Complexity - Measure complexity of C source

For version 0.4, updated May 2011

Bruce Korb
bkorb@gnu.org

mailto:bkorb@gnu.org

Complexity copyright © 2011 Bruce Korb
This manual is for Complexity version 0.4, updated May 2011.
Copyright (©) 2011 by Bruce Korb.

Permission is granted to copy, distribute and/or modify this document under
the terms of the GNU Free Documentation License, Version 1.2 or any later
version published by the Free Software Foundation; with no Invariant Sections,
no Front-Cover Texts, and no Back-Cover Texts.

Table of Contents

1 Introduction................... 1
1.1 Code Length e 1
1.2 Switch Statement i 1
1.3 Logic Conditionsvvenureeii i eiee e 1
1.4 Personal Experience...........ciiiiiiiiiiiiia. 2
1.5 Rationale Summary ... 2

2 Complexity Computation...................... 4
2.1 Parsing Method i 4

2.1.1 Complexity Measurement Parsing.......................... 4
2.1.2 Post-PreProcessing Parsing......................., 4
2.1.3 During PreProcessing Parsing 5)
2.1.4 pmccabe Parsingo i)
2.2 Complexity Measurement Algorithm............................ 5
2.3 Complexity SCOTESttt 5
2.4 Complexity StatisStics.oviuiiiiii 6
2.5 Scoring Adjustmentst 6

3 Example Output................................ 8

4 Invoking complexity........................ ... 10
4.1 complexity usage help (<7).o 10
4.2 demi-nesting-penalty option.................. .. il 11
4.3 histogram option (-h) 11
4.4 horrid-threshold option........ o i i 12
4.5 ignore option (-I) 12
4.6 input option (-1) ... 12
4.7 nesting-penalty option (-n)........... il 12
4.8 mo-header option (-H)........ ... i 12
4.9 scale OPtION (=8) ... uit ittt 12
410 SCOTes OPHION (<€) « v vvet ettt e 13
4.11 threshold option (-t) 13
412 trace Option. ..ot 13
4.13 unif-exe Option.t 13
4.14 unifdef option (-u) ..o 13
4.15 presetting/configuring complexityl 14
4.16 complexity exit codes i 15
4.17 complexity Description. ... 15
4.18 complexity Bugs ... 15

Appendix A Copying This Manual 16

Concept Index

ii

Chapter 1: Introduction 1

1 Introduction

Complexity measurement tools provide several pieces of information. They help to:
1. locate suspicious areas in unfamiliar code
2. get an idea of how much effort may be required to understand that code
3. get an idea of the effort required to test a code base
4

. provide a reminder to yourself. You may see what you’ve written as obvious, but others
may not. It is useful to have a hint about what code may seem harder to understand
by others, and then decide if some rework may be in order.

But why another complexity analyzer? Even though the McCabe analysis tool already
exists (pmccabe), I think the job it does is too rough for gauging complexity, though it
is ideal for gauging the testing effort. Each code path should be tested and the pmccabe
program provides a count of code paths. That, however, is not the only issue affecting
human comprehension. This program attempts to take into account other factors that
affect a human’s ability to understand.

1.1 Code Length

Since pmccabe does not factor code length into its score, some folks have taken to saying
either long functions or a high McCabe score find functions requiring attention. But it
means looking at two factors without any visibility into how the length is obfuscating the
code.

The technique used by this program is to count 1 for each line that a statement spans,
plus the complexity score of control expressions (for, while, and if expressions). The
value for a block of code is the sum of these multiplied by a nesting factor (see Section 4.7
[complexity nesting-penalty], page 12). This score is then added to the score of the encom-
passing block. With all other things equal, a procedure that is twice as long as another will
have double the score. pmccabe scores them identically.

1.2 Switch Statement

pmccabe has changed the scoring of switch statements because they seemed too high.
switch statements are now “free” in this new analysis. That’s wrong, too. The code length
needs to be counted and the code within a switch statement adds more to the difficulty of
comprehension than code at a shallower logic level.

This program will multiply the score of the switch statement content by the See
Section 4.7 [complexity nesting-penalty], page 12.

1.3 Logic Conditions

‘pmccabe’ does not score logic conditions very well. It overcharges for simple logical oper-
ations, it doesn’t charge for comma operators, and it undercharges for mixing assignment
operators and relational operators and the and and or logical operators.
For example:
xx = (A && B) || (C & D) || (E & F);
scores as 6. Strictly speaking, there are, indeed, six code paths there. That is a fairly
straight forward expression that is not nearly as complicated as this:

Chapter 1: Introduction 2

if (A) {
if (B) {
if (©) {
if (D)
a-b-c-and-d;
} else if (E) {
a-b-no_c-and-e;
}
}
}

and yet this scores exactly the same. This program reduces the cost to very little for a
sequence of conditions at the same level. (That is, all and operators or all or operators.)
so the raw score for these examples are 4 and 35, respectively (1 and 2 after scaling, see
Section 4.9 [complexity scale], page 12).

