GNU Automake

For version 1.11.2, 21 December 2011

David MacKenzie
Tom Tromey
Alexandre Duret-Lutz

This manual is for GNU Automake (version 1.11.2, 21 December 2011), a program that
creates GNU standards-compliant Makefiles from template files.

Copyright (©) 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
2008, 2009, 2010, 2011 Free Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document under
the terms of the GNU Free Documentation License, Version 1.3 or any later
version published by the Free Software Foundation; with no Invariant Sections,
with no Front-Cover texts, and with no Back-Cover Texts. A copy of the license
is included in the section entitled “GNU Free Documentation License.”

Table of Contents

1

2

5

Introductionl 1
An Introduction to the Autotools.............. 1
2.1 Introducing the GNU Build System 1
2.2 Use Cases for the GNU Build System 2
2.2.1 Basic Installation o i 3
2.2.2 Standard Makefile Targets............ccooiiiiiiiiia... 4
2.2.3 Standard Directory Variables 4
2.2.4 Standard Configuration Variables................. 5
2.2.5 Overriding Default Configuration Setting with config.site..6
2.2.6 Parallel Build Trees (a.k.a. VPATH Builds) 6
2.2.7 Two-Part Installation.......... i i 8
2.2.8 Cross-Compilation, 9
2.2.9 Renaming Programs at Install Time 10
2.2.10 Building Binary Packages Using DESTDIR, 10
2.2.11 Preparing Distributions.................ooiiiiiiiia. 11
2.2.12 Automatic Dependency Tracking......................... 11
2.2.13 Nested Packages...........cooiiiiiiiiiiiiiiiii ... 12
2.3 How Autotools Help ... 13
2.4 A Small Hello World ... 13
2.4.1 Creating amhello-1.0.tar.gZ.......coovvvrienneennnnn.. 13
2.4.2 amhello’s configure.ac Setup Explained 15
2.4.3 amhello’s Makefile.am Setup Explained.................. 17
Generalideas...................... .. 18
3.1 General Operation.ooiiiiiiiiiiiiii e 18
3.2 StIICEIESS « oottt 19
3.3 The Uniform Naming Scheme.............. ...t 20
3.4 Staying below the command line length limit................... 21
3.5 How derived variables are named 22
3.6 Variables reserved for the user............ 22
3.7 Programs automake might require 23
Some example packages........................ 25
4.1 A simple example, start to finish............... 25
4.2 Building true and false 26

Creating a Makefile.in..................ooo... 27

6 Scanning configure.ac, using aclocal......... 30
6.1 Configuration requirements............, 30
6.2 Other things Automake recognizesc.coviuveieen... 32
6.3 Auto-generating aclocal.md.......... L. 35

6.3.1 aclocal Options..........oiiiiiiiiii i 36
6.3.2 Macro Search Path 37
6.3.3 Writing your own aclocal macros.......................... 40
6.3.4 Handling Local Macroscooviiiiiiiiii ... 41
6.3.5 Serial Numbers..... ... 42
6.3.6 The Future of aclocalcooiiiiiiiiiiiiinn... 44
6.4 Autoconf macros supplied with Automake 44
6.4.1 Public Macros.........oviii 44
6.4.2 Obsolete Macros.covvuiiiiiiiiiiii i 46
6.4.3 Private Macrosoouuieueiiiiiiii i 47
Directories.............. 48
7.1 Recursing subdirectories........... ... i 48
7.2 Conditional Subdirectories.............coiiiii ... 49
7.2.1 SUBDIRS vs. DIST_SUBDIRS0iiiiiiiieeiineennnnn.. 49
7.2.2 Subdirectories with AM_CONDITIONAL............c.vvvnnnn.. 50
7.2.3 Subdirectories with AC_SUBSTcoitiiiiiineannenn. 50
7.2.4 Unconfigured Subdirectories, 51
7.3 An Alternative Approach to Subdirectories 52
7.4 Nesting Packages...........o i 52
Building Programs and Libraries............. 54
8.1 Building a program.......... ... i 54
8.1.1 Defining program SOUICeSc.oveiuiiiieenneeennn. 54
8.1.2 Linking the program........... L. 55
8.1.3 Conditional compilation of sources........................ 56
8.1.4 Conditional compilation of programs...................... 57
8.2 Building a library ... 58
8.3 Building a Shared Library o i 59
8.3.1 The Libtool Concept........covviuiiiiiiiiiiii ... 59
8.3.2 Building Libtool Libraries........... ... oot 59
8.3.3 Building Libtool Libraries Conditionally 60
8.3.4 Libtool Libraries with Conditional Sources................ 61
8.3.5 Libtool Convenience Libraries............................. 61
8.3.6 Libtool Modules.............ciiiiiii i 63
8.3.7 _LIBADD, _LDFLAGS, and _LIBTOOLFLAGS.................. 63
8.3.8 LTLIBOBJS and LTALLOCA 64
8.3.9 Common Issues Related to Libtool’s Use.................. 64

8.3.9.1 Error: ‘required file ‘./ltmain.sh’ not found’... 64
8.3.9.2 Objects ‘created with both libtool and without’.. 64
8.4 Program and Library Variables................. 65
8.5 Default _SOURCESottt 69
8.6 Special handling for LIBOBJS and ALLOCAccou.... 69

ii

8.7 Variables used when building a program 71
8.8 Yacc and Lex SUPPOTtvvtiiiii 72
8.9 CH SUPPOTt . vttt 74
8.10 Objective C SUPPOTt .. .vvvi e 75
8.11 Unified Parallel C Support ..., 75
8.12 Assembly Support....... ... 76
8.13 Fortran 77 SUPpPOTt........oiiii 76
8.13.1 Preprocessing Fortran 77 77
8.13.2 Compiling Fortran 77 Fileso it 7
8.13.3 Mixing Fortran 77 With C and C++4..................... 77
8.13.3.1 How the Linker is Chosen........................... 78
8.14 Fortran 9x SUpPPOrt.........coiiiiiiii 78
8.14.1 Compiling Fortran 9x Files 79
8.15 Compiling Java sources using gcjoovvviiiieennne... 79
8.16 Vala Support........ooviiii e 79
8.17 Support for Other Languages............ ..., 80
8.18 Automatic de-ANSI-fication (deprecated, soon to be removed).. 80
8.19 Automatic dependency tracking, 81
8.20 Support for executable extensions.............ol 82
9 Other Derived Objects 82
9.1 Executable Scripts.........ooiiiiiiii i 83
9.2 Header files ... 84
9.3 Architecture-independent data files 84
9.4 Built SoUICes.o 84
9.4.1 Built Sources Example.........o i 85
10 Other GNU Tools............................. 88
10.1 Emacs Lisp . oo oo 88
10.2 GetbeXt .ottt 89
10.3 Libtool.o 89
10.4 Java bytecode compilation (deprecated)....................... 89
10.5 Python. ... 90
11 Building documentation...................... 92
11.1 Texinfo. ..o 92
11.2 Man Pageso 94
12 What Gets Installed.......................... 95
12.1 Basics of Installation i 95
12.2 The Two Partsof Install, 96
12.3 Extending Installation............ i 96
12.4 Staged Installs ... 96
12.5 Install Rules for the User............o .. 97

13 What Gets Cleaned 97

iii

14 What Goes in a Distribution 98
14.1 Basics of Distribution 98
14.2 Fine-grained Distribution Control................. 98
14.3 The dist Hook.o 99
14.4 Checking the Distribution 99
14.5 The Types of Distributions............. ... oo, 101

15 Support for test suites 101
15.1 Simple Tests ..o 102
15.2 Simple Tests using ‘parallel-testsccovvvinn... 103
15.3 DejaGnu Testso 105
15.4 Install Tests.ooooiiiiii e 106

16 Rebuilding Makefiles........................ 106

17 Changing Automake’s Behavior............ 107

18 Miscellaneous Rules......................... 111
18.1 Interfacing to etags.......... ... i 111
18.2 Handling new file extensions............ ..., 112
18.3 Support for Multilibs......... 113

19 Include......... L. 113

20 Conditionals 113
20.1 Usage of Conditionals............ccoiiiiiiiiiii .. 114
20.2 Limits of Conditionals........... i, 115

21 Silencingmake................................ 116
21.1 Make is verbose by default 116
21.2 Standard and generic ways to silence make 116
21.3 How Automake can help in silencing make................... 117

22 The effect of --gnu and --gnits............. 119

23 The effect of --cygnus 120

24 When Automake Isn’t Enough............. 121
24.1 Extending Automake Rules.......... 121
24.2 Third-Party Makefiles.......coiririirieeenniiiiiiinnnnn.. 122

25 Distributing Makefile.ins................... 125

iv

26 Automake API Versioning.................. 125

27 Upgrading a Package to a Newer
Automake Version 126

28 Frequently Asked Questions

about Automake 127
28.1 CVS and generated files............cooiiiiiiiiiiiiiiia.. 127
28.2 missing and AM_MAINTAINER_MODE.......................... 129
28.3 Why doesn’t Automake support wildcards?.................. 130
28.4 Limitations on File Namesol 131
28.5 Files left in build directory after distclean.................... 132
28.6 Flag Variables Ordering, 134
28.7 Why are object files sometimes renamed?.................... 137
28.8 Per-Object Flags Emulation................... ..o .. 137
28.9 Handling Tools that Produce Many Outputs................. 138
28.10 Installing to Hard-Coded Locations......................... 143
28.11 Debugging Make Rules........... it 145
28.12 Reporting Bugs ..o 145
29 History of Automake........................ 146
29.1 Timelinecoouuiiiii e 146
29.2 Dependency Tracking in Automake.......................... 157
29.2.1 First Take on Dependency Tracking..................... 158
Description.o 158

Bugs . ..o 158
Historical Note. 158
29.2.2 Dependencies As Side Effects........................... 158
Description. ... 159

Bugs .. 159
29.2.3 Dependencies for the User.............................. 159
Description.o 159

Bugs .. 160
29.2.4 Techniques for Computing Dependencies................ 161
29.2.5 Recommendations for Tool Writers 161
29.2.6 Future Directions for Dependencies..................... 161
29.3 Release Statistics. ... 161
Appendix A Copying This Manual 164
A.1 GNU Free Documentation Licensecoi... 164
Appendix B Indices............................. 172
B.l MacroIndex.....oooiiiiii e 172
B.2 Variable Index....... ... i 172

B.3 General Index 175

Chapter 2: An Introduction to the Autotools 1

1 Introduction

Automake is a tool for automatically generating Makefile.ins from files called
Makefile.am. Each Makefile.am is basically a series of make variable definitions®, with
rules being thrown in occasionally. The generated Makefile.ins are compliant with the
GNU Makefile standards.

