
An introduction to GNU 3DLDF

Laurence Finston

Abstract

This article is an introduction to GNU 3DLDF. GNU

3DLDF is a package for three-dimensional drawing
with METAPOST and METAFONT output. It imple-
ments a language based on the METAFONT language
with many additional data types and operations. It
is designed for general technical drawings and a par-
ticular focus is intersections of geometrical figures.

Introduction

GNU 3DLDF is a package for three-dimensional draw-
ing with METAPOST and METAFONT output. It
implements a language based on the METAFONT

language with many additional data types and oper-
ations.

METAFONT is a program for font design; its
output is run-length encoded (i.e., compressed) bit-
maps which may be converted to a form suitable for
display on computer monitors or for printing. Since
METAFONT was completed in 1984, scalable fonts
have become the de facto standard, so METAFONT’s
bitmap format, though still usable, and despite the
nice features of METAFONT fonts, unfortunately may
be considered largely obsolete. In current TEX distri-
butions, PostScript or OpenType versions of Knuth’s
Computer Modern fonts, originally programmed in
METAFONT, are used by default.

METAPOST is a modified version of METAFONT

that produces output in the form of PostScript code.
While METAFONT is specifically designed for the
purpose of font design, METAPOST may be used
for technical drawings in general. However, while it
includes some features not present in METAFONT, it
has not diverged very far.

A first example

The following example is intended to give a first
impression of 3DLDF. It shows a circle rotated and
shifted in 3D space while at the origin, a set of arrows
point in the directions of the positive and negative
x-, y- and z-axes. The drawing is projected using
the perspective projection, so that the arrows repre-
senting the z-axis are foreshortened.

Save the following 3DLDF code in a file named
minimal.ldf (downloadable reference given at the
end):

TUGboat, Volume 43 (2022), No. 3 319

verbatim_metapost "prologues := 3;"

& "outputtemplate := \"%j%3c.eps\";";

numeric frame_wd, frame_ht;

path frame;

frame_wd := frame_ht := 2cm;

frame := (-frame_wd, -frame_ht)

-- (frame_wd, -frame_ht)

-- (frame_wd, frame_ht)

-- (-frame_wd, frame_ht)

-- cycle;

pen medium_pen;

medium_pen := pencircle

scaled (.375mm, .375mm, .375mm);

pickup medium_pen;

focus f;

set f with_position (-20cm, 20, -50)

with_direction (-20cm, 20, 10)

with_distance 70;

beginfig(1);

circle c;

c := (unit_circle scaled (1cm, 0, 1cm)

rotated (50, 30, 0))

shifted (2.25cm, .75cm, 2cm);

draw frame shifted (1cm, 1cm);

draw c;

label("c", get_center c);

drawdblarrow (-.5cm, 0, 0) -- (.5cm, 0, 0);

drawdblarrow (0, -.5cm, 0) -- (0, .5cm, 0);

drawdblarrow (0, 0, -.5cm) -- (0, 0, .5cm);

label.top("x", (.5cm, 0));

label.rt("y", (0, .5cm));

label.lft("z", (0, 0, .5cm));

endfig with_focus f;

verbatim_metapost "end";

end;

Run the following commands:

3dldf minimal.ldf

mpost -numbersystem="double" minimal.mp

This is the result (minimal001.eps):

c

x

y

z

Fig. 1.

doi.org/10.47397/tb/43-3/tb135finston-3dldf

An introduction to GNU 3DLDF

It is a “standalone” Encapsulated PostScript file
(EPS) that can be viewed in a PostScript viewer
such as Ghostview or Evince (Document Viewer) or
included in a TEX file by means of the \epsffile

macro defined by the epsf.tex file.

Save the following TEX code in minimal.tex:

\input epsf

\nopagenumbers \headline={}

%% DIN A4 Portrait

\special{papersize=210mm, 297mm}

\hsize=210mm \vsize=297mm

\parindent=0pt \parskip=0pt

\baselineskip=0pt

\advance\voffset by -1in

\advance\hoffset by -1in

\advance\hoffset by .75cm

\advance\voffset by 1cm

\def\epsfsize#1#2{#1}

\leftline{\epsffile{minimal001.eps}}

\bye

Run the following commands to create a PDF file
containing the figure:

tex minimal.tex

dvipdfmx minimal.dvi

MetaPost output can also be read directly by pdfTEX
and LuaTEX (the {1}{1} are scale factors):

\input supp-pdf

\convertMPtoPDF{minimal001.eps}{1}{1}

Motivation

In the 1980s I learned to make perspective drawings
in the traditional way by hand, which is a tedious
and error-prone procedure. In 1991, I had access to
the computer-aided design (CAD) software AutoCAD

and was excited by the possibility of using it to
make “three-dimensional” drawings. Simultaneously,
I had begun to learn to program in the computer
language C.

Like a number of other interactive computer
programs, such as Emacs or GIMP, AutoCAD imple-
ments a command interpreter in a language based
on LISP. In the case of AutoCAD, it’s called “Auto-
LISP”. I soon discovered that I preferred “program-
ming” my drawings rather than constructing them
by pointing and clicking with a mouse.

In 1996, after several years of experience with
TEX, I first used METAFONT for a project involving
TEX for which I required some special characters. I
enjoyed it and quickly discovered METAPOST and
began using it for drawings. Soon I had the idea that
it would be nice to have a 3D version of METAPOST,
especially since AutoCAD was (and still is) very
expensive and at the time required special equipment.

320 TUGboat, Volume 43 (2022), No. 3

Some time later, I learned C++ for a job. At
first I was reluctant but then I discovered that I liked
the language and since then, had it in the back of my
mind that I’d like to use it for some future project.

In 2002, I finally had the opportunity to do this
and began to realize my idea of a “3D METAPOST”
using C++. In 2003, 3DLDF was accepted into the
GNU Project of the Free Software Foundation and I
have continued to develop it since then.

