
GNU wdiff, version 1.2.2
A word difference finder (and others)

Edition 1.2.2, October 2013

François Pinard
Martin von Gagern

This file documents the wdiff command, which compares two files, finding which words
have been deleted or added to the first for getting the second. It also documents some other
diff related tools.

Copyright c© 1992, 1994, 1997, 1998, 1999, 2010, 2011, 2012, 2013 Free Software Foundation,
Inc.

Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the con-
ditions for verbatim copying, provided that the entire resulting derived work is distributed
under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another lan-
guage, under the above conditions for modified versions, except that this permission notice
may be stated in a translation approved by the Foundation.

i

Table of Contents

1 Overview . 1

2 The word difference finder . 2
2.1 Invoking wdiff . 2
2.2 Actual examples of wdiff usage . 5

3 The multi-difference finder . 7
3.1 Invoking mdiff . 8
3.2 Resource considerations and efficiency . 12

4 The diff format converter . 14
4.1 Invoking unify . 14

5 How mdiff differs . 16
5.1 Differences with diff . 16
5.2 Differences with wdiff . 16

6 Experimental programs . 18
6.1 History of the Experimental programs . 18

Chapter 1: Overview 1

1 Overview

wdiff is a front end to diff for comparing files on a word per word basis. It works by
creating two temporary files, one word per line, and then executes diff on these files. It
collects the diff output and uses it to produce a nicer display of word differences between
the original files.

mdiff studies one or more input files altogether, and discovers blocks of items which
repeat at more than one place. Items may be lines, words, or units defined by user. When
in word mode, mdiff compares two files, finding which words have been deleted or added
to the first in order to create the second, which is useful when two texts differ only by a
few words and paragraphs have been refilled. The program has many output formats and
interacts well with terminals and pagers (notably with less).

unify is able to convert context diffs to unidiff format, or the other way around. Some
people just prefer one format and despise the other, it is a religious issue. This program
brings peace back to Earth.

wdiff2 is intended as a replacement to wdiff. It aims at supporting the same set of
options, but uses mdiff instead of diff as its backend.

wdiff, mdiff and wdiff2 were written by François Pinard, while unify has been con-
tributed by Wayne Davison. Please report bugs to wdiff-bugs@gnu.org. Include the
version number, which you can find by running the program with --version. Please in-
clude in your message sufficient input to reproduce what you got, the output you indeed
expected, and careful explanations about the nature of the problem.

mailto:wdiff-bugs@gnu.org

Chapter 2: The word difference finder 2

2 The word difference finder

There are actually two programs for comparing files on a word per word basis. wdiff

is a front-end to diff as found in the GNU diffutils package. It is quite mature. Its
planned successor, wdiff2, is a front end to mdiff, and as experimental as mdiff itself.
See Chapter 6 [Experimental], page 18.

A word is anything between whitespace. This is useful for comparing two texts in which
a few words have been changed and for which paragraphs have been refilled.

2.1 Invoking wdiff

The programs wdiff and wdiff2 aim at providing the same set of command line options.
They are described below. See Section 5.2 [wdiff Compatibility], page 16, for a list of
differences.

wdiff option ... old_file new_file

wdiff option ... -d [diff_file]

wdiff compares files old file and new file and produces an annotated copy of new file on
standard output. The empty string or the string ‘-’ denotes standard input, but standard
input cannot be used twice in the same invocation. The complete path of a file should be
given, a directory name is not accepted. wdiff will exit with a status of 0 if no differences
were found, a status of 1 if any differences were found, or a status of 2 for any error.

In this documentation, deleted text refers to text in old file which is not in new file,
while inserted text refers to text on new file which is not in old file.

wdiff supports the following command line options:

--help

-h Print an informative help message describing the options.

--version

-v Print the version number of wdiff on the standard error output.

--no-deleted

-1 Avoid producing deleted words on the output. If neither -1 or -2 is selected,
the original right margin may be exceeded for some lines.

--no-inserted

-2 Avoid producing inserted words on the output. When this flag is given, the
whitespace in the output is taken from old file instead of new file. If neither
-1 or -2 is selected, the original right margin may be exceeded for some lines.

