
GNU Grep: Print lines that match

patterns
version 3.11, 10 May 2023

Alain Magloire et al.

This manual is for grep, a pattern matching engine.

Copyright c© 1999–2002, 2005, 2008–2023 Free Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document under
the terms of the GNU Free Documentation License, Version 1.3 or any later
version published by the Free Software Foundation; with no Invariant Sections,
with no Front-Cover Texts, and with no Back-Cover Texts. A copy of the license
is included in the section entitled “GNU Free Documentation License”.

i

Table of Contents

1 Introduction . 1

2 Invoking grep . 2
2.1 Command-line Options . 2

2.1.1 Generic Program Information . 2
2.1.2 Matching Control . 2
2.1.3 General Output Control . 3
2.1.4 Output Line Prefix Control . 5
2.1.5 Context Line Control . 6
2.1.6 File and Directory Selection . 7
2.1.7 Other Options . 9

2.2 Environment Variables . 9
2.3 Exit Status . 12
2.4 grep Programs . 12

3 Regular Expressions . 14
3.1 Fundamental Structure . 14
3.2 Character Classes and Bracket Expressions . 15
3.3 Special Backslash Expressions . 16
3.4 Anchoring . 17
3.5 Back-references and Subexpressions . 17
3.6 Basic vs Extended Regular Expressions . 17
3.7 Problematic Regular Expressions . 18
3.8 Character Encoding . 19
3.9 Matching Non-ASCII and Non-printable Characters 20

4 Usage . 21

5 Performance . 25

6 Reporting bugs . 27
6.1 Known Bugs . 27

7 Copying . 28
7.1 GNU Free Documentation License . 28

Index . 37

1

1 Introduction

Given one or more patterns, grep searches input files for matches to the patterns. When
it finds a match in a line, it copies the line to standard output (by default), or produces
whatever other sort of output you have requested with options.

Though grep expects to do the matching on text, it has no limits on input line length
other than available memory, and it can match arbitrary characters within a line. If the
final byte of an input file is not a newline, grep silently supplies one. Since newline is also
a separator for the list of patterns, there is no way to match newline characters in a text.

2

2 Invoking grep

The general synopsis of the grep command line is

grep [option...] [patterns] [file...]

There can be zero or more option arguments, and zero or more file arguments. The patterns
argument contains one or more patterns separated by newlines, and is omitted when patterns
are given via the ‘-e patterns’ or ‘-f file’ options. Typically patterns should be quoted
when grep is used in a shell command.

2.1 Command-line Options

grep comes with a rich set of options: some from POSIX and some being GNU extensions.
Long option names are always a GNU extension, even for options that are from POSIX
specifications. Options that are specified by POSIX, under their short names, are explic-
itly marked as such to facilitate POSIX-portable programming. A few option names are
provided for compatibility with older or more exotic implementations.

Several additional options control which variant of the grep matching engine is used.
See Section 2.4 [grep Programs], page 12.

2.1.1 Generic Program Information

--help Print a usage message briefly summarizing the command-line options and the
bug-reporting address, then exit.

-V

--version

Print the version number of grep to the standard output stream. This version
number should be included in all bug reports.

2.1.2 Matching Control

-e patterns

--regexp=patterns

Use patterns as one or more patterns; newlines within patterns separate each
pattern from the next. If this option is used multiple times or is combined with
the -f (--file) option, search for all patterns given. Typically patterns should
be quoted when grep is used in a shell command. (-e is specified by POSIX.)

-f file

--file=file

Obtain patterns from file, one per line. If this option is used multiple times
or is combined with the -e (--regexp) option, search for all patterns given.
When file is ‘-’, read patterns from standard input. The empty file contains
zero patterns, and therefore matches nothing. (-f is specified by POSIX.)

-i

-y

--ignore-case

Ignore case distinctions in patterns and input data, so that characters that dif-
fer only in case match each other. Although this is straightforward when letters

Chapter 2: Invoking grep 3

differ in case only via lowercase-uppercase pairs, the behavior is unspecified in
other situations. For example, uppercase “S” has an unusual lowercase coun-
terpart “” (Unicode character U+017F, LATIN SMALL LETTER LONG S) in
many locales, and it is unspecified whether this unusual character matches “S”
or “s” even though uppercasing it yields “S”. Another example: the lowercase
German letter “ß” (U+00DF, LATIN SMALL LETTER SHARP S) is normally
capitalized as the two-character string “SS” but it does not match “SS”, and it
might not match the uppercase letter (U+1E9E, LATIN CAPITAL LETTER
SHARP S) even though lowercasing the latter yields the former.

-y is an obsolete synonym that is provided for compatibility. (-i is specified
by POSIX.)

--no-ignore-case

Do not ignore case distinctions in patterns and input data. This is the default.
This option is useful for passing to shell scripts that already use -i, in order to
cancel its effects because the two options override each other.

-v

--invert-match

Invert the sense of matching, to select non-matching lines. (-v is specified by
POSIX.)

-w

--word-regexp

Select only those lines containing matches that form whole words. The test
is that the matching substring must either be at the beginning of the line, or
preceded by a non-word constituent character. Similarly, it must be either at
the end of the line or followed by a non-word constituent character. Word
constituent characters are letters, digits, and the underscore. This option has
no effect if -x is also specified.

Because the -w option can match a substring that does not begin and end with
word constituents, it differs from surrounding a regular expression with ‘\<’
and ‘\>’. For example, although ‘grep -w @’ matches a line containing only ‘@’,
‘grep '\<@\>'’ cannot match any line because ‘@’ is not a word constituent.
See Section 3.3 [Special Backslash Expressions], page 16.

-x

--line-regexp

Select only those matches that exactly match the whole line. For regular ex-
pression patterns, this is like parenthesizing each pattern and then surrounding
it with ‘^’ and ‘$’. (-x is specified by POSIX.)

2.1.3 General Output Control

-c

--count Suppress normal output; instead print a count of matching lines for each input
file. With the -v (--invert-match) option, count non-matching lines. (-c is
specified by POSIX.)

Chapter 2: Invoking grep 4

--color[=WHEN]

--colour[=WHEN]

Surround matched non-empty strings, matching lines, context lines, file names,
line numbers, byte offsets, and separators (for fields and groups of context
lines) with escape sequences to display them in color on the terminal. The
colors are defined by the environment variable GREP_COLORS and default
to ‘ms=01;31:mc=01;31:sl=:cx=:fn=35:ln=32:bn=32:se=36’ for bold red
matched text, magenta file names, green line numbers, green byte offsets,
cyan separators, and default terminal colors otherwise. See Section 2.2
[Environment Variables], page 9.

WHEN is ‘always’ to use colors, ‘never’ to not use colors, or ‘auto’ to use
colors if standard output is associated with a terminal device and the TERM

environment variable’s value suggests that the terminal supports colors. Plain
--color is treated like --color=auto; if no --color option is given, the default
is --color=never.

-L

--files-without-match

Suppress normal output; instead print the name of each input file from which
no output would normally have been printed.

-l

--files-with-matches

Suppress normal output; instead print the name of each input file from which
output would normally have been printed. Scanning each input file stops upon
first match. (-l is specified by POSIX.)

-m num

--max-count=num

Stop after the first num selected lines. If num is zero, grep stops right away
without reading input. A num of −1 is treated as infinity and grep does not
stop; this is the default.

If the input is standard input from a regular file, and num selected lines are
output, grep ensures that the standard input is positioned just after the last
selected line before exiting, regardless of the presence of trailing context lines.
This enables a calling process to resume a search. For example, the following
shell script makes use of it:

while grep -m 1 'PATTERN'

do

echo xxxx

done < FILE

But the following probably will not work because a pipe is not a regular file:

This probably will not work.

cat FILE |

while grep -m 1 'PATTERN'

do

echo xxxx

done

Chapter 2: Invoking grep 5

When grep stops after num selected lines, it outputs any trailing context lines.
When the -c or --count option is also used, grep does not output a count
greater than num. When the -v or --invert-match option is also used, grep
stops after outputting num non-matching lines.

-o

--only-matching

Print only the matched non-empty parts of matching lines, with each such part
on a separate output line. Output lines use the same delimiters as input, and
delimiters are null bytes if -z (--null-data) is also used (see Section 2.1.7
[Other Options], page 9).

-q

--quiet

--silent Quiet; do not write anything to standard output. Exit immediately with zero
status if any match is found, even if an error was detected. Also see the -s

or --no-messages option. Portability note: Solaris 10 grep lacks -q; portable
shell scripts typically can redirect standard output to /dev/null instead of
using -q. (-q is specified by POSIX.)

-s

--no-messages

Suppress error messages about nonexistent or unreadable files. (-s is specified
by POSIX.)

2.1.4 Output Line Prefix Control

When several prefix fields are to be output, the order is always file name, line number, and
byte offset, regardless of the order in which these options were specified.

-b

--byte-offset

Print the 0-based byte offset within the input file before each line of output. If
-o (--only-matching) is specified, print the offset of the matching part itself.