The relationship of 3DLDF to METAFONT

and METAPOST

As stated above, 3DLDF implements a language
based on the METAFONT language. A 3DLDF pro-
gram should therefore have a familiar “look and feel”
to users of METAFONT and/or METAPOST. How-
ever, the implementation of 3DLDF has nothing to
do with that of METAFONT or METAPOST. The
latter were originally programmed with WEB in Pas-
cal under the constraints on computer hard- and
software that applied in the late 1970s to the mid
1980s. The “official” distributions of METAFONT

and METAPOST use a version converted from Pascal
to C using web2c (https://tug.org/web2c). How-
ever, the new versions remain close to the originals
and have not been rewritten to reflect changes in
computer hard- and software since the time when
they were created. METAPOST only has added a fea-
ture enabling arithmetical calculations with a higher
precision than in the original [4, Appendix A, “High-
precision arithmetic with MetaPost”, p. 78].

METAFONT implements a command interpreter
or just interpreter . There are many programs of this
type and two tasks they require are lexical scanning
or just scanning and parsing. METAFONT imple-
ments these functions with hand-written, optimized
code intended by their author, Donald Knuth, to
demonstrate the “Art of Computer Programming”
(the title of his magnum opus, [6]) by efficiently solv-
ing a complex task under very strict constraints with
respect to storage space and execution time.

While I can appreciate METAFONT as a work
of technical mastery or even art, I don’t consider
it an example of the best way to write a computer
program in the 2000s or 2020s, when the constraints
that applied when METAFONT was developed have
simply ceased to exist and when computers and pro-
gramming tools can be found on nearly every desktop
or even in most people’s pockets.

For this reason and as a matter of practicality,
I’ve programmed 3DLDF using C++ along with the
very comprehensive C++ Standard Library and other
software libraries such as the GNU Scientific Library

Laurence Finston

https://tug.org/web2c/

and the pthreads library. For parsing, I use the
package GNU Bison. One of the files Bison produces
is a text document describing the grammar rules of
the language implemented by the parsing function
in Backus-Naur format. This is familiar to readers
of The TEXbook and The METAFONTbook, where
Knuth uses it to describe the grammar rules of the
TEX and METAFONT languages, respectively.

For the main scanner, I do not use the Flex
package often used for this purpose, although I do
use it for other tasks within 3DLDF. The reason
is that 3DLDF attempts to duplicate METAFONT’s
scanning procedure which operates according to a
different principle than Flex. It is also particularly
simple to implement as it requires only a single token
of “lookahead” [7, ch. 6, “How METAFONT Reads
What You Type”, p. 49ff.].

If I were to have an idea how to perform a par-
ticular programming task in a new and more efficient
manner, I believe it would be more useful if I were to
contribute it to an existing software library or make
it available in some other way, rather than simply
incorporating it into a “monolithic” program. In
fact, 3DLDF is implemented as a shared or unshared
library and linked with a file (“compilation unit”)
containing a main function. The library may just as
easily be linked with other main functions.

Main differences between METAFONT,
METAPOST and 3DLDF

Since METAPOST is a development of METAFONT

and remains so close to it, in the following I will
generally refer only to METAFONT and in most cases,
what I say will apply equally to METAPOST, unless
otherwise noted or it refers to features not present
in METAPOST, such as those involving digitization
[7, ch. 24, “Discreteness and Discretion”, p. 195ff.].

If, on the other hand, I refer to METAPOST, it
will be because I’m referring to features specific to
METAPOST and not present in METAFONT.

Most of the differences between METAFONT and
3DLDF are consequences of the addition of the third
dimension. Other differences are due to the fact that
METAFONT was specifically designed for the needs of
type designers while 3DLDF is intended for general
technical drawing. Finally, some are due to my own
personal preferences.

A difference one must bear in mind is that
METAFONT, METAPOST and 3DLDF each have dif-
ferent canonical units : In METAFONT, they are pix-
els, in METAPOST PostScript points, a.k.a. “big
points” (bp) and in 3DLDF they are centimeters
(cm). It is worth noting that in TEX, there are

TUGboat, Volume 43 (2022), No. 3 321

no canonical units and it will cause an error if a
dimension is specified without units:

\dimen0=5\relax

! Illegal unit of measure (pt inserted).

[...]

? h

Dimensions can be in units of em, ex, in, pt,

pc, cm, mm, dd, cc, bp, or sp; but yours is

a new one!

\relax is needed because otherwise TEX will wait
for further input containing the dimension specifier.

Equations and assignments. METAFONT sup-
ports programming in a “declarative” rather than an
“imperative” style [7, p. 87]. This idea would appear
to have been “in the air” at the time Knuth created
METAFONT. However, in my opinion, like the New
Math, it has not stood the test of time [2, pp. 1–2].

While for METAFONT, Knuth expresses a pref-
erence for the use of equations rather than assign-
ments, unfortunately this is currently not possible
for 3DLDF. METAFONT is able to keep track of de-
pendencies and solve equations once sufficient data
is available [9, ch. 28, “Dynamic linear equations”,
§585; ch. 29, “Dynamic nonlinear equations”, §618]
and [10].

I would like to implement this feature, but at
the present time I don’t know how to go about it nor
whether it would be possible with 3D data. Nor do I
consider this to be a priority. However, since I may
yet do so, the = operator is reserved for equations, as
in METAFONT, and := must be used for assignments.

3DLDF does implement “declarative” forms of
operations, such as transformations:

path q;

q := (0, 0, 0) -- (1, 1, 1)

rotated (10, 15, 20);

However, for users who aren’t afraid of hurting
the computer’s feelings, corresponding “imperative”
operations are available as well:

rotate q (10, 15, 20);

In addition, 3DLDF implements the operators
for assignment plus an arithmetical operation +=, -=,
*=, and /= for different variable types, as appropriate.
For example, all of them are available for numerics,
+= for vector-type variables (see “Vector-type ob-
jects”, p. 328) and *= for applying transformations
to points, paths, etc.:

point p; p := (1, 2, 3);

point_vector pv; pv += p;

transform t;

t := identity scaled (3, 4, 5);

pv0 *= t;

show pv0;

An introduction to GNU 3DLDF

results in:

point:

World coordinates:

(3.0000000, 8.0000000, 15.0000000, 1.0000000)

These “imperative” operators make it possi-
ble to avoid clumsy constructions such as q := q

rotated (10, 20, 30) (which do also work, how-
ever).

Incidentally, the operators for assignment plus
an arithmetical operation described above break the
parsing rules of METAFONT. However, they were
easy to implement and have never caused any prob-
lems.