--no-common

-3 Avoid producing common words on the output. When this option is not se-
lected, common words and whitespace are taken from new file, unless option
-2 is given, in which case common words and whitespace are rather taken from
old file. When selected, differences are separated from one another by lines of
dashes. Moreover, if this option is selected at the same time as -1 or -2, then
none of the output will have any emphasis, i.e. no bold or underlining. Finally,
if this option is not selected, but both -1 and -2 are, then sections of common
words between differences are segregated by lines of dashes.

Chapter 2: The word difference finder 3

--ignore-case

-i Do not consider case difference while comparing words. Each lower case letter
is seen as identical to its upper case equivalent for the purpose of deciding if
two words are the same.

--statistics

-s On completion, for each file, the total number of words, the number of common
words between the files, the number of words deleted or inserted and the number
of words that have changed is output. (A changed word is one that has been
replaced or is part of a replacement.) Except for the total number of words,
all of the numbers are followed by a percentage relative to the total number of
words in the file.

--auto-pager

-a Some initiatives which were previously automatically taken in previous versions
of wdiff are now put under the control of this option. By using it, a pager
is interposed whenever the wdiff output is directed to the user’s terminal.
Without this option, no pager will be called, the user is then responsible for
explicitly piping wdiff output into a pager, if required.

The pager is selected by the value of the PAGER environment variable when
wdiff is run. If PAGER is not defined at run time, then a default pager,
selected at installation time, will be used instead. A defined but empty value
of PAGER means no pager at all.

When a pager is interposed through the use of this option, one of the options
-l or -t is also selected, depending on whether the string ‘less’ appears in the
pager’s name or not.

It is often useful to define ‘wdiff’ as an alias for ‘wdiff -a’. However, this hides
the normal wdiff behaviour. The default behaviour may be restored simply by
piping the output from wdiff through cat. This dissociates the output from
the user’s terminal.

--printer

-p Use over-striking to emphasize parts of the output. Each character of the
deleted text is underlined by writing an underscore ‘_’ first, then a backspace
and then the letter to be underlined. Each character of the inserted text is
emboldened by writing it twice, with a backspace in between. This option is
not selected by default.

--less-mode

-l Use over-striking to emphasize parts of output. This option works as option
-p, but also over-strikes whitespace associated with inserted text. less shows
such whitespace using reverse video. This option is not selected by default.
However, it is automatically turned on whenever wdiff launches the pager
less. See option -a.

This option is commonly used in conjunction with less:

wdiff -l old_file new_file | less

Chapter 2: The word difference finder 4

--terminal

-t Force the production of termcap strings for emphasising parts of output, even
if the standard output is not associated with a terminal. The TERM environ-
ment variable must contain the name of a valid termcap entry. If the terminal
description permits, underlining is used for marking deleted text, while bold
or reverse video is used for marking inserted text. This option is not selected
by default. However, it is automatically turned on whenever wdiff launches a
pager, and it is known that the pager is not less. See option -a.

This option is commonly used when wdiff output is not redirected, but sent
directly to the user terminal, as in:

wdiff -t old_file new_file

A common kludge uses wdiff together with the pager more, as in:

wdiff -t old_file new_file | more

However, some versions of more use termcap emphasis for their own purposes,
so strange interactions are possible.

--start-delete argument

-w argument

Use argument as the start delete string. This string will be output prior to any
sequence of deleted text, to mark where it starts. By default, no start delete
string is used unless there is no other means of distinguishing where such text
starts; in this case the default start delete string is ‘[-’.

--end-delete argument

-x argument

Use argument as the end delete string. This string will be output after any
sequence of deleted text, to mark where it ends. By default, no end delete
string is used unless there is no other means of distinguishing where such text
ends; in this case the default end delete string is -].

--start-insert argument

-y argument

Use argument as the start insert string. This string will be output prior to any
sequence of inserted text, to mark where it starts. By default, no start insert
string is used unless there is no other means of distinguishing where such text
starts; in this case the default start insert string is ‘{+’.

--end-insert argument

-z argument

Use argument as the end insert string. This string will be output after any
sequence of inserted text, to mark where it ends. By default, no end insert
string is used unless there is no other means of distinguishing where such text
ends; in this case the default end insert string is ‘+}’.