The GNU Makefile Standards Document (see Section “Makefile Conventions” in The
GNU Coding Standards) is long, complicated, and subject to change. The goal of Automake
is to remove the burden of Makefile maintenance from the back of the individual GNU
maintainer (and put it on the back of the Automake maintainers).

The typical Automake input file is simply a series of variable definitions. Each such
file is processed to create a Makefile.in. There should generally be one Makefile.am per
directory of a project.

Automake does constrain a project in certain ways; for instance, it assumes that the
project uses Autoconf (see Section “Introduction” in The Autoconf Manual), and enforces
certain restrictions on the configure.ac contents?.

Automake requires perl in order to generate the Makefile.ins. However, the distribu-
tions created by Automake are fully GNU standards-compliant, and do not require perl in
order to be built.

For more information on bug reports, See Section 28.12 [Reporting Bugs|, page 145.

2 An Introduction to the Autotools

If you are new to Automake, maybe you know that it is part of a set of tools called The
Autotools. Maybe you’ve already delved into a package full of files named configure,
configure.ac, Makefile.in, Makefile.am, aclocal.m4, ..., some of them claiming to
be generated by Autoconf or Automake. But the exact purpose of these files and their
relations is probably fuzzy. The goal of this chapter is to introduce you to this machinery,
to show you how it works and how powerful it is. If you’ve never installed or seen such a
package, do not worry: this chapter will walk you through it.

If you need some teaching material, more illustrations, or a less automake-centered
continuation, some slides for this introduction are available in Alexandre Duret-Lutz’s
Autotools Tutorial (http://www.lrde.epita.fr/~adl/autotools.html). This chapter is
the written version of the first part of his tutorial.

2.1 Introducing the GNU Build System

It is a truth universally acknowledged, that as a developer in possession of a new package,
you must be in want of a build system.

1 These variables are also called make macros in Make terminology, however in this manual we reserve the
term macro for Autoconf’s macros.

2 Older Autoconf versions used configure.in. Autoconf 2.50 and greater promotes configure.ac over
configure.in. The rest of this documentation will refer to configure.ac, but Automake also supports
configure.in for backward compatibility.

http://www.lrde.epita.fr/~adl/autotools.html

Chapter 2: An Introduction to the Autotools 2

In the Unix world, such a build system is traditionally achieved using the command
make (see Section “Overview” in The GNU Make Manual). You express the recipe to build
your package in a Makefile. This file is a set of rules to build the files in the package.
For instance the program prog may be built by running the linker on the files main.o,
foo.o0, and bar.o; the file main.o may be built by running the compiler on main.c; etc.
Each time make is run, it reads Makefile, checks the existence and modification time of
the files mentioned, decides what files need to be built (or rebuilt), and runs the associated
commands.

When a package needs to be built on a different platform than the one it was developed
on, its Makefile usually needs to be adjusted. For instance the compiler may have another
name or require more options. In 1991, David J. MacKenzie got tired of customizing
Makefile for the 20 platforms he had to deal with. Instead, he handcrafted a little shell
script called configure to automatically adjust the Makefile (see Section “Genesis” in
The Autoconf Manual). Compiling his package was now as simple as running ./configure
&& make.

Today this process has been standardized in the GNU project. The GNU Coding Stan-
dards (see Section “Managing Releases” in The GNU Coding Standards) explains how each
package of the GNU project should have a configure script, and the minimal interface it
should have. The Makefile too should follow some established conventions. The result? A
unified build system that makes all packages almost indistinguishable by the installer. In
its simplest scenario, all the installer has to do is to unpack the package, run ./configure
&& make && make install, and repeat with the next package to install.

We call this build system the GNU Build System, since it was grown out of the GNU
project. However it is used by a vast number of other packages: following any existing
convention has its advantages.

The Autotools are tools that will create a GNU Build System for your package. Autoconf
mostly focuses on configure and Automake on Makefiles. It is entirely possible to create
a GNU Build System without the help of these tools. However it is rather burdensome and
error-prone. We will discuss this again after some illustration of the GNU Build System in
action.

2.2 Use Cases for the GNU Build System

In this section we explore several use cases for the GNU Build System. You can
replay all these examples on the amhello-1.0.tar.gz package distributed with
Automake. If Automake is installed on your system, you should find a copy of this file
in prefix/share/doc/automake/amhello-1.0.tar.gz, where prefix is the installation
prefix specified during configuration (prefix defaults to /usr/local, however if Automake
was installed by some GNU/Linux distribution it most likely has been set to /usr). If you
do not have a copy of Automake installed, you can find a copy of this file inside the doc/
directory of the Automake package.

Some of the following use cases present features that are in fact extensions to the GNU
Build System. Read: they are not specified by the GNU Coding Standards, but they are
nonetheless part of the build system created by the Autotools. To keep things simple, we
do not point out the difference. Our objective is to show you many of the features that the
build system created by the Autotools will offer to you.

Chapter 2: An Introduction to the Autotools 3

2.2.1 Basic Installation
The most common installation procedure looks as follows.

~ % tar zxf amhello-1.0.tar.gz
~ % cd amhello-1.0
~/amhello-1.0 % ./configure

config.status: creating Makefile
config.status: creating src/Makefile

~/amhello-1.0 % make
~/amhello-1.0 % make check

~/amhello-1.0 % su
Password:
/home/adl/amhello-1.0 # make install

/home/adl/amhello-1.0 # exit
~/amhello-1.0 % make installcheck

The user first unpacks the package. Here, and in the following examples, we will use the
non-portable tar zxf command for simplicity. On a system without GNU tar installed,
this command should read gunzip -c amhello-1.0.tar.gz | tar xf -.

The user then enters the newly created directory to run the configure script. This
script probes the system for various features, and finally creates the Makefiles. In this
toy example there are only two Makefiles, but in real-world projects, there may be many
more, usually one Makefile per directory.

It is now possible to run make. This will construct all the programs, libraries, and
scripts that need to be constructed for the package. In our example, this compiles the
hello program. All files are constructed in place, in the source tree; we will see later how
this can be changed.

make check causes the package’s tests to be run. This step is not mandatory, but it is
often good to make sure the programs that have been built behave as they should, before
you decide to install them. Our example does not contain any tests, so running make check
is a no-op.

After everything has been built, and maybe tested, it is time to install it on the sys-
tem. That means copying the programs, libraries, header files, scripts, and other data
files from the source directory to their final destination on the system. The command
make install will do that. However, by default everything will be installed in subdi-
rectories of /usr/local: binaries will go into /usr/local/bin, libraries will end up in
/usr/local/lib, etc. This destination is usually not writable by any user, so we assume
that we have to become root before we can run make install. In our example, run-
ning make install will copy the program hello into /usr/local/bin and README into
/usr/local/share/doc/amhello.

Chapter 2: An Introduction to the Autotools 4

A last and optional step is to run make installcheck. This command may run tests on
the installed files. make check tests the files in the source tree, while make installcheck
tests their installed copies. The tests run by the latter can be different from those run by the
former. For instance, there are tests that cannot be run in the source tree. Conversely, some
packages are set up so that make installcheck will run the very same tests as make check,
only on different files (non-installed vs. installed). It can make a difference, for instance
when the source tree’s layout is different from that of the installation. Furthermore it may
help to diagnose an incomplete installation.

Presently most packages do not have any installcheck tests because the existence of
installcheck is little known, and its usefulness is neglected. Our little toy package is no
better: make installcheck does nothing.

2.2.2 Standard Makefile Targets

So far we have come across four ways to run make in the GNU Build System: make,
make check, make install, and make installcheck. The words check, install, and
installcheck, passed as arguments to make, are called targets. make is a shorthand for
make all, all being the default target in the GNU Build System.

Here is a list of the most useful targets that the GNU Coding Standards specify.
make all Build programs, libraries, documentation, etc. (same as make).

make install
Install what needs to be installed, copying the files from the package’s tree to
system-wide directories.

make install-strip
Same as make install, then strip debugging symbols. Some users like to trade
space for useful bug reports. . .

make uninstall
The opposite of make install: erase the installed files. (This needs to be run
from the same build tree that was installed.)

make clean
Erase from the build tree the files built by make all.

make distclean
Additionally erase anything ./configure created.

make check
Run the test suite, if any.

make installcheck
Check the installed programs or libraries, if supported.

make dist Recreate package-version.tar.gz from all the source files.

2.2.3 Standard Directory Variables

The GNU Coding Standards also specify a hierarchy of variables to denote installation
directories. Some of these are:

Chapter 2: An Introduction to the Autotools 5

Directory variable Default value

prefix /usr/local

exec_prefix ${prefix}
bindir ${exec_prefix}/bin
libdir ${exec_prefix}/1lib

includedir ${prefix}/include

datarootdir ${prefix}/share
datadir ${datarootdir}
mandir ${datarootdir}/man
infodir ${datarootdir}/info
docdir ${datarootdir}/doc/${PACKAGE}

Each of these directories has a role which is often obvious from its name. In a package,
any installable file will be installed in one of these directories. For instance in amhello-1.0,
the program hello is to be installed in bindir, the directory for binaries. The default
value for this directory is /usr/local/bin, but the user can supply a different value when
calling configure. Also the file README will be installed into docdir, which defaults to
/usr/local/share/doc/amhello.