Projections. For a 3D graphics program to be use-
ful, the objects for which three-dimensional data
are stored must be projected onto a two-dimensional
plane for display on a computer screen or printing.
3DLDF implements two kinds of projection: parallel
projection onto one of the major planes (x-y, x-z
or y-z) and the perspective projection. In fact, it’s
possible to project a drawing onto an arbitrary plane
by transforming the desired plane so that it comes
to lie in a major plane, transforming the objects to
be drawn in the same way, and then projecting them
onto the latter plane. Other projections of inter-
est, but not yet implemented, are projections onto
a cylinder, sphere or other curved surfaces and the
Mercator projection and other projections used for
maps.

Though parallel projections are extremely use-
ful, even for 3D drawings, it is the perspective projec-
tion that is most closely associated with 3D graphics.
It essentially simulates the effect of instantaneously
photographing a scene with a camera or viewing it
with one immobile eye. The result of the perspective
projection is as if a line were drawn from each point
in a scene to a focus represented by single point (the
camera lens or the lens of an eye) and the intersec-
tion of this line with a plane (the plane of projection
or picture plane). This plane may be imagined to be
between the focus and the scene (the normal proce-
dure), behind the scene or behind the focus, in which
case the image appears upside-down, as in a camera
obscura or the retina.

In addition to the position of the focus, the
direction of view and the distance from the focus to
the plane of projection must be specified and the
“upwards” direction calculated. In 3DLDF, this data
is stored in an object of type focus. To change the
upwards direction, the focus may be rotated about
the line from the position through a point lying in
the direction of view from the position.

322 TUGboat, Volume 43 (2022), No. 3

focus f; set f with_position (-10cm, 20, -50)

with_direction (-10cm, 20, 10)

with_distance 70;

show f;

−→
focus:

position:

World coordinates:

(-10.0000000, 20.0000000, -50.0000000, 1.0000000)

direction:

World coordinates:

(-10.0000000, 20.0000000, 10.0000000, 1.0000000)

up:

World coordinates:

(-10.0000000, 21.0000000, -50.0000000, 1.0000000)

distance == 70.00000000.

axis == z

angle == 0.00000000

Pairs and points

The most basic “drawable” object type in META-
FONT is the pair, which is used to represent a point
in the plane. It consists of two numerical values, an
x- and a y-coordinate:

pair p; % METAFONT

p = (1cm, 2cm);

In 3DLDF, pair is replaced by the object type
point, which is used to represent a point in three-
dimensional space:

point p; % 3DLDF

p := (1cm, 2cm, 3cm);

From the point of view of a user, a point has
three coordinates, x, y and z. However, in fact,
points have an additional fourth coordinate, namely
w. Such a set of coordinates is called homogeneous.
The w-coordinate is normally 1 but will usually be
6= 1 when the point is projected using the perspec-
tive projection, as described in the previous section.
In addition, the fourth coordinate is needed in order
to be able to multiply the point with a 4×4 matrix,
which shall occupy our attention below.

In 3DLDF, points have four sets of coordinates,
“world”, “perspective”, “user” and “view”, of which
currently only “world” and “perspective” are in use.

METAFONT’s pairs and 3DLDF’s points are
also used to represent the difference between two
points in (2D or 3D) space, that is, the result of
subtracting one point from another:

pair a, b; %% METAFONT

show a - b;

>> (-xpart b+xpart a,-ypart b+ypart a)

a = (2, 3);

b = (1, 2);

show a - b;

Laurence Finston

>> (1,1)

point a, b, c; %% 3DLDF

a := (2, 3);

b := (1, 2);

c := a - b;

show c;

−→
point:

World coordinates:

(1.0000000, 1.0000000, 0.0000000, 1.0000000)

The result of subtracting one point from another
is called a vector, which has a magnitude and a direc-
tion, but no location in space. pairs in METAFONT

and points in 3DLDF are used to represent both
points in (2D or 3D) space and vectors, and the same
object may be interpreted as a point or a vector,
depending on circumstances.

In 2D, the magnitude is the distance to a point
with the same x- and y-coordinates, i.e.,

√
x2 + y2

and similarly in 3D, with the added z-coordinate, i.e.,√
x2 + y2 + z2 and the direction is that indicated by

a line from the origin to that point. Such vectors are
of great importance in 3D graphics. They should not
be confused with the data type vector in C++ or
other uses of the term. A unit vector may be created
by dividing the x-, y- and z-coordinates of a point
by the magnitude (input will be directly followed by
output from now on):

point p[];

p0 := (2, 2, 2);

n := magnitude p0;

show n;

>> 3.4641

p1 := (2/n, 2/n, 2/n);

show p1;

point:

World coordinates:

(0.5773503, 0.5773503, 0.5773503, 1.0000000)

show magnitude p1;

>> 1

Since unit vectors are needed so often, 3DLDF im-
plements the unit_vector operator for this purpose:

p2 := unit_vector p0;

show p2;

point:

World coordinates:

(0.5773503, 0.5773503, 0.5773503, 1.0000000)

show magnitude p2;

>> 1

In METAFONT programs, instead of using pairs,
it is the convention to use z for representing points,
e.g., z = (4pt, 5pt);. This convention is imple-
mented by means of a vardef macro [7, p. 277]:

vardef z@#=(x@#,y@#) enddef

TUGboat, Volume 43 (2022), No. 3 323

There is no correspondence to this macro in
3DLDF. For one thing, since points already have a
z-coordinate, z would be a poor choice for the default
name for points and there is no other obvious choice,
since “p” would be equally appropriate for paths
and possibly even for polygons or parabolæ (to say
nothing of polyhedra or paraboloids). Therefore,
in 3DLDF, explicitly declared points must always
be used to represent points in space (and vectors).