--avoid-wraps

-n Avoid spanning the end of line while showing deleted or inserted text. Any
single fragment of deleted or inserted text spanning many lines will be consid-
ered as being made up of many smaller fragments not containing a newline. So
deleted text, for example, will have an end delete string at the end of each line,

Chapter 2: The word difference finder 5

just before the new line, and a start delete string at the beginning of the next
line. A long paragraph of inserted text will have each line bracketed between
start insert and end insert strings. This behaviour is not selected by default.

--diff-input

-d Use single unified diff as input. If no input file is specified, standard input
is used instead. This can be used to post-process diffs generated form other
applications, like version control systems:

svn diff | wdiff -d

Note that options -p, -t, and -[wxyz] are not mutually exclusive. If you use a com-
bination of them, you will merely accumulate the effect of each. Option -l is a variant of
option -p.

2.2 Actual examples of wdiff usage

This section presents a few examples of usage, most of them have been contributed by wdiff
users.

• Change bars example.

• This example comes from a discussion with Joe Wells.

The following command produces a copy of new file, shifted right one space to
accommodate change bars since the last revision, ignoring those changes coming
only from paragraph refilling. Any line with new or changed text will get a ‘|’ in
column 1. However, deleted text is not shown nor marked.

wdiff -1n old_file new_file |

sed -e ’s/^/ /;/{+/s/^ /|/;s/{+//g;s/+}//g’

Here is how it works. Word differences are found, paying attention only to addi-
tions, as requested by option -1. For bigger changes which span line boundaries,
the insert bracket strings are repeated on each output line, as requested by option
-n. This output is then reformatted with a sed script which shifts the text right
two columns, turns the initial space into a bar only if there is some new text on
that line, then removes all insert bracket strings.

• LaTEX example.

•
This example has been provided by Steve Fisk.

The following uses LaTEX to put deleted text in boxes, and new text in double
boxes:

wdiff -w "\fbox{" -x "}" -y "\fbox{\fbox{" -z "}}" ...

works nicely.

• troff example.

• This example comes from Paul Fox.

Using wdiff, with some troff-specific delimiters gives much better output. The
delimiters I used:

wdiff -w’\s-5’ -x’\s0’ -y’\fB’ -z’\fP’ ...

mailto:jbw@cs.bu.edu
mailto:fisk@polar.bowdoin.edu
mailto:pgf@cayman.com

Chapter 2: The word difference finder 6

This makes the pointsize of deletions 5 points smaller than normal, and emboldens
insertions. Fantastic!

I experimented with:

wdiff -w’\fI’ -x’\fP’ -y’\fB’ -z’\fP’

since that’s more like the defaults you use for terminals or printers, but since I
actually use italics for emphasis in my documents, I thought the point size thing
was clearer.

I tried it on code, and it works surprisingly well there, too...

• Marty Leisner says:

In the previous example, you had smaller text being taken out and bold face
inserted. I had smaller text being taken out and larger text being inserted, I’m
using bold face for other things, so this is more clear.

wdiff -w ’\s-3’ -x’\s0’ -y’\s+3’ -z’\s0’

• Colored output example.

• This example comes from Martin von Gagern.

If you like colored output, and your terminal supports ANSI escape sequences, you
can use this invocation:

wdiff -n \

-w $’\033[30;41m’ -x $’\033[0m’ \

-y $’\033[30;42m’ -z $’\033[0m’ \

... | less -R

This will print deleted text black on red, and inserted text black on green, assuming
that your normal terminal colors are white on black. Of course you can choose
different colors if you prefer.

The ‘$’...’’ notation is supported by GNU bash, and maybe other shells as well.
If your shell doesn’t support it, you might need some more tricks to generate these
escape sequences as command line arguments.

On a related note, GNU Emacs users might notice that the interactive function compare-

windows ignores changes in whitespace, if it is given a numeric argument. If the variable
compare-ignore-case is non-nil, it ignores differences in case as well. So, in a way, this
offers a kind of incremental version of wdiff.

mailto:leisner@eso.mc.xerox.com
mailto:Martin.vGagern@gmx.net

Chapter 3: The multi-difference finder 7

3 The multi-difference finder

The name mdiff stands for multi-diff, and has the purpose of encompassing the function-
nality of a few other diff-type programs. The prefix multi- also stands for the fact the
program is often able to study more than two input files at once.