As a user, if you wish to install a package on your own account, you could proceed as
follows:

~/amhello-1.0 % ./configure --prefix ~/usr
“/amhello-1.0 % make

~/amhello-1.0 % make install

This would install ~/usr/bin/hello and ~/usr/share/doc/amhello/READVME.
The list of all such directory options is shown by ./configure --help.

2.2.4 Standard Configuration Variables

The GNU Coding Standards also define a set of standard configuration variables used during
the build. Here are some:

cC C compiler command
CFLAGS C compiler flags

CXX C++ compiler command
CXXFLAGS C++ compiler flags
LDFLAGS linker flags

CPPFLAGS C/C++ preprocessor flags

configure usually does a good job at setting appropriate values for these variables, but
there are cases where you may want to override them. For instance you may have several

Chapter 2: An Introduction to the Autotools 6

versions of a compiler installed and would like to use another one, you may have header
files installed outside the default search path of the compiler, or even libraries out of the
way of the linker.

Here is how one would call configure to force it to use gcc-3 as C compiler, use header
files from ~/usr/include when compiling, and libraries from ~/usr/lib when linking.
~/amhello-1.0 % ./configure —-prefix ~/usr CC=gcc-3 \
CPPFLAGS=-I$HOME/usr/include LDFLAGS=-L$HOME/usr/1ib

Again, a full list of these variables appears in the output of ./configure --help.

2.2.5 Overriding Default Configuration Setting with config.site

When installing several packages using the same setup, it can be convenient to create a file
to capture common settings. If a file named prefix/share/config.site exists, configure
will source it at the beginning of its execution.

Recall the command from the previous section:
~/amhello-1.0 % ./configure --prefix ~/usr CC=gcc-3 \
CPPFLAGS=-I$HOME/usr/include LDFLAGS=-L$HOME/usr/1ib
Assuming we are installing many package in ~/usr, and will always want to use these
definitions of CC, CPPFLAGS, and LDFLAGS, we can automate this by creating the following
~/usr/share/config.site file:
test -z "$CC" && CC=gcc-3
test -z "$CPPFLAGS" && CPPFLAGS=-I$HOME/usr/include
test -z "$LDFLAGS" && LDFLAGS=-L$HOME/usr/lib

Now, any time a configure script is using the ~/usr prefix, it will execute the above
config.site and define these three variables.

~/amhello-1.0 % ./configure --prefix ~/usr
configure: loading site script /home/adl/usr/share/config.site

See Section “Setting Site Defaults” in The Autoconf Manual, for more information about
this feature.

2.2.6 Parallel Build Trees (a.k.a. VPATH Builds)
The GNU Build System distinguishes two trees: the source tree, and the build tree.

The source tree is rooted in the directory containing configure. It contains all the
sources files (those that are distributed), and may be arranged using several subdirectories.

The build tree is rooted in the directory in which configure was run, and is populated
with all object files, programs, libraries, and other derived files built from the sources (and
hence not distributed). The build tree usually has the same subdirectory layout as the
source tree; its subdirectories are created automatically by the build system.

If configure is executed in its own directory, the source and build trees are combined:
derived files are constructed in the same directories as their sources. This was the case in
our first installation example (see Section 2.2.1 [Basic Installation], page 3).

A common request from users is that they want to confine all derived files to a single
directory, to keep their source directories uncluttered. Here is how we could run configure
to build everything in a subdirectory called build/.

Chapter 2: An Introduction to the Autotools 7

~ % tar zxf ~/amhello-1.0.tar.gz

~ % cd amhello-1.0

“/amhello-1.0 % mkdir build && cd build
~/amhello-1.0/build % ../configure

~/amhello-1.0/build Y% make

These setups, where source and build trees are different, are often called parallel builds or
VPATH builds. The expression parallel build is misleading: the word parallel is a reference
to the way the build tree shadows the source tree, it is not about some concurrency in
the way build commands are run. For this reason we refer to such setups using the name
VPATH builds in the following. VPATH is the name of the make feature used by the
Makefiles to allow these builds (see Section “VPATH Search Path for All Prerequisites” in
The GNU Make Manual).

VPATH builds have other interesting uses. One is to build the same sources with multiple
configurations. For instance:

~ % tar zxf ~/amhello-1.0.tar.gz

~ % cd amhello-1.0

~/amhello-1.0 % mkdir debug optim && cd debug
~/amhello-1.0/debug % ../configure CFLAGS=’-g -00’

~/amhello-1.0/debug % make

~/amhello-1.0/debug % cd ../optim
~/amhello-1.0/optim % ../configure CFLAGS=’-03 -fomit-frame-pointer’

~/amhello-1.0/optim % make

With network file systems, a similar approach can be used to build the same sources
on different machines. For instance, suppose that the sources are installed on a directory
shared by two hosts: HOST1 and HOST2, which may be different platforms.

~ % cd /nfs/src
/nfs/src % tar zxf ~/amhello-1.0.tar.gz
On the first host, you could create a local build directory:

[HOST1] ~ % mkdir /tmp/amh && cd /tmp/amh
[HOST1] /tmp/amh ¥ /nfs/src/amhello-1.0/configure

[HOST1] /tmp/amh %, make && sudo make install

(Here we assume that the installer has configured sudo so it can execute make install with
root privileges; it is more convenient than using su like in Section 2.2.1 [Basic Installation],
page 3).
On the second host, you would do exactly the same, possibly at the same time:
[HOST2] ~ % mkdir /tmp/amh && cd /tmp/amh
[HOST2] /tmp/amh % /nfs/src/amhello-1.0/configure

Chapter 2: An Introduction to the Autotools 8

[HOST2] /tmp/amh % make && sudo make install

In this scenario, nothing forbids the /nfs/src/amhello-1.0 directory from being read-
only. In fact VPATH builds are also a means of building packages from a read-only medium
such as a CD-ROM. (The FSF used to sell CD-ROM with unpacked source code, before the
GNU project grew so big.)

2.2.7 Two-Part Installation

In our last example (see Section 2.2.6 [VPATH Builds], page 6), a source tree was shared
by two hosts, but compilation and installation were done separately on each host.

The GNU Build System also supports networked setups where part of the installed
files should be shared amongst multiple hosts. It does so by distinguishing architecture-
dependent files from architecture-independent files, and providing two Makefile targets to
install each of these classes of files.

These targets are install-exec for architecture-dependent files and install-data for
architecture-independent files. The command we used up to now, make install, can be
thought of as a shorthand for make install-exec install-data.

From the GNU Build System point of view, the distinction between architecture-
dependent files and architecture-independent files is based exclusively on the directory
variable used to specify their installation destination. In the list of directory variables
we provided earlier (see Section 2.2.3 [Standard Directory Variables|, page 4), all the
variables based on exec-prefix designate architecture-dependent directories whose files
will be installed by make install-exec. The others designate architecture-independent
directories and will serve files installed by make install-data. See Section 12.2 [The Two
Parts of Install], page 96, for more details.

Here is how we could revisit our two-host installation example, assuming that (1) we
want to install the package directly in /usr, and (2) the directory /usr/share is shared by
the two hosts.

On the first host we would run

[HOST1] ~ % mkdir /tmp/amh && cd /tmp/amh
[HOST1] /tmp/amh % /nfs/src/amhello-1.0/configure --prefix /usr

[HOST1] /tmp/amh % make && sudo make install

On the second host, however, we need only install the architecture-specific files.

[(HOST2] ~ % mkdir /tmp/amh && cd /tmp/amh
[HOST2] /tmp/amh % /nfs/src/amhello-1.0/configure --prefix /usr

[HOST2] /tmp/amh % make && sudo make install-exec

In packages that have installation checks, it would make sense to run make installcheck
(see Section 2.2.1 [Basic Installation]|, page 3) to verify that the package works correctly
despite the apparent partial installation.

Chapter 2: An Introduction to the Autotools 9

2.2.8 Cross-Compilation

To cross-compile is to build on one platform a binary that will run on another platform.
When speaking of cross-compilation, it is important to distinguish between the build plat-
form on which the compilation is performed, and the host platform on which the resulting
executable is expected to run. The following configure options are used to specify each of
them:

--build=build
The system on which the package is built.

—-—host=host
The system where built programs and libraries will run.

When the --host is used, configure will search for the cross-compiling suite for
this platform. Cross-compilation tools commonly have their target architecture as prefix
of their name. For instance my cross-compiler for MinGW32 has its binaries called
i586-mingw32msvc-gcc, 1686-mingw32msvc-1d, i586-mingw32msvc-as, etc.

Here is how we could build amhello-1.0 for i586-mingw32msvc on a GNU/Linux PC.

“/amhello-1.0 % ./configure --build i1686-pc-linux-gnu --host i586-mingw32msvc
checking for a BSD-compatible install... /usr/bin/install -c

checking whether build environment is sane... yes

checking for gawk... gawk

checking whether make sets $(MAKE)... yes

checking for i586-mingw32msvc-strip... i586-mingw32msvc-strip
checking for i586-mingw32msvc-gcc... i586-mingw32msvc-gcc
checking for C compiler default output file name... a.exe
checking whether the C compiler works... yes

checking whether we are cross compiling... yes

checking for suffix of executables... .exe

checking for suffix of object files... o

checking whether we are using the GNU C compiler... yes

checking whether i586-mingw32msvc-gcc accepts -g... yes
checking for ib86-mingw32msvc-gcc option to accept ANSI C...

~/amhello-1.0 % make

~/amhello-1.0 % cd src; file hello.exe
hello.exe: MS Windows PE 32-bit Intel 80386 console executable not relocatable
The --host and --build options are usually all we need for cross-compiling. The only
exception is if the package being built is itself a cross-compiler: we need a third option to
specify its target architecture.

-—target=target
When building compiler tools: the system for which the tools will create out-
put.