Transformations

METAFONT implements the transformations shifting
(translation), scaling and rotation by means of the
object type transform, which consists of 6 numerical
elements:

transform t; %% METAFONT code

show t;

>> (xpart t,ypart t,xxpart t,xypart t,

yxpart t,yypart t)

A pair may be “transformed” like this:

pair a, b; %% METAFONT code

a = (1, 2);

transform t;

t = identity scaled (2, 4);

show t;

>> (0,0,2,0,0,4)

b = a transformed t;

show b;

>> (2,8)

The identity transformation is needed as a starting
point for other transformations and looks like this:

show identity; %% METAFONT

>> (0,0,1,0,0,1)

In 3D, transformations are represented by 4× 4
matrices of numerical values, which are called trans-
formation matrices. Therefore, even if the perspec-
tive projection wasn’t needed, points would have to
have 4 coordinates in order that they may be mul-
tiplied with transformation matrices. The identity
matrix in 3DLDF looks like this:

show identity;

transform:

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

In 3DLDF, the syntax with transformed is
supported. However, it also implements the opera-
tion “multiplication with assignment”, so that the
operator *= may be used to perform a matrix multi-
plication on a point:

point p;

p := (1, 2, 3);

transform t;

An introduction to GNU 3DLDF

t := identity scaled (2, 3, 4);

show t;

transform:

2 0 0 0

0 3 0 0

0 0 4 0

0 0 0 1

p *= t;

show p;

point:

World coordinates:

(2.0000000, 6.0000000, 12.0000000, 1.0000000)

Paths

While pairs in METAFONT and points in 3DLDF

are the basic building blocks of drawings, paths are
an essential element of any font or technical drawing:
Without paths, all you have is a scatter plot.

In METAFONT, pairs and paths are the only
“drawable” types. Font design tends to use free-form
curves, so Knuth clearly didn’t consider it necessary
to define data types for algebraic curves, for example.
plain METAFONT does define quartercircle, half-
circle, fullcircle and unitsquare, but these are con-
stants of type path. METAFONT doesn’t store any
additional information about them, such as their cen-
ters or radii. It also defines superellipse as a macro.

3DLDF, on the other hand, is intended for gen-
eral technical drawing. Many technical drawings
consist solely of straight lines and where curves are
used, by far most often they are circles, circular arcs,
ellipses and elliptical arcs. Ellipses play a special
role because circles appear elliptical in perspective.
A common tool for technical drawing is (or was)
stencils for drawing perspective ellipses.

Other curves occur frequently in drawings for
special purposes: helices (non-planar) for represent-
ing screw threads, epi- and hypocycloids for gear
teeth [1, pp. 53–55], parabolæ for trajectories, cate-
naries for hanging chains or ropes, Cartesian ovals
for optics, etc. There are many interesting algebraic
curves that appear in illustrations of works on ge-
ometry but are as rare as hen’s teeth in technical
drawings.

Among the plane figures consisting of straight
lines, triangles, squares and rectangles are the most
common, while other regular polygons are occasion-
ally used.

Because of their importance in technical draw-
ings and because the subject particularly interests
me, in addition to path, 3DLDF defines the following
object types.

For representing polygons:

• triangle

324 TUGboat, Volume 43 (2022), No. 3

• rectangle
• polygon
• reg_polygon (regular polygon)

For the conic sections, 3DLDF implements the
following types:

• circle
• ellipse
• parabola
• hyperbola

In addition, and unlike METAFONT, 3DLDF defines
superellipse as an object type.

3DLDF also has types for solid geometric figures.
Figures consisting of straight lines:

• cuboid
• polyhedron

Figures with a simply curved surface:

• cone
• cylinder

Quadric surfaces:

• sphere
• ellipsoid
• paraboloid
• hyperboloid

In addition, 3DLDF implements many pre-
defined constants of these types:

unit_square unit_pentagon unit_circle

unit_ellipse unit_cuboid unit_sphere

unit_ellipsoid ...

The planar figures unit_ellipse, etc., are construc-
ted in the x-z plane:

beginfig(2);

ellipse e;

e := unit_ellipse scaled (2cm, 0, 1cm);

draw e;

endfig with_projection parallel_x_z;

e

Fig. 3.

Ultimately, the solid figures consist of planar
paths, a polyhedron of polygons, a sphere of
circles, an ellipsoid of ellipses, etc., and additional
information is stored for the center, foci, axis lengths
or other salient features of the figure.

They may be used in technical drawings for wire-
frame constructions. 3DLDF doesn’t implement any
form of surface hiding or rendering. In the case of
cuboids or polyhedra, surface hiding may be done

Laurence Finston

“by hand”. For drawings that aren’t too complex,
this may work well enough:

cuboid c[];

rectangle r[];

c0 := unit_cuboid scaled (1.5, 1.5, 1.5);

c1 := c0;

c2 := c0;

rotate c1 (0, 30);

shift c1 (-1.5cm, 0);

draw c1;

for i = 0 upto 5:

r[i] := get_rectangle(i) c1;

endfor;

rotate c2 (0, -30);

shift c2 (1.5cm, 0);

draw c2;

for i = 0 upto 5:

r[i+6] := get_rectangle(i) c2;

endfor;

unfilldraw r6;

unfilldraw r9;

unfilldraw r10;

0
1

2

3

4

5

0 3

4

Fig. 4.

For curved surfaces, such as spheres or ellipsoids,
this isn’t possible, as finding the curve that represents
the edge of a curved surface from a particular point
of view is non-trivial. Please notice the left and right
edges where the nearly horizontal circles appear to
extend slightly past the nearly vertical ones.

sphere s;

s := unit_sphere scaled (2.5, 2.5, 2.5);

rotate s (10, 11, 10);

draw s;

Fig. 5.

TUGboat, Volume 43 (2022), No. 3 325

In the long run, the best solution for this prob-
lem would be to have 3DLDF produce output in a
form suitable as input for a specialized rendering
program, such as Blender (https://blender.org).

Path details. In METAFONT, paths are imple-
mented as Bézier curves, which are a kind of spline
curve. They may be specified in various ways, but
are ultimately stored in the form [7, p. 13]:

p = z0 .. controls u0 and v1 .. z1 〈etc.〉
zn−1 controls un−1 and vn .. zn

As in this example:

tracingonline := 1; % METAFONT

path p;

p = fullcircle xscaled 2 yscaled 3;

show p;

>> Path at line 4:

(1,0)..controls (1,0.39784)

and (0.89465,0.77939)

..(0.70712,1.06068)..

controls (0.51959,1.34198)

and (0.26523,1.5) ..(0,1.5)

Bézier curves are invariant under the affine
transformations translation (shifting), rotation, and
scaling, as long as they are scaled by the same amount
in all dimensions [7, p. 132].