If you nest boolean expressions, there is a little cost, assuming you parenthesize grouped
expressions so that and and or operators do not appear at the same parenthesized level. Also
assuming that you do not mix assignment and relational and boolean operators all together.
If you do not parenthesize these into subexpressions, their small scores get multiplied in
ways that sometimes wind up as a much higher score.

The intent here is to encourage easy to understand boolean expressions. This is done
by,

e not combining them with assignment statements

e canonicalizing them (two level expressions with all && operators at the bottom level
and all || operators in the nested level -\- or vice versa)

e parenthesizing for visual clarity (relational operations parenthesized before being joined
into larger && or || expressions)

e breaking them up into multiple if statements, if convenient.

1.4 Personal Experience

I have used pmccabe on a number of occasions. For a first order approximation, it does
okay. However, I was interested in zeroing in on the modules that needed the most help
and there were a lot of modules needing help. I was finding I was looking at some functions
where I ought to have been looking at others. So, I put this together to see if there was a
better correlation between what seemed like hard code to me and the score derived by an
analysis tool.

This has worked much better. I ran complexity and pmccabe against several million
lines of code. I correlated the scores. Where the two tools disagreed noticeably in relative
ranking, I took a closer look. I found that ‘complexity’ did, indeed, seem to be more
appropriate in its scoring.

1.5 Rationale Summary

Ultimately, complexity is in the eye of the beholder and, even, the particular mood of the
beholder, too. It is difficult to tune a tool to properly accommodate these variables.

Chapter 1: Introduction 3

complexity will readily score as zero functions that are extremely simple, and code
that is long with many levels of logic nesting will wind up scoring much higher than with
pmccabe, barring extreme changes to the default values for the tunables.

I have included several adjustments so that scores can be tweaked to suit personal taste or
gathered experience. (See Section 4.7 [complexity nesting-penalty], page 12, and Section 4.2
[complexity demi-nesting-penalty|, page 11, but also See Section 4.9 [complexity scale],
page 12, to adjust scores to approximate scores rendered by pmccabe).

Chapter 2: Complexity Computation 4

2 Complexity Computation

The principal goal Fundamentally, this program counts lines of non-comment source lines,
multiplies by a “nesting factor” for each level of logic nesting and divides by a scaling factor
so that the typical results lie roughly in the same range as pmccabe results. That happens
to be approximately 20.

2.1 Parsing Method

The method chosen for parsing the source has an effect on what gets seen (scored) by the
program.

2.1.1 Complexity Measurement Parsing

This program examines the actual source a human looks at when the file is opened, provided
it is not pre-processed by unifdef, See Section 4.14 [complexity unifdef], page 13. This was
chosen because uncompiled code adds to the complexity of what a human must understand.
However, sometimes the source will contain unbalanced braces a la:

#if FOO
for (int ix
#else
for (int ix
#endif
code. ..

foo;;) {

bar;;) {

}

rendering code that cannot be parsed correctly. unifdef-ing makes it parsable. Un-
fortunately, because the practice of ifdef-ing unbalanced curly braces is so common, this
program cannot rely on finding the correct closing brace.

CAVEAT: for the purposes of this program, procedures end when either a matching
closing brace is found or a closing curly brace is found in column 1, whichever comes
first. If the closing brace in column one does not match the procedure opening brace, the
procedure is considered unscorable.

Fortunately, unscorable procedures are relatively unusual.

CAVEAT?2: K&R procedure headers are not recognized. If anything other than an
opening curly brace appears after the parameter list will cause the code recognizer to go
back into “look for a procedure header” mode. K&R procedures are not just not scored,
they are completely ignored.

This should probably get fixed, though.

2.1.2 Post-PreProcessing Parsing

Another approach would be to use the C compiler and analize the tokens coming out of the
preprocessor. The drawbacks are that macro expansions will add to the complexity, even
though they do not add to human perceived complexity, and uncompiled code do not add
to the complexity measure. The benefit, of course, is that you know for certain where a
procedure body starts and ends.

Chapter 2: Complexity Computation 5

2.1.3 During PreProcessing Parsing

This would require going into the C preprocessor code and cause macros to not be ex-
panded. Again, the great benefit is that you know for certain you can find the starting and
ending braces for every procedure body. The downsides are the extra work and, again, the
uncompiled code won’t get counted in the complexity measure.