For instance when installing GCC, the GNU Compiler Collection, we can use —-target=
target to specify that we want to build GCC as a cross-compiler for target. Mixing
--build and --target, we can actually cross-compile a cross-compiler; such a three-way
cross-compilation is known as a Canadian cross.

See Section “Specifying the System Type” in The Autoconf Manual, for more information
about these configure options.

Chapter 2: An Introduction to the Autotools 10

2.2.9 Renaming Programs at Install Time

The GNU Build System provides means to automatically rename executables and man-
pages before they are installed (see Section 11.2 [Man Pages], page 94). This is especially
convenient when installing a GNU package on a system that already has a proprietary im-
plementation you do not want to overwrite. For instance, you may want to install GNU
tar as gtar so you can distinguish it from your vendor’s tar.

This can be done using one of these three configure options.
--program-prefix=prefix
Prepend prefix to installed program names.

--program-suffix=suffix
Append suffix to installed program names.

--program-transform-name=program
Run sed program on installed program names.

The following commands would install hello as /usr/local/bin/test-hello, for in-
stance.

“/amhello-1.0 % ./configure --program-prefix test-
~/amhello-1.0 % make

~/amhello-1.0 % sudo make install

2.2.10 Building Binary Packages Using DESTDIR

The GNU Build System’s make install and make uninstall interface does not exactly fit
the needs of a system administrator who has to deploy and upgrade packages on lots of
hosts. In other words, the GNU Build System does not replace a package manager.

Such package managers usually need to know which files have been installed by a package,
so a mere make install is inappropriate.

The DESTDIR variable can be used to perform a staged installation. The package should
be configured as if it was going to be installed in its final location (e.g., —=—prefix /usr), but
when running make install, the DESTDIR should be set to the absolute name of a directory
into which the installation will be diverted. From this directory it is easy to review which
files are being installed where, and finally copy them to their final location by some means.

For instance here is how we could create a binary package containing a snapshot of all
the files to be installed.

~/amhello-1.0 % ./configure --prefix /usr
~/amhello-1.0 Y% make
~/amhello-1.0 % make DESTDIR=$HOME/inst install

“/amhello-1.0 % cd ~/inst
“/inst % find . -type f -print > ../files.lst

Chapter 2: An Introduction to the Autotools 11

~/inst % tar zcvf ~/amhello-1.0-i686.tar.gz ‘cat ../files.lst’
./usr/bin/hello
./usr/share/doc/amhello/README

After this example, amhello-1.0-i686.tar.gz is ready to be uncompressed in / on
many hosts. (Using ‘cat ../files.lst‘ instead of ‘.’ as argument for tar avoids entries
for each subdirectory in the archive: we would not like tar to restore the modification time
of /, /usr/, etc.)

Note that when building packages for several architectures, it might be convenient to use
make install-data and make install-exec (see Section 2.2.7 [Two-Part Install], page 8)
to gather architecture-independent files in a single package.

See Chapter 12 [Install], page 95, for more information.

2.2.11 Preparing Distributions

We have already mentioned make dist. This target collects all your source files and the
necessary parts of the build system to create a tarball named package-version.tar.gz.

Another, more useful command is make distcheck. The distcheck target constructs
package-version.tar.gz just as well as dist, but it additionally ensures most of the use
cases presented so far work:

e It attempts a full compilation of the package (see Section 2.2.1 [Basic Installation],
page 3), unpacking the newly constructed tarball, running make, make check, make
install, as well as make installcheck, and even make dist,

e it tests VPATH builds with read-only source tree (see Section 2.2.6 [VPATH Builds],
page 6),

e it makes sure make clean, make distclean, and make uninstall do not omit any file
(see Section 2.2.2 [Standard Targets]|, page 4),

e and it checks that DESTDIR installations work (see Section 2.2.10 [DESTDIR], page 10).

All of these actions are performed in a temporary subdirectory, so that no root privileges
are required.

Releasing a package that fails make distcheck means that one of the scenarios we pre-
sented will not work and some users will be disappointed. Therefore it is a good practice
to release a package only after a successful make distcheck. This of course does not imply
that the package will be flawless, but at least it will prevent some of the embarrassing errors
you may find in packages released by people who have never heard about distcheck (like
DESTDIR not working because of a typo, or a distributed file being erased by make clean,
or even VPATH builds not working).

See Section 2.4.1 [Creating ambhello|, page 13, to recreate amhello-1.0.tar.gz using
make distcheck. See Section 14.4 [Checking the Distribution|, page 99, for more informa-
tion about distcheck.

2.2.12 Automatic Dependency Tracking

Dependency tracking is performed as a side-effect of compilation. Each time the build
system compiles a source file, it computes its list of dependencies (in C these are the header
files included by the source being compiled). Later, any time make is run and a dependency
appears to have changed, the dependent files will be rebuilt.

Chapter 2: An Introduction to the Autotools 12

Automake generates code for automatic dependency tracking by default, unless the devel-
oper chooses to override it; for more information, see Section 8.19 [Dependencies], page 81.

When configure is executed, you can see it probing each compiler for the dependency
mechanism it supports (several mechanisms can be used):

~/amhello-1.0 % ./configure --prefix /usr
checking dependency style of gcc... gcc3

Because dependencies are only computed as a side-effect of the compilation, no depen-
dency information exists the first time a package is built. This is OK because all the files
need to be built anyway: make does not have to decide which files need to be rebuilt. In
fact, dependency tracking is completely useless for one-time builds and there is a configure
option to disable this:

--disable-dependency-tracking
Speed up one-time builds.

Some compilers do not offer any practical way to derive the list of dependencies as a side-
effect of the compilation, requiring a separate run (maybe of another tool) to compute these
dependencies. The performance penalty implied by these methods is important enough to
disable them by default. The option --enable-dependency-tracking must be passed to
configure to activate them.

--enable-dependency-tracking
Do not reject slow dependency extractors.

See Section 29.2 [Dependency Tracking Evolution], page 157, for some discussion about
the different dependency tracking schemes used by Automake over the years.

2.2.13 Nested Packages

Although nesting packages isn’t something we would recommend to someone who is dis-
covering the Autotools, it is a nice feature worthy of mention in this small advertising
tour.

Autoconfiscated packages (that means packages whose build system have been created
by Autoconf and friends) can be nested to arbitrary depth.

A typical setup is that package A will distribute one of the libraries it needs in a sub-
directory. This library B is a complete package with its own GNU Build System. The
configure script of A will run the configure script of B as part of its execution, build-
ing and installing A will also build and install B. Generating a distribution for A will also
include B.

It is possible to gather several packages like this. GCC is a heavy user of this feature.
This gives installers a single package to configure, build and install, while it allows developers
to work on subpackages independently.

When configuring nested packages, the configure options given to the top-level
configure are passed recursively to nested configures. A package that does not
understand an option will ignore it, assuming it is meaningful to some other package.

The command configure —--help=recursive can be used to display the options sup-
ported by all the included packages.

Chapter 2: An Introduction to the Autotools 13

See Section 7.4 [Subpackages|, page 52, for an example setup.

2.3 How Autotools Help

There are several reasons why you may not want to implement the GNU Build System
yourself (read: write a configure script and Makefiles yourself).

e As we have seen, the GNU Build System has a lot of features (see Section 2.2 [Use
Cases|, page 2). Some users may expect features you have not implemented because
you did not need them.

e Implementing these features portably is difficult and exhausting. Think of writing
portable shell scripts, and portable Makefiles, for systems you may not have handy.
See Section “Portable Shell Programming” in The Autoconf Manual, to convince your-
self.

e You will have to upgrade your setup to follow changes to the GNU Coding Standards.
The GNU Autotools take all this burden off your back and provide:

e Tools to create a portable, complete, and self-contained GNU Build System, from simple
instructions. Self-contained meaning the resulting build system does not require the
GNU Autotools.

e A central place where fixes and improvements are made: a bug-fix for a portability
issue will benefit every package.

Yet there also exist reasons why you may want NOT to use the Autotools. . . For instance
you may be already using (or used to) another incompatible build system. Autotools will
only be useful if you do accept the concepts of the GNU Build System. People who have
their own idea of how a build system should work will feel frustrated by the Autotools.

2.4 A Small Hello World

In this section we recreate the amhello-1.0 package from scratch. The first subsection
shows how to call the Autotools to instantiate the GNU Build System, while the second
explains the meaning of the configure.ac and Makefile.an files read by the Autotools.

2.4.1 Creating amhello-1.0.tar.gz

Here is how we can recreate amhello-1.0.tar.gz from scratch. The package is simple
enough so that we will only need to write 5 files. (You may copy them from the final
amhello-1.0.tar.gz that is distributed with Automake if you do not want to write them.)

Create the following files in an empty directory.

e src/main.c is the source file for the hello program. We store it in the src/ subdi-
rectory, because later, when the package evolves, it will ease the addition of a man/
directory for man pages, a data/ directory for data files, etc.

~/amhello Y% cat src/main.c
#include <config.h>
#include <stdio.h>

int
main (void)

Chapter 2: An Introduction to the Autotools 14

{
puts ("Hello World!");
puts ("This is " PACKAGE_STRING ".");
return O;

}

e README contains some very limited documentation for our little package.

~/amhello % cat README
This is a demonstration package for GNU Automake.
Type ‘info Automake’ to read the Automake manual.

e Makefile.am and src/Makefile.am contain Automake instructions for these two di-
rectories.

~/amhello % cat src/Makefile.am
bin_PROGRAMS = hello
hello_SOURCES = main.c
~/amhello % cat Makefile.am
SUBDIRS = src

dist_doc_DATA = README

e Finally, configure.ac contains Autoconf instructions to create the configure script.