The theory of operation is simple. The program splits all input files into a sequence of
items, which may be lines or words. mdiff is then said to operate either in line mode or in
word mode. It then tries to find sequences of items which are repeated in the input files.
Such common sequences are called clusters of items, and each occurrence of a repetition is
called a cluster member. What remains, once all cluster members are conceptually removed
from all input files, is a set of differences. The role of mdiff is to conveniently list either
cluster members and differences.

When input files are very similar, it is likely that clusters will encompass many items
(lines or words) and differences will be small. So, most listing options inhibit the printing
of cluster members. However, one may ask for the few beginning or ending items of cluster
members to be printed nevertheless, as a way to provide a kind of feedback or context of the
difference, those context items are sometimes said to be at the horizon of the difference. In
merged listings, cluster members may just not be printed, except maybe for a few context
items at the beginning of the member (just after a difference), and a few context items at
the end of the member (just before a difference).

When cluster members are short, or if you prefer, when the differences are not far away
from each other, it is quite possible that the required context items often cover the full
extent of the cluster members, which then are not inhibited anymore when this happens.
A run of differences intermixed with such non-suppressed members is called a hunk. Some
reports produced by mdiff are showned as a list of hunks, and it is to be understood that
common items are elided between hunks. However, each hunk in itself has no item missing,
and each item of the hunk is analysed as pertaining either to only one of the input file or
to many of them. Each hunk is preceded by a header, which explains the line position of
all input files prior to the hunk itself. By comparing a hunk header with the previous hunk
header, the user can have a hint about how much printing was spared.

When two input files are quite similar, clusters are usually presented in the same order
in all files. If a cluster member A in the first file corresponds to a cluster member A in the
second file, it is likely that another cluster member B which appears after A in the first
file will correspond to a cluster member B in the second file which appears after A as well.
So, in many cases, while producing merged listing of files, cluster members may be made to
naturally correspond to one another. However, this is not always true, in particular when
the second file has been produced from the first by moving a big chunk of code away from
its original position. In such cases, we say that members have crossed. When members
are crossed and mdiff has to make a merged listing, it selects one cluster member as being
naturally associated with its correspondant (either the pair of A’s or the pair of B’s) and
then consider the other cluster as being part of a difference. The crossed nature of the
member may still be analysed and reported, or it may be ignored.

The standard diff program is meant for when there are exactly two input files, for
which crossed members should be ignored. mdiff output format has been designed in such
a way that it should resemble diff output for this precise case. However, diff formats are
not sufficient for representing all cases which mdiff may address, and this is not mature

Chapter 3: The multi-difference finder 8

yet. That is why mdiff, in its current state, still experiments with output formats, which
are subject to change.

When the input files are not very similar, or rather different, merged listings are not
very significant nor useful, and may even be rather confusing. The best to do in such cases
is using mdiff for making an annotated relisting of all input files, in which cluster members
are properly identified and referred to one another.

Statistics.

Read summary: 137 files, 41975 lines

Work summary: 439 clusters, 1608 members, 8837 duplicate lines

The summary lines, triggered by the -s option, say that about 8837 non-ignorable lines could
be removed over the 41975 which has been read, by using functions, #include, #define,
or similar devices.

If one manages to execute mdiff within GNU Emacs so the output described above is
collected into the *compilation* buffer, the command C-‘ (‘M-x next-error’) will proceed
to the next cluster member in the other window, and similarily for other compilation mode
commands. This is a useful way for handling mdiff output.

Each line in the hunk, after the header, comes from the compared files, but is shifted
right so the first column (or the first few columns) of each line gives information about
where the line is coming from. A space indicates a line which is common to all files. In case
there are only two input files, a minus sign indicates a line from the first file and a plus sign
a line from the second file. Else, a letter from ‘a’ to ‘z’, or more than one letter if there
are more than 26 files, indicates to which file the line pertains. If a line or a block of line
pertains to many files but not to all of them, the first column holds a vertical bar, and the
line or block of lines is bracketed between ‘@/’ and ‘@\’ lines, which are kind of comments
within the hunk. The initial bracket lists all file letters that are related to the incoming
line.

