and there are only a few valid values for MaritalStatus: single, married,
divorced, and widow(er). Phones may be restricted to some standard format as well to be valid.
All these restrictions (and many others) can be enforced by using field types.

There are two kind of field types: anonymous and named. Those are described in the following
subsections.

6.1 Declaring Types

A type can be declared in a record descriptor by using the %typedef special field. The syntax
is:

%typedef: type_name type_description

Where type name is the name of the new type, and type description a description which varies
depending of the kind of type. For example, this is how a type Age_t could be defined as
numbers in the range 0..120:

%typedef: Age_t range 0 120

Type names are identifiers having the following syntax:

[a-zA-Z][a-zA-Z0-9_]*

Even though any identifier with that syntax could be used for types, it is a good idea to consis-
tently follow some convention to help distinguishing type names from field names. For example,
the _t suffix could be used for types.

A type can be declared to be an alias for another type. The syntax is:

%typedef: type_name other_type_name

Where type name is declared to be a synonym of other type name. This is useful to avoid
duplicated type descriptions. For example, consider the following example:

%typedef: Id_t int

%typedef: Item_t Id_t

%typedef: Transaction_t Id_t

Both Item_t and Transaction_t are aliases for the type Id_t. Which is in turn an alias for
the type int. So, they are both numeric identifiers.

The order of the %typedef fields is not relevant. In particular, a type definition can forward-
reference another type that is defined subsequently. The previous example could have been
written as:

%typedef: Item_t Id_t

%typedef: Transaction_t Id_t

%typedef: Id_t int

Integrity check will complain if undefined types are referenced. As well as when any aliases up
referencing back (looping back directly or indirectly) in type declarations. For example, the
following set of declarations contains a loop. Thus, it’s invalid:

Chapter 6: Field Types 30

%typedef: A_t B_t

%typedef: B_t C_t

%typedef: C_t A_t

The scope of a type is the record descriptor where it is defined.

6.2 Types and Fields

Fields can be declared to have a given type by using the %type special field in a record descriptor.
The synopsis is:

%type: field_list type_name_or_description

Where field list is a list of field names separated by commas. type name or description can be
either a type name which has been previously declared using %typedef, or a type description.
Type names are useful when several fields are declared to be of the same type:

%typedef: Id_t int

%type: Id Id_t

%type: Product Id_t

Anonymous types can be specified by writing a type description instead of a type name. They
help to avoid superfluous type declarations in the common case where a type is used by just one
field. A record containing a single Id field, for example, can be defined without having to use a
%typedef in the following way:

%rec: Task

%type: Id int

6.3 Scalar Field Types

The rec format supports the declaration of fields of the following scalar types: integer numbers,
ranges and real numbers.

Signed integers are supported by using the int declaration:

%typedef: Id_t int

Given the declaration above, fields of type Id_tmust contain integers, and they may be negative.
Hexadecimal values can be written using the 0x prefix, and octal values using an extra 0. Valid
examples are:

%type: Id Id_t

Id: 100

Id: -23

Id: -0xFF

Id: 020

Sometimes it is desirable to reduce the range of integers allowed in a field. This can be achieved
by using a range type declaration:

%typedef: Interrupt_t range 0 15

Note that it is possible to omit the minimum index in ranges. In that case it is implicitly zero:

%typedef: Interrupt_t range 15

It is possible to use the keywords MIN and MAX instead of a numeral literal in one or both of
the points conforming the range. They mean the minimum and the maximum integer value
supported by the implementation respectively. See the following examples:

%typedef: Negative range MIN -1

%typedef: Positive range 0 MAX

%typedef: AnyInt range MIN MAX

Chapter 6: Field Types 31

%typedef: Impossible range MAX MIN

Hexadecimal and octal numbers can be used to specify the limits in a range. This helps to define
scalar types whose natural base is not ten, like for example:

%typedef: Address_t range 0x0000 0xFFFF

%typedef: Perms_t range 755

Real number fields can be declared with the real type specifier. A wide range of real numbers
can be represented this way, only limited by the underlying floating point representation. The
decimal separator is always the dot (.) character regardless of the locale setting. For example:

%typedef: Longitude_t real

Examples of fields of type real:

%rec: Rectangle

%typedef: Longitude_t real

%type: Width Longitude_t

%type: Height Longitude_t

Width: 25.01

Height: 10

6.4 String Field Types

The line field type specifier can be used to restrict the value of a field to a single line, i.e. no
newline characters are allowed. For example, a type for proper names could be declared as:

%typedef: Name_t line

Examples of fields of type line:

Name: Mr. Foo Bar

Name: Mrs. Bar Baz

Name: This is

+ invalid

Sometimes it is the maximum size of the field value that shall be restricted. The size field type
specifier can be used to define the maximum number of characters a field value can have. For
example, if we were collecting input that will get written in a paper-based forms system allowing
up to 25 characters width entries, we could declare the entries as:

%typedef: Address_t size 25

Note that hexadecimal and octal integer constants can also be used to specify field sizes:

%typedef: Address_t size 0x18

Arbitrary restrictions can be defined by using regular expressions. The regexp field type specifier
introduces an ERE (extended regular expression) that will be matched against fields having that
name. The synopsis is:

%typedef: type_name regexp /re/

where re is the regular expression to match.

For example, consider the Id_t type designed to represent the encoding of the identifier of
ID cards in some country:

%typedef: Id_t regexp /[0-9]{9}[a-zA-Z]/

Examples of fields of type Id_t are:

IDCard: 123456789Z

IDCard: invalid id card

Note that the slashes delimiting the re can be replaced with any other character that is not
itself used as part of the regexp. That is useful in some cases such as:

Chapter 6: Field Types 32

%typedef: Path_t regexp |(/[^/]/?)+|

The regexp flavor supported in recfiles are the POSIX EREs plus several GNU extensions. See
Chapter 18 [Regular Expressions], page 71.

6.5 Enumerated Field Types

Fields of this type contain symbols taken from an enumeration.

The type is described by writing the sequence of symbols comprising the enumeration. Enu-
meration symbols are strings described by the following regexp:

[a-zA-Z0-9][a-zA-Z0-9_-]*

The symbols are separated by blank characters (including newlines). For example:

%typedef: Status_t enum NEW STARTED DONE CLOSED

%typedef: Day_t enum Monday Tuesday Wednesday Thursday Friday

+ Saturday Sunday

It is possible to insert comments when describing an enum type. The comments are delimited
by parenthesis pairs. The contents of the comments can be any character but parentheses. For
example:

%typedef: TaskStatus_t enum

+ NEW (The task was just created)

+ IN_PROGRESS (Task started)

+ CLOSED (Task closed)

Boolean fields, declared with the type specifier bool, can be seen as special enumerations holding
the binary values true and false.

%typedef: Yesno_t bool

The literals allowed in boolean fields are yes/no, 0/1 and true/false. Examples are:

SwitchedOn: 1

SwitchedOn: yes

SwitchedOn: false

6.6 Date and Time Types

The date field type specifier can be used to declare dates and times. The synopsis is:

%typedef: type_name date

There are many permitted date formats, described in detail later in this manual (see Chapter 19
[Date input formats], page 72). Of particular note are the following:

− Dates and times read from recfiles are not affected by the locale or the timezone. This
means that the LC_TIME and the TZ environment variables are ignored. If you wish, for
example, to specify a time which must be interpreted as UTC, you must explicitly append
the time zone correction: e.g. ‘2001-1-10 12:09Z’.

− The field value ‘1/10/2001’ means January 10, 2001, not October 1, 2001.

− Relative times and dates (such as ‘1 day ago’) are permitted but are not particularly useful.

6.7 Other Field Types

The Email field type specifier is used to declare electronic addresses. The synopsis is:

%typedef: Email_t email

Sometimes it is useful to make fields to store field names. For that purpose the Field field type
specifier is supported. The synopsis is:

Chapter 6: Field Types 33

%typedef: Field_t field

Universally Unique Identifiers (also known as UUIDs) are a way to assign a globally unique label
to some object. The uuid field type specifier serves that purpose. The synopsis is:

%typedef: Id_t uuid

The format of the uuids is specified as 32 hexadecimal digits, displayed in five groups separated
by hyphens. For example:

550e8400-e29b-41d4-a716-446655440000

There is one other possible field type, viz: a foreign key. The following example defines the type
Maintainer_t to be of type “record Hacker”; in other words, a foreign key referring to a record
in the Hacker record set.

%typedef: Maintainer_t rec Hacker

This essentially means that the values to be stored in fields of type Maintainer_t are of whatever
type is defined for the primary key of the Hacker record set. Why this is useful is discussed
later. See Chapter 11 [Queries which Join Records], page 45.

Chapter 7: Constraints on Record Sets 34

7 Constraints on Record Sets

The records in a recfile are by default not restricted to any particular structure except that they
must contain one or more fields and optional comments. This provides the format with huge
expressive power; but in many cases, it is also desirable to impose some restrictions in order to
reflect some of the properties of the data stored in the database. It is also useful in order to
preserve data integrity and thus avoid data corruption.

The following sections describe the usage of some predefined special fields whose purpose is
to impose this kind of restriction in the structure of the records.

7.1 Mandatory Fields

Sometimes, you want to make sure that every record of a particular type contains certain fields.
To do this, use the special field %mandatory. The usage is:

%mandatory: field1 field2 ... fieldN

The field names are separated by one or more blank characters.

The fields listed in a %mandatory entry are non-optional; i.e. at least one field with this name
shall be present in any record of this kind. Records violating this restriction are invalid and a
checking tool will report the situation as a data integrity failure.

Consider for example an “address book” database where each record stores the information
associated with a contact. The records will be heterogeneous, in the sense they won’t all contain
exactly the same fields: the contact of an Internet shop will probably have a URL field, while the
entry for our grandmother probably won’t. We still want to make sure that every entry has a
field with the name of the contact. In this case, we could use %mandatory as follows:

%rec: Contact

%mandatory: Name

Name: Granny

Phone: +12 23456677

Name: Yoyodyne Corp.

Email: sales@yoyod.com

Phone: +98 43434433

A word of caution, however: In many situations, especially in day to day social interaction, it
is common to find that certain information is simply unavailable. For example, although every
person has a date of birth, some people will refuse to provide that information.

It is probably wise therefore to avoid stipulating a field as mandatory, unless it is essential
to the enterprise. Otherwise, a data entry clerk faced with this situation will have to make the
choice between dropping the entry entirely or entering some fake data to keep the system happy.

7.2 Prohibited Fields

The inverse of %mandatory is %prohibit. Prohibited fields may not occur in any record of the
given type. The usage is:

%prohibit: field1 field2 ... fieldN

The field names are separated by one or more blank characters.

Fields listed in a %prohibit entry are forbidden; i.e. no field with this name should be present
in any record of this kind. Again, records violating this restriction are invalid.

Several %prohibit fields can appear in the same record descriptor. The set of prohibited fields
is the union of all the entries. For example, in the following database both Id and id are
prohibited:

Chapter 7: Constraints on Record Sets 35

%rec: Entry

%prohibit: Id

%prohibit: id

One possible use case for prohibited fields arises when some field name is reserved for some
future use. For example, if we were organizing a sports competition, we would want competitors
to register before the event. However a competitor’s result should not and cannot be entered
before the competition takes place. Initially then, we would change the record descriptor as
follows:

%rec: Contact

%mandatory: Name

%prohibit: result

At the start of the event, the %prohibit line can be deleted, to allow results to be entered.

7.3 Allowed Fields

In some cases we know the set of fields that may appear in the records of a given type, even
if they are not mandatory. The %allowed special field is used to specify this restriction. The
usage is:

%allowed: field1 field2 ... fieldN

The field names are separated by one or more blank chracters.

If there are more or one %allowed fields in a record descriptor, all fields of all the records in
the record set must be in the union of %allowed, %mandatory and %key. Otherwise an integrity
error is raised.

Several %allowed fields can appear in the same record descriptor. The set of allowed fields is
the union of all the entries.

7.4 Keys and Unique Fields

The %unique and %key special fields are used to avoid several instances of the same field in a
record, and to implement keys in record sets. Their usage is:

%unique: field1 field2 ... fieldN

%key: field

The field names are separated by one or more blank characters.

Normally it is permitted for a record to contain two or more fields of the same name. The
%unique special field revokes this permissiveness. A field declared “unique” cannot appear more
than once in a single record.

For example, an entry in an address book database could contain an Age field. It does not
make sense for a single person to be of several ages. So, a field could be declared as “unique” in
the corresponding record descriptor as follows:

%rec: Contact

%mandatory: Name

%unique: Age

Several %unique fields can appear in the same record descriptor. The set of unique fields is the
union of all the entries.

%key makes the referenced field the primary key of the record set. The primary key behaves
as if both %unique and %mandatory had been specified for that field. Additionally, there is
further restriction, viz: a given value of a primary key field may appear no more than once
within a record set.

Consider for example a database of items in stock. Each item is identified by a numerical Id
field. No item may have more than one Id, and no items may exist without an associated Id.