This might be a useful exercise to do some day, just to see how helpful it might be.
Being able to recognize all procedure bodies without fail would be a good thing.

2.1.4 pmccabe Parsing

The pmccabe parsing actually inspired the method for this program. Thd difference is that
pmccabe will always keep scanning until a procedure body’s closing curly brace is found,
even if that means counting the code from several following procedure definitions. The
consequence of this is that this program’s code will see some procedures that pmccabe will
not, and vice versa.

2.2 Complexity Measurement Algorithm

Fundamentally, this program counts non-comment source lines and examines elements of
parenthesized expressions. This score is multiplied by a nesting scoring factor for each layer
of code nesting.

A parenthesized expression is scanned for operators. If they are all arithmetic operators,
or all arithmetic and one relational operator, the score is zero. If all the operators are
boolean ands or they are all ors, then the score is one. An assignment operator with
arithmetic operators also scores one. If you mix relational operators and all ands or all
ors, the score is the number of boolean elements. If you mix ands and ors at the same
parenthetical level, the two counts are multiplied, unless the boolean element count is higher.

Fundamentally, do not use multiple relational or boolean operators at the same par-
enthetical level, unless they are all boolean ands or they are all boolean ors. If you use
boolean operators and relational operators in one expression, you are charged one statement
for each boolean element.

After scoring each statement and any parenthesized expressions, the score is multiplied
by any encompassing controlled block and added to the score of that block. A “controlled
block” is a curly-braced collection of statements controlled by one of the statement control-
ling statements do, for, else, if, switch, or while. Stand alone blocks for scoping local
variables do not trigger the multiplier.

You may trace the scores of parenthesized expressions and code blocks (see Section 4.12
[complexity trace]|, page 13). You will see the raw score of the code block or expression.

The final score is the outermost score divided by the “scaling factor”, See Section 4.9
[complexity scale], page 12.

2.3 Complexity Scores

The “Complexity Scores” table shows the score of each procedure identified that also ex-
ceeded the threshold score, See Section 4.11 [complexity threshold]|, page 13. The entries
on each line are:

e The computed score

Chapter 2: Complexity Computation 6

e The number of lines between the opening and closing curly braces
e The number of non-comment, non-blank lines found there

e The name of the source file

e The line number of the opening curly brace

e The name of the procedure

The output is sorted by the score and then the number of non-comment lines. Procedures
with scores below the threshold are not displayed.

2.4 Complexity Statistics

The statistics are displayed both as a table and as a histogram, See Chapter 3 [Example
Output], page 8. It is under the control of the Section 4.3 [complexity histogram|, page 11
option. The statistics are for each non-comment source line and each source line is given the
score of its encompassing procedure. This way, larger procedures are given proportionally
more weight than one line procedures.

The histogram is broken up into three ranges. Scores of 0 through 99 are displayed in 10
point groupings, 100 through 999 in 100 point groupings and 1000 and above (good grief!!,
but they exist) are in 1000 point groupings. The number of asterisks represent the number
of lines of code that are in procedures that score in the specified range.

The tabular statistics are also based on lines, not procedures.

‘Average line score’
This is the procedure score times the non-comment line count, all added up and
divided by the total non-comment source lines found.

‘25%-1ile score’

‘60%-ile score’

“75%-ile score’

‘Highest score’
Since the distribution of scores is nothing like a bell curve, the mean and stan-
dard deviation do not give a very clear picture of the distribution of the scores.
Typically, the standard deviation is larger than the average score. So, instead
the program prints the the four quartile scores. The score for which 25, 50, and
75 percent of code is scored less than, plus the highest scoring procedure (100
percent of code scores less than or equal to that score).

‘Unscored procedures’
If any procedures were found that could not be scored, the number of such
procedures is printed.

2.5 Scoring Adjustments
Scores can be adjusted with three different options:
‘nesting-penalty’

See Section 4.7 [complexity nesting-penalty], page 12.
‘demi-nesting-penalty’

See Section 4.2 [complexity demi-nesting-penalty], page 11.

Chapter 2: Complexity Computation 7

‘scale’ See Section 4.9 [complexity scale], page 12.

The raw score is the number of lines or statements, whichever is greater, adjusted by a
factor for the depth of the logic. Statements are nested when they are inside of a block of
statements for a “block” statement (viz., “do”, “for”, “if”, “switch” or “while”). Statements
within blocks used to constrain the scope of variables (not controlled by a block statement)
are not multiplied by this factor.