I initially wrote mdiff specifically to help cleaning a C++ project which was a bit large,
and in which many big monolithic classes were derived from each other most probably by
rough copying followed by local modifications. I intended to fragment most common clusters
and segregate the parts into virtual methods in outer classes, and override these methods,
as appropriate, with less common variants within inner classes. mdiff was good at pointing
me to exactly where I should look at. Of course, it never did the cleanup for me, but it
helped doing the research about what should be done. Reusing mdiff over the half-cleaned
project gave me more fine grained analysis of what was left to consider.

3.1 Invoking mdiff

The format for running the mdiff program is:

mdiff option ... file ...

mdiff read all input files and produces its results on standard output. Optionally,
standard error might receive a progress report or a few statistics.

wdiff compares files old file and new file and produces an annotated copy of new file
on standard output. The empty string or the string - denotes standard input, but standard
input cannot be used twice in the same invocation. The complete path of a file should be

Chapter 3: The multi-difference finder 9

given, a directory name is not accepted. wdiff will exit with a status of 0 if no differences
were found, a status of 1 if any differences were found, or a status of 2 for any error.

In this documentation, deleted text refers to text in old file which is not in new file,
while inserted text refers to text on new file which is not in old file.

mdiff supports the following command line options:

--version

Merely prints the version numbers on standard output, and exits without doing
anything else.

--help Merely prints a page of help on standard output, and exits without doing any-
thing else.

--no-deleted

-1 Avoid producing deleted words on the output. If neither -1 or -2 is selected,
the original right margin may be exceeded for some lines.

--no-inserted

-2 Avoid producing inserted words on the output. When this flag is given, the
whitespace in the output is taken from old file instead of new file. If neither
-1 or -2 is selected, the original right margin may be exceeded for some lines.

--no-common

-3 Avoid producing common words on the output. When this option is not se-
lected, common words and whitespace are taken from new file, unless option
-2 is given, in which case common words and whitespace are rather taken from
old file. When selected, differences are separated from one another by lines of
dashes. Moreover, if this option is selected at the same time as -1 or -2, then
none of the output will have any emphasis, i.e. no bold or underlining. Finally,
if this option is not selected, but both -1 and -2 are, then sections of common
words between differences are segregated by lines of dashes.

--ignore-case

-i Do not consider case difference while comparing words. Each lower case letter
is seen as identical to its upper case equivalent for the purpose of deciding if
two words are the same.

--auto-pager

-A Some initiatives which were previously automatically taken in previous versions
of wdiff are now put under the control of this option. By using it, a pager
is interposed whenever the wdiff output is directed to the user’s terminal.
Without this option, no pager will be called, the user is then responsible for
explicitly piping wdiff output into a pager, if required.

The pager is selected by the value of the PAGER environment variable when
wdiff is run. If PAGER is not defined at run time, then a default pager,
selected at installation time, will be used instead. A defined but empty value
of PAGER means no pager at all.

When a pager is interposed through the use of this option, one of the options
-l or -t is also selected, depending on whether the string ‘less’ appears in the
pager’s name or not.

Chapter 3: The multi-difference finder 10

It is often useful to define ‘wdiff’ as an alias for ‘wdiff -a’. However, this hides
the normal wdiff behaviour. The default behaviour may be restored simply by
piping the output from wdiff through cat. This dissociates the output from
the user’s terminal.

--printer

-p Use over-striking to emphasize parts of the output. Each character of the
deleted text is underlined by writing an underscore ‘_’ first, then a backspace
and then the letter to be underlined. Each character of the inserted text is
emboldened by writing it twice, with a backspace in between. This option is
not selected by default.

--less-mode

-l Use over-striking to emphasize parts of output. This option works as option
-p, but also over-strikes whitespace associated with inserted text. less shows
such whitespace using reverse video. This option is not selected by default.
However, it is automatically turned on whenever wdiff launches the pager
less. See option -a.

This option is commonly used in conjunction with less:

wdiff -l old_file new_file | less

--terminal

-t Force the production of termcap strings for emphasising parts of output, even
if the standard output is not associated with a terminal. The ‘TERM’ environ-
ment variable must contain the name of a valid termcap entry. If the terminal
description permits, underlining is used for marking deleted text, while bold
or reverse video is used for marking inserted text. This option is not selected
by default. However, it is automatically turned on whenever wdiff launches a
pager, and it is known that the pager is not less. See option -a.