Chapter 7: Constraints on Record Sets 36

Additionally, no two items may share the same Id. This common situation can be implementing
by declaring Id as the key in the record descriptor:

%rec: Item

%key: Id

%mandatory: Title

Id: 1

Title: Box

Id: 2

Title: Sticker big

It would not make sense to have several primary keys in a record set. Thus, it is not allowed
to have several %key fields in the same record descriptor. It is also forbidden for two items to
share the same ‘Id’ value. Both of these situations would be data integrity violations, and will
be reported by a checking tool.

Elsewhere, we discuss how primary keys can be used to link one record set to another using
primary keys together with foreign keys. See Chapter 11 [Queries which Join Records], page 45.

7.5 Size Constraints

Sometimes it is desirable to place constraints on entire records. This can be done with the %size
special field which is used to limit the number of records in a record set. Its usage is:

%size: [relational_operator] number

If no operator is specified then number is interpreted as the exact number of records of this
type. The number can be any integer literal, including hexadecimal and octal constants. For
example:

%rec: Day

%size: 7

%type: Name enum

+ Monday Tuesday Wednesday Thursday Friday

+ Saturday Sunday

%doc: There should be exactly 7 days.

The optional relational operator shall be one of <, <=, > and >=. For example:

%rec: Item

%key: Id

%size: <= 100

%doc: We have at most 100 different articles.

It is valid to specify a size of 0, meaning that no records of this type shall exist in the file.

Only one %size field shall appear in a record descriptor.

7.6 Arbitrary Constraints

Occasionally, %mandatory, %prohibit and %size are just not flexible enough. We might, for
instance, want to ensure that if a field is present, then it must have a certain relationship to
other fields. Or we might want to stipulate that under certain conditions only, a record contains
a particular field.

To this end, recutils provides a way for arbitrary field constraints to be defined. These permit
restrictions on the presence and/or value of fields, based upon the value or presence of other
fields within that record. This is done using the %constraint special field. Its usage is:

Chapter 7: Constraints on Record Sets 37

%constraint: expr

where expr is a selection expression (see Section 3.5 [Selection Expressions], page 14). When a
constraint is present in a record set it means that all the records of that type must satisfy the
selection expression, i.e. the evaluation of the expression with the record returns 1. Otherwise
an integrity error is raised.

Consider for example a record type Task featuring two fields of type date called Start and
End. We can use a constraint in the record set to specify that the task cannot start after it
finishes:

%rec: Task

%type: Start,End date

%constraint: Start << End

The “implies” operator => is especially useful when defining constraints, since it can be used
to specify conditional constraints, i.e. constraints applying only in certain records. For example,
we could specify that if a task is closed then it must have an End date in the following way:

%rec: Task

%type: Start,End date

%constraint: Start << End

%constraint: Status = ’CLOSED’ => #End

It is acceptable to declare several constraints in the same record set.

Chapter 8: Checking Recfiles 38

8 Checking Recfiles

Sometimes, when creating a recfile by hand, typographical errors or other mistakes will occur.
If a recfile contains such mistakes, then one cannot rely upon the results of queries or other
operations. Fortunately there is a tool called recfix which can find these errors. It is a good
idea to get into the habit of running recfix on a file after editing it, and before trying other
commands.

8.1 Syntactical Errors

One easy mistake is to forget the colon separating the field name from its value.

%rec: Article

%key Id

Name: Thing

Id: 0

Running recfix on this file will immediately tell us that there is a problem:

$ recfix --check inventory.rec

inventory.rec: 2: error: expected a record

Here, recfix has diagnosed a problem in the file ‘inventory.rec’ and the problem lies at line
2. If, as in this case, recfix shows there is a problem with the recfile, you should attend to that
problem before trying to use any other recutils program on that file, otherwise strange things
could happen. The --check flag is optional but in normal execution not required because that
is the default operation.

8.2 Semantic Errors

However recfix checks more than the syntactical integrity of the recfile. It also checks certain
semantics and that the data is self-consistent. To do this, it uses the special fields of the record,
some of which were introduced above (see Chapter 7 [Constraints on Record Sets], page 34). It
is a good idea to use the special fields to stipulate the “enterprise rules” of the data.

Errors will be reported if any of the following special keywords are present and the data does
not match the stipulated conditions

%mandatory

The mandated fields are missing from a record.

%prohibit

The prohibited fields are present in a record.

%unique There is more than one field in a single record of the given name.

%key Two or more records share the same value of the field which is the key field.

%typedef and %type

A field has a value which does not conform to the specified type.

%size The number of records does not conform to the specified restriction.

%constraint

A field does not conform to the specified constraint.

%confidential

An unencrypted value exists for a confidential field.

Chapter 9: Remote Descriptors 39

9 Remote Descriptors

The %rec special field is used for two main purposes: to identify a record as a record descriptor,
and to provide a name for the described record set. The synopsis of the usage of the field is the
following:

%rec: type [url_or_file]

type is the name of the kind of records described by the descriptor. It is mandatory to specify it,
and it follows the same lexical conventions used by field names. See Section 2.1 [Fields], page 4.
There is a non-enforced convention to use singular nouns, because the name makes reference
to the type of a single entity, even if it applies to all the records contained in the record set.
For example, the following record set contains transactions, and the type specified in the record
descriptor is Transaction.

%rec: Transaction

Id: 10

Title: House rent

Id: 11

Title: Loan

Only one %rec field should be in a record descriptor. If there are more it is an integrity violation.
It is highly recommended (but not enforced) to place this field in the first position of the record
descriptor.

Sometimes it is convenient to store records of the same type in different files. The duplication
of record descriptors in this case would surely lead to consistency problems. A possible solution
would be to keep the record descriptor in a separated file and then include it in any operation
by using pipes. For example:

$ cat descriptor.rec data.rec | recsel ...

For those cases it is more convenient to use a external descriptor. External descriptors can be
built appending a file path to the %rec field value, like:

%rec: FSD_Entry /path/to/file.rec

The previous example indicates that a record descriptor describing the FSD_Entry records
shall be read from the file ‘/path/to/file.rec’. A record descriptor for FSD_Entry may not
exist in the external file. Both relative and absolute paths can be specified there.

URLs can be used as sources for external descriptors as well. In that case we talk about
remote descriptors. For example:

%rec: Department http://www.myorg.com/Org.rec

The URL shall point to a text file containing rec data. If there is a record descriptor in the
remote file documenting the Department type, it will be used.

Note that the local record descriptor can provide additional fields to “expand” the record
type. For example:

%rec: FSD_Entry http://www.jemarch.net/downloads/FSD.rec

%mandatory: Rating

The record descriptor above is including the contents of the FSD_Entry record descriptor from
the URL, and adding them to the local record descriptor, that in this case contains just the
%mandatory field.

If you are using GNU recutils (see Chapter 17 [Invoking the Utilities], page 62) to process
your recfiles, any URL schema supported by libcurl will work.

Chapter 10: Grouping and Aggregates 40

10 Grouping and Aggregates

Grouping and aggregate functions are two related features which are useful to extract statistics
from a record set, or a subset of that record set.

10.1 Grouping Records

Consider a recfile containing a list of items in a shop inventory. For each item it is stored its
type, its category, its price, the date of the last selling operation of an item of that type, and
the amount of items currently available in stock. A sample of such a database could be:

Type: EC Car

Category: Toy

Price: 12.2

LastSell: 20-April-2012

Available: 623

Type: Terria

Category: Food

Price: 0.60

LastSell: 22-April-2012

Available: 8239

Type: Typex

Category: Office

Price: 1.20

LastSell: 22-April-2012

Available: 10878

Type: Notebook

Category: Office

Price: 1.00

LastSell: 21-April-2012

Available: 77455

Type: Sexy Puzzle

Category: Toy

Price: 6.20

LastSell: 6.20

Available: 12

Now imagine we are interested in grouping the contents of the Items record set in groups of
items of the same category. We can do it using the -G command line argument for recsel. This
argument accepts a list of fields separated by commas. The argument can be read as “group
by”.

In this case we want to group by Category, so we would do:

$ recsel -G Category

Type: Terria

Category: Food

Price: 0.60

LastSell: 22-April-2012

Available: 8239

Chapter 10: Grouping and Aggregates 41

Type: Typex

Category: Office

Price: 1.20

LastSell: 22-April-2012

Available: 10878

Type: Notebook

Price: 1.00

LastSell: 21-April-2012

Available: 77455

Type: EC Car

Category: Toy

Price: 12.2

LastSell: 20-April-2012

Available: 623

Type: Sexy Puzzle

Price: 6.20

LastSell: 6.20

Available: 12

We can see that the output is three records, corresponding to the three different categories of
items present in the database. However, we are only interested in the types of products in each
category, so we can remove unwanted information using -p:

$ recsel -G Category -p Category,Type items.rec

Category: Food

Type: Terria

Category: Office

Type: Typex

Type: Notebook

Category: Toy

Type: EC Car

Type: Sexy Puzzle

It is also possible to group by several fields. We could group by both Category and LastSell:

$ recsel -G Category,LastSell -p Category,LastSell,Type items.rec

Category: Food

LastSell: 22-April-2012

Type: Terria

Category: Office

LastSell: 21-April-2012

Type: Notebook

Category: Office

LastSell: 22-April-2012

Type: Typex

Category: Toy

LastSell: 20-April-2012

Type: EC Car

Chapter 10: Grouping and Aggregates 42

Category: Toy

LastSell: 6.20

Type: Sexy Puzzle

10.2 Aggregate Functions

recutils supports aggregate functions. These are so called because they accept a record set and
a field name as inputs and generate a single result. Usually this result is numerical.

The supported aggregate functions are the following:

Count(FIELD)

Counts the number of occurrences of a field.

Avg(FIELD)

Calculates the average (mean) of the numerical values of a field.

Sum(FIELD)

Calculates the sum of the numerical values of a field.

Min(FIELD)

Calculates the minimum numerical value of a field.

Max(FIELD)

Calculates the maximum numerical value of a field.

The aggregate functions are to be invoked in the field expressions in recsel. By default they
are applied to the totality of the records in a record set. For example, using the items database
from the previous section, we can do calculations as in the following examples.

The SQL aggregate functions can be applied to the totality of the tuples in the relation.
For example, using the Count aggregate function we can calculate the number of fields named
Category present in the record set as follows:

$ recsel -p "Count(Category)" items.rec

Count_Category: 5

The result is a field whose name is derived from the function name and the field passed as its
parameter, separated by an underline. This name scheme probably suffices for most purposes,
but it is always possible to use a rewrite rule to obtain something different:

$ recsel -p "Count(Category):NumCategories" items.rec

NumCategories: 5

You can use different letter case in writing the name of the aggregate, and this will be reflected
in the field name:

$ recsel -p "CoUnT(Category)" items.rec

CoUnT_Category: 5

It is possible to use more than one aggregate function in the field expression. Suppose we are
also interested in the average price of the items we sell. We can use the Avg aggregate:

$ recsel -p "Count(Category),Avg(Price)" items.rec

Count_Category: 5

Avg_Price: 4.240000

Now let’s add a field along with an aggregate function to the field expression and see what we
get:

$ recsel -p "Type,Avg(Price)" items.rec

Type: EC Car

Avg_Price: 12.200000

Chapter 10: Grouping and Aggregates 43

Type: Terria

Avg_Price: 0.600000

Type: Typex

Avg_Price: 1.200000

Type: Notebook

Avg_Price: 1

Type: Sexy Puzzle

Avg_Price: 6.200000

We get five records! The reason is that when only aggregate functions are part of the field
expression, they are applied to the single record that would result from concatenating all the
records in the record set together. However, when a regular field appears in the field expression
the aggregate functions are applied to the individual records. This is still useful in some cases,
such as a database of maintainers:

Name: Jose E. Marchesi

Email: jemarch@gnu.org

Email: jemarch@es.gnu.org

Name: Luca Saiu

Email: positron@gnu.org

Lets see how many emails each maintainer has:

$ recsel -p "Name,Count(Email)" maintainers.rec

Name: Jose E. Marchesi

Count_Email: 2

Name: Luca Saiu

Count_Email: 1

Aggregate functions are most useful when we combine them with grouping. This is when we are
interested in some property of a subset of the records in the database. For example, the average
prices of each item category stored in the database can be obtained by executing:

$ recsel -p "Category,Avg(Price)" -G Category items.rec

Category: Food

Avg_Price: 0.600000

Category: Office

Avg_Price: 1.100000

Category: Toy

Avg_Price: 9.200000

If we were interested in the actual prices that result in each average we can do:

$ recsel -p "Category,Price,Avg(Price)" -G Category items.rec

Category: Food

Price: 0.60

Avg_Price: 0.600000

Category: Office

Price: 1.20

Price: 1.00

Chapter 10: Grouping and Aggregates 44

Avg_Price: 1.100000

Category: Toy

Price: 12.2

Price: 6.20

Avg_Price: 9.200000

Chapter 11: Queries which Join Records 45

11 Queries which Join Records

Suppose you wanted to add the residential address of the people in the ‘acquaintances.rec’
file from Section 3.1 [Simple Selections], page 10.