-H

--with-filename

Print the file name for each match. This is the default when there is more than
one file to search.

-h

--no-filename

Suppress the prefixing of file names on output. This is the default when there
is only one file (or only standard input) to search.

--label=LABEL

Display input actually coming from standard input as input coming from file
LABEL. This can be useful for commands that transform a file’s contents
before searching; e.g.:

gzip -cd foo.gz | grep --label=foo -H 'some pattern'

Chapter 2: Invoking grep 6

-n

--line-number

Prefix each line of output with the 1-based line number within its input file.
(-n is specified by POSIX.)

-T

--initial-tab

Make sure that the first character of actual line content lies on a tab stop, so
that the alignment of tabs looks normal. This is useful with options that prefix
their output to the actual content: -H, -n, and -b. This may also prepend
spaces to output line numbers and byte offsets so that lines from a single file
all start at the same column.

-Z

--null Output a zero byte (the ASCII NUL character) instead of the character that
normally follows a file name. For example, ‘grep -lZ’ outputs a zero byte after
each file name instead of the usual newline. This option makes the output
unambiguous, even in the presence of file names containing unusual characters
like newlines. This option can be used with commands like ‘find -print0’,
‘perl -0’, ‘sort -z’, and ‘xargs -0’ to process arbitrary file names, even those
that contain newline characters.

2.1.5 Context Line Control

Context lines are non-matching lines that are near a matching line. They are output only
if one of the following options are used. Regardless of how these options are set, grep never
outputs any given line more than once. If the -o (--only-matching) option is specified,
these options have no effect and a warning is given upon their use.

-A num

--after-context=num

Print num lines of trailing context after matching lines.

-B num

--before-context=num

Print num lines of leading context before matching lines.

-C num

-num

--context=num

Print num lines of leading and trailing output context.

--group-separator=string

When -A, -B or -C are in use, print string instead of -- between groups of lines.

--no-group-separator

When -A, -B or -C are in use, do not print a separator between groups of lines.

Here are some points about how grep chooses the separator to print between prefix fields
and line content:

• Matching lines normally use ‘:’ as a separator between prefix fields and actual line
content.

Chapter 2: Invoking grep 7

• Context (i.e., non-matching) lines use ‘-’ instead.

• When context is not specified, matching lines are simply output one right after another.

• When context is specified, lines that are adjacent in the input form a group and are
output one right after another, while by default a separator appears between non-
adjacent groups.

• The default separator is a ‘--’ line; its presence and appearance can be changed with
the options above.

• Each group may contain several matching lines when they are close enough to each
other that two adjacent groups connect and can merge into a single contiguous one.

2.1.6 File and Directory Selection

-a

--text Process a binary file as if it were text; this is equivalent to the
‘--binary-files=text’ option.

--binary-files=type

If a file’s data or metadata indicate that the file contains binary data, assume
that the file is of type type. Non-text bytes indicate binary data; these are
either output bytes that are improperly encoded for the current locale (see
Section 2.2 [Environment Variables], page 9), or null input bytes when the -z

(--null-data) option is not given (see Section 2.1.7 [Other Options], page 9).

By default, type is ‘binary’, and grep suppresses output after null input binary
data is discovered, and suppresses output lines that contain improperly encoded
data. When some output is suppressed, grep follows any output with a message
to standard error saying that a binary file matches.

If type is ‘without-match’, when grep discovers null input binary data it as-
sumes that the rest of the file does not match; this is equivalent to the -I

option.

If type is ‘text’, grep processes binary data as if it were text; this is equivalent
to the -a option.

When type is ‘binary’, grep may treat non-text bytes as line terminators even
without the -z (--null-data) option. This means choosing ‘binary’ versus
‘text’ can affect whether a pattern matches a file. For example, when type is
‘binary’ the pattern ‘q$’ might match ‘q’ immediately followed by a null byte,
even though this is not matched when type is ‘text’. Conversely, when type is
‘binary’ the pattern ‘.’ (period) might not match a null byte.

Warning: The -a (--binary-files=text) option might output binary
garbage, which can have nasty side effects if the output is a terminal and if the
terminal driver interprets some of it as commands. On the other hand, when
reading files whose text encodings are unknown, it can be helpful to use -a or
to set ‘LC_ALL='C'’ in the environment, in order to find more matches even if
the matches are unsafe for direct display.

Chapter 2: Invoking grep 8

-D action

--devices=action

If an input file is a device, FIFO, or socket, use action to process it. If action
is ‘read’, all devices are read just as if they were ordinary files. If action is
‘skip’, devices, FIFOs, and sockets are silently skipped. By default, devices are
read if they are on the command line or if the -R (--dereference-recursive)
option is used, and are skipped if they are encountered recursively and the -r

(--recursive) option is used. This option has no effect on a file that is read
via standard input.

-d action

--directories=action

If an input file is a directory, use action to process it. By default, action is
‘read’, which means that directories are read just as if they were ordinary files
(some operating systems and file systems disallow this, and will cause grep

to print error messages for every directory or silently skip them). If action is
‘skip’, directories are silently skipped. If action is ‘recurse’, grep reads all
files under each directory, recursively, following command-line symbolic links
and skipping other symlinks; this is equivalent to the -r option.

--exclude=glob

Skip any command-line file with a name suffix that matches the pattern glob,
using wildcard matching; a name suffix is either the whole name, or a trailing
part that starts with a non-slash character immediately after a slash (‘/’) in the
name. When searching recursively, skip any subfile whose base name matches
glob; the base name is the part after the last slash. A pattern can use ‘*’,
‘?’, and ‘[’...‘]’ as wildcards, and \ to quote a wildcard or backslash character
literally.

--exclude-from=file

Skip files whose name matches any of the patterns read from file (using wildcard
matching as described under --exclude).

--exclude-dir=glob

Skip any command-line directory with a name suffix that matches the pat-
tern glob. When searching recursively, skip any subdirectory whose base name
matches glob. Ignore any redundant trailing slashes in glob.

-I Process a binary file as if it did not contain matching data; this is equivalent
to the ‘--binary-files=without-match’ option.

--include=glob

Search only files whose name matches glob, using wildcard matching as de-
scribed under --exclude. If contradictory --include and --exclude options
are given, the last matching one wins. If no --include or --exclude options
match, a file is included unless the first such option is --include.

-r

--recursive

For each directory operand, read and process all files in that directory, recur-
sively. Follow symbolic links on the command line, but skip symlinks that are

Chapter 2: Invoking grep 9

encountered recursively. Note that if no file operand is given, grep searches the
working directory. This is the same as the ‘--directories=recurse’ option.

-R

--dereference-recursive

For each directory operand, read and process all files in that directory, recur-
sively, following all symbolic links.

2.1.7 Other Options

-- Delimit the option list. Later arguments, if any, are treated as operands even
if they begin with ‘-’. For example, ‘grep PAT -- -file1 file2’ searches for
the pattern PAT in the files named -file1 and file2.

--line-buffered

Use line buffering for standard output, regardless of output device. By default,
standard output is line buffered for interactive devices, and is fully buffered
otherwise. With full buffering, the output buffer is flushed when full; with line
buffering, the buffer is also flushed after every output line. The buffer size is
system dependent.

-U

--binary On platforms that distinguish between text and binary I/O, use the latter when
reading and writing files other than the user’s terminal, so that all input bytes
are read and written as-is. This overrides the default behavior where grep

follows the operating system’s advice whether to use text or binary I/O. On
MS-Windows when grep uses text I/O it reads a carriage return–newline pair
as a newline and a Control-Z as end-of-file, and it writes a newline as a carriage
return–newline pair.

When using text I/O --byte-offset (-b) counts and --binary-files heuris-
tics apply to input data after text-I/O processing. Also, the --binary-files

heuristics need not agree with the --binary option; that is, they may treat the
data as text even if --binary is given, or vice versa. See Section 2.1.6 [File and
Directory Selection], page 7.

This option has no effect on GNU and other POSIX-compatible platforms,
which do not distinguish text from binary I/O.

-z

--null-data

Treat input and output data as sequences of lines, each terminated by a zero
byte (the ASCII NUL character) instead of a newline. Like the -Z or --null op-
tion, this option can be used with commands like ‘sort -z’ to process arbitrary
file names.

2.2 Environment Variables

The behavior of grep is affected by several environment variables, the most important of
which control the locale, which specifies how grep interprets characters in its patterns and
data.

Chapter 2: Invoking grep 10

The locale for category LC_foo is specified by examining the three environment variables
LC_ALL, LC_foo, and LANG, in that order. The first of these variables that is set specifies
the locale. For example, if LC_ALL is not set, but LC_COLLATE is set to ‘pt_BR.UTF-8’,
then a Brazilian Portuguese locale is used for the LC_COLLATE category. As a special case
for LC_MESSAGES only, the environment variable LANGUAGE can contain a colon-separated
list of languages that overrides the three environment variables that ordinarily specify the
LC_MESSAGES category. The ‘C’ locale is used if none of these environment variables are set,
if the locale catalog is not installed, or if grep was not compiled with national language
support (NLS). The shell command locale -a lists locales that are currently available.