“/amhello % cat configure.ac
AC_INIT([amhello], [1.0], [bug-automake®@gnu.orgl)
AM_INIT_AUTOMAKE([-Wall -Werror foreignl])
AC_PROG_CC
AC_CONFIG_HEADERS ([config.h])
AC_CONFIG_FILES([
Makefile
src/Makefile
D
AC_OUTPUT

Once you have these five files, it is time to run the Autotools to instantiate the build
system. Do this using the autoreconf command as follows:

~/amhello % autoreconf --install
configure.ac: installing ¢./install-sh’
configure.ac: installing ¢./missing’
src/Makefile.am: installing ¢./depcomp’

At this point the build system is complete.

In addition to the three scripts mentioned in its output, you can see that autoreconf
created four other files: configure, config.h.in, Makefile.in, and src/Makefile.in.
The latter three files are templates that will be adapted to the system by configure under
the names config.h, Makefile, and src/Makefile. Let’s do this:

~/amhello %, ./configure

checking for a BSD-compatible install... /usr/bin/install -c
checking whether build environment is sane... yes

checking for gawk... no

checking for mawk... mawk

Chapter 2: An Introduction to the Autotools 15

checking whether make sets $(MAKE)... yes

checking for gcc... gcc

checking for C compiler default output file name... a.out

checking whether the C compiler works... yes

checking whether we are cross compiling... no

checking for suffix of executables...

checking for suffix of object files... o

checking whether we are using the GNU C compiler... yes

checking whether gcc accepts -g... yes

checking for gcc option to accept ISO C89... none needed

checking for style of include used by make... GNU

checking dependency style of gcc... gcc3

configure: creating ./config.status

config.status: creating Makefile

config.status: creating src/Makefile

config.status: creating config.h

config.status: executing depfiles commands

You can see Makefile, src/Makefile, and config.h being created at the end after

configure has probed the system. It is now possible to run all the targets we wish (see
Section 2.2.2 [Standard Targets|, page 4). For instance:

~/amhello % make

~/amhello % src/hello
Hello World!

This is amhello 1.0.
~/amhello % make distcheck

amhello-1.0 archives ready for distribution:
amhello-1.0.tar.gz

Note that running autoreconf is only needed initially when the GNU Build System does
not exist. When you later change some instructions in a Makefile.am or configure.ac,
the relevant part of the build system will be regenerated automatically when you execute
make.

autoreconf is a script that calls autoconf, automake, and a bunch of other commands
in the right order. If you are beginning with these tools, it is not important to figure out
in which order all these tools should be invoked and why. However, because Autoconf and
Automake have separate manuals, the important point to understand is that autoconf is in
charge of creating configure from configure.ac, while automake is in charge of creating
Makefile.ins from Makefile.ams and configure.ac. This should at least direct you to
the right manual when seeking answers.

2.4.2 amhello’s configure.ac Setup Explained

Let us begin with the contents of configure.ac.
AC_INIT([amhello], [1.0], [bug-automake@gnu.org])

Chapter 2: An Introduction to the Autotools 16

AM_INIT_AUTOMAKE([-Wall -Werror foreignl])
AC_PROG_CC
AC_CONFIG_HEADERS([config.h])
AC_CONFIG_FILES([

Makefile

src/Makefile

D
AC_OUTPUT

This file is read by both autoconf (to create configure) and automake (to create the
various Makefile.ins). It contains a series of M4 macros that will be expanded as shell code
to finally form the configure script. We will not elaborate on the syntax of this file, because
the Autoconf manual has a whole section about it (see Section “Writing configure.ac” in
The Autoconf Manual).

The macros prefixed with AC_ are Autoconf macros, documented in the Autoconf manual
(see Section “Autoconf Macro Index” in The Autoconf Manual). The macros that start with
AM_ are Automake macros, documented later in this manual (see Section B.1 [Macro Index],
page 172).

The first two lines of configure.ac initialize Autoconf and Automake. AC_INIT takes
in as parameters the name of the package, its version number, and a contact address for
bug-reports about the package (this address is output at the end of ./configure --help,
for instance). When adapting this setup to your own package, by all means please do not
blindly copy Automake’s address: use the mailing list of your package, or your own mail
address.

The argument to AM_INIT_AUTOMAKE is a list of options for automake (see Chapter 17
[Options], page 107). -Wall and -Werror ask automake to turn on all warnings and report
them as errors. We are speaking of Automake warnings here, such as dubious instructions in
Makefile.am. This has absolutely nothing to do with how the compiler will be called, even
though it may support options with similar names. Using -Wall -Werror is a safe setting
when starting to work on a package: you do not want to miss any issues. Later you may
decide to relax things a bit. The foreign option tells Automake that this package will not
follow the GNU Standards. GNU packages should always distribute additional files such as
ChangeLog, AUTHORS, etc. We do not want automake to complain about these missing files
in our small example.

The AC_PROG_CC line causes the configure script to search for a C compiler and
define the variable CC with its name. The src/Makefile.in file generated by Automake
uses the variable CC to build hello, so when configure creates src/Makefile from
src/Makefile.in, it will define CC with the value it has found. If Automake is asked to
create a Makefile.in that uses CC but configure.ac does not define it, it will suggest
you add a call to AC_PROG_CC.

The AC_CONFIG_HEADERS ([config.h]) invocation causes the configure script to create
a config.h file gathering ‘#define’s defined by other macros in configure.ac. In our case,
the AC_INIT macro already defined a few of them. Here is an excerpt of config.h after
configure has run:

/* Define to the address where bug reports for this package should be sent. */
#define PACKAGE_BUGREPORT "bug-automake@gnu.org"

Chapter 2: An Introduction to the Autotools 17

/* Define to the full name and version of this package. */
#define PACKAGE_STRING "amhello 1.0"

As you probably noticed, src/main.c includes config.h so it can use PACKAGE_STRING.
In a real-world project, config.h can grow really big, with one ‘#define’ per feature probed
on the system.

The AC_CONFIG_FILES macro declares the list of files that configure should create from
their *.in templates. Automake also scans this list to find the Makefile.am files it must
process. (This is important to remember: when adding a new directory to your project,
you should add its Makefile to this list, otherwise Automake will never process the new
Makefile.am you wrote in that directory.)

Finally, the AC_OUTPUT line is a closing command that actually produces the part of the
script in charge of creating the files registered with AC_CONFIG_HEADERS and AC_CONFIG_
FILES.

When starting a new project, we suggest you start with such a simple configure.ac, and
gradually add the other tests it requires. The command autoscan can also suggest a few of
the tests your package may need (see Section “Using autoscan to Create configure.ac”
in The Autoconf Manual).

2.4.3 amhello’s Makefile.am Setup Explained

We now turn to src/Makefile.am. This file contains Automake instructions to build and
install hello.

bin_PROGRAMS = hello
hello_SOURCES = main.c

A Makefile.am has the same syntax as an ordinary Makefile. When automake processes
aMakefile.am it copies the entire file into the output Makefile.in (that will be later turned
into Makefile by configure) but will react to certain variable definitions by generating
some build rules and other variables. Often Makefile.ams contain only a list of variable
definitions as above, but they can also contain other variable and rule definitions that
automake will pass along without interpretation.

Variables that end with _PROGRAMS are special variables that list programs that the
resulting Makefile should build. In Automake speak, this _PROGRAMS suffix is called a
primary; Automake recognizes other primaries such as _SCRIPTS, _DATA, _LIBRARIES, etc.
corresponding to different types of files.

The ‘bin’ part of the bin_PROGRAMS tells automake that the resulting programs should
be installed in bindir. Recall that the GNU Build System uses a set of variables to denote
destination directories and allow users to customize these locations (see Section 2.2.3 [Stan-
dard Directory Variables|, page 4). Any such directory variable can be put in front of a
primary (omitting the dir suffix) to tell automake where to install the listed files.

Programs need to be built from source files, so for each program prog listed in a
_PROGRAMS variable, automake will look for another variable named prog_SOURCES list-
ing its source files. There may be more than one source file: they will all be compiled and
linked together.

Chapter 3: General ideas 18

Automake also knows that source files need to be distributed when creating a tarball
(unlike built programs). So a side-effect of this hello_SOURCES declaration is that main.c
will be part of the tarball created by make dist.

Finally here are some explanations regarding the top-level Makefile.am.

SUBDIRS = src
dist_doc_DATA = README

SUBDIRS is a special variable listing all directories that make should recurse into before
processing the current directory. So this line is responsible for make building src/hello
even though we run it from the top-level. This line also causes make install to install
src/hello before installing README (not that this order matters).

The line dist_doc_DATA = README causes README to be distributed and installed in
docdir. Files listed with the _DATA primary are not automatically part of the tarball built
with make dist, so we add the dist_ prefix so they get distributed. However, for README it
would not have been necessary: automake automatically distributes any README file it en-
counters (the list of other files automatically distributed is presented by automake --help).
The only important effect of this second line is therefore to install README during make
install.

One thing not covered in this example is accessing the installation directory values (see
Section 2.2.3 [Standard Directory Variables], page 4) from your program code, that is,
converting them into defined macros. For this, see Section “Defining Directories” in The
Autoconf Manual.

3 General ideas

The following sections cover a few basic ideas that will help you understand how Automake
works.

3.1 General Operation

Automake works by reading a Makefile.am and generating a Makefile.in. Certain vari-
ables and rules defined in the Makefile.am instruct Automake to generate more specialized
code; for instance, a bin_PROGRAMS variable definition will cause rules for compiling and
linking programs to be generated.

The variable definitions and rules in the Makefile.am are copied mostly verbatim into
the generated file, with all variable definitions preceding all rules. This allows you to
add almost arbitrary code into the generated Makefile.in. For instance, the Automake
distribution includes a non-standard rule for the git-dist target, which the Automake
maintainer uses to make distributions from the source control system.

Note that most GNU make extensions are not recognized by Automake. Using such
extensions in a Makefile.am will lead to errors or confusing behavior.

A special exception is that the GNU make append operator, ‘+=’, is supported. This
operator appends its right hand argument to the variable specified on the left. Automake
will translate the operator into an ordinary ‘=’ operator; ‘+=’ will thus work with any make
program.

Chapter 3: General ideas 19

Automake tries to keep comments grouped with any adjoining rules or variable defini-
tions.