One way to do this is as follows:

%type: Dob date

Name: Alfred Nebel

Dob: 20 April 2010

Email: alf@example.com

Address: 42 Abbeter Way, Inprooving, WORCS

Telephone: 01234 5676789

Name: Mandy Nebel

Dob: 21 February 1972

Email: mandy@example.com

Address: 42 Abbeter Way, Inprooving, WORCS

Telephone: 01234 5676789

Name: Bertram Nebel

Dob: 3 January 1966

Email: bert@example.com

Address: 42 Abbeter Way, Inprooving, WORCS

Telephone: 01234 5676789

Name: Charles Spencer

Dob: 4 July 1997

Email: charlie@example.com

Address: 2 Serpe Rise, Little Worning, SURREY

Telephone: 09876 5432109

Name: Dirk Spencer

Dob: 29 June 1945

Email: dirk@example.com

Address: 2 Serpe Rise, Little Worning, SURREY

Telephone: 09876 5432109

Name: Ernest Wright

Dob: 26 April 1978

Email: ernie@example.com

Address: 1 Wanter Rise, Greater Inncombe, BUCKS

This will work fine. However you will notice that there are two addresses where more than
one person live (presumably they are members of the same family). This has a number of
disadvantages:

− You have to type (or copy) the same information several times.

− Should a family move house, then you would have to update the addresses (and telephone
number) of all the family members.

− A typing error in one of the addresses would lead an automatic query to erroneously suggest
that the people lived at different addresses.

− It unnecessarily increases the size of the recfile.

Chapter 11: Queries which Join Records 46

11.1 Foreign Keys

A better way would be to separate the addresses and people into different record sets. The first
record set might look like this:

%rec: Person

%type: Dob date

%type: Abode rec Residence

Name: Alfred Nebel

Dob: 20 April 2010

Email: alf@example.com

Abode: 42AbbeterWay

Name: Mandy Nebel

Dob: 21 February 1972

Email: mandy@example.com

Mobile: 0555 342123

Abode: 42AbbeterWay

Name: Bertram Nebel

Dob: 3 January 1966

Email: bert@example.com

Abode: 42AbbeterWay

Name: Charles Spencer

Dob: 4 July 1997

Email: charlie@example.com

Abode: 2SerpeRise

Name: Dirk Spencer

Dob: 29 June 1945

Email: dirk@example.com

Mobile: 0555 342123

Abode: 2SerpeRise

Name: Ernest Wright

Dob: 26 April 1978

Abode: ChezGrampa

and the second (following in the same file), like this:

%rec: Residence

%key: Id

Address: 42 Abbeter Way, Inprooving, WORCS

Telephone: 01234 5676789

Id: 42AbbeterWay

Address: 2 Serpe Rise, Little Worning, SURREY

Telephone: 09876 5432109

Id: 2SerpeRise

Chapter 11: Queries which Join Records 47

Address: 1 Wanter Rise, Greater Inncombe, BUCKS

Id: ChezGrampa

Here you can see that there are two record sets viz: Person and Residence. There are six
people, but only three residences, because some residences accommodate more than one person.
Note also that the Residence descriptor has the entry %key: Id whilst the Person descriptor
has %type: Abode rec Residence. This is because Abode is the foreign key which identifies the
residence where a person lives.

We could have declared the Id field as %auto. This would have had the advantage that we
need not manually update it. However, we decided that the Abode field values in the Person

records are better as alphanumeric fields, so that they can contain human readable values. In
this way, it is self-evident by reading a Person record where that person lives. Yet since the Id
field is declared using the %key special field name, you can be sure that you don’t accidentally
reuse an existing key.

11.2 Joining Records

The above example has also added a new field to the Person record set to contain that person’s
mobile phone number. Note that the Telephone field belongs to the Residence record set
because that contains the telephone number of the home, whereas Mobile belongs to Person

since mobile telephones are normally used exclusively by one individual.

If we want to look up the name and address of a person in our recfile, we can use recsel

as before. Because we now have more than one record set in the ‘acquaintances.rec’ file, we
have to tell recsel in which record set we want to look up records. We do this with the -t flag
as follows:

$ recsel -t Person -P Name,Abode acquaintances.rec

Alfred Nebel

42AbbeterWay

Mandy Nebel

42AbbeterWay

Bertram Nebel

42AbbeterWay

Charles Spencer

2SerpeRise

Dirk Spencer

2SerpeRise

Ernest Wright

ChezGrampa

This result tells us the names of all the people in the recfile, as well as giving a concise and
hopefully effective reminder telling us where they live. However these results would not be useful
to someone unacquainted with the individuals. They need a list of names and full addresses.
We can use recsel to produce such a list:

$ recsel -t Person -j Abode acquaintances.rec

Name: Charles Spencer

Dob: 4 July 1997

Email: charlie@example.com

Chapter 11: Queries which Join Records 48

Abode_Address: 2 Serpe Rise, Little Worning, SURREY

Abode_Telephone: 09876 5432109

Abode_Id: 2SerpeRise

Name: Dirk Spencer

Dob: 29 June 1945

Email: dirk@example.com

Mobile: 0555 342123

Abode_Address: 2 Serpe Rise, Little Worning, SURREY

Abode_Telephone: 09876 5432109

Abode_Id: 2SerpeRise

Name: Ernest Wright

Dob: 26 April 1978

Abode_Address: 1 Wanter Rise, Greater Inncombe, BUCKS

Abode_Id: ChezGrampa

The -t flag we have seen before. It tells recsel that we want to extract records of type
Person. The -j flag is new. It says that we want to perform a join. Specifically we want to join
the Person records according to their Abode field.

In the above example, recsel displays several field names which do not appear anywhere
in the input e.g. Abode_Address. This is the Address field in the record joined by the foreign
key Abode. In this example probably only the name and address are of interest. The other
information such as date of birth is incidental. The foreign key Abode_Id is certainly not
wanted in the output since it is redundant. As usual, you can use the -P or -p options to limit
the fields which will be displayed. However the full joined field name, if appropriate, must be
specified. So the names and addresses without the other information can be retrieved thus:

$ recsel -t Person -j Abode -p Name,Abode_Address acquaintances.rec

Name: Charles Spencer

Abode_Address: 2 Serpe Rise, Little Worning, SURREY

Name: Dirk Spencer

Abode_Address: 2 Serpe Rise, Little Worning, SURREY

Name: Ernest Wright

Abode_Address: 1 Wanter Rise, Greater Inncombe, BUCKS

Chapter 12: Auto-Generated Fields 49

12 Auto-Generated Fields

Consider for example a list of articles in stock in a toy store:

%rec: Item

%key: Description

Description: 2cm metal soldier WWII

Amount: 2111

Description: Flying Helicopter Indoor Maxi

Amount: 8

...

It would be natural to identify the items by their descriptions, but it is also error prone: was
it “Flying Helicopter Indoor Maxi” or “Flying Helicopter Maxi Indoor”? Was “Helicopter” in
lower case or upper case?

Thus it is quite common in databases to use some kind of numeric “Id” to uniquely identify
items like those ones, because numbers are easy to increment and manipulate. So we could add
a new numeric Id field and use it as the primary key:

%rec: Item

%key: Id

%mandatory: Description

Id: 0

Description: 2cm metal soldier WWII

Amount: 2111

Id: 1

Description: Flying Helicopter Indoor Maxi

Amount: 8

...

A problem with this approach is that we must be careful to not assign already used ids when
we introduce more articles in the database. Other than its uniqueness, it is not important which
number is associated with which article.

To ease the management of those Ids database systems use to provide a facility called “auto-
counters”. Auto-counters can be implemented in recfiles using the %auto directive in the record
descriptor. Its usage is:

%auto: field1 field2 ... fieldN

The list of field names are separated by one or more blank characters. There can be several
%auto fields in the same record descriptor, the effective list of auto-generated fields being the
union of all the entries.

When recins inserts a new record in the recfile, it looks for any declared auto field. If any of
these fields are not provided explicitly in the command line then recins generates them along
with the user-provided fields. Such auto fields are generated at the beginning of the new records,
in the same order they are found in the %auto directives.

For example, consider a ‘items.rec’ database with an empty record set:

%rec: Item

%key: Id

Chapter 12: Auto-Generated Fields 50

%auto: Id

%mandatory: Description

If we insert a new record and we do not specify an Id then it will be generated automatically
by recins:

$ recins -t Item -f Description -v ’recutils t-shirts’ \

-f Amount -v 200 \

items.rec

$ cat items.rec

%rec: Item

%key: Id

%auto: Id

%mandatory: Description

Id: 0

Description: recutils t-shirts

Amount: 200

The concrete effect of the %auto directive depends on the type of the affected field. The following
sections document how.

12.1 Counters

If an auto field is of type integer or range then any newly generated field will use the “next
biggest” unused number in the record set.

Consider the toy inventory database introduced above. We could declare the Id field to be
generated automatically:

%rec: Item

%key: Id

%type: Id int

%mandatory: Description

%auto: Id

Id: 0

Description: 2cm metal soldier WWII

Amount: 2111

When the next new item is introduced in the database, recins will note the %auto, and create
a new Id field for the new record with the next-biggest unused integer, since Id is declared to
be of type int. In this example, the new record would have an Id of 1. The database can still
provide an explicit Id for the new record. In that case the field is not generated automatically.

Note that if no explicit type is defined for an auto generated field then it is assumed to be
an integer.

12.2 Unique Identifiers

Universally Unique Identifiers, often abbreviated as UUIDs, can also be auto-generated using
recutils. Suppose you maintain a database with events featuring the following record descriptor:

%rec: Event

%key: Id

%mandatory: Title Date

What would be appropriate to identify each event? We could use an integer and declare it as
auto-generated. After adding two events the database would look like this:

Chapter 12: Auto-Generated Fields 51

%rec: Event

%key: Id

%mandatory: Title Date

Id: 0

Title: Team meeting

Date: 12-08-2013

Id: 1

Title: Dave’s birthday

Date: 20-12-2013

However, suppose that we want to share our events with other people, i.e. to send them event
records and to incorporate their records into our own database. In this case the Ids would
collide. A good solution is to use uuids and declare them as auto:

%rec: Event

%key: Id

%type: Id uuid

%mandatory: Title Date

Id: f81d4fae-7dec-11d0-a765-00a0c91e6bf6

Title: Team meeting

Date: 12-08-2013

Id: f81d4fae-dc18-11d0-a765-a01328400a0c

Title: Dave’s birthday

Date: 20-12-2013

12.3 Time-Stamps

Auto generated dates can be used to implement automatic timestamps. Consider for example
a “Transfer” record set registering bank transfers. We want to save a timestamp every time a
transfer is done, so we include an %auto for the date:

%rec: Transfer

%key: Id

%type: Id int

%type: Date date

%auto: Id Date

Chapter 13: Encryption 52

13 Encryption

For ethical or security reasons it is sometimes necessary that information in a recfile should not
be readable by unauthorized people. One way to prevent a recfile from being read is to use the
security features of the operating system. A more secure way would be to encrypt the entire
recfile using a free strong encryption program such as GnuPG. The disadvantage of both these
methods is that the entire recfile has to be secured when it may well be the case that only certain
data need to be protected.

Recutils offers a way to encrypt specified fields in a record, whilst leaving the rest in clear
text.

13.1 Confidential Fields

To specify that a field should be encrypted, use the %confidential special field. This special
field declares a set of fields as confidential, meaning they contain secret data such as passwords
or personal information. Its usage is:

%confidential: field1 field2 ... fieldN

The field names are separated by one or more blank characters. There can be several
%confidential fields in the same record descriptor, the effective list of confidential fields being
the union of all the entries.

Declaring a field as confidential indicates that its contents must not be stored in plain text,
but encrypted with a password-based mechanism. When the information is retrieved from the
database the confidential fields are unencrypted if the correct password is provided. Likewise,
when information is inserted in the database the confidential fields are encrypted with some
given password.

For example, consider a database of users of some service. For each user we want to store a
name, a login name, an email address and a password. All this information is public with the
obvious exception of the password. Thus we declare the Password field as confidential in the
corresponding record descriptor:

%rec: Account

%type: Name line

%type: Login line

%type: Email email

%confidential: Password

The rec format does not impose the usage of a specific encryption algorithm, but requires
that:

− The algorithm must be password-based.

− The value of any encrypted field shall begin with the string ‘encrypted-’ followed by the
encrypted data.

− The encrypted data must be encoded in some ASCII encoding such as base64.

The above rules assure that it is possible to determine whether a given field is encrypted.
For example, the following is an excerpt from the account database described above. It contains
an entry with the password encrypted and another with the password unencrypted:

Name: Mr. Foo

Login: foo

Email: foo@foo.com

Password: encrypted-AAABBBCCDDDEEEFFF

Name: Mr. Bar

http://gnu.org/software/gnupg

Chapter 13: Encryption 53

Login: bar

Email: bar@bar.com

Password: secret

Unencrypted confidential fields are a data integrity error, and utilities like recfix will report
it. The same utility can be used to “fix” the database by massively encrypting any unencrypted
field.