This option is commonly used when wdiff output is not redirected, but sent
directly to the user terminal, as in:

wdiff -t old_file new_file

A common kludge uses wdiff together with the pager more, as in:

wdiff -t old_file new_file | more

However, some versions of more use termcap emphasis for their own purposes,
so strange interactions are possible.

--start-delete argument

-w argument

Use argument as the start delete string. This string will be output prior to any
sequence of deleted text, to mark where it starts. By default, no start delete
string is used unless there is no other means of distinguishing where such text
starts; in this case the default start delete string is ‘[-’.

--end-delete argument

-x argument

Use argument as the end delete string. This string will be output after any
sequence of deleted text, to mark where it ends. By default, no end delete

Chapter 3: The multi-difference finder 11

string is used unless there is no other means of distinguishing where such text
ends; in this case the default end delete string is -].

--start-insert argument

-y argument

Use argument as the start insert string. This string will be output prior to any
sequence of inserted text, to mark where it starts. By default, no start insert
string is used unless there is no other means of distinguishing where such text
starts; in this case the default start insert string is ‘{+’.

--end-insert argument

-z argument

Use argument as the end insert string. This string will be output after any
sequence of inserted text, to mark where it ends. By default, no end insert
string is used unless there is no other means of distinguishing where such text
ends; in this case the default end insert string is ‘+}’.

--avoid-wraps

-n Avoid spanning the end of line while showing deleted or inserted text. Any
single fragment of deleted or inserted text spanning many lines will be consid-
ered as being made up of many smaller fragments not containing a newline. So
deleted text, for example, will have an end delete string at the end of each line,
just before the new line, and a start delete string at the beginning of the next
line. A long paragraph of inserted text will have each line bracketed between
start insert and end insert strings. This behaviour is not selected by default.

Some choices are hard-wired into the program, but might well become options in later
releases. For example:

• No cluster may span a file boundary, that is, start near the end of one input file and
continue at the beginning of the next file.

• A cluster may have many members from the same file.

• White space is ignored between the beginning of a line and the first non-white character.

• White space is significant when embedded in a line, or when ending a line.

• Lines having no significant part (only white lines for now) are ignorable. Such ignor-
able lines are logically considered as not being part of the input files for the sake of
comparisons.

• Comments from the C language are not especially ignored. Unless ignored for other
reasons (being white lines), they are indeed significant lines.

• No cluster member may ever directly start nor end with ignorable lines. However,
ignorable lines may still be embedded within a cluster member.

• In the generated output, clusters containing the biggest number of ignorable lines are
output first, while smaller clusters appear last. All lines pertaining to a single cluster
are output together. Within a cluster, members are listed in the order of the initial
reading of input files.

Note that options -p, -t, and -[wxyz] are not mutually exclusive. If you use a com-
bination of them, you will merely accumulate the effect of each. Option -l is a variant of
option -p.

Chapter 3: The multi-difference finder 12

3.2 Resource considerations and efficiency

Memory consumption
mdiff can easily handle medium-sized project. For a 32 bits architecture, the
memory requirements may computed like this:

• 8 bytes per file

• 8 bytes per line

• 4 bytes per cluster

• 8 bytes per cluster member

Time consumption
To evaluate the speed, consider the example shown above (see Chapter 3 [mdiff],
page 7), and yielding these statistics:

Read summary: 137 files, 41975 lines

Work summary: 439 clusters, 1608 members ...

Once many files in the memory cache, and redirecting the output to /dev/null,
the processing takes 3 seconds of real time on an Intel 486/100, which looks
good. I was indeed afraid of some hidden O(n^2) behaviour1, even if the pro-
gram is mostly O(n*log(n)). Maybe one will discover or construct cases putting
mdiff on its knees. So far, mdiff seemingly behaves well for the little problems
given to it. If we devise and generate a more traditional diff-like output, in
which all input files are relisted, this will add some time to the processing, but
it will be only linear with regard with the total length of input files.

There is a clever optimized sorting algorithm for all substrings of a file, which
might be generalised to handle words or lines for mdiff. But since the program
is already faster than we initially expected, there is no emergency to resort to
using such an algorithm.

Trading complexity for clarity
When lines repeat a lot, there are surprisingly many ways to relate blocks of
lines, and reporting them all can make very hairy listings. Any choice about
reporting similarities, or not, is somewhat arbitrary, but we ought to make
some of such choices for the program to be practical. Some of these choices are
detailed here.