The following environment variables affect the behavior of grep.

GREP_COLOR

This obsolescent variable interacts with GREP_COLORS confusingly, and
grep warns if it is set and is not overridden by GREP_COLORS. Instead of
‘GREP_COLOR='color'’, you can use ‘GREP_COLORS='mt=color'’.

GREP_COLORS

This variable controls how the --color option highlights output. Its
value is a colon-separated list of terminfo capabilities that defaults to
‘ms=01;31:mc=01;31:sl=:cx=:fn=35:ln=32:bn=32:se=36’ with the ‘rv’ and
‘ne’ boolean capabilities omitted (i.e., false). The two-letter capability names
refer to terminal “capabilities,” the ability of a terminal to highlight text, or
change its color, and so on. These capabilities are stored in an online database
and accessed by the terminfo library. Non-empty capability values control
highlighting using Select Graphic Rendition (SGR) commands interpreted by
the terminal or terminal emulator. (See the section in the documentation
of your text terminal for permitted values and their meanings as character
attributes.) These substring values are integers in decimal representation and
can be concatenated with semicolons. grep takes care of assembling the result
into a complete SGR sequence (‘\33[’...‘m’). Common values to concatenate
include ‘1’ for bold, ‘4’ for underline, ‘5’ for blink, ‘7’ for inverse, ‘39’ for
default foreground color, ‘30’ to ‘37’ for foreground colors, ‘90’ to ‘97’ for
16-color mode foreground colors, ‘38;5;0’ to ‘38;5;255’ for 88-color and
256-color modes foreground colors, ‘49’ for default background color, ‘40’ to
‘47’ for background colors, ‘100’ to ‘107’ for 16-color mode background colors,
and ‘48;5;0’ to ‘48;5;255’ for 88-color and 256-color modes background
colors.

Supported capabilities are as follows.

sl= SGR substring for whole selected lines (i.e., matching lines when
the -v command-line option is omitted, or non-matching lines when
-v is specified). If however the boolean ‘rv’ capability and the
-v command-line option are both specified, it applies to context
matching lines instead. The default is empty (i.e., the terminal’s
default color pair).

cx= SGR substring for whole context lines (i.e., non-matching lines
when the -v command-line option is omitted, or matching lines
when -v is specified). If however the boolean ‘rv’ capability and

Chapter 2: Invoking grep 11

the -v command-line option are both specified, it applies to se-
lected non-matching lines instead. The default is empty (i.e., the
terminal’s default color pair).

rv Boolean value that reverses (swaps) the meanings of the ‘sl=’ and
‘cx=’ capabilities when the -v command-line option is specified.
The default is false (i.e., the capability is omitted).

mt=01;31 SGR substring for matching non-empty text in any matching line
(i.e., a selected line when the -v command-line option is omitted,
or a context line when -v is specified). Setting this is equivalent to
setting both ‘ms=’ and ‘mc=’ at once to the same value. The default
is a bold red text foreground over the current line background.

ms=01;31 SGR substring for matching non-empty text in a selected line. (This
is used only when the -v command-line option is omitted.) The
effect of the ‘sl=’ (or ‘cx=’ if ‘rv’) capability remains active when
this takes effect. The default is a bold red text foreground over the
current line background.

mc=01;31 SGR substring for matching non-empty text in a context line. (This
is used only when the -v command-line option is specified.) The
effect of the ‘cx=’ (or ‘sl=’ if ‘rv’) capability remains active when
this takes effect. The default is a bold red text foreground over the
current line background.

fn=35 SGR substring for file names prefixing any content line. The de-
fault is a magenta text foreground over the terminal’s default back-
ground.

ln=32 SGR substring for line numbers prefixing any content line. The
default is a green text foreground over the terminal’s default back-
ground.

bn=32 SGR substring for byte offsets prefixing any content line. The de-
fault is a green text foreground over the terminal’s default back-
ground.

se=36 SGR substring for separators that are inserted between selected line
fields (‘:’), between context line fields (‘-’), and between groups of
adjacent lines when nonzero context is specified (‘--’). The default
is a cyan text foreground over the terminal’s default background.

ne Boolean value that prevents clearing to the end of line using Erase
in Line (EL) to Right (‘\33[K’) each time a colorized item ends.
This is needed on terminals on which EL is not supported. It is oth-
erwise useful on terminals for which the back_color_erase (bce)
boolean terminfo capability does not apply, when the chosen high-
light colors do not affect the background, or when EL is too slow
or causes too much flicker. The default is false (i.e., the capability
is omitted).

Chapter 2: Invoking grep 12

Note that boolean capabilities have no ‘=’... part. They are omitted (i.e., false)
by default and become true when specified.

LC_ALL

LC_COLLATE

LANG These variables specify the locale for the LC_COLLATE category, which might
affect how range expressions like ‘a-z’ are interpreted.

LC_ALL

LC_CTYPE

LANG These variables specify the locale for the LC_CTYPE category, which determines
the type of characters, e.g., which characters are whitespace. This category
also determines the character encoding. See Section 3.8 [Character Encoding],
page 19.

LANGUAGE

LC_ALL

LC_MESSAGES

LANG These variables specify the locale for the LC_MESSAGES category, which deter-
mines the language that grep uses for messages. The default ‘C’ locale uses
American English messages.

POSIXLY_CORRECT

If set, grep behaves as POSIX requires; otherwise, grep behaves more like other
GNU programs. POSIX requires that options that follow file names must be
treated as file names; by default, such options are permuted to the front of the
operand list and are treated as options.

TERM This variable specifies the output terminal type, which can affect what the
--color option does. See Section 2.1.3 [General Output Control], page 3.

The GREP_OPTIONS environment variable of grep 2.20 and earlier is no longer supported,
as it caused problems when writing portable scripts. To make arbitrary changes to how
grep works, you can use an alias or script instead. For example, if grep is in the direc-
tory ‘/usr/bin’ you can prepend $HOME/bin to your PATH and create an executable script
$HOME/bin/grep containing the following:

#! /bin/sh

export PATH=/usr/bin

exec grep --color=auto --devices=skip "$@"

2.3 Exit Status

Normally the exit status is 0 if a line is selected, 1 if no lines were selected, and 2 if an error
occurred. However, if the -q or --quiet or --silent option is used and a line is selected,
the exit status is 0 even if an error occurred. Other grep implementations may exit with
status greater than 2 on error.

2.4 grep Programs

grep searches the named input files for lines containing a match to the given patterns.
By default, grep prints the matching lines. A file named - stands for standard input. If

Chapter 2: Invoking grep 13

no input is specified, grep searches the working directory . if given a command-line option
specifying recursion; otherwise, grep searches standard input. There are four major variants
of grep, controlled by the following options.

-G

--basic-regexp

Interpret patterns as basic regular expressions (BREs). This is the default.

-E

--extended-regexp

Interpret patterns as extended regular expressions (EREs). (-E is specified by
POSIX.)

-F

--fixed-strings

Interpret patterns as fixed strings, not regular expressions. (-F is specified by
POSIX.)

-P

--perl-regexp

Interpret patterns as Perl-compatible regular expressions (PCREs). PCRE sup-
port is here to stay, but consider this option experimental when combined with
the -z (--null-data) option, and note that ‘grep -P’ may warn of unimple-
mented features. See Section 2.1.7 [Other Options], page 9.

For documentation, refer to https://www.pcre.org/, with these caveats:

• ‘\d’ matches only the ten ASCII digits (and ‘\D’ matches the complement),
regardless of locale. Use ‘\p{Nd}’ to also match non-ASCII digits. (The be-
havior of ‘\d’ and ‘\D’ is unspecified after in-regexp directives like ‘(?aD)’.)

• Although PCRE tracks the syntax and semantics of Perl’s regular expres-
sions, the match is not always exact. For example, Perl evolves and a
Perl installation may predate or postdate the PCRE2 installation on the
same host, or their Unicode versions may differ, or Perl and PCRE2 may
disagree about an obscure construct.

• By default, grep applies each regexp to a line at a time, so the ‘(?s)’
directive (making ‘.’ match line breaks) is generally ineffective. However,
with -z (--null-data) it can work:

$ printf 'a\nb\n' |grep -zP '(?s)a.b'

a

b

But beware: with the -z (--null-data) and a file containing no NUL
byte, grep must read the entire file into memory before processing any of
it. Thus, it will exhaust memory and fail for some large files.

https://www.pcre.org/

14

3 Regular Expressions

A regular expression is a pattern that describes a set of strings. Regular expressions are
constructed analogously to arithmetic expressions, by using various operators to combine
smaller expressions. grep understands three different versions of regular expression syn-
tax: basic (BRE), extended (ERE), and Perl-compatible (PCRE). In GNU grep, basic and
extended regular expressions are merely different notations for the same pattern-matching
functionality. In other implementations, basic regular expressions are ordinarily less power-
ful than extended, though occasionally it is the other way around. The following description
applies to extended regular expressions; differences for basic regular expressions are sum-
marized afterwards. Perl-compatible regular expressions have different functionality, and
are documented in the pcre2syntax (3) and pcre2pattern(3) manual pages, but work only if
PCRE is available in the system.