Nothing prevents the usage of several passwords in the same database. This allows the
establishment of several level of securities or security profiles. For example, we may want to
store different passwords for different online services:

%rec: Account

%confidential: WebPassword ShellPassword

We could then encrypt WebPassword entries using a password shared among all the webmasters,
and the ShellPassword entries with a more restricted password available only to the administrator
of the machine.

Note that since the utilities only accept to specify one password at a time different passwords
cannot be specified at decryption time. This means that in the example above the administrator
would need to run recsel twice in order to decrypt all the encrypted data in the recfile.

The GNU recutils fully support encrypted fields. See the documentation for recsel, recins
and recfix for details on how to operate on files containing confidential fields.

13.2 Encrypting Files

recins allows the insertion of encrypted fields in a database. When the ‘-s’ (‘--password’)
command line option is specified in the command line any field declared as confidential in the
record descriptor will get encrypted using the given passphrase. If the command is executed
interactively and ‘-s’ is not used then the user is asked to provide a password using the terminal.
For example, the invocation:

$ recins -t Account -s mypassword -f Login -v foo -f Password \

-v secret accounts.rec

will encrypt the value of the Password field with mypassword as long as the field is declared as
confidential. (see Section 13.1 [Confidential Fields], page 52 for details on confidential fields).

recins will issue a warning if a confidential field is inserted in the database but no password
was provided to encrypt it. This is to avoid having unencrypted sensitive data in the recfiles.

13.3 Decrypting Data

The contents of confidential fields can be read using the ‘-s’ (‘--password’) command line option
to recsel. When used, any selected record containing encrypted fields will try to decrypt them
with the given password. If the operation succeeds then the output will include the unencrypted
data. Otherwise the ASCII-encoded encrypted data will be emitted.

If recsel is invoked interactively and no password is specified with ‘-s’, the user will be
asked for a password in case one is needed. No echo of the password will appear in the screen.
The provided password will be used to decrypt all confidential fields as if it was specified with
‘-s’.

For example, consider the following database storing information about the user accounts of
some online service. Each entry stores a login, a full name, email and a password. The password
is declared as confidential:

%rec: Account

%key: Login

%confidential: Password

Chapter 13: Encryption 54

Login: foo

Name: Mr. Foo

Email: foo@foo.com

Password: encrypted-AAABBBCCCDDD

Login: bar

Name: Ms. Bar

Email: bar@bar.org

Password: encrypted-XXXYYYZZZUUU

If we use recsel to get a list of records of type Account without specifying a password, or if
the wrong password was specified in interactive mode, then we would get the following output
with the encrypted values:

$ cat accounts.rec | recsel -t Account -p Login,Password

Login: foo

Password: encrypted-AAABBBCCCDDD

Login: bar

Password: encrypted-XXXYYYZZZUUU

If we specify a password and both entries were encrypted using that password, we would get the
unencrypted values:

$ recsel -t Account -s secret -p Login,Password accounts.rec

Login: foo

Password: foosecret

Login: bar

Password: barsecret

As mentioned above, a confidential field may be encrypted with different passwords in dif-
ferent records (see Section 13.1 [Confidential Fields], page 52). For example, we may have an
entry in our database with data about the account of the administrator of the online service.
In that case we might want to store the password associated with that account using a different
password than that for users. In that case the output of the last command would have been:

$ recsel -t Account -s secret -p Login,Password accounts.rec

Login: foo

Password: foosecret

Login: bar

Password: barsecret

Login: admin

Password: encrypted-TTTVVVBBBNNN

We would need to invoke recsel with the password used to encrypt the admin entry in order
to read it back unencrypted.

Chapter 14: Generating Reports 55

14 Generating Reports

Having a list of names and addresses, one might want to use this list to address envelopes (say,
to send annual greeting cards). Since addresses are normally written on several lines, it would be
appropriate then to split the Address field values across multiple lines as described in Section 2.1
[Fields], page 4. Suitable text can now be obtained thus:

$ recsel -t Person -j Abode -P Name,Abode_Address acquaintances.rec

Charles Spencer

2 Serpe Rise,

Little Worning,

SURREY

Dirk Spencer

2 Serpe Rise,

Little Worning,

SURREY

Ernest Wright

1 Wanter Rise,

Greater Inncombe,

BUCKS

A business enterprise might want to go one step further and generate letters (such as an
advertisement or a recall notice) to customers. Since recsel merely selects records and fields
from record sets, on its own it cannot do this; so there is another command designed for this
purpose, called recfmt. This command uses a template which defines the general form of the
desired output. A letter template might look as follows:

{{Name}}

{{Abode_Address}}

Dear {{Name}},

Re: Special offer for January

We are delighted to be able to offer you a 95% discount on all car and

truck hire contracts between 1 January and 2 February. Please call us

to take advantage of this offer.

Yours sincerely,

Karen van Rental (CEO)

^L

It is best to place such a template into a file, so that you can edit it as you wish. Notice
the instances of double braces enclosing a field name, e.g. {{Name}}. These are called spots and
indicate places where the respective field’s value should be placed. Let’s assume this template is
in a file called ‘offer.templ’. We can then pipe the output from recsel into recfmt in order
as follows:

$ recsel -t Person -j Abode acquaintances.rec | recfmt -f offer.templ

Charles Spencer

2 Serpe Rise,

Little Worning,

Chapter 14: Generating Reports 56

SURREY

Dear Charles Spencer,

Re: Special offer for January

We are delighted to be able to offer you a 95% discount on all car and

.

.

.

For each record that recsel selects, one copy of ‘offer.templ’ will be generated. Each spot
will be replaced with the field value corresponding to the field name in the spot.

14.1 Templates

A recfmt template is a text string that may contain template spots. Those spots are substituted
in the template using the information of a given record. Any text that is not within a spot is
copied literally to the output.

Spots are written surrounded by double curly braces, like:

{{...}}

Spots contain selection expressions, that are executed every time the template is applied to
a record. The spot is then replaced by the string representation of the value returned by the
expression.

For example, consider the following template:

Task {{Id}}: {{Summary}}

{{Description}}

--

Created at {{CreatedAt}}

When applied to the following record:

Id: 123

Summary: Fix recfmt.

CreatedAt: 12 December 2010

Description:

+ The recfmt tool shall be fixed, because right

+ now it is leaking 200 megabytes per processed record.

The result is:

Task 123: Fix recfmt.

The recfmt tool shall be fixed, because right

now it is leaking 200 megabytes per processed record.

--

Created at 12 December 2010

You can use any selection expression in the slots, including conditionals and string concate-
nation.

Chapter 15: Interoperability 57

15 Interoperability

Included in the recutils package are a number of utilities to assist in the creation of recfiles using
data which already exists in other formats, and for exporting data from recfiles so that it can
be used in other applications.

15.1 CSV Files

Many applications are able to read and write files containing so-called “comma separated values”.
Such files generally contain tabular data where the columns are separated by commas and the
rows by line feed and/or carriage return characters. Although record sets are not tables, tables
can be easily emulated using records having the same fields in the same order. For example:

a: value

b: value

c: value

a: value

b: value

c: value

...

In several respects records are more flexible than tables:

− Fields can appear in a different order in several records.

− There can be several fields with the same name in a single record.

− Records can differ in the number of fields.

It is evident that records, such as those in recfiles, are a more general structure than comma
separated values. This means that when converting from csv files to recfiles, certain decisions
need to be made. The rec2csv utility (see Section 17.9 [Invoking rec2csv], page 70) implements
an algorithm to deal with this problem and generate a table that the user expects.

The algorithm works as follows:

1. The utility first scans the specified record set, building a list with the names that will
become the table header.

2. For each field, a header is added with the form:

FIELDNAME[_n]

where n is a number in the range 2..inf and is the “index” of the field in its containing
record plus one. For example, consider the following record set:

a: a1

b: b11

b: b12

c: c1

a: a2

b: b2

d: d2

The corresponding list of headers being:

a b b_2 c a b d

3. Then duplicates are removed:

a b b_2 c d

Chapter 15: Interoperability 58

4. The resulting list of headers is then used to build the table in the generated csv file.

In the above example the result would be

"a","b","b_2","c","d"

"a1","b11","b12","c1",

"a2","b2",,,"d2"

As shown, missing fields are implemented as empty columns in the generated csv.

15.2 Importing MDB Files

Access files (mdb files) are collections of several relations, also known as tables. Tables can be
either user tables storing user data, or system tables storing information such as forms, queries
or the relationships between the tables.

It is possible to get a listing with the names of all tables stored in a mdb file by calling
mdb2rec in the following way:

$ mdb2rec -l sales.mdb

Customers

Products

Orders

So ‘sales.mdb’ stores user information in the tables Customers, Products and Orders. If we
want to include system tables in the listing we can use the ‘-s’ command line option:

$ mdb2rec -s -l sales.mdb

MSysObjects

MSysACEs

MSysQueries

MSysRelationships

Customers

Products

Orders

The tables with names starting with MSys are system tables. The data stored in those tables
is either not relevant to the recutils user (used by the Access program to create forms and the
like) or is used in an indirect way by mdb2rec (such as the information from MSysRelationships).

Let’s read some data from the ‘mdb’ file. We can get the relation of Products in rec format:

$ mdb2rec sales.mdb Products

%rec: Products

%type: ProductID int

%type: ProductName size 80

%type: Discontinued bool

ProductID: 1

ProductName: GNU generation T-shirt

Discontinued: 0

...

A record descriptor is created for the record set containing the generated records, called
Products. As seen in the example, mdb2rec is able to generate type information for the fields.
The list of customers is similar:

$ mdb2rec sales.mdb Customers

%rec: Customers

%type: CustomerID size 4

Chapter 15: Interoperability 59

%type: CompanyName size 80

%type: ContactName size 60

CustomerID: GSOFT

CompanyName: GNU Soft

ContactName: Jose E. Marchesi

...

If no table is specified in the invocation to mdb2rec all the tables in the file are processed,
with the exception of the system tables, which requires ‘-s’ to be used:

$ mdb2rec sales.mdb

%rec: Products

...

%rec: Customers

...

%rec: Orders

...

Chapter 16: Bash Builtins 60

16 Bash Builtins

The command-line utilities described in Chapter 17 [Invoking the Utilities], page 62 are designed
to be used interactively in the shell. Together, and often combined with the standard shell
utilities, they provide a quite complete user interface. However, the user’s experience can be
greatly improved by a closer integration between the recutils and the shell. The following
sections describe several extensions for bash, the GNU shell (see Section “Top” in The GNU
Bourne-Again SHell). These extensions make the shell “aware” of the recutils.

As with any bash built-in, help is available in the command line using the help command.
For example:

$ help readrec

If you installed recutils using a binary package in a GNU/Linux distribution, odds are that
the built-in commands described in this chapter are already available to you. Otherwise (you
get a “command not found” or similar error) you may have to register the built-in commands
with your bash. This is very easy using the enable bash command. The registering command
for readrec would be:

$ enable readrec.so readrec

16.1 readrec

The bash built-in read, when invoked with no options, consumes one line from standard input
and makes it available in the predefined REPLY environment variable, or any other variable whose
name is passed as an argument. This allows processing data structured in lines in a quite natural
way. For example, the following program prints the third field of each line, with fields separated
by commas, until standard input is exhausted:

Process one line at a time.

while read

do

echo "The third field is " ‘echo $REPLY | cut -d, -f 2‘

done

However, read is not very useful when it comes to processing recutils records in the shell.
Even though it is possible to customize the character used by read to split the input into
records, we would need to ignore the empty records in the likely case of more than one empty
line separating records. Also, we would need to use recsel to access to the record fields. Too
complicated!

Thus, the readrec bash built-in is similar to read with the difference that it reads records
instead of lines. It also “exports” the contents of the record to the user as the values of several
environment variables:

− REPLY_REC is set to the record read from standard input.

− A set of variables FIELD named after each field found in the record are set to the (decoded)
value of the fields found in the input record. When several fields with the same name are
found in the input record then a bash array is created.

Consider for example the following simple database containing contacts information:

Name: Mr. Foo

Email: foo@bar.com

Email: bar@baz.net

Checked: no

Name: Mr. Bar

Chapter 16: Bash Builtins 61

Email: bar@foo.com

Telephone: 999666000

Checked: yes

We would like to write some shell code to send an email to all the contacts, but only if the
contact has not been checked before, i.e. the Checked field contains no. The following code
snippet would do the job nicely using readrec:

recsel contacts.rec | while readrec

do

if [$Checked = "no"]

then

mail -s "You are being checked." ${Email[0]} < email.txt

recset -e "Email = ’$Email’" -f Checked -S yes contacts.rec

sleep 1

fi

done

Note the usage of the bash array when accessing the primary email address of each contact.
Note also that we update each contact to figure as “checked”, using recset, so she won’t get
pestered again the next time the script is run.

Chapter 17: Invoking the Utilities 62

17 Invoking the Utilities

Certain options are available in all of these programs. Rather than writing identical descriptions
for each of the programs, they are listed here.