Expressions are nested when contained within parentheses. The cost of these is different.
Block level nesting multiplies the score for the block by the -—-nesting-penalty factor (2.0
by default). Nested expressions are multiplied by the -~~demi-nesting-penalty, the square
root of —-nesting-penalty by default.

Some attempt is made to judge the complexity of an expression. A complicated ex-
pression is one that contains an assignment operator, more than one relation operator,
or a mixture of “and” and “or” operators with any other different kind of non-arithmetic
operator. Expression scores are minimized by:

e Doing assignments outside of boolean expressions, or at least parenthesizing them.

e Parenthesizing each relationship operation in an expression of multiple “and” and/or
“or” operations. Yes, precedence parses them correctly, but it is less clear.

e Parenthesizing groups of “and” and “or” operations so that operators of only one type
appear at one level. For example, the first expression below instead of the second. Yes,
precedence means the effect is the same, but we’re after code clarity so that correctness
is more obvious.

1: ((a & b) || (c && d))
2: (a & b || c & d)

The first adds 2 to the raw score (before dividing by the scaling factor). The latter will
add 5, assuming a demi-nesting-penalty of 1.41.

Chapter 3: Example Output 8

3 Example Output

This is a self-referential example. This output was obtained by going into the complexity
source directory and running the command:

complexity --histogram --score --thresh=3 ’*.c’

The --threshold is set to three because all of the functions score below the default
threshold of 30. It is not zero because there are too many trivial (0, 1 or 2) functions for a
short example.

This results in:
Complexity Scores
Score | 1ln-ct | nc-lns| file-name(line): proc-name

3 13 12 tokenize.c(507): skip_params

3 15 13 score.c(121): handle_stmt_block

3 22 17 tokenize.c(64): check_quote

3 34 27 score.c(736): score_proc

3 37 27 complexity.c(72): initialize

3 43 35 score.c(513): handle_TKN_KW_DO

4 15 13 tokenize.c(28): skip_comment

4 20 16 tokenize.c(405): next_nonblank

4 22 18 tokenize.c(528): skip_to_semi

4 35 28 tokenize.c(335): keyword_check

4 52 40 complexity.c(360): load_file

5 33 28 score.c(466): handle_TKN_KW_CASE

5 35 30 score.c(315): handle_parms

5 58 41 complexity.c(297): popen_unifdef

5 59 48 score.c(160): fiddle_subexpr_score
5 78 58 score.c(561): handle TKN_KW_IF

6 45 30 opts.c(776): translate_option_strings
6 67 44 opts.c(670): main

7 49 40 score.c(644): handle_TKN_KW_FOR

10 84 65 complexity.c(441): complex_eval

11 57 50 tokenize.c(555): find_proc_start
11 88 65 complexity.c(123): print_histogram
12 81 60 score.c(224): handle_subexpr

12 92 68 score.c(355): handle_expression

15 64 51 tokenize.c(103): hash_check

25 72 60 tokenize.c(430): next_token

Complexity Histogram
Score-Range Lin-Ct

0-9 B85 skokokokokokokokok ok ok sk sk ok sk sk sk sk sk ook ok ok sk sk ok ok ook ok ok ok ok ok ok ok sk ok ok ok ok ok ok ok ok
10-19 359 skokokokokokokokoksk ok sk ok sk sk sk sk sk sk ok sk ok sk sk sk sk ko kokokokokok ok ok ok
20-29 60 Fkkokokk

Scored procedure ct: 26

Non-comment line ct: 984

Chapter 3: Example Output

Average line score: 8

25%-ile score: 4 (75% in higher score procs)
50%-ile score: 6 (half in higher score procs)
75%-ile score: 11 (25% in higher score procs)

Highest score: 25 (next_token() in tokenize.c)

Chapter 4: Invoking complexity 10

4 Invoking complexity

Compute the complexity of source code not just with a path-through-the-code count, but
also amplifying line counts by logic level nesting. complexity ignores all cpp preprocessor
directives - calculating the complexity of the appearance of the code, rather than the com-
plexity after the preprocessor manipulates the code. getchar(3), for example, will expand
into quite complicated code.

This chapter was generated by AutoGen, using the agtexi-cmd template and the option
descriptions for the complexity program.

This software is released under the GNU General Public License.