Generally, Automake is not particularly smart in the parsing of unusual Makefile con-
structs, so you're advised to avoid fancy constructs or “creative” use of whitespaces. For
example, TAB characters cannot be used between a target name and the following “:” char-
acter, and variable assignments shouldn’t be indented with TAB characters. Also, using

more complex macro in target names can cause trouble:

% cat Makefile.am

$(F00:=x): bar

% automake

Makefile.am:1: bad characters in variable name ‘$(F00’
Makefile.am:1: ‘:=’-style assignments are not portable

A rule defined in Makefile.am generally overrides any such rule of a similar name that
would be automatically generated by automake. Although this is a supported feature,
it is generally best to avoid making use of it, as sometimes the generated rules are very
particular.

Similarly, a variable defined in Makefile.am or AC_SUBSTed from configure.ac will
override any definition of the variable that automake would ordinarily create. This feature
is more often useful than the ability to override a rule. Be warned that many of the variables
generated by automake are considered to be for internal use only, and their names might
change in future releases.

When examining a variable definition, Automake will recursively examine variables refer-
enced in the definition. For example, if Automake is looking at the content of foo_SOURCES
in this snippet

xs = a.c b.c
foo_SOURCES = c.c $(xs)

it would use the files a.c, b.c, and c.c as the contents of foo_SOURCES.

Automake also allows a form of comment that is not copied into the output; all lines
beginning with ‘##’ (leading spaces allowed) are completely ignored by Automake.

It is customary to make the first line of Makefile.am read:

Process this file with automake to produce Makefile.in

3.2 Strictness

While Automake is intended to be used by maintainers of GNU packages, it does make
some effort to accommodate those who wish to use it, but do not want to use all the GNU
conventions.

To this end, Automake supports three levels of strictness—the strictness indicating how
stringently Automake should check standards conformance.

The valid strictness levels are:

foreign Automake will check for only those things that are absolutely required for proper
operations. For instance, whereas GNU standards dictate the existence of a
NEWS file, it will not be required in this mode. The name comes from the fact
that Automake is intended to be used for GNU programs; these relaxed rules
are not the standard mode of operation.

Chapter 3: General ideas 20

gnu Automake will check—as much as possible—for compliance to the GNU stan-
dards for packages. This is the default.

gnits Automake will check for compliance to the as-yet-unwritten Gnits standards.
These are based on the GNU standards, but are even more detailed. Unless
you are a Gnits standards contributor, it is recommended that you avoid this
option until such time as the Gnits standard is actually published (which may
never happen).

See Chapter 22 [Gnits], page 119, for more information on the precise implications of
the strictness level.

Automake also has a special “cygnus” mode that is similar to strictness but handled
differently. This mode is useful for packages that are put into a “Cygnus” style tree (e.g.,
the GCC tree). See Chapter 23 [Cygnus]|, page 120, for more information on this mode.

3.3 The Uniform Naming Scheme

Automake variables generally follow a uniform naming scheme that makes it easy to decide
how programs (and other derived objects) are built, and how they are installed. This scheme
also supports configure time determination of what should be built.

At make time, certain variables are used to determine which objects are to be built. The
variable names are made of several pieces that are concatenated together.

The piece that tells automake what is being built is commonly called the primary. For
instance, the primary PROGRAMS holds a list of programs that are to be compiled and linked.

A different set of names is used to decide where the built objects should be installed.
These names are prefixes to the primary, and they indicate which standard directory should
be used as the installation directory. The standard directory names are given in the GNU
standards (see Section “Directory Variables” in The GNU Coding Standards). Automake
extends this list with pkgdatadir, pkgincludedir, pkglibdir, and pkglibexecdir; these
are the same as the non-‘pkg’ versions, but with ‘¢ (PACKAGE)’ appended. For instance,
pkglibdir is defined as ‘$(1ibdir)/$(PACKAGE) .

For each primary, there is one additional variable named by prepending ‘EXTRA_’ to the
primary name. This variable is used to list objects that may or may not be built, depending
on what configure decides. This variable is required because Automake must statically
know the entire list of objects that may be built in order to generate a Makefile.in that
will work in all cases.

For instance, cpio decides at configure time which programs should be built. Some of
the programs are installed in bindir, and some are installed in sbindir:

EXTRA_PROGRAMS = mt rmt
bin_PROGRAMS = cpio pax
sbin_PROGRAMS = $(MORE_PROGRAMS)

Defining a primary without a prefix as a variable, e.g., ‘PROGRAMS’, is an error.

Note that the common ‘dir’ suffix is left off when constructing the variable names; thus
one writes ‘bin_PROGRAMS’ and not ‘bindir_PROGRAMS’.

Chapter 3: General ideas 21

Not every sort of object can be installed in every directory. Automake will flag those
attempts it finds in error (but see below how to override the check if you really need to).
Automake will also diagnose obvious misspellings in directory names.

Sometimes the standard directories—even as augmented by Automake—are not enough.
In particular it is sometimes useful, for clarity, to install objects in a subdirectory of some
predefined directory. To this end, Automake allows you to extend the list of possible
installation directories. A given prefix (e.g., ‘zar’) is valid if a variable of the same name
with ‘dir’ appended is defined (e.g., ‘zardir’).

For instance, the following snippet will install file.xml into ‘$(datadir) /xml’.

xmldir = $(datadir)/xml
xml_DATA = file.xml

This feature can also be used to override the sanity checks Automake performs to diag-
nose suspicious directory/primary couples (in the unlikely case these checks are undesirable,
and you really know what you're doing). For example, Automake would error out on this
input:

Forbidden directory combinations, automake will error out on this.
pkglib_PROGRAMS = foo
doc_LIBRARIES = libquux.a

but it will succeed with this:

Work around forbidden directory combinations. Do not use this
without a very good reason!

my_execbindir = $(pkglibdir)

my_doclibdir = $(docdir)

my_execbin_PROGRAMS = foo

my_doclib_LIBRARIES = libquux.a

The ‘exec’ substring of the ‘my_execbindir’ variable lets the files be installed at the
right time (see Section 12.2 [The Two Parts of Install], page 96).

The special prefix ‘noinst_’ indicates that the objects in question should be built but not
installed at all. This is usually used for objects required to build the rest of your package,
for instance static libraries (see Section 8.2 [A Library], page 58), or helper scripts.

The special prefix ‘check_’ indicates that the objects in question should not be built
until the ‘make check’ command is run. Those objects are not installed either.

The current primary names are ‘PROGRAMS’, ‘LIBRARIES’, ‘LTLIBRARIES’, ‘LISP’,
‘PYTHON’, ‘JAVA’, ‘SCRIPTS’, ‘DATA’, ‘HEADERS’, ‘MANS’, and ‘TEXINFOS’.

Some primaries also allow additional prefixes that control other aspects of automake’s
behavior. The currently defined prefixes are ‘dist_’, ‘nodist_’, ‘nobase_’, and ‘notrans_’.
These prefixes are explained later (see Section 8.4 [Program and Library Variables], page 65)

(see Section 11.2 [Man Pages|, page 94).

3.4 Staying below the command line length limit

Traditionally, most unix-like systems have a length limitation for the command line argu-
ments and environment contents when creating new processes (see for example http://www.
in-ulm.de/ mascheck/various/argmax/ for an overview on this issue), which of course

http://www.in-ulm.de/~mascheck/various/argmax/
http://www.in-ulm.de/~mascheck/various/argmax/

Chapter 3: General ideas 22

also applies to commands spawned by make. POSIX requires this limit to be at least 4096
bytes, and most modern systems have quite high limits (or are unlimited).

In order to create portable Makefiles that do not trip over these limits, it is necessary
to keep the length of file lists bounded. Unfortunately, it is not possible to do so fully
transparently within Automake, so your help may be needed. Typically, you can split long
file lists manually and use different installation directory names for each list. For example,

data_DATA = filel ... filelN fileN+1 ... file2N
may also be written as

data_DATA = filel ... fileN

data2dir = $(datadir)

data2_DATA = fileN+1 ... file2N

and will cause Automake to treat the two lists separately during make install. See
Section 12.2 [The Two Parts of Install], page 96, for choosing directory names that will
keep the ordering of the two parts of installation Note that make dist may still only work
on a host with a higher length limit in this example.

Automake itself employs a couple of strategies to avoid long command lines. For example,
when ‘${srcdir}/’ is prepended to file names, as can happen with above $(data_DATA)
lists, it limits the amount of arguments passed to external commands.

Unfortunately, some system’s make commands may prepend VPATH prefixes like
‘${srcdir}/’ to file names from the source tree automatically (see Section “Automatic
Rule Rewriting” in The Autoconf Manual). In this case, the user may have to switch to
use GNU Make, or refrain from using VPATH builds, in order to stay below the length
limit.

For libraries and programs built from many sources, convenience archives may be used as
intermediates in order to limit the object list length (see Section 8.3.5 [Libtool Convenience
Libraries|, page 61).

3.5 How derived variables are named

Sometimes a Makefile variable name is derived from some text the maintainer supplies. For
instance, a program name listed in ‘'_PROGRAMS’ is rewritten into the name of a ‘_SOURCES’
variable. In cases like this, Automake canonicalizes the text, so that program names and
the like do not have to follow Makefile variable naming rules. All characters in the name
except for letters, numbers, the strudel (@), and the underscore are turned into underscores
when making variable references.

For example, if your program is named sniff-glue, the derived variable name would

be ‘sniff_glue_SOURCES’, not ‘sniff-glue_SOURCES’. Similarly the sources for a library
named libmumble++.a should be listed in the ‘1ibmumble___a_SOURCES’ variable.

The strudel is an addition, to make the use of Autoconf substitutions in variable names
less obfuscating.

3.6 Variables reserved for the user

Some Makefile variables are reserved by the GNU Coding Standards for the use of the
“user”—the person building the package. For instance, CFLAGS is one such variable.