‘--version’
Print the version number, then exit successfully.

‘--help’ Print a help message, then exit successfully.

‘--’ Delimit the option list. Later arguments, if any, are treated as operands even if they
begin with ‘-’. For example, recsel -- -p reads from the file named ‘-p’.

17.1 Invoking recinf

recinf reads the given rec files (or the data from standard input if no file is specified) and prints
a summary of the record types contained in the input.

Synopsis:

recinf [option]... [file]...

The default behavior is to emit a line per record type in the input containing its name and
the number of records of that type:

$ recinf hackers.rec tasks.rec

25 Hacker

102 Task

If the input contains anonymous records, i.e. records that are before the first record descrip-
tor, the corresponding output line won’t have a type name:

$ recinf data.rec

10

In addition to the common options described earlier the program accepts the following op-
tions.

‘-t type ’
‘--type=type ’

Select records of a given type only.

‘-d’
‘--descriptor’

Print all the record descriptors present in the file.

‘-n’
‘--names-only’

Output just the names of the record types found in the input. If the input contains
only anonymous records then output nothing.

‘-S’
‘--print-sexps’

Print the data in the form of sexps (Lisp expressions) instead of rec format. This
option can be useful for, of course, Lisp programs.

17.2 Invoking recsel

recsel reads the given rec files (or the data in the standard input if no file is specified) and
prints out records (or part of records) based upon some criteria specified by the user.

recsel searches rec files for records satisfying certain criteria. Synopsis:

Chapter 17: Invoking the Utilities 63

recsel [option]... \

[-n indexes | -e record_expr | -q str | -m num] \

[-c | (-p|-P|-R) field_expr] \

[file]...

If no file is specified then the command acts like a filter, getting the data from standard
input and writing the result to standard output.

In addition to the common options described earlier (see [Common Options], page 62) the
program accepts the following options.

The following global options are available.

‘-i’
‘--case-insensitive’

Make string matching case-insensitive in selection expressions.

‘-C’

‘--collapse’
Do not section the result in records with newlines.

‘-d’
‘--include-descriptors’

Print record descriptors along with the matched records.

‘-s secret ’
‘--password=secret ’

Try to decrypt confidential fields with the given password.

‘-S’
‘--sort=fields ’

Sort the output by the comma-separated list of field names, fields. This option takes
precedence over any sorting criteria specified in the corresponding record descriptor
with %sort.

‘-U’
‘--uniq’ Remove duplicated fields in the output records. Fields are duplicated if they have

the same field name and the same value.

‘-G’
‘--group-by=fields ’

Group the output records by the provided comma-separated list of fields. Grouping
is performed before sorting.

The selection options are used to select a subset of the records in the input.

‘-n indexes ’
‘--number=indexes ’

Match the records occupying the given positions in its record set. indexes must
be a comma-separated list of numbers or ranges, with ranges being two numbers
separated with dashes. For example, the following list denotes the first, the third,
the fourth and all records up to the tenth: ‘-n 0,2,4-9’.

‘-e expr ’
‘--expression=expr ’

A record selection expression (see Section 3.5 [Selection Expressions], page 14). Only
the records matched by the expression will be taken into account to compute the
output.

Chapter 17: Invoking the Utilities 64

‘-q str ’
‘--quick=str ’

Select records having a field whose value contains the substring str.

‘-m num ’
‘--random=num ’

Select num random records. If num is zero then select all the records.

‘-t type ’
‘--type=type ’

Select records of a given type only.

‘-j field ’
‘--field=field ’

Perform an inner join of the record set selected by ‘-t’ and the record set for which
field is a foreign key. field must be a field declared with type rec and thus must be a
foreign key. If a join is performed then any selection expression and field expression
operate on the joined record sets.

The output options are used to determine what information about the selected records to
display to the user, and how to display it.

‘-p name_list ’
‘--print=name_list ’

List of fields to print for each record. name list is a list of field names separated by
commas. For example:

-p Name,Email

means to print the Name and the Email of every matching record, both the field
names and values.

If this option is not specified then all the fields of the matching records are printed
to standard output.

‘-P name_list ’
‘--print-values=name_list ’

Same as ‘-p’, but print only the values of the selected fields.

‘-R name_list ’
‘--print-row=name_list ’

Same as ‘-P’, but print the values separated by single spaces instead of newlines.

‘-c’
‘--count’ If this option is specified then recsel will print the number of matching records

instead of the records themselves. This option is incompatible with ‘-p’, ‘-P’ and
‘-R’.

This special option is available to ease the communication between the recutils and other
programs, namely Lisp interpreters. This option is not intended to be used by human operators.

‘--print-sexps’
Print the data using sexps instead of rec format.

17.3 Invoking recins

recins adds new records to a rec file or to rec data read from standard input. Synopsis:

recins [option]... [-t type] \

[-n indexes | -e record_expr | -q str | -m num] \

[(-f str -v str]|[-r recdata)]... \

Chapter 17: Invoking the Utilities 65

[file]

The new record to be inserted by the command is constructed by using pairs of ‘-f’ and ‘-v’
options, or ‘-r’. Each pair defines a field. The order of the parameters is significant.

If no file is specified then the command acts like a filter, getting the data from standard
input and writing the result to standard output.

If the specified file does not exist, it is created.

In addition to the common options described earlier (see [Common Options], page 62) the
program accepts the following options.

‘-t’
‘--type=expr ’

The type of the new record. If there is a record set in the input data matching this
type then the new record is added there. Otherwise a new record set is created. If
this parameter is not specified then the new record is anonymous.

‘-f’
‘--field=name ’

Declares the name of a field. This option must be followed by a ‘-v’.

‘-v’
‘--value=value ’

The value of the field being defined.

‘-r’
‘--record=value ’

Add the fields of the record in value. This option can be intermixed with ‘-f ...

-v’ pairs.

‘-s’
‘--password’

Encrypt confidential fields with the given password.

‘--no-external’
Don’t use external record descriptors.

‘--verbose’
Be verbose when reporting integrity problems.

‘--no-auto’
Don’t generate auto fields. See Chapter 12 [Auto-Generated Fields], page 49.

Record selection arguments are supported too. If they are used then recins uses “replace-
ment mode”: instead of appending the new record, matched records are replaced by copies of
the provided record. The selection arguments are the same as in recsel:

‘-n indexes ’
‘--number=indexes ’

Match the records occupying the given positions in its record set. indexes must be a
comma-separated list of numbers or ranges, the ranges being two numbers separated
with dashes. For example, the following list denotes the first, the third, the fourth
and all records up to the tenth: -n 0,2,4-9.

‘-e record_expr ’
‘--expression=expr ’

A record selection expression (see Section 3.5 [Selection Expressions], page 14).
Matching records will get replaced.

Chapter 17: Invoking the Utilities 66

‘-q str ’
‘--quick=str ’

Remove records having a field whose value contains the substring str.

‘-m num ’
‘--random=num ’

Select num random records. If num is zero then all records are selected, i.e. no
replace mode is activated.

‘-i’
‘--case-insensitive’

Make strings case-insensitive in selection expressions.

‘--force’ Insert the requested record even in potentially dangerous situations, such as when
the data integrity of the database is compromised.

17.4 Invoking recdel

recdel removes records from a rec file, or from rec data read from standard input. Synopsis:

recdel [OPTIONS]... [-t type] \

[-n indexes | -e record_expr | -q str | -m num] \

[file]

If no file is specified then the command acts like a filter, getting the data from standard
input and writing the result to standard output.

In addition to the common options described earlier (see [Common Options], page 62) the
program accepts the following options.

‘-t’
‘--type=expr ’

Remove records of the given type. If this parameter is not specified then records of
any type will be removed.

‘-n indexes ’
‘--number=indexes ’

Match the records occupying the given positions in its record set. indexes must be a
comma-separated list of numbers or ranges, the ranges being two numbers separated
with dashes. For example, the following list denotes the first, the third, the fourth
and all records up to the tenth: -n 0,2,4-9.

‘-e record_expr ’
‘--expression=expr ’

A record selection expression (see Section 3.5 [Selection Expressions], page 14). Only
the records matched by the expression will be removed from the file.

‘-q str ’
‘--quick=str ’

Remove records having a field whose value contains the substring str.

‘-m num ’
‘--random=num ’

Remove num random records. If num is zero then remove all the records.

‘-c’
‘--comment’

Comment the matching records out instead of removing them.

‘--force’ Delete even in potentially dangerous situations, such as a request to delete all the
records of some type.

Chapter 17: Invoking the Utilities 67

‘--no-external’
Don’t use external record descriptors.

‘-i’
‘--case-insensitive’

Make strings case-insensitive in selection expressions.

‘--verbose’
Be verbose when reporting integrity problems.

17.5 Invoking recset

recset manipulates the fields of records in a rec file, or rec data read from standard input.
Synopsis:

recset [option]... [file]...

If no file is specified then the command acts like a filter, getting the data from standard
input and writing the result to standard output.

In addition to the common options described earlier (see [Common Options], page 62) the
program accepts the following options.

Record selection options:

‘-i’
‘--case-insensitive’

Make strings case-insensitive in selection expressions.

‘-t’
‘--type=expr ’

Operate on the records of the given type. If this parameter is not specified then
records of any type will be affected.

‘-n indexes ’
‘--number=indexes ’

Operate on the records occupying the given positions in its record set. indexes must
be a comma-separated list of numbers or ranges, the ranges being two numbers
separated with dashes. For example, the following list denotes the first, the third,
the fourth and all records up to the tenth: -n 0,2,4-9.

‘-e expr ’
‘--expression=expr ’

A record selection expression (see Section 3.5 [Selection Expressions], page 14). Only
the records matched by the expression will be processed.

‘-q str ’
‘--quick=str ’

Operate on records having a field whose value contains the substring str.

‘-m num ’
‘--random=num ’

Operate on num random records. If num is zero then operate on all the records.

Field selection options:

‘-f’
‘--fields=FEX ’

Field selection expression (see Section 3.6 [Field Expressions], page 18) to select the
fields to operate.

Actions:

Chapter 17: Invoking the Utilities 68

‘-s’
‘--set=value ’

Set the value of the selected fields to value.

‘-a’
‘--add=value ’

Add a new field to the selected record with value value.

‘-S’
‘--set-add=value ’

Set the value of the selected fields to value. If some of the fields don’t exist in a
record, append it with the specified value.

‘-r’
‘--rename=value ’

Rename a field; value must be a valid field name. The field expression associated
with this action must contain a single field name and an optional subscript. If an
entire record set is selected then the field is renamed in the record descriptor as well.

‘-d’
‘--delete’

Delete the selected fields in the selected records.

‘-c’
‘--comment’

Comment out the selected fields in the selected records.

‘--no-external’
Don’t use external record descriptors.

‘--verbose’
Be verbose when reporting integrity problems.

‘--force’ Perform the requested operation even in potentially dangerous situations, or when
the integrity of the data stored in the file is affected.

17.6 Invoking recfix

recfix checks and fixes rec files. Synopsis:

recfix [option]... [operation] [op_option]... [file]

If no file is specified then the command acts like a filter, getting the data from standard
input and writing the result to standard output.

In addition to the common options described earlier (see [Common Options], page 62) the
program accepts the following global options.

‘--no-external’
Don’t use external record descriptors.

The effect of running recfix depends on the operation it performs. The operation mode is
selected by using one of the following options.

‘--check’ Check the integrity of the database contained in the file, printing diagnostics mes-
sages in case something is not right. This is the default operation.

‘--sort’ Perform a physical sort of all the records contained in the file (or standard input)
after checking for its integrity. The sorting criteria are provided by the %sort special
field, if any. If there is an integrity failure the sorting is not performed.

This is a destructive operation.

Chapter 17: Invoking the Utilities 69

‘--decrypt’
‘--encrypt’

Decrypt (encrypt) all the (non-)encrypted fields in the database which are marked
as confidential. This operation requires a password. If no password is specified with
‘-s’ and the program is run in a terminal, a prompt is given to get the password
from the user.

If encryption is performed on a file having encrypted fields, the operation will fail
unless ‘--force’ is used.

These are destructive operations.

‘--auto’ Insert auto-generated fields as appropriate in the records which are missing them.

This is a destructive operation.

As described above, some operations make use of these additional options:

‘-s secret ’
‘--password=secret ’

Password used to encrypt or decrypt fields.

‘--force’ Force potentially dangerous operations.

17.7 Invoking recfmt

recfmt formats records using templates. Synopsis:

recfmt [option]... [template]

This program always works as a filter, getting the data from the standard input and writing
the result to standard output.

In addition to the common options described earlier (see [Common Options], page 62) the
program accepts the following options.

‘-f’
‘--filename=PATH ’

Read the template from the file in PATH instead of the command line.

17.8 Invoking csv2rec

csv2rec reads the given comma-separated-values file (or the data from standard input if no file
is specified) and prints out the converted rec data, if possible. Synopsis:

csv2rec [option]... [csv_file]

In addition to the common options described earlier (see [Common Options], page 62) the
program accepts the following options.