If all members of a given cluster A are proper subsets of all members of another
given cluster B, then cluster A is wholly forgotten. However, let’s presume for
example that there are more members in A than in B. Then, some members
of A necessarily appear unrelated to any member of B. In such case, it has
been decided more useful to report all occurrences of A members, even those
embedded within occurrences of B members. When only interested in members
B, annotations pertaining to A may be perceived as clutter. However, when
interested in members of A, getting all of them is probably the most useful
choice.

It sometimes happen that members of a very same cluster overlap. In the string
‘a a a’, there are two overlapping members for the cluster represented by the

1 n is the total number of lines.

Chapter 3: The multi-difference finder 13

string ‘a a’, one from the first two ‘a’, another from the last two ‘a’. In such
cases, one member of such an overlap is automatically chopped so the overlap
does not occur.

White lines and items containing only delimiters are the possible source of a
lot of complexity, if these are fully taken as significant. Since this does not
add much to clarity, they are better ignored, usually, through using --ignore-

blank-lines (-B) or --ignore-delimiters (-j). Increasing the value of -
-minimum-size=items (‘-J items’) option also cut off complexity in favor of
clarity, yet some small matches may then go unnoticed. Exactly how to best
adjust the items value is left for the user to decide.

Chapter 4: The diff format converter 14

4 The diff format converter

The program unify has the purpose of manipulating context diffs and unified context diffs.
unify will accept either a regular context diff (old- or new-style) or a unified context diff
as input, and generate either a unified diff or a new-style context diff as output.

Various other options allow you to echo the non-diff (comment) lines to stderr, modify
the diff by removing the comment lines, and/or tweak the diff into a format that is good
for releasing patches.

I think most people prefer unified context diffs in general. But some of us just have
trouble reading unidiffs, unless they get very simple. Usual context diffs show how the code
was before, and then, how the code is after. Some people just prefer understanding twice
thoroughly, than once fuzzily. The tool is useful for those who handle a lot of diffs from
various sources, and want them in a uniform format.

4.1 Invoking unify

The format for running the unify program is:

unify option ... [file]

The program reads the diff to convert from file, or if the source file is not mentioned,
it will be read from the standard input. The default is to output the diff in the opposite
style of whatever was input, that is, regular context diffs will become unified context diffs,
and unified context diffs will become unified context diffs, but this can be overridden by
options.

unify supports the following command line options:

--version

Merely prints the version numbers on standard output, and exits without doing
anything else.

--help Merely prints a page of help on standard output, and exits without doing any-
thing else.

--context-diffs

-c Forces context diff output.

--echo-comments

-e Echoes non-diff (comment) lines to stderr. If a comment line is being stripped
via the -p option, it is echoed with a preceding ‘!!! ’. If all comments are
being stripped (via the -s option), no special designation is given.

--old-diffs

-o Is used to force a context diff to be interpreted as being of the old-style even
if it has the extra trailing asterisks that normally mark the new-style. This is
only needed if unify fails to work with your version of diff.

--patch-format

-p Turns on patch-output mode. This will do two things:

1. Transform a header like:

Chapter 4: The diff format converter 15

*** orig/file Sat May 5 02:59:37 1990

--- ./file Sat May 5 03:00:08 1990

into a line of ‘Index: file’ — we choose the shorter name and strip a
leading ‘./’ sequence if present.

2. Strip lines that begin with ‘Only in ’, ‘Common subdir’, ‘Binary files’ or
‘diff -’.

-P Is the same as -p.

--strip-comments

-s Strips non-diff lines (comments).

--unidiffs

-u Forces unified diff output.

-U Is the same as -up.

--use-equals

-= Will use a ‘=’ prefix in a unified diff for lines that are common to both files
instead of using a leading space. Though this is harder to read, it is less likely
to be mangled by trailing-space-stripping sites when posted to Usenet.

Chapter 5: How mdiff differs 16

5 How mdiff differs

The GNU project already has a diff program which is part of the GNU diffutils package.
There also are various non-GNU diff programs provided by various constructors.

There is also the well-established wdiff which uses diff under the hood. It differs
slightly from wdiff2, its intended mdiff-based successor.