3.1 Fundamental Structure

In regular expressions, the characters ‘.?*+{|()[\^$’ are special characters and have uses
described below. All other characters are ordinary characters, and each ordinary character
is a regular expression that matches itself.

The period ‘.’ matches any single character. It is unspecified whether ‘.’ matches an
encoding error.

A regular expression may be followed by one of several repetition operators; the operators
beginning with ‘{’ are called interval expressions.

‘?’ The preceding item is optional and is matched at most once.

‘*’ The preceding item is matched zero or more times.

‘+’ The preceding item is matched one or more times.

‘{n}’ The preceding item is matched exactly n times.

‘{n,}’ The preceding item is matched n or more times.

‘{,m}’ The preceding item is matched at most m times. This is a GNU extension.

‘{n,m}’ The preceding item is matched at least n times, but not more than m times.

The empty regular expression matches the empty string. Two regular expressions may be
concatenated; the resulting regular expression matches any string formed by concatenating
two substrings that respectively match the concatenated expressions.

Two regular expressions may be joined by the infix operator ‘|’. The resulting regular
expression matches any string matching either of the two expressions, which are called
alternatives.

Repetition takes precedence over concatenation, which in turn takes precedence over
alternation. A whole expression may be enclosed in parentheses to override these precedence
rules and form a subexpression. An unmatched ‘)’ matches just itself.

Not every character string is a valid regular expression. See Section 3.7 [Problematic
Expressions], page 18.

Chapter 3: Regular Expressions 15

3.2 Character Classes and Bracket Expressions

A bracket expression is a list of characters enclosed by ‘[’ and ‘]’. It matches any single
character in that list. If the first character of the list is the caret ‘^’, then it matches any
character not in the list, and it is unspecified whether it matches an encoding error. For
example, the regular expression ‘[0123456789]’ matches any single digit, whereas ‘[^()]’
matches any single character that is not an opening or closing parenthesis, and might or
might not match an encoding error.

Within a bracket expression, a range expression consists of two characters separated by
a hyphen. It matches any single character that sorts between the two characters, inclusive.
In the default C locale, the sorting sequence is the native character order; for example,
‘[a-d]’ is equivalent to ‘[abcd]’. In other locales, the sorting sequence is not specified, and
‘[a-d]’ might be equivalent to ‘[abcd]’ or to ‘[aBbCcDd]’, or it might fail to match any
character, or the set of characters that it matches might be erratic, or it might be invalid.
To obtain the traditional interpretation of bracket expressions, you can use the ‘C’ locale
by setting the LC_ALL environment variable to the value ‘C’.

Finally, certain named classes of characters are predefined within bracket expressions, as
follows. Their interpretation depends on the LC_CTYPE locale; for example, ‘[[:alnum:]]’
means the character class of numbers and letters in the current locale.

‘[:alnum:]’
Alphanumeric characters: ‘[:alpha:]’ and ‘[:digit:]’; in the ‘C’ locale and
ASCII character encoding, this is the same as ‘[0-9A-Za-z]’.

‘[:alpha:]’
Alphabetic characters: ‘[:lower:]’ and ‘[:upper:]’; in the ‘C’ locale and
ASCII character encoding, this is the same as ‘[A-Za-z]’.

‘[:blank:]’
Blank characters: space and tab.

‘[:cntrl:]’
Control characters. In ASCII, these characters have octal codes 000 through
037, and 177 (DEL). In other character sets, these are the equivalent characters,
if any.

‘[:digit:]’
Digits: 0 1 2 3 4 5 6 7 8 9.

‘[:graph:]’
Graphical characters: ‘[:alnum:]’ and ‘[:punct:]’.

‘[:lower:]’
Lower-case letters; in the ‘C’ locale and ASCII character encoding, this is a b c

d e f g h i j k l m n o p q r s t u v w x y z.

‘[:print:]’
Printable characters: ‘[:alnum:]’, ‘[:punct:]’, and space.

‘[:punct:]’
Punctuation characters; in the ‘C’ locale and ASCII character encoding, this is
! " # $ % & ' () * + , - . / : ; < = > ? @ [\] ^ _ ` { | } ~.

Chapter 3: Regular Expressions 16

‘[:space:]’
Space characters: in the ‘C’ locale, this is tab, newline, vertical tab, form feed,
carriage return, and space. See Chapter 4 [Usage], page 21, for more discussion
of matching newlines.

‘[:upper:]’
Upper-case letters: in the ‘C’ locale and ASCII character encoding, this is A B

C D E F G H I J K L M N O P Q R S T U V W X Y Z.

‘[:xdigit:]’
Hexadecimal digits: 0 1 2 3 4 5 6 7 8 9 A B C D E F a b c d e f.

Note that the brackets in these class names are part of the symbolic names, and must
be included in addition to the brackets delimiting the bracket expression.

If you mistakenly omit the outer brackets, and search for say, ‘[:upper:]’, GNU grep

prints a diagnostic and exits with status 2, on the assumption that you did not intend to
search for the regular expression ‘[:epru]’.

Special characters lose their special meaning inside bracket expressions.

‘]’ ends the bracket expression if it’s not the first list item. So, if you want to make
the ‘]’ character a list item, you must put it first.

‘[.’ represents the open collating symbol.

‘.]’ represents the close collating symbol.

‘[=’ represents the open equivalence class.

‘=]’ represents the close equivalence class.

‘[:’ represents the open character class symbol, and should be followed by a valid
character class name.

‘:]’ represents the close character class symbol.

‘-’ represents the range if it’s not first or last in a list or the ending point of a
range. To make the ‘-’ a list item, it is best to put it last.

‘^’ represents the characters not in the list. If you want to make the ‘^’ character
a list item, place it anywhere but first.

3.3 Special Backslash Expressions

The ‘\’ character followed by a special character is a regular expression that matches the
special character. The ‘\’ character, when followed by certain ordinary characters, takes a
special meaning:

‘\b’ Match the empty string at the edge of a word.

‘\B’ Match the empty string provided it’s not at the edge of a word.

‘\<’ Match the empty string at the beginning of a word.

‘\>’ Match the empty string at the end of a word.

‘\w’ Match word constituent, it is a synonym for ‘[_[:alnum:]]’.

Chapter 3: Regular Expressions 17

‘\W’ Match non-word constituent, it is a synonym for ‘[^_[:alnum:]]’.

‘\s’ Match whitespace, it is a synonym for ‘[[:space:]]’.

‘\S’ Match non-whitespace, it is a synonym for ‘[^[:space:]]’.

‘\]’ Match ‘]’.

‘\}’ Match ‘}’.

For example, ‘\brat\b’ matches the separate word ‘rat’, ‘\Brat\B’ matches ‘crate’ but
not ‘furry rat’.

The behavior of grep is unspecified if a unescaped backslash is not followed by a special
character, a nonzero digit, or a character in the above list. Although grep might issue a
diagnostic and/or give the backslash an interpretation now, its behavior may change if the
syntax of regular expressions is extended in future versions.

3.4 Anchoring

The caret ‘^’ and the dollar sign ‘$’ are special characters that respectively match the empty
string at the beginning and end of a line. They are termed anchors, since they force the
match to be “anchored” to beginning or end of a line, respectively.

3.5 Back-references and Subexpressions

The back-reference ‘\n’, where n is a single nonzero digit, matches the substring previously
matched by the nth parenthesized subexpression of the regular expression. For example,
‘(a)\1’ matches ‘aa’. If the parenthesized subexpression does not participate in the match,
the back-reference makes the whole match fail; for example, ‘(a)*\1’ fails to match ‘a’.
If the parenthesized subexpression matches more than one substring, the back-reference
refers to the last matched substring; for example, ‘^(ab*)*\1$’ matches ‘ababbabb’ but
not ‘ababbab’. When multiple regular expressions are given with -e or from a file (‘-f
file’), back-references are local to each expression.

See Section 6.1 [Known Bugs], page 27, for some known problems with back-references.

3.6 Basic vs Extended Regular Expressions

Basic regular expressions differ from extended regular expressions in the following ways:

• The characters ‘?’, ‘+’, ‘{’, ‘|’, ‘(’, and ‘)’ lose their special meaning; instead use the
backslashed versions ‘\?’, ‘\+’, ‘\{’, ‘\|’, ‘\(’, and ‘\)’. Also, a backslash is needed
before an interval expression’s closing ‘}’.

• An unmatched ‘\)’ is invalid.

• If an unescaped ‘^’ appears neither first, nor directly after ‘\(’ or ‘\|’, it is treated like
an ordinary character and is not an anchor.