‘-t type ’
‘--type=type ’

Type of the converted records. If no type is specified then no type is used.

‘-s’
‘--strict’

Be strict parsing the csv file.

‘-e’
‘--omit-empty’

Omit empty fields.

Chapter 17: Invoking the Utilities 70

17.9 Invoking rec2csv

rec2csv reads the given rec files (or the data in the standard input if no file is specified) and
prints out the converted comma-separated-values. Synopsis:

rec2csv [option]... [rec_file]...

The rec data can be read from files specified in the command line, or from standard input.
The program writes the converted data to standard output.

In addition to the common options described earlier (see [Common Options], page 62) the
program accepts the following options.

‘-t type ’
‘--type=type ’

Type of the records to convert. If no type is specified then the default records (with
no name) are converted.

‘-S’
‘--sort=fields ’

Sort the output by the comma-separated list of field names fields. This option has
precedence to whatever sorting criteria are specified in the corresponding record
descriptor with %sort.

‘-d’
‘--delim=char ’

Use char as the delimiter character separating fields in the output. Defaults to ,.

17.10 Invoking mdb2rec

mdb2rec reads the given mdb file and prints out the converted rec data, if possible. Synopsis:

mdb2rec [option]... mdb_file [table]

All the tables contained in the mdb file are exported unless a table is specified in the command
line.

In addition to the common options described earlier (see [Common Options], page 62) the
program accepts the following options.

‘-s’
‘--system-tables’

Include system tables in the output.

‘-l’
‘--list-tables’

Dump a list of the table names contained in the mdb file, one per line.

‘-e’
‘--keep-empty-fields’

Don’t prune empty fields in the rec output.

Chapter 18: Regular Expressions 71

18 Regular Expressions

The character ‘.’ matches any single character except the null character.

‘+’ match one or more occurrences of the previous atom or regexp.

‘?’ match zero or one occurrences of the previous atom or regexp.

‘\+’ matches a ‘+’

‘\?’ matches a ‘?’.

Bracket expressions are used to match ranges of characters. Bracket expressions where the
range is backward, for example ‘[z-a]’, are invalid. Within square brackets, ‘\’ is taken literally.
Character classes are supported; for example ‘[[:digit:]]’ matches a single decimal digit.

GNU extensions are supported:

‘\w’ matches a character within a word

‘\W’ matches a character which is not within a word

‘\<’ matches the beginning of a word

‘\>’ matches the end of a word

‘\b’ matches a word boundary

‘\B’ matches characters which are not a word boundary

‘\‘’ matches the beginning of the whole input

‘\’’ matches the end of the whole input

Grouping is performed with parentheses ‘()’. An unmatched ‘)’ matches just itself. A
backslash followed by a digit acts as a back-reference and matches the same thing as the previous
grouped expression indicated by that number. For example, ‘\2’ matches the second group
expression. The order of group expressions is determined by the position of their opening
parenthesis ‘(’.

The alternation operator is ‘|’.

The characters ‘^’ and ‘$’ always represent the beginning and end of a string respectively,
except within square brackets. Within brackets, an initial ‘^’ inverts the character class being
matched.

‘*’, ‘+’ and ‘?’ are special at any point in a regular expression except the following places,
where they are not allowed:

1. At the beginning of a regular expression

2. After an open-group, ‘(’

3. After the alternation operator, ‘|’

Intervals are specified by ‘{’ and ‘}’. Invalid intervals such as ‘a{1z’ are not accepted.

The longest possible match is returned; this applies to the regular expression as a whole and
(subject to this constraint) to sub-expressions within groups.

Chapter 19: Date input formats 72

19 Date input formats

First, a quote:

Our units of temporal measurement, from seconds on up to months, are so com-
plicated, asymmetrical and disjunctive so as to make coherent mental reckoning in
time all but impossible. Indeed, had some tyrannical god contrived to enslave our
minds to time, to make it all but impossible for us to escape subjection to sodden
routines and unpleasant surprises, he could hardly have done better than handing
down our present system. It is like a set of trapezoidal building blocks, with no
vertical or horizontal surfaces, like a language in which the simplest thought de-
mands ornate constructions, useless particles and lengthy circumlocutions. Unlike
the more successful patterns of language and science, which enable us to face expe-
rience boldly or at least level-headedly, our system of temporal calculation silently
and persistently encourages our terror of time.

. . . It is as though architects had to measure length in feet, width in meters and
height in ells; as though basic instruction manuals demanded a knowledge of five
different languages. It is no wonder then that we often look into our own imme-
diate past or future, last Tuesday or a week from Sunday, with feelings of helpless
confusion. . . .

—Robert Grudin, Time and the Art of Living.

This section describes the textual date representations that GNU programs accept. These
are the strings you, as a user, can supply as arguments to the various programs. The C interface
(via the parse_datetime function) is not described here.

19.1 General date syntax

A date is a string, possibly empty, containing many items separated by whitespace. The white-
space may be omitted when no ambiguity arises. The empty string means the beginning of today
(i.e., midnight). Order of the items is immaterial. A date string may contain many flavors of
items:

• calendar date items

• time of day items

• time zone items

• combined date and time of day items

• day of the week items

• relative items

• pure numbers.

We describe each of these item types in turn, below.

A few ordinal numbers may be written out in words in some contexts. This is most useful
for specifying day of the week items or relative items (see below). Among the most commonly
used ordinal numbers, the word ‘last’ stands for −1, ‘this’ stands for 0, and ‘first’ and ‘next’
both stand for 1. Because the word ‘second’ stands for the unit of time there is no way to write
the ordinal number 2, but for convenience ‘third’ stands for 3, ‘fourth’ for 4, ‘fifth’ for 5,
‘sixth’ for 6, ‘seventh’ for 7, ‘eighth’ for 8, ‘ninth’ for 9, ‘tenth’ for 10, ‘eleventh’ for 11
and ‘twelfth’ for 12.

When a month is written this way, it is still considered to be written numerically, instead of
being “spelled in full”; this changes the allowed strings.

In the current implementation, only English is supported for words and abbreviations like
‘AM’, ‘DST’, ‘EST’, ‘first’, ‘January’, ‘Sunday’, ‘tomorrow’, and ‘year’.

Chapter 19: Date input formats 73

The output of the date command is not always acceptable as a date string, not only because
of the language problem, but also because there is no standard meaning for time zone items like
‘IST’. When using date to generate a date string intended to be parsed later, specify a date
format that is independent of language and that does not use time zone items other than ‘UTC’
and ‘Z’. Here are some ways to do this:

$ LC_ALL=C TZ=UTC0 date

Mon Mar 1 00:21:42 UTC 2004

$ TZ=UTC0 date +’%Y-%m-%d %H:%M:%SZ’

2004-03-01 00:21:42Z

$ date --rfc-3339=ns # --rfc-3339 is a GNU extension.

2004-02-29 16:21:42.692722128-08:00

$ date --rfc-2822 # a GNU extension

Sun, 29 Feb 2004 16:21:42 -0800

$ date +’%Y-%m-%d %H:%M:%S %z’ # %z is a GNU extension.

2004-02-29 16:21:42 -0800

$ date +’@%s.%N’ # %s and %N are GNU extensions.

@1078100502.692722128

Alphabetic case is completely ignored in dates. Comments may be introduced between round
parentheses, as long as included parentheses are properly nested. Hyphens not followed by a
digit are currently ignored. Leading zeros on numbers are ignored.

Invalid dates like ‘2005-02-29’ or times like ‘24:00’ are rejected. In the typical case of a
host that does not support leap seconds, a time like ‘23:59:60’ is rejected even if it corresponds
to a valid leap second.

19.2 Calendar date items

A calendar date item specifies a day of the year. It is specified differently, depending on whether
the month is specified numerically or literally. All these strings specify the same calendar date:

1972-09-24 # ISO 8601.

72-9-24 # Assume 19xx for 69 through 99,

20xx for 00 through 68.

72-09-24 # Leading zeros are ignored.

9/24/72 # Common U.S. writing.

24 September 1972

24 Sept 72 # September has a special abbreviation.

24 Sep 72 # Three-letter abbreviations always allowed.

Sep 24, 1972

24-sep-72

24sep72

The year can also be omitted. In this case, the last specified year is used, or the current year
if none. For example:

9/24

sep 24

Here are the rules.

For numeric months, the ISO 8601 format ‘year-month-day ’ is allowed, where year is any
positive number, month is a number between 01 and 12, and day is a number between 01 and
31. A leading zero must be present if a number is less than ten. If year is 68 or smaller, then
2000 is added to it; otherwise, if year is less than 100, then 1900 is added to it. The construct
‘month/day/year ’, popular in the United States, is accepted. Also ‘month/day ’, omitting the
year.

Chapter 19: Date input formats 74

Literal months may be spelled out in full: ‘January’, ‘February’, ‘March’, ‘April’, ‘May’,
‘June’, ‘July’, ‘August’, ‘September’, ‘October’, ‘November’ or ‘December’. Literal months may
be abbreviated to their first three letters, possibly followed by an abbreviating dot. It is also
permitted to write ‘Sept’ instead of ‘September’.

When months are written literally, the calendar date may be given as any of the following:

day month year

day month

month day year

day-month-year

Or, omitting the year:

month day

19.3 Time of day items

A time of day item in date strings specifies the time on a given day. Here are some examples,
all of which represent the same time:

20:02:00.000000

20:02

8:02pm

20:02-0500 # In EST (U.S. Eastern Standard Time).

More generally, the time of day may be given as ‘hour:minute:second ’, where hour is a
number between 0 and 23, minute is a number between 0 and 59, and second is a number
between 0 and 59 possibly followed by ‘.’ or ‘,’ and a fraction containing one or more digits.
Alternatively, ‘:second ’ can be omitted, in which case it is taken to be zero. On the rare hosts
that support leap seconds, second may be 60.

If the time is followed by ‘am’ or ‘pm’ (or ‘a.m.’ or ‘p.m.’), hour is restricted to run from 1
to 12, and ‘:minute ’ may be omitted (taken to be zero). ‘am’ indicates the first half of the day,
‘pm’ indicates the second half of the day. In this notation, 12 is the predecessor of 1: midnight
is ‘12am’ while noon is ‘12pm’. (This is the zero-oriented interpretation of ‘12am’ and ‘12pm’,
as opposed to the old tradition derived from Latin which uses ‘12m’ for noon and ‘12pm’ for
midnight.)

The time may alternatively be followed by a time zone correction, expressed as ‘shhmm ’,
where s is ‘+’ or ‘-’, hh is a number of zone hours and mm is a number of zone minutes. The
zone minutes term, mm, may be omitted, in which case the one- or two-digit correction is
interpreted as a number of hours. You can also separate hh from mm with a colon. When a
time zone correction is given this way, it forces interpretation of the time relative to Coordinated
Universal Time (UTC), overriding any previous specification for the time zone or the local time
zone. For example, ‘+0530’ and ‘+05:30’ both stand for the time zone 5.5 hours ahead of UTC
(e.g., India). This is the best way to specify a time zone correction by fractional parts of an
hour. The maximum zone correction is 24 hours.

Either ‘am’/‘pm’ or a time zone correction may be specified, but not both.

19.4 Time zone items

A time zone item specifies an international time zone, indicated by a small set of letters, e.g.,
‘UTC’ or ‘Z’ for Coordinated Universal Time. Any included periods are ignored. By following a
non-daylight-saving time zone by the string ‘DST’ in a separate word (that is, separated by some
white space), the corresponding daylight saving time zone may be specified. Alternatively, a
non-daylight-saving time zone can be followed by a time zone correction, to add the two values.
This is normally done only for ‘UTC’; for example, ‘UTC+05:30’ is equivalent to ‘+05:30’.

Chapter 19: Date input formats 75

Time zone items other than ‘UTC’ and ‘Z’ are obsolescent and are not recommended, because
they are ambiguous; for example, ‘EST’ has a different meaning in Australia than in the United
States. Instead, it’s better to use unambiguous numeric time zone corrections like ‘-0500’, as
described in the previous section.

If neither a time zone item nor a time zone correction is supplied, time stamps are interpreted
using the rules of the default time zone (see Section 19.10 [Specifying time zone rules], page 77).

19.5 Combined date and time of day items

The ISO 8601 date and time of day extended format consists of an ISO 8601 date, a ‘T’ character
separator, and an ISO 8601 time of day. This format is also recognized if the ‘T’ is replaced by
a space.

In this format, the time of day should use 24-hour notation. Fractional seconds are allowed,
with either comma or period preceding the fraction. ISO 8601 fractional minutes and hours are
not supported. Typically, hosts support nanosecond timestamp resolution; excess precision is
silently discarded.

Here are some examples:

2012-09-24T20:02:00.052-0500

2012-12-31T23:59:59,999999999+1100

1970-01-01 00:00Z

19.6 Day of week items

The explicit mention of a day of the week will forward the date (only if necessary) to reach that
day of the week in the future.