Unfortunately, Bézier curves are not invariant
under the non-affine perspective projection, which is
essential for 3D graphics. There is a generalization of
the Bézier curve, that is, another spline curve, that is
invariant under this projection, namely non-uniform
rational B-splines or NURBs. With Bézier curves,
conceptually, the control points exert a “pull” on
the path and the amount of “pull” is equal for all of
the control points. NURBs, on the other hand, have
an additional “weight” parameter which makes it
possible to “weight” the control points individually,
so that they can exert different amounts of “pull”.
A Bézier curve is therefore equivalent to a similar
NURB where all of the weights are 1.

One of the most important features of META-
FONT is that, given a set of points on a path, it will
attempt to draw the “most pleasing” curve through
it [7, ch. 3, “Curves”, p. 13ff.]. It provides a set of
operations for the user to influence the shape of the
curve by giving “hints”: dir, tension, atleast, etc.

NURBs are not yet implemented in 3DLDF, al-
though this is planned. paths are stored as the
points on the path and connectors, also known as
path joins, may be specified in the same way as in
METAFONT, i.e., with control points, tension, dir,
{point}, {(x, y)}, {(x, y, z)}, and atleast. They
are not converted to the form using “controls”, as
above, within 3DLDF but rather the connectors are

An introduction to GNU 3DLDF

https://blender.org/

written verbatim to the output (METAPOST and
METAFONT code), except that any points referred
to are transformed along with the path whenever a
transformation, including the projection upon out-
put, is applied to the path. They therefore will only
produce correct results for 2D objects that lie in the
plane of projection, or a plane parallel to it, when a
parallel projection is being used.

When METAFONT or METAPOST is run on the
3DLDF output, it will attempt to draw the “most
pleasing” curve through the points on the path, ac-
counting for any hints given with dir, tension, etc.
However, METAFONT and METAPOST’s idea of the
“most pleasing” curve is based purely on the two-
dimensional points on the path: They don’t “know”
that they represent the projection of a three-dimen-
sional curve and the results are likely to be neither
pleasing nor correct, unless the path is constrained
by containing a sufficient number of points. In the
special case that a parallel projection is used and
the path lies in the plane of projection or a plane
parallel to it, the result will, however, be correct,
as it will be equivalent to just using METAFONT or
METAPOST in the first place.

circle c;

set c with_center origin with_diameter 4

with_point_count 8;

rotate c (-10, 0);

draw c;

c 0

123

4

5
6

7

Fig. 6.

circle c; % same, but with more points

set c with_center origin with_diameter 4

with_point_count 64;

rotate c (-10, 0);

draw c;

326 TUGboat, Volume 43 (2022), No. 3

c 0

4
812162024

28
32

36
40 44 48 52 56

Fig. 7.

When projecting a 3D path using the perspective
projection, tension, dir, {(x, y)} and atleast are
very likely to produce erroneous results, especially if
an insufficient number of points have been specified.
If the path is constrained sufficiently, this may not
be noticeable; however, if any of these hints are used,
the best practice is to replace the connectors with
.. before outputting the path, e.g.:

path p;

p := origin{up} .. {right}(1, 1){left}

.. {down}(2, 0);

clear_connectors p;

p += ..;

Usually, there is no need to use hints, unless it
is intended to use a parallel projection; nevertheless,
the situation might arise, especially when working
with METAFONT or METAPOST code “borrowed”
from another source, such as the original sources for
Computer Modern or any PostScript font accessed
by means of the glyph command.

The situation is somewhat different with con-
trol points. Control points may be specified by the
user and paths obtained by calling METAPOST from
within 3DLDF will always contain them (unless they
are subsequently removed).

Intersections. In METAFONT, since all paths are
constructed in the same way, intersections are found
by a method particular to Bézier curves (not de-
scribed in The METAFONTbook). Furthermore, since
METAFONT doesn’t “know” that two paths p0 --

p1 and p2 -- p3 represent straight lines, their inter-
section is only found if it lies on the line segments
they represent, not if the lines that contain them
intersect.

In contrast to METAFONT, 3DLDF does “know”
that a path like (0, 0) -- (1, 1) represents a straight
line, that a circle represents a circle, and so on, and
this is of importance in functions that attempt to
find the intersections of objects in a drawing.

In addition, 3DLDF does find the intersection
point of two lines (within reason) rather than just the
intersection points of the line segments. Not within

Laurence Finston

reason would be two lines that are almost parallel so
that their intersection point lies outside the region
where the computer could calculate it reliably.

point p[];

path q[];

q0 := origin -- (2cm, 2cm);

q1 := (0, 2cm) -- (2cm, 0);

draw q0;

draw q1;

p0 := q0 intersectionpoint q1;

p0

Fig. 8.

q0 := origin -- (2cm, 2cm);

q1 := (3cm, 0) -- (2.5cm, 2cm);

draw q0;

draw q1;

p0 := q0 intersectionpoint q1;

p0

Fig. 9.

In this example, the result of intersection-
point is stored in a point. In fact, the result is really
an object of a compound type named bool_point
(not present in METAFONT) consisting of a boolean
and a point. In the case of the intersectionpoint
operation, the boolean part of the bool_point in-
dicates whether the point (if found) lies on one or
both of the line segments.

If the lines do not intersect, the point returned
in the bool_point is INVALID_POINT whose coordi-
nates are the triple (INVALID_REAL, INVALID_REAL,
INVALID_REAL). Actually, neither INVALID_POINT

nor INVALID_REAL are “invalid” from the point of

TUGboat, Volume 43 (2022), No. 3 327

view of the hardware or C++: INVALID_REAL is sim-
ply an arbitrary numerical value used within 3DLDF

for testing whether an operation has succeeded or
not. In fact, it is the largest float value available on
a given computer.

The ability of 3DLDF to find the intersections
of lines is useful as a way of compensating for its
inability to interactively solve linear equations like
METAFONT. In the latter, intersections are typi-
cally found using the “nullary” operation whatever,
which is defined in plain.mf and plain.mp as a
vardef macro [7, p. 264]:

path q; % METAPOST

q0 = origin -- (2cm, 2cm);

q1 = (3cm, 0) -- (2.5cm, 2cm);

draw q0;

draw q1;

z0 = whateverorigin, (2cm, 2cm);

z0 = whatever(3cm, 0), (2.5cm, 2cm);

dotlabel.lft(btex z_0 etex, z0);

z0

Fig. 10.