Chapter 3: General ideas 23

Sometimes package developers are tempted to set user variables such as CFLAGS because
it appears to make their job easier. However, the package itself should never set a user
variable, particularly not to include switches that are required for proper compilation of
the package. Since these variables are documented as being for the package builder, that
person rightfully expects to be able to override any of these variables at build time.

To get around this problem, Automake introduces an automake-specific shadow variable
for each user flag variable. (Shadow variables are not introduced for variables like CC, where
they would make no sense.) The shadow variable is named by prepending ‘AM_’ to the user
variable’s name. For instance, the shadow variable for YFLAGS is AM_YFLAGS. The package
maintainer—that is, the author(s) of the Makefile.am and configure.ac files—may adjust
these shadow variables however necessary.

See Section 28.6 [Flag Variables Ordering], page 134, for more discussion about these
variables and how they interact with per-target variables.

3.7 Programs automake might require

Automake sometimes requires helper programs so that the generated Makefile can do its
work properly. There are a fairly large number of them, and we list them here.

Although all of these files are distributed and installed with Automake, a couple of them
are maintained separately. The Automake copies are updated before each release, but we
mention the original source in case you need more recent versions.

ar-1lib This is a wrapper primarily for the Microsoft lib archiver, to make it more
POSIX-like.

ansi2knr.c

ansi2knr.1
These two files are used for de-ANSI-fication support (they are deprecated now,
and will be removed in the next major Automake release; see Section 8.18
[ANSI], page 80).

compile Thisis a wrapper for compilers that do not accept options —c and -o at the same
time. It is only used when absolutely required. Such compilers are rare, with
the Microsoft C/C++ Compiler as the most notable exception. This wrapper
also makes the following common options available for that compiler, while
performing file name translation where needed: -I, -L, -1, -W1, and -Xlinker.

config.guess

config.sub
These two programs compute the canonical triplets for the given build, host, or
target architecture. These programs are updated regularly to support new ar-
chitectures and fix probes broken by changes in new kernel versions. Each new
release of Automake comes with up-to-date copies of these programs. If your
copy of Automake is getting old, you are encouraged to fetch the latest ver-
sions of these files from http://savannah.gnu.org/git/7group=config be-
fore making a release.

http://savannah.gnu.org/git/?group=config

Chapter 3: General ideas 24

config-ml.in
This file is not a program, it is a configure fragment used for multilib support
(see Section 18.3 [Multilibs], page 113). This file is maintained in the GCC tree
at http://gcc.gnu.org/svn.html.

depcomp This program understands how to run a compiler so that it will generate not
only the desired output but also dependency information that is then used by
the automatic dependency tracking feature (see Section 8.19 [Dependencies],
page 81).

elisp-comp
This program is used to byte-compile Emacs Lisp code.

install-sh
This is a replacement for the install program that works on platforms where
install is unavailable or unusable.

mdate-sh This script is used to generate a version.texi file. It examines a file and prints
some date information about it.

missing This wraps a number of programs that are typically only required by maintain-
ers. If the program in question doesn’t exist, missing prints an informative
warning and attempts to fix things so that the build can continue.

mkinstalldirs
This script used to be a wrapper around ‘mkdir -p’, which is not portable. Now
we prefer to use ‘install-sh -d’ when configure finds that ‘mkdir -p’ does
not work, this makes one less script to distribute.

For backward compatibility mkinstalldirs is still used and distributed when
automake finds it in a package. But it is no longer installed automatically, and
it should be safe to remove it.

py-compile
This is used to byte-compile Python scripts.

symlink-tree
This program duplicates a tree of directories, using symbolic links instead of
copying files. Such an operation is performed when building multilibs (see
Section 18.3 [Multilibs|, page 113). This file is maintained in the GCC tree at
http://gcc.gnu.org/svn.html.

texinfo.tex
Not a program, this file is required for ‘make dvi’, ‘make ps’ and ‘make pdf’
to work when Texinfo sources are in the package. The latest version can be
downloaded from http://www.gnu.org/software/texinfo/.

ylwrap This program wraps lex and yacc to rename their output files. It also ensures
that, for instance, multiple yacc instances can be invoked in a single directory
in parallel.

http://gcc.gnu.org/svn.html
http://gcc.gnu.org/svn.html
http://www.gnu.org/software/texinfo/

Chapter 4: Some example packages 25

4 Some example packages

This section contains two small examples.

The first example (see Section 4.1 [Complete], page 25) assumes you have an existing
project already using Autoconf, with handcrafted Makefiles, and that you want to convert
it to using Automake. If you are discovering both tools, it is probably better that you look
at the Hello World example presented earlier (see Section 2.4 [Hello World], page 13).

The second example (see Section 4.2 [true], page 26) shows how two programs can be
built from the same file, using different compilation parameters. It contains some technical
digressions that are probably best skipped on first read.

4.1 A simple example, start to finish

Let’s suppose you just finished writing zardoz, a program to make your head float from
vortex to vortex. You’ve been using Autoconf to provide a portability framework, but
your Makefile.ins have been ad-hoc. You want to make them bulletproof, so you turn to
Automake.

The first step is to update your configure.ac to include the commands that automake
needs. The way to do this is to add an AM_INIT_AUTOMAKE call just after AC_INIT:

AC_INIT([zardoz], [1.0])
AM_INIT_AUTOMAKE

Since your program doesn’t have any complicating factors (e.g., it doesn’t use gettext,
it doesn’t want to build a shared library), you're done with this part. That was easy!

Now you must regenerate configure. But to do that, you’ll need to tell autoconf how
to find the new macro you’ve used. The easiest way to do this is to use the aclocal program
to generate your aclocal.m4 for you. But wait. .. maybe you already have an aclocal.m4,
because you had to write some hairy macros for your program. The aclocal program lets
you put your own macros into acinclude.m4, so simply rename and then run:

mv aclocal.m4 acinclude.mé4
aclocal
autoconf

Now it is time to write your Makefile.am for zardoz. Since zardoz is a user program,
you want to install it where the rest of the user programs go: bindir. Additionally, zardoz
has some Texinfo documentation. Your configure.ac script uses AC_REPLACE_FUNCS, so
you need to link against ‘$(LIBOBJS)’. So here’s what you'd write:

bin_PROGRAMS = zardoz
zardoz_SOURCES = main.c head.c float.c vortex9.c gun.c
zardoz_LDADD = $(LIBOBJS)

info_TEXINFOS = zardoz.texi

Now you can run ‘automake --add-missing’ to generate your Makefile.in and grab
any auxiliary files you might need, and you’re done!

Chapter 4: Some example packages 26

4.2 Building true and false

Here is another, trickier example. It shows how to generate two programs (true and false)
from the same source file (true.c). The difficult part is that each compilation of true.c
requires different cpp flags.

bin_PROGRAMS = true false
false_SOURCES =
false_LDADD = false.o

true.o: true.c
$(COMPILE) -DEXIT_CODE=0 -c true.c

false.o: true.c
$(COMPILE) -DEXIT_CODE=1 -o false.o -c true.c

Note that there is no true_SOURCES definition. Automake will implicitly assume that
there is a source file named true.c (see Section 8.5 [Default _.SOURCES], page 69), and
define rules to compile true.o and link true. The ‘true.o: true.c’ rule supplied by the
above Makefile.am, will override the Automake generated rule to build true.o.

false_SOURCES is defined to be empty—that way no implicit value is substituted. Be-
cause we have not listed the source of false, we have to tell Automake how to link the
program. This is the purpose of the false_LDADD line. A false_DEPENDENCIES variable,
holding the dependencies of the false target will be automatically generated by Automake
from the content of false_LDADD.

The above rules won’t work if your compiler doesn’t accept both -c and -o. The simplest
fix for this is to introduce a bogus dependency (to avoid problems with a parallel make):

true.o: true.c false.o
$(COMPILE) -DEXIT_CODE=0 -c true.c

false.o: true.c
$(COMPILE) -DEXIT_CODE=1 -c true.c && mv true.o false.o

As it turns out, there is also a much easier way to do this same task. Some of the above
technique is useful enough that we’ve kept the example in the manual. However if you were
to build true and false in real life, you would probably use per-program compilation flags,
like so:

bin_PROGRAMS = false true

false_SOURCES = true.c
false_CPPFLAGS = -DEXIT_CODE=1

true_SOURCES = true.c
true_CPPFLAGS = -DEXIT_CODE=0

In this case Automake will cause true.c to be compiled twice, with different flags. In
this instance, the names of the object files would be chosen by automake; they would be
false-true.o and true-true.o. (The name of the object files rarely matters.)

Chapter 5: Creating a Makefile.in 27

5 Creating a Makefile.in

To create all the Makefile.ins for a package, run the automake program in the top
level directory, with no arguments. automake will automatically find each appropriate
Makefile.am (by scanning configure.ac; see Chapter 6 [configure|, page 30) and generate
the corresponding Makefile.in. Note that automake has a rather simplistic view of what
constitutes a package; it assumes that a package has only one configure.ac, at the top. If
your package has multiple configure.acs, then you must run automake in each directory
holding a configure.ac. (Alternatively, you may rely on Autoconf’s autoreconf, which
is able to recurse your package tree and run automake where appropriate.)

You can optionally give automake an argument; .am is appended to the argument and
the result is used as the name of the input file. This feature is generally only used to
automatically rebuild an out-of-date Makefile.in. Note that automake must always be run
from the topmost directory of a project, even if being used to regenerate the Makefile.in
in some subdirectory. This is necessary because automake must scan configure.ac, and
because automake uses the knowledge that a Makefile.in is in a subdirectory to change
its behavior in some cases.