The following sections compare mdiff specifications with both GNU diff and with
wdiff.

5.1 Differences with diff

GNU diff is a program which matured for a long while, and for which algorithms are based
on computer science literature. It is a fast program. By comparison, mdiff is not more
than a program kludged up rapidly to satisfy a few precise needs. It only tries not being
inordinately slow.

Most diff options are accepted by mdiff under the same short and long option names,
and is able to produce resembling output, for making mdiff easier to learn and less surprising
to users. Yet, some differences exist in option decoding and output format. Since diff and
mdiff use different matching algorithms, it is very likely that the differences will not be
exactly analyzed identically.

• A few diff options, which either accept no argument or require a mandatory one, are
implemented in mdiff as options accepting an optional argument. This may yield some
surprises, for example, -c4bir would be accepted by diff and rejected by mdiff, yet
it may rewritten -birc4 for both. See below.

• Options -c and -u in diff ask for regular context and unified context output, respec-
tively, without specifying the number of lines in the context. diff has ‘-C number’ and
‘-U number’ options for asking for regular or unified context diffs with number context
lines. If -c4 asks for four lines of context, the ‘4’ is not really an argument of -c, and
this is really interpreted as ‘-c -4’, where -number is meant to be a deprecated option
for choosing the number of context lines, option which mdiff does not implement. In
mdiff, -c and -u are really two options which are allowed to receive an optional ar-
gument, so the number of lines may, or may not be given, at the choice of the user.
In mdiff, options -C and -U are completely equivalent to -c and -u, and are provided
only for the sake of compatibility.

• Option -v in diff means --version, while it means --verbose in mdiff. There is no
short form for --version in mdiff.

5.2 Differences with wdiff

Even if mdiff is meant to fully support wdiff, options have been shuffled around so mdiff

could better merge both diff and wdiff options in a common scheme. diff habits were
almost always favored in this option reorganisation.

wdiff2 is now a mere front-end to mdiff that only rewrites the options. The following
notes apply.

• Some options are just transmitted unchanged, these are -1, -2, -3 and -i.

• Option -c also gets turned into -i, to be compatible with wdiff versions up to ‘0.4’.

Chapter 5: How mdiff differs 17

• Simple option -a in wdiff becomes -A in mdiff, -l becomes -k, -n becomes -m, -p
becomes -o, -s becomes -v and -t becomes -z.

• Options introducing strings, which are -w, -x, -y and -z in wdiff, respectively become
-Y, -Z, -Q and -R in mdiff.

• Options -C, -h and -v are processed directly by wdiff and are not transmitted to
mdiff.

• Further, the -C option of wdiff has no equivalent in mdiff.

• A new option -q inhibits the message which explains how mdiff might have been
directly called.

• The option --diff-input (-d) from wdiff isn’t supported by wdiff2 (yet).

Chapter 6: Experimental programs 18

6 Experimental programs

The GNU wdiff source package contains sources for a number of tools besides wdiff itself.
These are considered experimental: they might work for you, but they might just as well
fail. The following programs are considered experimental:

• mdiff

• wdiff2

• unify

Building these applications can be configured at build time by passing --with-

experimental to the configure script.

For this build, they have been enabled. If you encounter a bug in an experimental pro-
gram, the maintainers would still like to learn about it, but there is a greater chance that
they decide not to fix such issues unless you provide a patch as well.

6.1 History of the Experimental programs

Many users suggested features, which were in turn inviting for the integration of wdiff into
GNU diffutils. Collaboration proved to be rather difficult. After a few years, the wdiff

author finally gave in and created mdiff as a way to break out of the situation and for
becoming able to proceed with users’ suggestions.

Before mdiff and the new wdiff2 based on it were officially released, the original author
resigned maintainership. The new maintainers had little experience with the code, and
therefore decided to mark it experimental. That way, the code wouldn’t be lost, but it
would be clear that it wasn’t as testes as the good old wdiff command.

	Overview
	The word difference finder
	Invoking wdiff
	Actual examples of wdiff usage

	The multi-difference finder
	Invoking mdiff
	Resource considerations and efficiency

	The diff format converter
	Invoking unify

	How mdiff differs
	Differences with diff
	Differences with wdiff

	Experimental programs
	History of the Experimental programs