Intersections in 3DLDF. Finding the intersec-
tions of algebraic curves and surfaces in the plane
and in 3D space is a focus of 3DLDF and a particular
interest of mine. In some cases this is straightfor-
ward, whereas in others it is less so, or would involve
higher mathematics currently beyond my abilities.
Depending on the objects, their intersections may
be points, curves, planes or curved surfaces.

The routines for finding intersections as in the
previous examples all use the algebraic formulæ
for the objects involved. One problem with this
approach is that calculations involving real values
(floats, doubles or long doubles) on a computer
are not exact, so that there are always rounding
errors. These in turn may cause intersections that
exist to not be found. In particular, transforming
objects by means of matrix multiplication tends to
introduce rounding errors. For numerical a, b and
ε, the solution is not to compare a = b, but rather
||a|− |b|| < ε where ε is some small value appropriate
to the circumstances.

An introduction to GNU 3DLDF

Another problem is that transformations may
cause objects to “go out of shape”. 3DLDF places
no restrictions on the transformations that may be
applied to a drawable object (point, path, circle,
etc.). This feature would be useful, for example,
when projecting a geometrical object like a circle
onto a curved surface: The resulting figure will not
be circular, but it retains the object type circle and
its “center” will be the projection of the center of
the original object onto the surface.

In order to deal with this problem, 3DLDF im-
plements tests for whether objects of a given type
still fulfill the definition of that type. For example,
objects may be tested for circularity with the op-
erator is_circular, for whether they are elliptical
with is_elliptical, etc. In contrast, the operations
is_circle, is_ellipse, etc., test for the object type:

beginfig(11);

circle c[];

c0 := unit_circle;

c1 := c0 sheared (1, 1.5, 1.25);

draw c0;

draw c1;

show is_circle c0;

>> true

show is_circle c1;

>> true

show is_circular c0;

>> true

show is_circular c1;

>> false

endfig with_projection parallel_x_z;

c0

c1

Projection: Parallel x-z

Fig. 11.

Vector-type objects

In METAFONT, arrays may be declared like this:

numeric n[];

path p[][];

Now, the user can assign values to the variables
n〈suffix 〉 and p〈suffix 〉〈suffix 〉:
tracingonline := 1; % METAFONT

n0 = 10;

n[n0 - 5] = 6;

328 TUGboat, Volume 43 (2022), No. 3

show n0;

>> 10

show n[n0 - 5];

>> 6

a = 3;

p[a][n0] = origin .. (1, 1), -- (2, 0) .. cycle;

show p[3][10];

>> Path at line 10:

(0,0)..controls (-0.11444,0.59329)

and (0.40671,1.11444)

..(1,1)..controls (1.33333,0.66667)

and (1.66667,0.33333)

..(2,0)..controls (1.78766,-1.10071)

and (0.21234,-1.10071) ..cycle

METAFONT makes it possible to declare variables
using various combinations of tags and suffixes in a
very flexible way [7, ch. 7, “Variables”, p. 53ff.]. This
works in exactly the same way in 3DLDF. However,
continuing the previous example, in METAFONT, a
variable n would be completely independent of n0,
n[n0 - 5], etc.:

numeric n[];

*n0 := 10;

*n := 5;

*show n0;

>> 10

show n;

>> 5

To access all the variables of the form n〈suffix 〉,
they must be accessed individually. A loop may be
used, but then the suffixes must follow a pattern
suitable for use as a loop index:

for i = 0 upto 5:

n[i] = 2i;

show n[i];

endfor;

>> 0

>> 2

>> 4

>> 6

>> 8

>> 10

In order to make it more convenient to access
all of the members of an array, 3DLDF implements
the notion of vector-types. In this case, the term
vector is used in the sense common in the context of
computer programming, namely for one-dimensional
arrays.

For most types, such as boolean, transform,
point, path, etc., there is a corresponding vector-
type: boolean_vector, transform_vector, point_
vector, path_vector, etc. For some more rarely-
used or specialized types, there is no corresponding
vector-type.

Laurence Finston

There are operations that take vector-type ob-
jects as their arguments and operate on all of the ob-
jects on the vector. In addition, the operator += may
be implemented for a vector-type, where appropriate.
For example, it adds a path to a path_vector:

path_vector pv;

pv += (1, 1) -- (2, 2);

pv += origin .. (1, 1, 1) .. (-1, 2, 2)

.. (3.5, 0, 10);

show pv;

>> path_vector:

size of vector: 2

0:

type: PATH_TYPE

surface_hiding_ctr: 0

decomposition_level: 0

points.size() == 2

connector_type_vector.size() == 1

points:

(1.00000000, 1.00000000, 0.00000000) --

(2.00000000, 2.00000000, 0.00000000) ;

etc.

1:

type: PATH_TYPE

surface_hiding_ctr: 0

decomposition_level: 0

points.size() == 4

connector_type_vector.size() == 3

points:

(0.00000000, 0.00000000, 0.00000000)

.. (1.00000000, 1.00000000, 1.00000000)

.. (-1.00000000, 2.00000000, 2.00000000)

.. (3.50000000, 0.00000000, 10.00000000) ;

etc.

Vector-type variables can also be used as the
return types for operations so that operations may
return more than one object. For example, the oper-
ation 〈ellipse tertiary〉 intersectionpoints 〈ellipse
secondary〉 returns 0 to 4 points:

ellipse e[];

e0 := unit_ellipse scaled (2cm, 0, 1cm);

e1 := e0 rotated (0, 45) shifted

(.25cm, 0, -.125cm);

rotate e0 (0, -20);

draw e0;

draw e1;

point_vector P;

P := e0 intersection_points e1;

show size P;

>> 4

TUGboat, Volume 43 (2022), No. 3 329

P0

P1

P2

P3

Fig. 12.

It is not possible to declare an array of vector-
type objects.

Output and labels

In METAFONT, output is caused by the shipout
primitive, which “ships out” a character. Normally, it
is not called directly by the user, but rather indirectly
by the endchar macro defined in plain.mf, which
calls the macro shipit, which in turn calls shipout
with currentpicture as its argument.