4.1 complexity usage help (-7)

This is the automatically generated usage text for complexity:

complexity (GNU Complexity) - Measure complexity of C source - Ver. 0.4

USAGE: complexity [-<flag> [<val>] | --<name>[{=| }<val>]]... \
[<file-name> ...]
-t, —--threshold=num Reporting threshold
--horrid-threshold=num zero exit threshold
-n, ——nesting-penalty=str score multiplier for nested code
--demi-nesting-penalty=str score multiplier for nested expressions
-s, —--scale=num complexity scaling factor
-h, --histogram Display histogram of complexity numbers

- disabled as -—-no-histogram
- may not be preset
-c, —-scores Display the score for each procedure
- disabled as --no-scores
- may not be preset

-1, --ignore=str procedure name to be ignored
- may appear multiple times
-H, -—no-header do not print scoring header
- may not be preset
-u, --unifdef=str Run the source(s) through unifdef (1BSD)
- may appear multiple times
-—unif-exe=str Specify the unifdef program
-i, --input=str file of file list
--trace=str trace output file
-v, —--version[=arg] Output version information and exit
-7, ——help Display extended usage information and exit
->, --save-opts[=arg] Save the option state to a config file
-<, --load-opts=str Load options from a config file

- disabled as --no-load-opts
- may appear multiple times

Options are specified by doubled hyphens and their name or by a single
hyphen and the flag character.

Chapter 4: Invoking complexity 11

Compute the complexity of source code not just with a
path-through-the-code count, but also amplifying line counts by logic
level nesting.

If no arguments are provided, input arguments are read from stdin,
one per line; blank and ’#’-prefixed lines are comments.

’stdin’ may not be a terminal (tty).

The following option preset mechanisms are supported:
- reading file $@/complex.conf
- reading file $HOME/.complexityrc
- reading file $PROJECT_ROOT/complex.conf
- reading file ./.complexityrc
- examining environment variables named COMPLEXITY_x*

‘‘complexity’’ ignores all cpp preprocessor directives - calculating

the complexity of the appearance of the code, rather than the complexity
after the preprocessor manipulates the code. ¢‘getchar(3)’’, for example,
will expand into quite complicated code.

please send bug reports to: bkorb@gnu.org

4.2 demi-nesting-penalty option

This is the “score multiplier for nested expressions” option. By default, this value is halfway
between 1.0 and the nesting penalty (specifically, the square root of the nesting penalty).
It refers to a parenthesized sub-expression. e.g.

((a>Db) & (c > d))

contains two parenthesized sub-expressions. This would count 3.5 points. On the other
hand, this:

(a>b &k c > d)

contains two relation operators and a logical operator at the same level. These nested
counts will be multiplied together and yield 2.5 * 2.5, or 6.25. Don’t do that. It gets even
worse if you have logical ands and ors at the same level.

4.3 histogram option (-h)
This is the “display histogram of complexity numbers” option.
This option has some usage constraints. It:
e may not be preset with environment variables or configuration (rc/ini) files.
Instead of printing out each function’s score, a summary is printed at the end showing
how many functions had particular ranges of scores. Unless —-scores is specifically called

out, the scores will not print with this option specified. The minimum scoring threshold
will also be reduced to zero (0), unless —-threshold is specified.

Chapter 4: Invoking complexity 12

4.4 horrid-threshold option

This is the “zero exit threshold” option. If any procedures score higher than this thresh-
old, then the program will exit non-zero. (4/COMPLEX_EXIT_HORRID_FUNCTION, if no other
problems are encountered.) By default, this program exits zero unless one function exceeds
the horrid score of 100.

4.5 ignore option (-I)
This is the “procedure name to be ignored” option.
This option has some usage constraints. It:
e may appear an unlimited number of times.
Some code has macros defined that confuse the lexical analysis. This will cause them to
be ignored. Other ways to cause functions to be ignored are:
1. Use K&R syntax for a procedure header.
2. Use a preprocessing macro to assemble the procedure header.

3. Simplify your code.

Generally speaking, anything you do that alters normal C syntax will confuse the lexical
analysis. If a procedure is not seen, then it will not get counted. If code within a procedure
is incomprehensible, you will likely get inappropriate results.

4.6 input option (-i)

This is the “file of file list” option. Instead of either a command line list of input files or
reading them from standard input, read the list of files from this file.

4.7 nesting-penalty option (-n)

This is the “score multiplier for nested code” option. Linguistic constructs weigh more
heavily the more deeply nested they are. By default, each layer penalizes by a factor of 2.0.
The option argument is a floating point number. The penalty may be 1, but not less.

4.8 no-header option (-H)

This is the “do not print scoring header” option.
This option has some usage constraints. It:

e may not be preset with environment variables or configuration (rc/ini) files.

If a script is going to process the scoring output, parsing is easier without a header. The
histogram output will always have a header.

4.9 scale option (-s)

This is the “complexity scaling factor” option. By default, the scaling is 20 which divides
the raw score by 20. This was normalized to roughly correspond to the pmccabe scores:

‘0-9’ Easily maintained code.