Days of the week may be spelled out in full: ‘Sunday’, ‘Monday’, ‘Tuesday’, ‘Wednesday’,
‘Thursday’, ‘Friday’ or ‘Saturday’. Days may be abbreviated to their first three letters, op-
tionally followed by a period. The special abbreviations ‘Tues’ for ‘Tuesday’, ‘Wednes’ for
‘Wednesday’ and ‘Thur’ or ‘Thurs’ for ‘Thursday’ are also allowed.

A number may precede a day of the week item to move forward supplementary weeks. It is
best used in expression like ‘third monday’. In this context, ‘last day ’ or ‘next day ’ is also
acceptable; they move one week before or after the day that day by itself would represent.

A comma following a day of the week item is ignored.

19.7 Relative items in date strings

Relative items adjust a date (or the current date if none) forward or backward. The effects of
relative items accumulate. Here are some examples:

1 year

1 year ago

3 years

2 days

The unit of time displacement may be selected by the string ‘year’ or ‘month’ for moving by
whole years or months. These are fuzzy units, as years and months are not all of equal duration.
More precise units are ‘fortnight’ which is worth 14 days, ‘week’ worth 7 days, ‘day’ worth 24
hours, ‘hour’ worth 60 minutes, ‘minute’ or ‘min’ worth 60 seconds, and ‘second’ or ‘sec’ worth
one second. An ‘s’ suffix on these units is accepted and ignored.

The unit of time may be preceded by a multiplier, given as an optionally signed number.
Unsigned numbers are taken as positively signed. No number at all implies 1 for a multiplier.
Following a relative item by the string ‘ago’ is equivalent to preceding the unit by a multiplier
with value −1.

Chapter 19: Date input formats 76

The string ‘tomorrow’ is worth one day in the future (equivalent to ‘day’), the string
‘yesterday’ is worth one day in the past (equivalent to ‘day ago’).

The strings ‘now’ or ‘today’ are relative items corresponding to zero-valued time displacement,
these strings come from the fact a zero-valued time displacement represents the current time
when not otherwise changed by previous items. They may be used to stress other items, like in
‘12:00 today’. The string ‘this’ also has the meaning of a zero-valued time displacement, but
is preferred in date strings like ‘this thursday’.

When a relative item causes the resulting date to cross a boundary where the clocks were
adjusted, typically for daylight saving time, the resulting date and time are adjusted accordingly.

The fuzz in units can cause problems with relative items. For example, ‘2003-07-31 -1

month’ might evaluate to 2003-07-01, because 2003-06-31 is an invalid date. To determine the
previous month more reliably, you can ask for the month before the 15th of the current month.
For example:

$ date -R

Thu, 31 Jul 2003 13:02:39 -0700

$ date --date=’-1 month’ +’Last month was %B?’

Last month was July?

$ date --date="$(date +%Y-%m-15) -1 month" +’Last month was %B!’

Last month was June!

Also, take care when manipulating dates around clock changes such as daylight saving leaps.
In a few cases these have added or subtracted as much as 24 hours from the clock, so it is often
wise to adopt universal time by setting the TZ environment variable to ‘UTC0’ before embarking
on calendrical calculations.

19.8 Pure numbers in date strings

The precise interpretation of a pure decimal number depends on the context in the date string.

If the decimal number is of the form yyyymmdd and no other calendar date item (see
Section 19.2 [Calendar date items], page 73) appears before it in the date string, then yyyy is
read as the year, mm as the month number and dd as the day of the month, for the specified
calendar date.

If the decimal number is of the form hhmm and no other time of day item appears before it
in the date string, then hh is read as the hour of the day and mm as the minute of the hour, for
the specified time of day. mm can also be omitted.

If both a calendar date and a time of day appear to the left of a number in the date string,
but no relative item, then the number overrides the year.

19.9 Seconds since the Epoch

If you precede a number with ‘@’, it represents an internal time stamp as a count of seconds.
The number can contain an internal decimal point (either ‘.’ or ‘,’); any excess precision not
supported by the internal representation is truncated toward minus infinity. Such a number
cannot be combined with any other date item, as it specifies a complete time stamp.

Internally, computer times are represented as a count of seconds since an epoch—a well-
defined point of time. On GNU and POSIX systems, the epoch is 1970-01-01 00:00:00 UTC, so
‘@0’ represents this time, ‘@1’ represents 1970-01-01 00:00:01 UTC, and so forth. GNU and most
other POSIX-compliant systems support such times as an extension to POSIX, using negative
counts, so that ‘@-1’ represents 1969-12-31 23:59:59 UTC.

Traditional Unix systems count seconds with 32-bit two’s-complement integers and can rep-
resent times from 1901-12-13 20:45:52 through 2038-01-19 03:14:07 UTC. More modern systems

Chapter 19: Date input formats 77

use 64-bit counts of seconds with nanosecond subcounts, and can represent all the times in the
known lifetime of the universe to a resolution of 1 nanosecond.

On most hosts, these counts ignore the presence of leap seconds. For example, on most hosts
‘@915148799’ represents 1998-12-31 23:59:59 UTC, ‘@915148800’ represents 1999-01-01 00:00:00
UTC, and there is no way to represent the intervening leap second 1998-12-31 23:59:60 UTC.

19.10 Specifying time zone rules

Normally, dates are interpreted using the rules of the current time zone, which in turn are
specified by the TZ environment variable, or by a system default if TZ is not set. To specify a
different set of default time zone rules that apply just to one date, start the date with a string
of the form ‘TZ="rule"’. The two quote characters (‘"’) must be present in the date, and any
quotes or backslashes within rule must be escaped by a backslash.

For example, with the GNU date command you can answer the question “What time is it in
New York when a Paris clock shows 6:30am on October 31, 2004?” by using a date beginning
with ‘TZ="Europe/Paris"’ as shown in the following shell transcript:

$ export TZ="America/New_York"

$ date --date=’TZ="Europe/Paris" 2004-10-31 06:30’

Sun Oct 31 01:30:00 EDT 2004

In this example, the ‘--date’ operand begins with its own TZ setting, so the rest of that
operand is processed according to ‘Europe/Paris’ rules, treating the string ‘2004-10-31 06:30’
as if it were in Paris. However, since the output of the date command is processed according to
the overall time zone rules, it uses New York time. (Paris was normally six hours ahead of New
York in 2004, but this example refers to a brief Halloween period when the gap was five hours.)

A TZ value is a rule that typically names a location in the ‘tz’ database. A recent catalog of
location names appears in the TWiki Date and Time Gateway. A few non-GNU hosts require
a colon before a location name in a TZ setting, e.g., ‘TZ=":America/New_York"’.

The ‘tz’ database includes a wide variety of locations ranging from ‘Arctic/Longyearbyen’
to ‘Antarctica/South_Pole’, but if you are at sea and have your own private time zone, or if
you are using a non-GNU host that does not support the ‘tz’ database, you may need to use a
POSIX rule instead. Simple POSIX rules like ‘UTC0’ specify a time zone without daylight saving
time; other rules can specify simple daylight saving regimes. See Section “Specifying the Time
Zone with TZ” in The GNU C Library .

19.11 Authors of parse_datetime

parse_datetime started life as getdate, as originally implemented by Steven M. Bellovin
(smb@research.att.com) while at the University of North Carolina at Chapel Hill. The code
was later tweaked by a couple of people on Usenet, then completely overhauled by Rich $alz
(rsalz@bbn.com) and Jim Berets (jberets@bbn.com) in August, 1990. Various revisions for the
GNU system were made by David MacKenzie, Jim Meyering, Paul Eggert and others, including
renaming it to get_date to avoid a conflict with the alternative Posix function getdate, and
a later rename to parse_datetime. The Posix function getdate can parse more locale-specific
dates using strptime, but relies on an environment variable and external file, and lacks the
thread-safety of parse_datetime.

This chapter was originally produced by François Pinard (pinard@iro.umontreal.ca) from
the ‘parse_datetime.y’ source code, and then edited by K. Berry (kb@cs.umb.edu).

http://www.twinsun.com/tz/tz-link.htm
http://twiki.org/cgi-bin/xtra/tzdate
mailto:smb@research.att.com
mailto:rsalz@bbn.com
mailto:jberets@bbn.com
mailto:pinard@iro.umontreal.ca
mailto:kb@cs.umb.edu

Appendix A: GNU Free Documentation License 78

Appendix A GNU Free Documentation License

Version 1.3, 3 November 2008

Copyright c© 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.
http://fsf.org/

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and useful
document free in the sense of freedom: to assure everyone the effective freedom to copy
and redistribute it, with or without modifying it, either commercially or noncommercially.
Secondarily, this License preserves for the author and publisher a way to get credit for their
work, while not being considered responsible for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public License,
which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free
software needs free documentation: a free program should come with manuals providing the
same freedoms that the software does. But this License is not limited to software manuals;
it can be used for any textual work, regardless of subject matter or whether it is published
as a printed book. We recommend this License principally for works whose purpose is
instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice
placed by the copyright holder saying it can be distributed under the terms of this License.
Such a notice grants a world-wide, royalty-free license, unlimited in duration, to use that
work under the conditions stated herein. The “Document”, below, refers to any such manual
or work. Any member of the public is a licensee, and is addressed as “you”. You accept
the license if you copy, modify or distribute the work in a way requiring permission under
copyright law.

A “Modified Version” of the Document means any work containing the Document or a
portion of it, either copied verbatim, or with modifications and/or translated into another
language.

A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that could
fall directly within that overall subject. (Thus, if the Document is in part a textbook of
mathematics, a Secondary Section may not explain any mathematics.) The relationship
could be a matter of historical connection with the subject or with related matters, or of
legal, commercial, philosophical, ethical or political position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released
under this License. If a section does not fit the above definition of Secondary then it is not
allowed to be designated as Invariant. The Document may contain zero Invariant Sections.
If the Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts or
Back-Cover Texts, in the notice that says that the Document is released under this License.
A Front-Cover Text may be at most 5 words, and a Back-Cover Text may be at most 25
words.

http://fsf.org/

Appendix A: GNU Free Documentation License 79

A “Transparent” copy of the Document means a machine-readable copy, represented in a
format whose specification is available to the general public, that is suitable for revising
the document straightforwardly with generic text editors or (for images composed of pixels)
generic paint programs or (for drawings) some widely available drawing editor, and that is
suitable for input to text formatters or for automatic translation to a variety of formats
suitable for input to text formatters. A copy made in an otherwise Transparent file format
whose markup, or absence of markup, has been arranged to thwart or discourage subsequent
modification by readers is not Transparent. An image format is not Transparent if used for
any substantial amount of text. A copy that is not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without markup,
Texinfo input format, LaTEX input format, SGML or XML using a publicly available DTD,
and standard-conforming simple HTML, PostScript or PDF designed for human modifica-
tion. Examples of transparent image formats include PNG, XCF and JPG. Opaque formats
include proprietary formats that can be read and edited only by proprietary word proces-
sors, SGML or XML for which the DTD and/or processing tools are not generally available,
and the machine-generated HTML, PostScript or PDF produced by some word processors
for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following pages
as are needed to hold, legibly, the material this License requires to appear in the title page.
For works in formats which do not have any title page as such, “Title Page” means the
text near the most prominent appearance of the work’s title, preceding the beginning of the
body of the text.

The “publisher” means any person or entity that distributes copies of the Document to the
public.

A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such
as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve the
Title” of such a section when you modify the Document means that it remains a section
“Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to be
included by reference in this License, but only as regards disclaiming warranties: any other
implication that these Warranty Disclaimers may have is void and has no effect on the
meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncom-
mercially, provided that this License, the copyright notices, and the license notice saying
this License applies to the Document are reproduced in all copies, and that you add no
other conditions whatsoever to those of this License. You may not use technical measures
to obstruct or control the reading or further copying of the copies you make or distribute.
However, you may accept compensation in exchange for copies. If you distribute a large
enough number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the
Document, numbering more than 100, and the Document’s license notice requires Cover
Texts, you must enclose the copies in covers that carry, clearly and legibly, all these Cover
Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both

Appendix A: GNU Free Documentation License 80

covers must also clearly and legibly identify you as the publisher of these copies. The front
cover must present the full title with all words of the title equally prominent and visible.
You may add other material on the covers in addition. Copying with changes limited to
the covers, as long as they preserve the title of the Document and satisfy these conditions,
can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the
first ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto
adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you
must either include a machine-readable Transparent copy along with each Opaque copy,
or state in or with each Opaque copy a computer-network location from which the general
network-using public has access to download using public-standard network protocols a
complete Transparent copy of the Document, free of added material. If you use the latter
option, you must take reasonably prudent steps, when you begin distribution of Opaque
copies in quantity, to ensure that this Transparent copy will remain thus accessible at the
stated location until at least one year after the last time you distribute an Opaque copy
(directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before
redistributing any large number of copies, to give them a chance to provide you with an
updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of it. In
addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any, be
listed in the History section of the Document). You may use the same title as a previous
version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five of
the principal authors of the Document (all of its principal authors, if it has fewer than
five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other copy-
right notices.