In METAPOST, endfig calls shipout, causing
PostScript code to be written to the output file [4,
p. 46].

In 3DLDF, endfig causes current_picture to be
written to the METAPOST output and endchar
causes it to be written to the METAFONT output.
However, in addition, the output operator will cause
the picture given as its argument, which may be
current_picture, to be output in the form of META-
POST or METAFONT code to be written to the corre-
sponding output file if called between beginfig and
endfig on the one hand or beginchar and endchar
on the other. This is useful for performing a primi-
tive kind of surface hiding by hand and for creating
figures or characters using more than one projection.

output doesn’t clear the picture passed to it as
an argument, so it may be output again, by output,
endfig and/or endchar. If it should be cleared, it
must be cleared explicitly using the clear command.

beginfig(1);

draw unit_circle scaled (2cm, 0, 2cm);

output current_picture with_projection

parallel_x_z;

clear current_picture;

draw unit_ellipse scaled (3cm, 0, 2cm)

rotated (90, 0);

(etc.)
endfig with_focus f;

An introduction to GNU 3DLDF

In METAFONT, labels are only used when devel-
oping a font and disappear in the final output. The
placement is also usually determined by METAFONT

and not by the user. They are therefore less impor-
tant than in METAPOST and 3DLDF, since labels
are an essential part of technical drawings.

In 3DLDF, labels work as in METAPOST, with
only a few differences. METAPOST typesets labels
by default using TEX. The -tex option may be used
to set the name of the program to be called, e.g.,
-tex=latex.

In METAPOST, a plain string is typeset in
the default font. On my system, this is Computer
Modern Roman 10pt (cmr10), but it could be any
PostScript font. To use TEX macros in the labels,
btex . . . etex or the macro TEX must be used.
If METAPOST is called with the -troff argument,
then troff is used to typeset material surrounded
by btex and etex (or verbatimtex and etex). The
first argument to label or dotlabel may be a string
or a picture. See [4, ch. 8, “Integrating Text and
Graphics”] for more information.

3DLDF passes the text in labels to METAPOST

largely unchanged, so how they are handled depends
on how METAPOST is called by the user after 3D-

LDF has run. However, btex and etex are always
added to the beginning and end, respectively, of the
label text. If any user found this undesirable, it
would be easy to add an option to suppress this. A
picture is not permitted as the first argument to
label or dotlabel, but a number may be used, e.g.,
dotlabel(0, p0).

In 3DLDF, a picture contains two kinds of
items: 1) drawable ones, namely points, paths,
objects derived from path such as circle and el-
lipse and solids, such as sphere and ellipsoid and
2) labels. When a picture is output, the drawable
items are output first, followed by the labels, so that
the latter aren’t overwritten. The latter effect can be
achieved by use of the output command to output
a picture containing labels prior to endfig.

In 3DLDF programs, label commands may also
appear between beginchar and endchar. When a
picture is output, any labels on it are ignored. Thus
the METAFONT output of 3DLDF will never contain
labels, even when mode is proofing. To test the
appearance of a character, it’s best to produce a cor-
responding METAPOST figure, where one has the ad-
vantage of METAPOST’s superior labelling facilities.

Labels in 3DLDF are purely two-dimensional
items. Conceptually, they always lie in the plane
of projection. The point specified as the second
argument of label or dotlabel is projected like all
of the other points on the picture and the label

330 TUGboat, Volume 43 (2022), No. 3

is placed in relation to its projection. The point
may be transformed but the label itself may also
be transformed separately. If rotation is desired, it
should be rotated about the z-axis. Shifting and
rotating make sense; other translations are likely to
produce undesirable results.

Calling METAPOST from within 3DLDF

Having numerous object types to store information
about algebraic curves and surfaces has certain ad-
vantages compared to storing them simply as spline
curves, e.g., the ability to access their centers, foci,
normals, radii, etc. On the other hand, it’s nice to
be able to find the intersections of arbitrary curves
and surfaces, even free-form ones. Since 3DLDF does
not yet implement NURBs, this is unfortunately not
possible for the general case of intersections of ar-
bitrary objects in 3D. However, for the special case
of coplanar objects, it is possible by means of call-
ing METAPOST (not METAFONT!) “indirectly” from
within 3DLDF.

METAPOST is called instead of METAFONT be-
cause in METAPOST, the type used for arithmeti-
cal calculations may be specified using the option
-numbersystem, allowing for almost arbitrary pre-
cision. In METAFONT, calculations are performed
using 32-bit fixed-point numbers, with a strict limit
on the magnitude of a 〈numerical token〉, namely
< 4096 [7, pp. 50 and 63].

METAFONT implements many operations on
paths, as described in The METAFONTbook. Be-
cause 3DLDF only stores the points on a path and
the connectors (or path joins), and does not calculate
the “in-between” points, it is not possible to imple-
ment any of the operations that depend on this data.
However, in the case of planar paths, it is possible to
access these operations by calling METAPOST from
within 3DLDF.

The operations in question are the following,
where n stands for a numerical value, t for a numer-
ical “time” value, p for a pair and q for a path:

• p = direction t of q;
• t = directiontime p of q;
• p0 = directionpoint p1 of q;
• p = point t of q;
• p = subpath (t0, t1) of q;
• p = q0 intersectiontimes q1;
• p = q0 intersectionpoint q1;

The operation angle on a pair can be useful in
combination with operations on paths:

• n = angle p;
• n = angle direction t of p;

Laurence Finston

Some of these operations have correspondences
in 3DLDF for arbitrary (3D) paths, but they don’t
necessarily have exactly the same meaning or work
the same way. In some cases, the names of the
3DLDF operations for operating on planar paths
by calling METAPOST differ from the names of the
corresponding operations in METAFONT names in
order to avoid name clashes.

In the following listing, m and u are integers, v
is a numeric_vector and w is a point_vector.