‘10-19’ Maintained with little trouble.

Chapter 4: Invoking complexity 13

‘20-29’ Maintained with some effort.
‘30-39’ Difficult to maintain code.
‘40-49’ Hard to maintain code.
‘60-99’ Unmaintainable code.
‘100-199° Crazy making difficult code.
200+’ I only wish I were kidding.

Score | 1ln-ct | nc-lns| file-name(line): proc-name
4707 3815 2838 lib/vasnprintf.c(1747): VASNPRINTF

4.10 scores option (-c)

This is the “display the score for each procedure” option.
This option has some usage constraints. It:
e may not be preset with environment variables or configuration (rc/ini) files.

If you specify ——histogram, individual scores will not be displayed, unless this option is
specified.

4.11 threshold option (-t)

This is the “reporting threshold” option. Ignore any procedures with a complexity measure
below this threshold. By default, a complexity score of under 30 is not printed. However, if
a histogram and statistics are to be printed, but not individual procedure scores, then the
default is set to zero. Procedures below this limit are not counted in the statistics.

4.12 trace option

This is the “trace output file” option. Print intermediate scores to a trace file.

4.13 unif-exe option

This is the “specify the unifdef program” option. Alternate program to use for unifdef-ing
the input.

4.14 unifdef option (-u)
This is the “run the source(s) through unifdef(1bsd)” option.

This option has some usage constraints. It:
e may appear an unlimited number of times.
Strip out sections of code surrounded by #if/#endif directives. The option argument
is passed as an argument to the ‘unifdef (1BSD)’ program. For example:
complexity -u-Dsymbol
would cause symbol to be defined and remove sections of code preceded by #ifndef symbol
directives.

Please see the ‘unifdef’ documentation for more information.

Chapter 4: Invoking complexity 14

4.15 presetting/configuring complexity

Any option that is not marked as mot presettable may be preset by loading values from
configuration ("rc" or "ini") files, and values from environment variables named COMPLEXITY
and COMPLEXITY_<OPTION_NAME>. “<OPTION_NAME>" must be one of the options listed above
in upper case and segmented with underscores. The COMPLEXITY variable will be tokenized
and parsed like the command line. The remaining variables are tested for existence and
their values are treated like option arguments.

libopts will search in 4 places for configuration files:

e $(pkgdatadir)/complex.conf

e $HOME

e SPROJECT_ROOT/complex.conf
e $PWD

The value for $(pkgdatadir) is recorded at package configure time and replaced by
‘libopts’ when ‘complexity’ runs. The environment variables HOME, PROJECT_ROOT, and
PWD are expanded and replaced when ‘complexity’ runs. For any of these that are plain files,
they are simply processed. For any that are directories, then a file named ‘. complexityrc’
is searched for within that directory and processed.

Configuration files may be in a wide variety of formats. The basic format is an option
name followed by a value (argument) on the same line. Values may be separated from the
option name with a colon, equal sign or simply white space. Values may be continued across
multiple lines by escaping the newline with a backslash.

Multiple programs may also share the same initialization file. Common options are
collected at the top, followed by program specific segments. The segments are separated by
lines like:

[COMPLEXITY]
or by
<7?program complexity>
Do not mix these within one configuration file.

Compound values and carefully constructed string values may also be specified using
XML syntax:

<option-name>
<sub-opt>...<...>...</sub-opt>
</option-name>

yielding an option-name.sub-opt string value of
LI QR S

AutoOpts does not track suboptions. You simply note that it is a hierarchicly valued
option. AutoOpts does provide a means for searching the associated name/value pair list
(see: optionFindValue).

Chapter 4: Invoking complexity 15

4.16 complexity exit codes

One of the following exit values will be returned:

‘0’ Successful program execution.

‘v The operation failed or the command syntax was not valid.
‘3 insufficient memory to run program

‘4’ One or more functions scored over 100

‘5’ No qualifying procedures were found.

‘32’ one or more input files were unreadable or empty.

4.17 complexity Description

The weight of each statement is the number of lines the statement uses. This value is
multiplied by the nested logic weighting (2.0 by default) for each layer of logic. For example,
this snippet:
if (foo) {
if (bar) {
bumble; baz;
}
}

will score 11. This score is then scaled to approximate pmccabe results by dividing by
20 and rounding. This scores "1" at the end. pmccabe scores higher on simple procedures
and complexity scores higher with more deeply nested logic.

The scoring can be tweaked by adjusting the —~—nesting-penalty and --scale-ing fac-
tors. The default values were calibrated by comparing the average results of millions of
lines of code with the results of pmccabe.