• If an unescaped ‘$’ appears neither last, nor directly before ‘\|’ or ‘\)’, it is treated
like an ordinary character and is not an anchor.

• If an unescaped ‘*’ appears first, or appears directly after ‘\(’ or ‘\|’ or anchoring ‘^’,
it is treated like an ordinary character and is not a repetition operator.

Chapter 3: Regular Expressions 18

3.7 Problematic Regular Expressions

Some strings are invalid regular expressions and cause grep to issue a diagnostic and fail.
For example, ‘xy\1’ is invalid because there is no parenthesized subexpression for the back-
reference ‘\1’ to refer to.

Also, some regular expressions have unspecified behavior and should be avoided even
if grep does not currently diagnose them. For example, ‘xy\0’ has unspecified behavior
because ‘0’ is not a special character and ‘\0’ is not a special backslash expression (see
Section 3.3 [Special Backslash Expressions], page 16). Unspecified behavior can be partic-
ularly problematic because the set of matched strings might be only partially specified, or
not be specified at all, or the expression might even be invalid.

The following regular expression constructs are invalid on all platforms conforming to
POSIX, so portable scripts can assume that grep rejects these constructs:

• A basic regular expression containing a back-reference ‘\n’ preceded by fewer than n
closing parentheses. For example, ‘\(a\)\2’ is invalid.

• A bracket expression containing ‘[:’ that does not start a character class; and similarly
for ‘[=’ and ‘[.’. For example, ‘[a[:b]’ and ‘[a[:ouch:]b]’ are invalid.

GNU grep treats the following constructs as invalid. However, other grep implementa-
tions might allow them, so portable scripts should not rely on their being invalid:

• Unescaped ‘\’ at the end of a regular expression.

• Unescaped ‘[’ that does not start a bracket expression.

• A ‘\{’ in a basic regular expression that does not start an interval expression.

• A basic regular expression with unbalanced ‘\(’ or ‘\)’, or an extended regular expres-
sion with unbalanced ‘(’.

• In the POSIX locale, a range expression like ‘z-a’ that represents zero elements. A
non-GNU grep might treat it as a valid range that never matches.

• An interval expression with a repetition count greater than 32767. (The portable
POSIX limit is 255, and even interval expressions with smaller counts can be imprac-
tically slow on all known implementations.)

• A bracket expression that contains at least three elements, the first and last of which
are both ‘:’, or both ‘.’, or both ‘=’. For example, a non-GNU grep might treat
‘[:alpha:]’ like ‘[[:alpha:]]’, or like ‘[:ahlp]’.

The following constructs have well-defined behavior in GNU grep. However, they have
unspecified behavior elsewhere, so portable scripts should avoid them:

• Special backslash expressions like ‘\b’, ‘\<’, and ‘\]’. See Section 3.3 [Special Backslash
Expressions], page 16.

• A basic regular expression that uses ‘\?’, ‘\+’, or ‘\|’.

• An extended regular expression that uses back-references.

• An empty regular expression, subexpression, or alternative. For example, ‘(a|bc|)’ is
not portable; a portable equivalent is ‘(a|bc)?’.

• In a basic regular expression, an anchoring ‘^’ that appears directly after ‘\(’, or an
anchoring ‘$’ that appears directly before ‘\)’.

Chapter 3: Regular Expressions 19

• In a basic regular expression, a repetition operator that directly follows another repe-
tition operator.

• In an extended regular expression, unescaped ‘{’ that does not begin a valid interval
expression. GNU grep treats the ‘{’ as an ordinary character.

• A null character or an encoding error in either pattern or input data. See Section 3.8
[Character Encoding], page 19.

• An input file that ends in a non-newline character, where GNU grep silently supplies
a newline.

The following constructs have unspecified behavior, in both GNU and other grep im-
plementations. Scripts should avoid them whenever possible.

• A backslash escaping an ordinary character, unless it is a back-reference like ‘\1’ or
a special backslash expression like ‘\<’ or ‘\b’. See Section 3.3 [Special Backslash
Expressions], page 16. For example, ‘\x’ has unspecified behavior now, and a future
version of grep might specify ‘\x’ to have a new behavior.

• A repetition operator that appears directly after an anchor, or at the start of a com-
plete regular expression, parenthesized subexpression, or alternative. For example,
‘+|^*(+a|?-b)’ has unspecified behavior, whereas ‘\+|^*(\+a|\?-b)’ is portable.

• A range expression outside the POSIX locale. For example, in some locales ‘[a-z]’
might match some characters that are not lowercase letters, or might not match some
lowercase letters, or might be invalid. With GNU grep it is not documented whether
these range expressions use native code points, or use the collating sequence spec-
ified by the LC_COLLATE category, or have some other interpretation. Outside the
POSIX locale, it is portable to use ‘[[:lower:]]’ to match a lower-case letter, or
‘[abcdefghijklmnopqrstuvwxyz]’ to match an ASCII lower-case letter.

3.8 Character Encoding

The LC_CTYPE locale specifies the encoding of characters in patterns and data, that is,
whether text is encoded in UTF-8, ASCII, or some other encoding. See Section 2.2 [Envi-
ronment Variables], page 9.

In the ‘C’ or ‘POSIX’ locale, every character is encoded as a single byte and every byte
is a valid character. In more-complex encodings such as UTF-8, a sequence of multiple
bytes may be needed to represent a character, and some bytes may be encoding errors
that do not contribute to the representation of any character. POSIX does not specify the
behavior of grep when patterns or input data contain encoding errors or null characters, so
portable scripts should avoid such usage. As an extension to POSIX, GNU grep treats null
characters like any other character. However, unless the -a (--binary-files=text) option
is used, the presence of null characters in input or of encoding errors in output causes GNU
grep to treat the file as binary and suppress details about matches. See Section 2.1.6 [File
and Directory Selection], page 7.

Regardless of locale, the 103 characters in the POSIX Portable Character Set (a subset
of ASCII) are always encoded as a single byte, and the 128 ASCII characters have their
usual single-byte encodings on all but oddball platforms.

Chapter 3: Regular Expressions 20

3.9 Matching Non-ASCII and Non-printable Characters

In a regular expression, non-ASCII and non-printable characters other than newline are
not special, and represent themselves. For example, in a locale using UTF-8 the command
‘grep 'Λ ω'’ (where the white space between ‘Λ’ and the ‘ω’ is a tab character) searches
for ‘Λ’ (Unicode character U+039B GREEK CAPITAL LETTER LAMBDA), followed by
a tab (U+0009 TAB), followed by ‘ω’ (U+03C9 GREEK SMALL LETTER OMEGA).

Suppose you want to limit your pattern to only printable characters (or even only print-
able ASCII characters) to keep your script readable or portable, but you also want to match
specific non-ASCII or non-null non-printable characters. If you are using the -P (--perl-
regexp) option, PCREs give you several ways to do this. Otherwise, if you are using Bash,
the GNU project’s shell, you can represent these characters via ANSI-C quoting. For exam-
ple, the Bash commands ‘grep $'Λ\tω'’ and ‘grep $'\u039B\t\u03C9'’ both search for
the same three-character string ‘Λ ω’ mentioned earlier. However, because Bash translates
ANSI-C quoting before grep sees the pattern, this technique should not be used to match
printable ASCII characters; for example, ‘grep $'\u005E'’ is equivalent to ‘grep '^'’ and
matches any line, not just lines containing the character ‘^’ (U+005E CIRCUMFLEX AC-
CENT).

Since PCREs and ANSI-C quoting are GNU extensions to POSIX, portable shell scripts
written in ASCII should use other methods to match specific non-ASCII characters. For
example, in a UTF-8 locale the command ‘grep "$(printf '\316\233\t\317\211\n')"’
is a portable albeit hard-to-read alternative to Bash’s ‘grep $'Λ\tω'’. However, none of
these techniques will let you put a null character directly into a command-line pattern; null
characters can appear only in a pattern specified via the -f (--file) option.

21

4 Usage

Here is an example command that invokes GNU grep:

grep -i 'hello.*world' menu.h main.c

This lists all lines in the files menu.h and main.c that contain the string ‘hello’ followed
by the string ‘world’; this is because ‘.*’ matches zero or more characters within a line.
See Chapter 3 [Regular Expressions], page 14. The -i option causes grep to ignore case,
causing it to match the line ‘Hello, world!’, which it would not otherwise match.

Here is a more complex example, showing the location and contents of any line containing
‘f’ and ending in ‘.c’, within all files in the current directory whose names start with non-
‘.’, contain ‘g’, and end in ‘.h’. The -n option outputs line numbers, the -- argument
treats any later arguments as file names not options even if *g*.h expands to a file name
that starts with ‘-’, and the empty file /dev/null causes file names to be output even if
only one file name happens to be of the form ‘*g*.h’.

grep -n -- 'f.*\.c$' *g*.h /dev/null

Note that the regular expression syntax used in the pattern differs from the globbing syntax
that the shell uses to match file names.