• q0 := get_metapost_path q1 〈options〉
• v := direction_metapost of q 〈options〉
• n := angle_direction_metapost n of q 〈options〉
• v := q intersectiontimes q 〈options〉
• v := q intersectiontimes_all q 〈options〉
• p := q intersectionpoint_metapost q 〈options〉
• w := q intersectionpoints_metapost q 〈options〉
• q0 := resolve q1 (m,n) to u 〈options〉
• q1 := subpath (n, n) of q
• q0 := q1 normalized 〈options〉

Commands:

• call_metapost 〈string expression〉 (
〈path vector variable optional〉
〈point vector variable optional〉
〈numeric vector variable optional〉) 〈options〉

• call_tex 〈string expression〉 ,
〈numeric vector variable〉 〈save optional〉

• normalize 〈path variable〉 〈options〉

In order for this to work, the 3DLDF path must first
be put into the x-y plane. Then, a corresponding
METAPOST path is created, the desired operations
are performed on it, and the generated data is re-
turned. In the case of points, they must be trans-
formed by the inverse of the transformation that
placed the path into the x-y plane.

circle c[];

transform t[];

c0 := unit_circle scaled (1cm, 0, 1cm)

rotated (90, 0);

t0 := (identity rotated (0, 60, 20))

shifted (1.9cm, 1cm);

c0 *= t0;

c1 := c0 normalized save;

draw c0;

draw c1;

TUGboat, Volume 43 (2022), No. 3 331

c0

c1

0

48

12

16

20 24

28

0

4
8

12

16

20
24

28

x−x

y

−y

z

−z

Fig. 13.

ellipse e[];

transform t[];

e0 := unit_ellipse scaled (1.75cm, 0, 1.25cm)

rotated (90, 0);

t0 := (identity rotated (0, 60, 20))

shifted (1.9cm, 1cm);

e0 *= t0;

e1 := e0 normalized save;

draw e0;

draw e1 with_color dark_gray;

e1

e0

0

4
8

12

16

20
24

28

0

4

8

12

16

20

24

28

x−x

y

−y

z

−z

Fig. 14.

Further information and getting help

This article is merely intended to provide an in-
troduction to GNU 3DLDF and to make it possible
for the reader to make a start on using it, if de-
sired. 3DLDF is a large and complex program and
to cover its use and the ideas behind it comprehen-
sively would require considerably more space. Many

An introduction to GNU 3DLDF

topics touched upon here could be enlarged upon in
subsequent articles.

Unless one already knows METAFONT or META-
POST, the best way to learn 3DLDF is to start with
METAPOST, A User’s Manual [4]. For a deeper un-
derstanding of METAFONT, METAPOST and 3DLDF,
The METAFONTbook is indispensable. After this,
for learning 3DLDF itself, the GNU 3DLDF website
provides further information and many examples of
code and the generated graphics:
https://www.gnu.org/software/3dldf.

The mailing list help-3dldf@gnu.org is avail-
able for users for discussion or to ask for help. See
https://www.gnu.org/software/3dldf/

#Mailing_lists for instructions on how to sub-
scribe.

Unfortunately, the last edition of The 3DLDF

User and Reference Manual (https://www.gnu.org/
software/3dldf/#Documentation) is from 2006 and
sadly out-of-date. At that time, 3DLDF was not yet
interactive, as I had not yet implemented the scan-
ning and parsing routines. It was more of a software
library and drawings had to be created by writing
C++ code to be linked to the latter. While it provides
a good starting point for anyone who wants to know
how 3DLDF works internally, it, of course, doesn’t
document the many features I’ve added since 2006.

Links

The GNU 3DLDF website:
https://www.gnu.org/software/3dldf

The author’s personal website:
https://laurence-finston.de

METAPOST on the Web:
https://tug.org/metapost.html

CTAN, METAFONT package page:
https://www.ctan.org/pkg/metafont

Bibliography

[1] Cundy, H. Martyn and A.P. Rollet.
Mathematical Models. Oxford: Oxford University
Press, 1961.

332 TUGboat, Volume 43 (2022), No. 3

[2] Gardner, Martin. Mathematical Carnival .
New York: The Mathematical Association of
America, 1989.

[3] Gonçalves, L. N. FEATPOST and a Review
of 3D METAPOST Packages. In TEX, XML,
and Digital Typography. TUG 2004. Lecture
Notes in Computer Science, vol. 3130,
p. 112ff. Berlin, Heidelberg: Springer, 2004.
https://doi.org/10.1007/978-3-540-27773-6_8

[4] Hobby, John D. and the MetaPost development
team. METAPOST, A User’s Manual. 2020.
https://tug.org/metapost

[5] Jones, Huw. Computer Graphics through Key
Mathematics. London, UK: Springer-Verlag
Limited, 2001.

[6] Knuth, Donald E. The Art of Computer
Programming. Boston: Addison Wesley Publishing
Company, 2019.

[7] Knuth, Donald E. The METAFONTbook.
Reading, Massachusetts: Addison Wesley
Publishing Company, 1986.

[8] Knuth, Donald E. The TEXbook. Reading,
Massachusetts: Addison Wesley Publishing
Company, 1986.

[9] Knuth, Donald E. METAFONT: The Program.
Computers & Typesetting, vol. D. Reading,
Massachusetts: Addison Wesley Publishing
Company, 1986.

[10] Ramsey, Norman. A Simple Solver for Linear
Equations Containing Nonlinear Operators.
https://www.cs.tufts.edu/~nr/noweb/

examples/solver.html

[11] Wikipedia. Non-uniform rational B-spline.
https://en.wikipedia.org/wiki/

Non-uniform_rational_B-spline

� Laurence Finston
Germany
Laurence.Finston@gmx.de

Laurence Finston

https://www.gnu.org/software/3dldf/
https://www.gnu.org/software/3dldf/#Mailing_lists
https://www.gnu.org/software/3dldf/#Mailing_lists
https://www.gnu.org/software/3dldf/#Documentation
https://www.gnu.org/software/3dldf/#Documentation
https://www.gnu.org/software/3dldf/
https://laurence-finston.de/
https://tug.org/metapost.html
https://www.ctan.org/pkg/metafont
https://doi.org/10.1007/978-3-540-27773-6_8
https://www.cs.tufts.edu/~nr/noweb/examples/solver.html
https://www.cs.tufts.edu/~nr/noweb/examples/solver.html
https://en.wikipedia.org/wiki/Non-uniform_rational_B-spline
https://en.wikipedia.org/wiki/Non-uniform_rational_B-spline