For the purposes of this program, a procedure is identified by a name followed by a
parenthesized expression and then an opening curly brace. It ends with a closing curly
brace in column 1.

4.18 complexity Bugs

This program does not recognize K&R. procedure headers.

Some procedures still get missed. Usually, these are procedures that use the C pre-
processor to extend the C language in some way.

Appendix A: Copying This Manual 16

Appendix A Copying This Manual

You may copy this manual under the terms of the FDL (the GNU Free Documentation
License).
Version 1.3, 3 November 2008
Copyright (© 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.
http://fsf.org/

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and
useful document free in the sense of freedom: to assure everyone the effective freedom
to copy and redistribute it, with or without modifying it, either commercially or non-
commercially. Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible for modifications
made by others.

This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a
notice placed by the copyright holder saying it can be distributed under the terms
of this License. Such a notice grants a world-wide, royalty-free license, unlimited in
duration, to use that work under the conditions stated herein. The “Document”,
below, refers to any such manual or work. Any member of the public is a licensee, and
is addressed as “you”. You accept the license if you copy, modify or distribute the work
in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into
another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that
could fall directly within that overall subject. (Thus, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding
them.

http://gnu.org/licenses/fdl.texi
http://gnu.org/licenses/fdl.texi
http://fsf.org/

Appendix A: Copying This Manual 17

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released
under this License. If a section does not fit the above definition of Secondary then it is
not allowed to be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may
be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, that is suitable for
revising the document straightforwardly with generic text editors or (for images com-
posed of pixels) generic paint programs or (for drawings) some widely available drawing
editor, and that is suitable for input to text formatters or for automatic translation to
a variety of formats suitable for input to text formatters. A copy made in an otherwise
Transparent file format whose markup, or absence of markup, has been arranged to
thwart or discourage subsequent modification by readers is not Transparent. An image
format is not Transparent if used for any substantial amount of text. A copy that is
not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without
markup, Texinfo input format, LaTEX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML, PostScript or PDF designed
for human modification. Examples of transparent image formats include PNG, XCF
and JPG. Opaque formats include proprietary formats that can be read and edited
only by proprietary word processors, SGML or XML for which the DTD and/or pro-
cessing tools are not generally available, and the machine-generated HTML, PostScript
or PDF produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

The “publisher” means any person or entity that distributes copies of the Document
to the public.

A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such
as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve
the Title” of such a section when you modify the Document means that it remains a
section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to
be included by reference in this License, but only as regards disclaiming warranties:
any other implication that these Warranty Disclaimers may have is void and has no
effect on the meaning of this License.

Appendix A: Copying This Manual 18

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and
that you add no other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for copies.
If you distribute a large enough number of copies you must also follow the conditions
in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of
the Document, numbering more than 100, and the Document’s license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify you as the publisher
of these copies. The front cover must present the full title with all words of the title
equally prominent and visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verbatim copying in other
respects.

If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a computer-network location from which
the general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material. If
you use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will
remain thus accessible at the stated location until at least one year after the last time
you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of
it. In addition, you must do these things in the Modified Version:

Appendix A: Copying This Manual 19

N.

0.

Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any,
be listed in the History section of the Document). You may use the same title as
a previous version if the original publisher of that version gives permission.

List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has fewer
than five), unless they release you from this requirement.

State on the Title page the name of the publisher of the Modified Version, as the
publisher.

Preserve all the copyright notices of the Document.

Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

Include an unaltered copy of this License.

Preserve the section Entitled “History”, Preserve its Title, and add to it an item
stating at least the title, year, new authors, and publisher of the Modified Version
as given on the Title Page. If there is no section Entitled “History” in the Docu-
ment, create one stating the title, year, authors, and publisher of the Document
as given on its Title Page, then add an item describing the Modified Version as
stated in the previous sentence.

Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
“History” section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

Delete any section Entitled “Endorsements”. Such a section may not be included
in the Modified Version.

Do not retitle any existing section to be Entitled “Endorsements” or to conflict in
title with any Invariant Section.

Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at

Appendix A: Copying This Manual 20

your option designate some or all of these sections as invariant. To do this, add their
titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties—for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but
you may replace the old one, on explicit permission from the previous publisher that
added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections Entitled “History” in the vari-
ous original documents, forming one section Entitled “History”; likewise combine any
sections Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You
must delete all sections Entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.

You may extract a single document from such a collection, and distribute it individu-
ally under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.