See Chapter 2 [Invoking], page 2, for more details about how to invoke grep.

Here are some common questions and answers about grep usage.

1. How can I list just the names of matching files?

grep -l 'main' test-*.c

lists names of ‘test-*.c’ files in the current directory whose contents mention ‘main’.

2. How do I search directories recursively?

grep -r 'hello' /home/gigi

searches for ‘hello’ in all files under the /home/gigi directory. For more control over
which files are searched, use find and grep. For example, the following command
searches only C files:

find /home/gigi -name '*.c' ! -type d \

-exec grep -H 'hello' '{}' +

This differs from the command:

grep -H 'hello' /home/gigi/*.c

which merely looks for ‘hello’ in non-hidden C files in /home/gigi whose names end
in ‘.c’. The find command line above is more similar to the command:

grep -r --include='*.c' 'hello' /home/gigi

3. What if a pattern or file has a leading ‘-’? For example:

grep "$pattern" *

can behave unexpectedly if the value of ‘pattern’ begins with ‘-’, or if the ‘*’ expands
to a file name with leading ‘-’. To avoid the problem, you can use -e for patterns and
leading ‘./’ for files:

grep -e "$pattern" ./*

searches for all lines matching the pattern in all the working directory’s files whose
names do not begin with ‘.’. Without the -e, grep might treat the pattern as an

Chapter 4: Usage 22

option if it begins with ‘-’. Without the ‘./’, there might be similar problems with file
names beginning with ‘-’.

Alternatively, you can use ‘--’ before the pattern and file names:

grep -- "$pattern" *

This also fixes the problem, except that if there is a file named ‘-’, grep misinterprets
the ‘-’ as standard input.

4. Suppose I want to search for a whole word, not a part of a word?

grep -w 'hello' test*.log

searches only for instances of ‘hello’ that are entire words; it does not match ‘Othello’.
For more control, use ‘\<’ and ‘\>’ to match the start and end of words. For example:

grep 'hello\>' test*.log

searches only for words ending in ‘hello’, so it matches the word ‘Othello’.

5. How do I output context around the matching lines?

grep -C 2 'hello' test*.log

prints two lines of context around each matching line.

6. How do I force grep to print the name of the file?

Append /dev/null:

grep 'eli' /etc/passwd /dev/null

gets you:

/etc/passwd:eli:x:2098:1000:Eli Smith:/home/eli:/bin/bash

Alternatively, use -H, which is a GNU extension:

grep -H 'eli' /etc/passwd

7. Why do people use strange regular expressions on ps output?

ps -ef | grep '[c]ron'

If the pattern had been written without the square brackets, it would have matched
not only the ps output line for cron, but also the ps output line for grep. Note that
on some platforms, ps limits the output to the width of the screen; grep does not have
any limit on the length of a line except the available memory.

8. Why does grep report “Binary file matches”?

If grep listed all matching “lines” from a binary file, it would probably generate
output that is not useful, and it might even muck up your display. So GNU
grep suppresses output from files that appear to be binary files. To force GNU
grep to output lines even from files that appear to be binary, use the -a or
‘--binary-files=text’ option. To eliminate the “Binary file matches” messages, use
the -I or ‘--binary-files=without-match’ option.

9. Why doesn’t ‘grep -lv’ print non-matching file names?

‘grep -lv’ lists the names of all files containing one or more lines that do not match.
To list the names of all files that contain no matching lines, use the -L or --files-
without-match option.

10. I can do “OR” with ‘|’, but what about “AND”?

grep 'paul' /etc/motd | grep 'franc,ois'

finds all lines that contain both ‘paul’ and ‘franc,ois’.

Chapter 4: Usage 23

11. Why does the empty pattern match every input line?

The grep command searches for lines that contain strings that match a pattern. Every
line contains the empty string, so an empty pattern causes grep to find a match on
each line. It is not the only such pattern: ‘^’, ‘$’, and many other patterns cause grep
to match every line.

To match empty lines, use the pattern ‘^$’. To match blank lines, use the pattern
‘^[[:blank:]]*$’. To match no lines at all, use an extended regular expression like
‘a^’ or ‘$a’. To match every line, a portable script should use a pattern like ‘^’ instead
of the empty pattern, as POSIX does not specify the behavior of the empty pattern.

12. How can I search in both standard input and in files?

Use the special file name ‘-’:

cat /etc/passwd | grep 'alain' - /etc/motd

13. Why can’t I combine the shell’s ‘set -e’ with grep?

The grep command follows the convention of programs like cmp and diff where an
exit status of 1 is not an error. The shell command ‘set -e’ causes the shell to exit if
any subcommand exits with nonzero status, and this will cause the shell to exit merely
because grep selected no lines, which is ordinarily not what you want.

There is a related problem with Bash’s set -e -o pipefail. Since grep does not
always read all its input, a command outputting to a pipe read by grep can fail when
grep exits before reading all its input, and the command’s failure can cause Bash to
exit.

14. Why is this back-reference failing?

echo 'ba' | grep -E '(a)\1|b\1'

This outputs an error message, because the second ‘\1’ has nothing to refer back to,
meaning it will never match anything.

15. How can I match across lines?

Standard grep cannot do this, as it is fundamentally line-based. Therefore, merely
using the [:space:] character class does not match newlines in the way you might
expect.

With the GNU grep option -z (--null-data), each input and output “line” is null-
terminated; see Section 2.1.7 [Other Options], page 9. Thus, you can match newlines
in the input, but typically if there is a match the entire input is output, so this usage
is often combined with output-suppressing options like -q, e.g.:

printf 'foo\nbar\n' | grep -z -q 'foo[[:space:]]\+bar'

If this does not suffice, you can transform the input before giving it to grep, or turn
to awk, sed, perl, or many other utilities that are designed to operate across lines.

16. What do grep, -E, and -F stand for?

The name grep comes from the way line editing was done on Unix. For example, ed
uses the following syntax to print a list of matching lines on the screen:

global/regular expression/print

g/re/p

The -E option stands for Extended grep. The -F option stands for Fixed grep;

Chapter 4: Usage 24

17. What happened to egrep and fgrep?

7th Edition Unix had commands egrep and fgrep that were the counterparts of the
modern ‘grep -E’ and ‘grep -F’. Although breaking up grep into three programs was
perhaps useful on the small computers of the 1970s, egrep and fgrep were deemed
obsolescent by POSIX in 1992, removed from POSIX in 2001, deprecated by GNU
Grep 2.5.3 in 2007, and changed to issue obsolescence warnings by GNU Grep 3.8 in
2022; eventually, they are planned to be removed entirely.

If you prefer the old names, you can use your own substitutes, such as a shell script
named egrep with the following contents:

#!/bin/sh

exec grep -E "$@"

25

5 Performance

Typically grep is an efficient way to search text. However, it can be quite slow in some cases,
and it can search large files where even minor performance tweaking can help significantly.
Although the algorithm used by grep is an implementation detail that can change from
release to release, understanding its basic strengths and weaknesses can help you improve
its performance.

The grep command operates partly via a set of automata that are designed for effi-
ciency, and partly via a slower matcher that takes over when the fast matchers run into
unusual features like back-references. When feasible, the Boyer–Moore fast string searching
algorithm is used to match a single fixed pattern, and the Aho–Corasick algorithm is used
to match multiple fixed patterns.

Generally speaking grep operates more efficiently in single-byte locales, since it can avoid
the special processing needed for multi-byte characters. If your patterns will work just as
well that way, setting LC_ALL to a single-byte locale can help performance considerably.
Setting ‘LC_ALL='C'’ can be particularly efficient, as grep is tuned for that locale.

Outside the ‘C’ locale, case-insensitive search, and search for bracket expressions like
‘[a-z]’ and ‘[[=a=]b]’, can be surprisingly inefficient due to difficulties in fast portable
access to concepts like multi-character collating elements.

Interval expressions may be implemented internally via repetition. For example,
‘^(a|bc){2,4}$’ might be implemented as ‘^(a|bc)(a|bc)((a|bc)(a|bc)?)?$’. A large
repetition count may exhaust memory or greatly slow matching. Even small counts can
cause problems if cascaded; for example, ‘grep -E ".*{10,}{10,}{10,}{10,}{10,}"’ is
likely to overflow a stack. Fortunately, regular expressions like these are typically artificial,
and cascaded repetitions do not conform to POSIX so cannot be used in portable programs
anyway.

A back-reference such as ‘\1’ can hurt performance significantly in some cases, since
back-references cannot in general be implemented via a finite state automaton, and instead
trigger a backtracking algorithm that can be quite inefficient. For example, although the
pattern ‘^(.*)\1{14}(.*)\2{13}$’ matches only lines whose lengths can be written as a
sum 15x + 14y for nonnegative integers x and y, the pattern matcher does not perform
linear Diophantine analysis and instead backtracks through all possible matching strings,
using an algorithm that is exponential in the worst case.