F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item stating
at least the title, year, new authors, and publisher of the Modified Version as given
on the Title Page. If there is no section Entitled “History” in the Document, create
one stating the title, year, authors, and publisher of the Document as given on its

Appendix A: GNU Free Documentation License 81

Title Page, then add an item describing the Modified Version as stated in the previous
sentence.

J. Preserve the network location, if any, given in the Document for public access to a
Transparent copy of the Document, and likewise the network locations given in the
Document for previous versions it was based on. These may be placed in the “History”
section. You may omit a network location for a work that was published at least four
years before the Document itself, or if the original publisher of the version it refers to
gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their
titles. Section numbers or the equivalent are not considered part of the section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included in
the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in title
with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as
Secondary Sections and contain no material copied from the Document, you may at your
option designate some or all of these sections as invariant. To do this, add their titles to
the list of Invariant Sections in the Modified Version’s license notice. These titles must be
distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but endorse-
ments of your Modified Version by various parties—for example, statements of peer review
or that the text has been approved by an organization as the authoritative definition of a
standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be added
by (or through arrangements made by) any one entity. If the Document already includes
a cover text for the same cover, previously added by you or by arrangement made by the
same entity you are acting on behalf of, you may not add another; but you may replace the
old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to
use their names for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under
the terms defined in section 4 above for modified versions, provided that you include in the
combination all of the Invariant Sections of all of the original documents, unmodified, and
list them all as Invariant Sections of your combined work in its license notice, and that you
preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment to
the section titles in the list of Invariant Sections in the license notice of the combined work.

Appendix A: GNU Free Documentation License 82

In the combination, you must combine any sections Entitled “History” in the various original
documents, forming one section Entitled “History”; likewise combine any sections Entitled
“Acknowledgements”, and any sections Entitled “Dedications”. You must delete all sections
Entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under
this License, and replace the individual copies of this License in the various documents with
a single copy that is included in the collection, provided that you follow the rules of this
License for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually
under this License, provided you insert a copy of this License into the extracted document,
and follow this License in all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called an
“aggregate” if the copyright resulting from the compilation is not used to limit the legal
rights of the compilation’s users beyond what the individual works permit. When the
Document is included in an aggregate, this License does not apply to the other works in
the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they must
appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the
Document under the terms of section 4. Replacing Invariant Sections with translations
requires special permission from their copyright holders, but you may include translations
of some or all Invariant Sections in addition to the original versions of these Invariant
Sections. You may include a translation of this License, and all the license notices in
the Document, and any Warranty Disclaimers, provided that you also include the original
English version of this License and the original versions of those notices and disclaimers. In
case of a disagreement between the translation and the original version of this License or a
notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “History”,
the requirement (section 4) to Preserve its Title (section 1) will typically require changing
the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly pro-
vided under this License. Any attempt otherwise to copy, modify, sublicense, or distribute
it is void, and will automatically terminate your rights under this License.

However, if you cease all violation of this License, then your license from a particular copy-
right holder is reinstated (a) provisionally, unless and until the copyright holder explicitly
and finally terminates your license, and (b) permanently, if the copyright holder fails to
notify you of the violation by some reasonable means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if the
copyright holder notifies you of the violation by some reasonable means, this is the first
time you have received notice of violation of this License (for any work) from that copyright
holder, and you cure the violation prior to 30 days after your receipt of the notice.

Appendix A: GNU Free Documentation License 83

Termination of your rights under this section does not terminate the licenses of parties
who have received copies or rights from you under this License. If your rights have been
terminated and not permanently reinstated, receipt of a copy of some or all of the same
material does not give you any rights to use it.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Doc-
umentation License from time to time. Such new versions will be similar in spirit to
the present version, but may differ in detail to address new problems or concerns. See
http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version” applies
to it, you have the option of following the terms and conditions either of that specified
version or of any later version that has been published (not as a draft) by the Free Software
Foundation. If the Document does not specify a version number of this License, you may
choose any version ever published (not as a draft) by the Free Software Foundation. If the
Document specifies that a proxy can decide which future versions of this License can be
used, that proxy’s public statement of acceptance of a version permanently authorizes you
to choose that version for the Document.

11. RELICENSING

“Massive Multiauthor Collaboration Site” (or “MMC Site”) means any World Wide Web
server that publishes copyrightable works and also provides prominent facilities for anybody
to edit those works. A public wiki that anybody can edit is an example of such a server. A
“Massive Multiauthor Collaboration” (or “MMC”) contained in the site means any set of
copyrightable works thus published on the MMC site.

“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0 license published
by Creative Commons Corporation, a not-for-profit corporation with a principal place of
business in San Francisco, California, as well as future copyleft versions of that license
published by that same organization.

“Incorporate” means to publish or republish a Document, in whole or in part, as part of
another Document.

An MMC is “eligible for relicensing” if it is licensed under this License, and if all works that
were first published under this License somewhere other than this MMC, and subsequently
incorporated in whole or in part into the MMC, (1) had no cover texts or invariant sections,
and (2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site under CC-BY-
SA on the same site at any time before August 1, 2009, provided the MMC is eligible for
relicensing.

http://www.gnu.org/copyleft/

Appendix A: GNU Free Documentation License 84

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the document
and put the following copyright and license notices just after the title page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify this document

under the terms of the GNU Free Documentation License, Version 1.3

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover

Texts. A copy of the license is included in the section entitled ‘‘GNU

Free Documentation License’’.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with. . .Texts.” line with this:

with the Invariant Sections being list their titles, with

the Front-Cover Texts being list, and with the Back-Cover Texts

being list.

If you have Invariant Sections without Cover Texts, or some other combination of the three,
merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU General
Public License, to permit their use in free software.

Concept Index 85

Concept Index

%
%allowed . 35
%auto . 49
%confidential . 52
%constraint . 36
%doc . 7
%key . 35, 47, 49
%mandatory . 8, 34
%prohibit . 34
%rec . 6, 39
%size . 36
%sort . 20
%type . 30
%typedef . 30
%unique . 35

A
abbreviations for months . 73
adding fields . 27
aggregate function . 42
aliasing, field name aliasing . 19
allowed fields . 35
anonymous types . 30
arithmetic operators . 17
authors of parse_datetime . 77
automatically generated values 49

B
bash . 60
beginning of time, for POSIX . 76
Bellovin, Steven M. 77
Berets, Jim . 77
Berry, K. 77
books . 1
boolean operators . 17
boolean types . 32

C
calendar date item . 73
case, ignored in dates . 73
case, in field names . 4
case, in selection expressions 63, 66
checking recfiles . 68
combined date and time of day item 75
comma separated values 57, 69, 70
comments . 5
comments, in dates . 73
comments, in enumerated types 32
comparison . 17
compulsory fields . 34
conditional operator . 18
confidential data . 52
constraints . 37
counters . 50
counting occurrences of a field . 18
csv . 57, 69, 70
csv2rec . 69

D
date and time of day format, ISO 8601 75
date comparison . 15, 17
date format, ISO 8601 . 73
date input formats . 72
date, fields containing dates . 32
day of week . 32
day of week item . 75
decimal separator . 31
default record types . 6
deleting fields . 27
deleting records . 25, 66
description of record sets . 7
descriptor . 5
descriptor, external descriptor . 39
displacement of dates . 75
documentation fields . 7
duplication, avoiding . 46

E
editing fields . 67
Eggert, Paul . 77
email . 32
encrypted fields . 52
encryption . 52
enumerated types . 32
epoch, for POSIX . 76
evaluation, of selection expressions 18
external descriptor . 39

F
FEX . 18
field . 4
field expressions . 18
field name . 4
field operators . 18
field size . 31
field types, . 30
field values . 4
field values, in selection expressions 16
field, allowed fields . 35
field, compulsory fields . 34
field, forbidden fields . 34
field, mandatory fields . 34
field, special fields . 8
floating point numbers . 31
foreign key . 33, 47
formatted output . 69
fractions . 31

G
general date syntax . 72
grouping . 40
grouping, within regular expressions 71

Concept Index 86

H
hexadecimal . 30

I
ID numbers . 49
implies, logical implication . 37
inserting new records . 64
integers . 30
integrity problems 29, 34, 36, 37, 39, 53
integrity, checking . 38, 68
interactive use . 60
ISO 8601 date and time of day format 75
ISO 8601 date format . 73
items in date strings . 72

J
join . 48

K
key, foreign key . 47
key, primary key . 49

L
language, in dates . 72
leap seconds . 73, 74, 77
license, GNU Free Documentation License 78
literals, numeric literals . 16
literals, string literals . 16
locale . 31, 32
looking up data . 14

M
MacKenzie, David . 77
mandatory fields . 8, 34
mdb . 70
mdb2rec . 70
Meyering, Jim . 77
minutes, time zone correction by 74
month names in date strings . 73
months, written-out . 72
MS Access . 70
multiline field values . 4, 31
mutating field values . 27

N
numbers, written-out . 72

O
octal . 30
operands, SEX operands . 16
operators . 36
operators, arithmetic operators 17
operators, boolean operators . 17
operators, comparison operators 17
operators, conditional operator 18
operators, in selection expressions 17

operators, string operators . 18
order of fields . 20
ordinal numbers . 72

P
parentheses, in selection expressions. 17
passwords . 52
Pinard, F. 77
primary key . 35, 49
prohibited fields . 34
pure numbers in date strings . 76

Q
quotation marks . 15, 16

R
range, type description . 29
ranges . 30
readability . 1, 47
reals . 31
rec, type description . 47
rec2csv . 70
recdel . 66
recfix . 38, 68
recfmt . 55, 69
recinf . 62
recins . 64
record . 4
record sets . 6, 46
record size . 4, 36
recsel . 14, 62
recset . 67
regexp, type description . 31
regular expressions . 71
relative items in date strings . 75
remote descriptors . 39
renaming fields . 28
reports . 55
requiring certain fields in records 34
restricting fields from records 34, 35
restricting values of fields . 31, 36
retrieving data . 14

S
Salz, Rich . 77
selecting records . 14, 62
selection expressions . 14
shell . 60
size, field size . 31
size, record size . 4, 36
size, type description . 31
sorting . 20, 26, 63, 68
sorting, physically . 26
special fields . 8, 38
special fields, list of . 8
spots . 55
string operators . 18
strings . 31
subscripts, in selection expressions 16

Concept Index 87

T
templates . 55, 56
time of day item . 74
time zone correction . 32, 74
time zone item . 72, 74
time, fields containing time values 32
timestamps . 51
types . 30

U

unique fields . 35

unique identifiers . 50

URL . 39

uuid . 50

UUID . 33

	Introduction
	Purpose
	A Little Example

	The Rec Format
	Fields
	Records
	Comments
	Record Descriptors
	Record Sets
	Naming Record Types
	Documenting Records
	Record Sets Properties

	Querying Recfiles
	Simple Selections
	Selecting by Type
	Selecting by Position
	Random Records
	Selection Expressions
	Selecting by predicate
	SEX Operands
	Numeric Literals
	String Literals
	Field Values
	Parenthesized Expressions

	Operators
	Arithmetic Operators
	Boolean Operators
	Comparison Operators
	Date Comparison Operators
	Field Operators
	String Operators
	Conditional Operator

	Evaluation of Selection Expressions

	Field Expressions
	Sorted Output

	Editing Records
	Inserting Records
	Adding Records With recins
	Replacing Records With recins
	Adding Anonymous Records

	Deleting Records
	Sorting Records

	Editing Fields
	Adding Fields
	Setting Fields
	Deleting Fields
	Renaming Fields

	Field Types
	Declaring Types
	Types and Fields
	Scalar Field Types
	String Field Types
	Enumerated Field Types
	Date and Time Types
	Other Field Types

	Constraints on Record Sets
	Mandatory Fields
	Prohibited Fields
	Allowed Fields
	Keys and Unique Fields
	Size Constraints
	Arbitrary Constraints

	Checking Recfiles
	Syntactical Errors
	Semantic Errors

	Remote Descriptors
	Grouping and Aggregates
	Grouping Records
	Aggregate Functions

	Queries which Join Records
	Foreign Keys
	Joining Records

	Auto-Generated Fields
	Counters
	Unique Identifiers
	Time-Stamps

	Encryption
	Confidential Fields
	Encrypting Files
	Decrypting Data

	Generating Reports
	Templates

	Interoperability
	CSV Files
	Importing MDB Files

	Bash Builtins
	readrec

	Invoking the Utilities
	Invoking recinf
	Invoking recsel
	Invoking recins
	Invoking recdel
	Invoking recset
	Invoking recfix
	Invoking recfmt
	Invoking csv2rec
	Invoking rec2csv
	Invoking mdb2rec

	Regular Expressions
	Date input formats
	General date syntax
	Calendar date items
	Time of day items
	Time zone items
	Combined date and time of day items
	Day of week items
	Relative items in date strings
	Pure numbers in date strings
	Seconds since the Epoch
	Specifying time zone rules
	Authors of parse_datetime

	GNU Free Documentation License
	Concept Index