Appendix A: Copying This Manual 21

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called
an “aggregate” if the copyright resulting from the compilation is not used to limit the
legal rights of the compilation’s users beyond what the individual works permit. When
the Document is included in an aggregate, this License does not apply to the other
works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they
must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original versions
of these Invariant Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warranty Disclaimers, provided that you
also include the original English version of this License and the original versions of
those notices and disclaimers. In case of a disagreement between the translation and
the original version of this License or a notice or disclaimer, the original version will
prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “His-
tory”, the requirement (section 4) to Preserve its Title (section 1) will typically require
changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense, or
distribute it is void, and will automatically terminate your rights under this License.

However, if you cease all violation of this License, then your license from a particular
copyright holder is reinstated (a) provisionally, unless and until the copyright holder
explicitly and finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means prior to 60 days
after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if
the copyright holder notifies you of the violation by some reasonable means, this is the
first time you have received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after your receipt of the
notice.

Termination of your rights under this section does not terminate the licenses of parties
who have received copies or rights from you under this License. If your rights have
been terminated and not permanently reinstated, receipt of a copy of some or all of the
same material does not give you any rights to use it.

Appendix A: Copying This Manual 22

10.

11.

FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of
this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation. If the Document specifies that a proxy can decide which future
versions of this License can be used, that proxy’s public statement of acceptance of a
version permanently authorizes you to choose that version for the Document.

RELICENSING

“Massive Multiauthor Collaboration Site” (or “MMC Site”) means any World Wide
Web server that publishes copyrightable works and also provides prominent facilities
for anybody to edit those works. A public wiki that anybody can edit is an example of
such a server. A “Massive Multiauthor Collaboration” (or “MMC”) contained in the
site means any set of copyrightable works thus published on the MMC site.

“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0 license pub-
lished by Creative Commons Corporation, a not-for-profit corporation with a principal
place of business in San Francisco, California, as well as future copyleft versions of that
license published by that same organization.

“Incorporate” means to publish or republish a Document, in whole or in part, as part
of another Document.

An MMC is “eligible for relicensing” if it is licensed under this License, and if all works
that were first published under this License somewhere other than this MMC, and
subsequently incorporated in whole or in part into the MMC, (1) had no cover texts
or invariant sections, and (2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site under
CC-BY-SA on the same site at any time before August 1, 2009, provided the MMC is
eligible for relicensing.

http://www.gnu.org/copyleft/

Appendix A: Copying This Manual 23

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (C) year your name.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3
or any later version published by the Free Software Foundation;
with no Invariant Sections, no Front-Cover Texts, and no Back-Cover
Texts. A copy of the license is included in the section entitled ‘‘GNU
Free Documentation License’’.
If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with. . . Texts.” line with this:

with the Invariant Sections being list their titles, with
the Front-Cover Texts being list, and with the Back-Cover Texts
being list.
If you have Invariant Sections without Cover Texts, or some other combination of the
three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.

Concept Index

Concept Index

C

complexXity......oooiiiiiiiiiiiiiii i 10
Complexity Computation....................... 4
complexity usagel 10
complexity-demi-nesting-penalty 11
complexity-histogram.................. 11
complexity-horrid-threshold.................... 12
complexity-ignore. 12
complexity-input o i 12
complexity-nesting-penalty..................... 12
complexity-no-header.......................... 12
complexity-scale............... o i 12
complexity-scores.........o i, 13
complexity-threshold 13
complexity-trace........... o 13
complexity-unif-exe...........ol 13
complexity-unifdef................ 13

E

Example Output............. ..o 8

24

F

FDL, GNU Free Documentation License 16

I

Introduction............... L 1

M

Measure complexity of C source................ 10

P

PAISING . o oottt 4

S

SCOTES .« v v ttee e ettt e e e 5,6
statistics. ... 6

	Introduction
	Code Length
	Switch Statement
	Logic Conditions
	Personal Experience
	Rationale Summary

	Complexity Computation
	Parsing Method
	Complexity Measurement Parsing
	Post-PreProcessing Parsing
	During PreProcessing Parsing
	pmccabe Parsing

	Complexity Measurement Algorithm
	Complexity Scores
	Complexity Statistics
	Scoring Adjustments

	Example Output
	Invoking complexity
	complexity usage help (-?)
	demi-nesting-penalty option
	histogram option (-h)
	horrid-threshold option
	ignore option (-I)
	input option (-i)
	nesting-penalty option (-n)
	no-header option (-H)
	scale option (-s)
	scores option (-c)
	threshold option (-t)
	trace option
	unif-exe option
	unifdef option (-u)
	presetting/configuring complexity
	complexity exit codes
	complexity Description
	complexity Bugs

	Copying This Manual
	Concept Index