On some operating systems that support files with holes—large regions of zeros that
are not physically present on secondary storage—grep can skip over the holes efficiently
without needing to read the zeros. This optimization is not available if the -a (--binary-
files=text) option is used (see Section 2.1.6 [File and Directory Selection], page 7), unless
the -z (--null-data) option is also used (see Section 2.1.7 [Other Options], page 9).

For efficiency grep does not always read all its input. For example, the shell command
‘sed '/^...$/d' | grep -q X’ can cause grep to exit immediately after reading a line con-
taining ‘X’, without bothering to read the rest of its input data. This in turn can cause sed
to exit with a nonzero status because sed cannot write to its output pipe after grep exits.

For more about the algorithms used by grep and about related string matching algo-
rithms, see:

Chapter 5: Performance 26

• Aho AV. Algorithms for finding patterns in strings. In: van Leeuwen J. Handbook of
Theoretical Computer Science, vol. A. New York: Elsevier; 1990. p. 255–300. This sur-
veys classic string matching algorithms, some of which are used by grep.

• Aho AV, Corasick MJ. Efficient string matching: an aid to bibliographic search. CACM.
1975;18(6):333–40. https://doi.org/10.1145/360825.360855. This introduces the
Aho–Corasick algorithm.

• Boyer RS, Moore JS. A fast string searching algorithm. CACM. 1977;20(10):762–72.
https://doi.org/10.1145/359842.359859. This introduces the Boyer–Moore algo-
rithm.

• Faro S, Lecroq T. The exact online string matching problem: a review of the most re-
cent results. ACM Comput Surv. 2013;45(2):13. https://doi.org/10.1145/2431211.
2431212. This surveys string matching algorithms that might help improve the perfor-
mance of grep in the future.

• Hakak SI, Kamsin A, Shivakumara P, Gilkar GA, Khan WZ, Imran M. Exact string
matching algorithms: survey issues, and future research directions. IEEE Access.
2019;7:69614–37. https://doi.org/10.1109/ACCESS.2019.2914071. This survey is
more recent than Faro & Lecroq, and focuses on taxonomy instead of performance.

• Hume A, Sunday D. Fast string search. Software Pract Exper. 1991;21(11):1221–48.
https://doi.org/10.1002/spe.4380211105. This excellent albeit now-dated survey
aided the initial development of grep.

https://doi.org/10.1145/360825.360855
https://doi.org/10.1145/359842.359859
https://doi.org/10.1145/2431211.2431212
https://doi.org/10.1145/2431211.2431212
https://doi.org/10.1109/ACCESS.2019.2914071
https://doi.org/10.1002/spe.4380211105

27

6 Reporting bugs

Bug reports can be found at the GNU bug report logs for grep (https://debbugs.gnu.
org/cgi/pkgreport.cgi?package=grep). If you find a bug not listed there, please email
it to bug-grep@gnu.org to create a new bug report.

6.1 Known Bugs

Large repetition counts in the ‘{n,m}’ construct may cause grep to use lots of memory. In
addition, certain other obscure regular expressions require exponential time and space, and
may cause grep to run out of memory.

Back-references can greatly slow down matching, as they can generate exponentially
many matching possibilities that can consume both time and memory to explore. Also,
the POSIX specification for back-references is at times unclear. Furthermore, many regular
expression implementations have back-reference bugs that can cause programs to return
incorrect answers or even crash, and fixing these bugs has often been low-priority: for ex-
ample, as of 2021 the GNU C library bug database (https://sourceware.org/bugzilla/
) contained back-reference bugs 52, 10844, 11053, 24269 and 25322, with little sign of forth-
coming fixes. Luckily, back-references are rarely useful and it should be little trouble to
avoid them in practical applications.

https://debbugs.gnu.org/cgi/pkgreport.cgi?package=grep
https://debbugs.gnu.org/cgi/pkgreport.cgi?package=grep
mailto:bug-grep@gnu.org
https://sourceware.org/bugzilla/
https://sourceware.org/bugzilla/
https://sourceware.org/bugzilla/show_bug.cgi?id=52
https://sourceware.org/bugzilla/show_bug.cgi?id=10844
https://sourceware.org/bugzilla/show_bug.cgi?id=11053
https://sourceware.org/bugzilla/show_bug.cgi?id=24269
https://sourceware.org/bugzilla/show_bug.cgi?id=25322

28

7 Copying

GNU grep is licensed under the GNU GPL, which makes it free software.

The “free” in “free software” refers to liberty, not price. As some GNU project advocates
like to point out, think of “free speech” rather than “free beer”. In short, you have the right
(freedom) to run and change grep and distribute it to other people, and—if you want—
charge money for doing either. The important restriction is that you have to grant your
recipients the same rights and impose the same restrictions.

This general method of licensing software is sometimes called open source. The GNU
project prefers the term “free software” for reasons outlined at https://www.gnu.org/

philosophy/open-source-misses-the-point.html.

This manual is free documentation in the same sense. The documentation license is in-
cluded below. The license for the program is available with the source code, or at https://
www.gnu.org/licenses/gpl.html.

7.1 GNU Free Documentation License

Version 1.3, 3 November 2008

Copyright c© 2000–2002, 2007–2008, 2023 Free Software Foundation,
Inc.
https://fsf.org/

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and
useful document free in the sense of freedom: to assure everyone the effective freedom
to copy and redistribute it, with or without modifying it, either commercially or non-
commercially. Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible for modifications
made by others.

This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a
notice placed by the copyright holder saying it can be distributed under the terms
of this License. Such a notice grants a world-wide, royalty-free license, unlimited in
duration, to use that work under the conditions stated herein. The “Document”,

https://www.gnu.org/philosophy/open-source-misses-the-point.html
https://www.gnu.org/philosophy/open-source-misses-the-point.html
https://www.gnu.org/licenses/gpl.html
https://www.gnu.org/licenses/gpl.html
https://fsf.org/

Chapter 7: Copying 29

below, refers to any such manual or work. Any member of the public is a licensee, and
is addressed as “you”. You accept the license if you copy, modify or distribute the work
in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into
another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that
could fall directly within that overall subject. (Thus, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding
them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released
under this License. If a section does not fit the above definition of Secondary then it is
not allowed to be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may
be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, that is suitable for
revising the document straightforwardly with generic text editors or (for images com-
posed of pixels) generic paint programs or (for drawings) some widely available drawing
editor, and that is suitable for input to text formatters or for automatic translation to
a variety of formats suitable for input to text formatters. A copy made in an otherwise
Transparent file format whose markup, or absence of markup, has been arranged to
thwart or discourage subsequent modification by readers is not Transparent. An image
format is not Transparent if used for any substantial amount of text. A copy that is
not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without
markup, Texinfo input format, LaTEX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML, PostScript or PDF designed
for human modification. Examples of transparent image formats include PNG, XCF
and JPG. Opaque formats include proprietary formats that can be read and edited
only by proprietary word processors, SGML or XML for which the DTD and/or pro-
cessing tools are not generally available, and the machine-generated HTML, PostScript
or PDF produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”

Chapter 7: Copying 30

means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

The “publisher” means any person or entity that distributes copies of the Document
to the public.

A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such
as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve
the Title” of such a section when you modify the Document means that it remains a
section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to
be included by reference in this License, but only as regards disclaiming warranties:
any other implication that these Warranty Disclaimers may have is void and has no
effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and
that you add no other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for copies.
If you distribute a large enough number of copies you must also follow the conditions
in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of
the Document, numbering more than 100, and the Document’s license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify you as the publisher
of these copies. The front cover must present the full title with all words of the title
equally prominent and visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verbatim copying in other
respects.

If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a computer-network location from which
the general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material. If

Chapter 7: Copying 31

you use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will
remain thus accessible at the stated location until at least one year after the last time
you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of
it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any,
be listed in the History section of the Document). You may use the same title as
a previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has fewer
than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item
stating at least the title, year, new authors, and publisher of the Modified Version
as given on the Title Page. If there is no section Entitled “History” in the Docu-
ment, create one stating the title, year, authors, and publisher of the Document
as given on its Title Page, then add an item describing the Modified Version as
stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
“History” section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

Chapter 7: Copying 32

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included
in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in
title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their
titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties—for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but
you may replace the old one, on explicit permission from the previous publisher that
added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.

Chapter 7: Copying 33

In the combination, you must combine any sections Entitled “History” in the vari-
ous original documents, forming one section Entitled “History”; likewise combine any
sections Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You
must delete all sections Entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.

You may extract a single document from such a collection, and distribute it individu-
ally under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called
an “aggregate” if the copyright resulting from the compilation is not used to limit the
legal rights of the compilation’s users beyond what the individual works permit. When
the Document is included in an aggregate, this License does not apply to the other
works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they
must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original versions
of these Invariant Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warranty Disclaimers, provided that you
also include the original English version of this License and the original versions of
those notices and disclaimers. In case of a disagreement between the translation and
the original version of this License or a notice or disclaimer, the original version will
prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “His-
tory”, the requirement (section 4) to Preserve its Title (section 1) will typically require
changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense, or
distribute it is void, and will automatically terminate your rights under this License.

Chapter 7: Copying 34

However, if you cease all violation of this License, then your license from a particular
copyright holder is reinstated (a) provisionally, unless and until the copyright holder
explicitly and finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means prior to 60 days
after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if
the copyright holder notifies you of the violation by some reasonable means, this is the
first time you have received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after your receipt of the
notice.

Termination of your rights under this section does not terminate the licenses of parties
who have received copies or rights from you under this License. If your rights have
been terminated and not permanently reinstated, receipt of a copy of some or all of the
same material does not give you any rights to use it.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See https://www.gnu.org/licenses/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of
this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation. If the Document specifies that a proxy can decide which future
versions of this License can be used, that proxy’s public statement of acceptance of a
version permanently authorizes you to choose that version for the Document.

11. RELICENSING

“Massive Multiauthor Collaboration Site” (or “MMC Site”) means any World Wide
Web server that publishes copyrightable works and also provides prominent facilities
for anybody to edit those works. A public wiki that anybody can edit is an example of
such a server. A “Massive Multiauthor Collaboration” (or “MMC”) contained in the
site means any set of copyrightable works thus published on the MMC site.

“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0 license pub-
lished by Creative Commons Corporation, a not-for-profit corporation with a principal
place of business in San Francisco, California, as well as future copyleft versions of that
license published by that same organization.

“Incorporate” means to publish or republish a Document, in whole or in part, as part
of another Document.

An MMC is “eligible for relicensing” if it is licensed under this License, and if all works
that were first published under this License somewhere other than this MMC, and
subsequently incorporated in whole or in part into the MMC, (1) had no cover texts
or invariant sections, and (2) were thus incorporated prior to November 1, 2008.

https://www.gnu.org/licenses/

Chapter 7: Copying 35

The operator of an MMC Site may republish an MMC contained in the site under
CC-BY-SA on the same site at any time before August 1, 2009, provided the MMC is
eligible for relicensing.

Chapter 7: Copying 36

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify this document

under the terms of the GNU Free Documentation License, Version 1.3

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover

Texts. A copy of the license is included in the section entitled ``GNU

Free Documentation License''.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with. . .Texts.” line with this:

with the Invariant Sections being list their titles, with

the Front-Cover Texts being list, and with the Back-Cover Texts

being list.

If you have Invariant Sections without Cover Texts, or some other combination of the
three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.

37

Index

*
* . 14

+
+ . 14

–
-- . 9
--after-context . 6
--basic-regexp . 13
--before-context . 6
--binary . 9
--binary-files . 7
--byte-offset . 5
--color . 4
--colour . 4
--context . 6
--count . 3
--dereference-recursive . 9
--devices . 8
--directories . 8
--exclude . 8
--exclude-dir . 8
--exclude-from . 8
--extended-regexp . 13
--file . 2
--files-with-matches . 4
--files-without-match . 4
--fixed-strings . 13
--group-separator . 6
--help . 2
--ignore-case . 2
--include . 8
--initial-tab . 6
--invert-match . 3
--label . 5
--line-buffered . 9
--line-number . 6
--line-regexp . 3
--max-count . 4
--no-filename . 5
--no-ignore-case . 3
--no-messages . 5
--null . 6
--null-data . 9
--only-matching . 5
--perl-regexp . 13
--quiet . 5
--recursive . 8
--regexp=patterns . 2
--silent . 5
--text . 7

--version . 2
--with-filename . 5
--word-regexp . 3
-a . 7
-A . 6
-b . 5
-B . 6
-c . 3
-C . 6
-d . 8
-D . 8
-e . 2
-E . 13
-f . 2
-F . 13
-G . 13
-h . 5
-H . 5
-i . 2
-l . 4
-L . 4
-m . 4
-n . 6
-num . 6
-o . 5
-P . 13
-q . 5
-r . 8
-R . 9
-s . 5
-T . 6
-U . 9
-v . 3
-V . 2
-w . 3
-x . 3
-y . 2
-z . 9
-Z . 6

.

. 14

?
? . 14

{
{,m} . 14
{n,} . 14
{n,m} . 14
{n} . 14

Index 38

A
after context . 6
alnum character class . 15
alpha character class . 15
alphabetic characters . 15
alphanumeric characters . 15
alternatives in regular expressions 14
anchoring . 17
asterisk . 14

B
back-reference . 17
back-references . 25
backslash . 16
basic regular expressions . 17
before context . 6
binary files . 7
binary I/O . 9
blank character class . 15
blank characters . 15
bn GREP_COLORS capability . 11
braces, first argument omitted 14
braces, one argument . 14
braces, second argument omitted 14
braces, two arguments . 14
bracket expression . 15
Bugs, known . 27
bugs, reporting . 27
byte offset . 5

C
case insensitive search . 2, 25
changing name of standard input 5
character class . 15
character classes . 15
character encoding . 19
character type . 12
classes of characters . 15
cntrl character class . 15
context lines . 4, 6
context lines, after match . 6
context lines, before match . 6
control characters . 15
copying . 28
counting lines . 3
cx GREP_COLORS capability . 10

D
device search . 8
digit character class . 15
digit characters . 15
directory search . 8
dot . 14

E
encoding error . 12
environment variables . 10
exclude directories . 8
exclude files . 8
exit status . 12

F
FAQ about grep usage . 21
files which don’t match . 4
fn GREP_COLORS capability . 11

G
graph character class . 15
graphic characters . 15
grep programs . 12
GREP_COLOR environment variable 10
GREP_COLORS environment variable 10
group separator . 6

H
hexadecimal digits . 16
highlight markers . 10
highlight, color, colour . 4
holes in files . 25

I
include files . 8
interval expressions . 14, 25
invalid regular expressions . 18
invert matching . 3

L
LANG environment variable 9, 12
language of messages . 12
LANGUAGE environment variable 9, 12
LC_ALL environment variable 9, 12
LC_COLLATE environment variable 12
LC_CTYPE environment variable 12
LC_MESSAGES environment variable 9, 12
line buffering . 9
line numbering . 6
ln GREP_COLORS capability . 11
locales . 25
lower character class . 15
lower-case letters . 15

Index 39

M
match expression at most m times 14
match expression at most once 14
match expression from n to m times 14
match expression n or more times 14
match expression n times . 14
match expression one or more times 14
match expression zero or more times 14
match the whole line . 3
matching basic regular expressions 13
matching extended regular expressions 13
matching fixed strings . 13
matching Perl-compatible regular expressions . . . 13
matching whole words . 3
max-count . 4
mc GREP_COLORS capability . 11
message language . 12
ms GREP_COLORS capability . 11
MS-Windows binary I/O . 9
mt GREP_COLORS capability . 11

N
names of matching files . 4
national language support . 12
ne GREP_COLORS capability . 11
NLS . 12
no filename prefix . 5
non-ASCII matching . 20
non-printable matching . 20
null character . 12
numeric characters . 15

O
only matching . 5
option delimiter . 9
ordinary characters . 14

P
patterns from file . 2
patterns option . 2
performance . 25
period . 14
pipelines and reading . 25
plus sign . 14
POSIXLY_CORRECT environment variable 12
print character class . 15
print non-matching lines . 3
printable characters . 15
punct character class . 15
punctuation characters . 15

Q
question mark . 14
quiet, silent . 5

R
range expression . 15
recursive search . 8, 9
regular expressions . 14
return status . 12
rv GREP_COLORS capability . 11

S
searching directory trees . 8, 9
searching for patterns . 1
sl GREP_COLORS capability . 10
space character class . 16
space characters . 16
special characters . 14
subexpression . 17
suppress binary data . 7
suppress error messages . 5
symbolic links . 8, 9

T
tab-aligned content lines . 6
TERM environment variable . 12
translation of message language 12

U
unspecified behavior in regular expressions 18
upper character class . 16
upper-case letters . 16
usage summary, printing . 2
usage, examples . 21
using grep, Q&A . 21

V
variants of grep . 12
version, printing . 2

W
whitespace characters . 16
with filename prefix . 5

X
xdigit character class . 16
xdigit class . 16

Index 40

Z
zero-terminated file names . 6
zero-terminated lines . 9

	1 Introduction
	2 Invoking grep
	Command-line Options
	Generic Program Information
	Matching Control
	General Output Control
	Output Line Prefix Control
	Context Line Control
	File and Directory Selection
	Other Options

	Environment Variables
	Exit Status
	grep Programs

	3 Regular Expressions
	Fundamental Structure
	Character Classes and Bracket Expressions
	Special Backslash Expressions
	Anchoring
	Back-references and Subexpressions
	Basic vs Extended Regular Expressions
	Problematic Regular Expressions
	Character Encoding
	Matching Non-ASCII and Non-printable Characters

	4 Usage
	5 Performance
	6 Reporting bugs
	Known Bugs

	7 Copying
	GNU Free Documentation License

	Index