Automake will run autoconf to scan configure.ac and its dependencies (i.e.,
aclocal.m4 and any included file), therefore autoconf must be in your PATH. If there
is an AUTOCONF variable in your environment it will be used instead of autoconf, this
allows you to select a particular version of Autoconf. By the way, don’t misunderstand
this paragraph: automake runs autoconf to scan your configure.ac, this won’t build
configure and you still have to run autoconf yourself for this purpose.

automake accepts the following options:

-a

--add-missing
Automake requires certain common files to exist in certain situations; for
instance, config.guess is required if configure.ac invokes AC_CANONICAL_
HOST. Automake is distributed with several of these files (see Section 3.7
[Auxiliary Programs|, page 23); this option will cause the missing ones to be
automatically added to the package, whenever possible. In general if Automake
tells you a file is missing, try using this option. By default Automake tries to
make a symbolic link pointing to its own copy of the missing file; this can be
changed with --copy.

Many of the potentially-missing files are common scripts whose location may be
specified via the AC_CONFIG_AUX_DIR macro. Therefore, AC_CONFIG_AUX_DIR’s
setting affects whether a file is considered missing, and where the missing file
is added (see Section 6.2 [Optional|, page 32).

In some strictness modes, additional files are installed, see Chapter 22 [Gnits],
page 119, for more information.

—--libdir=dir
Look for Automake data files in directory dir instead of in the installation
directory. This is typically used for debugging.

Chapter 5: Creating a Makefile.in 28

-C
--copy When used with --add-missing, causes installed files to be copied. The default
is to make a symbolic link.

--cygnus Causes the generated Makefile.ins to follow Cygnus rules, instead of GNU or
Gnits rules. For more information, see Chapter 23 [Cygnus], page 120.

-f

--force-missing
When used with -—add-missing, causes standard files to be reinstalled even if
they already exist in the source tree. This involves removing the file from the

source tree before creating the new symlink (or, with --copy, copying the new
file).

--foreign
Set the global strictness to foreign. For more information, see Section 3.2
[Strictness], page 19.

--gnits Set the global strictness to gnits. For more information, see Chapter 22 [Gnits],
page 119.

--gnu Set the global strictness to gnu. For more information, see Chapter 22 [Gnits],
page 119. This is the default strictness.

--help Print a summary of the command line options and exit.

-1

--ignore-deps
This disables the dependency tracking feature in generated Makefiles; see
Section 8.19 [Dependencies|, page 81.

--include-deps
This enables the dependency tracking feature. This feature is enabled by de-
fault. This option is provided for historical reasons only and probably should
not be used.

--no-force
Ordinarily automake creates all Makefile.ins mentioned in configure.ac.
This option causes it to only update those Makefile.ins that are out of date
with respect to one of their dependents.

-o dir

--output-dir=dir
Put the generated Makefile.in in the directory dir. Ordinarily each
Makefile.in is created in the directory of the corresponding Makefile.am.
This option is deprecated and will be removed in a future release.

-V
--verbose

Cause Automake to print information about which files are being read or cre-
ated.

--version
Print the version number of Automake and exit.

Chapter 5: Creating a Makefile.in 29

-W CATEGORY
--warnings=category
Output warnings falling in category. category can be one of:

gnu warnings related to the GNU Coding Standards (see The GNU
Coding Standards).

obsolete obsolete features or constructions
override user redefinitions of Automake rules or variables

portability
portability issues (e.g., use of make features that are known to be
not portable)

extra-portability
extra portability issues related to obscure tools. One example of
such a tool is the Microsoft 1ib archiver.

syntax weird syntax, unused variables, typos

unsupported
unsupported or incomplete features

all all the warnings
none turn off all the warnings
error treat warnings as errors

A category can be turned off by prefixing its name with ‘no-’. For instance,
-Wno-syntax will hide the warnings about unused variables.

The categories output by default are ‘syntax’ and ‘unsupported’. Additionally,
‘gnu’ and ‘portability’ are enabled in —-gnu and --gnits strictness. On the
other hand, the silent-rules options (see Chapter 17 [Options], page 107)
turns off portability warnings about recursive variable expansions.

Turning off ‘portability’ will also turn off ‘extra-portability’, and similarly
turning on ‘extra-portability’ will also turn on ‘portability’. However,
turning on ‘portability’ or turning off ‘extra-portability’ will not affect
the other category.

The environment variable WARNINGS can contain a comma separated list of
categories to enable. It will be taken into account before the command-line
switches, this way -Wnone will also ignore any warning category enabled by
WARNINGS. This variable is also used by other tools like autoconf; unknown
categories are ignored for this reason.

If the environment variable AUTOMAKE_JOBS contains a positive number, it is taken as the
maximum number of Perl threads to use in automake for generating multiple Makefile.in
files concurrently. This is an experimental feature.

Chapter 6: Scanning configure.ac, using aclocal 30

6 Scanning configure.ac, using aclocal

Automake scans the package’s configure.ac to determine certain information about the
package. Some autoconf macros are required and some variables must be defined in
configure.ac. Automake will also use information from configure.ac to further tailor
its output.

Automake also supplies some Autoconf macros to make the maintenance easier. These
macros can automatically be put into your aclocal.mé4 using the aclocal program.

6.1 Configuration requirements

The one real requirement of Automake is that your configure.ac call AM_INIT_AUTOMAKE.
This macro does several things that are required for proper Automake operation (see
Section 6.4 [Macros|, page 44).

Here are the other macros that Automake requires but which are not run by AM_INIT_
AUTOMAKE:

AC_CONFIG_FILES
AC_OUTPUT
These two macros are usually invoked as follows near the end of configure.ac.

AC_CONFIG_FILES([
Makefile
doc/Makefile
src/Makefile
src/lib/Makefile

D
AC_OUTPUT

Automake uses these to determine which files to create (see Section “Creating
Output Files” in The Autoconf Manual). A listed file is considered to be an
Automake generated Makefile if there exists a file with the same name and
the .am extension appended. Typically, ‘AC_CONFIG_FILES([foo/Makefile])’
will cause Automake to generate foo/Makefile.in if foo/Makefile.am exists.

When using AC_CONFIG_FILES with multiple input files, as in
AC_CONFIG_FILES([Makefile:top.in:Makefile.in:bot.in])

automake will generate the first .in input file for which a .am file exists. If no

such file exists the output file is not considered to be generated by Automake.

Files created by AC_CONFIG_FILES, be they Automake Makefiles or not, are all
removed by ‘make distclean’. Their inputs are automatically distributed, un-
less they are the output of prior AC_CONFIG_FILES commands. Finally, rebuild
rules are generated in the Automake Makefile existing in the subdirectory of
the output file, if there is one, or in the top-level Makefile otherwise.

The above machinery (cleaning, distributing, and rebuilding) works fine if the
AC_CONFIG_FILES specifications contain only literals. If part of the specification

Chapter 6: Scanning configure.ac, using aclocal 31

uses shell variables, automake will not be able to fulfill this setup, and you will
have to complete the missing bits by hand. For instance, on

file=input

AC_CONFIG_FILES([output:$filel,, [file=$file])
automake will output rules to clean output, and rebuild it. However the rebuild
rule will not depend on input, and this file will not be distributed either. (You
must add ‘EXTRA_DIST = input’ to your Makefile.am if input is a source file.)
Similarly

file=output

file2=out:in

AC_CONFIG_FILES([$file:input],, [file=$file])
AC_CONFIG_FILES([$file2],, [file2=$file2])
will only cause input to be distributed. No file will be cleaned automatically
(add ‘DISTCLEANFILES = output out’ yourself), and no rebuild rule will be out-
put.

Obviously automake cannot guess what value ‘$file’ is going to hold later when
configure is run, and it cannot use the shell variable ‘$file’ in a Makefile.
However, if you make reference to ‘¢file’ as ‘${file}’ (i.e., in a way that
is compatible with make’s syntax) and furthermore use AC_SUBST to ensure
that ‘¢{file}’ is meaningful in a Makefile, then automake will be able to use
‘${file}’ to generate all these rules. For instance, here is how the Automake
package itself generates versioned scripts for its test suite:

AC_SUBST([APIVERSION], ...)

AC_CONFIG_FILES(
[tests/aclocal-${APIVERSION}:tests/aclocal.in],
[chmod +x tests/aclocal-${APIVERSION}],
[APIVERSION=$APIVERSION])

AC_CONFIG_FILES(
[tests/automake-${APIVERSION}:tests/automake.in],
[chmod +x tests/automake-${APIVERSION}])

Here cleaning, distributing, and rebuilding are done automatically, because
‘${APIVERSION}’ is known at make-time.

Note that you should not use shell variables to declare Makefile files for which
automake must create Makefile.in. Even AC_SUBST does not help here, be-
cause automake needs to know the file name when it runs in order to check
whether Makefile.am exists. (In the very hairy case that your setup requires
such use of variables, you will have to tell Automake which Makefile.ins to
generate on the command-line.)

It is possible to let automake emit conditional rules for AC_CONFIG_FILES with
the help of AM_COND_IF (see Section 6.2 [Optional], page 32).

To summarize:

e Use literals for Makefiles, and for other files whenever possible.

Chapter 6: Scanning configure.ac, using aclocal 32

e Use ‘$file’ (or ‘${file}’ without ‘AC_SUBST([file])’) for files that
automake should ignore.

o Use ‘${file} and ‘AC_SUBST([file])’ for files that automake should not
ignore.

6.2 Other things Automake recognizes

Every time Automake is run it calls Autoconf to trace configure.ac. This way it can
recognize the use of certain macros and tailor the generated Makefile.in appropriately.
Currently recognized macros and their effects are:

AC_CANONICAL_BUILD

AC_CANONICAL_HOST

AC_CANONICAL_TARGET
Automake will ensure that config.guess and config.sub exist. Also, the
Makefile variables build_triplet, host_triplet and target_triplet are
introduced. See Section “Getting the Canonical System Type” in The Autoconf
Manual.

AC_CONFIG_AUX_DIR
Automake will look for various helper scripts, such as install-sh, in the
directory named in this macro invocation. (The full list of scripts is: ar-1ib,
config.guess, config.sub, depcomp, elisp-comp, compile, install-sh,
ltmain.sh, mdate-sh, missing, mkinstalldirs, py-compile, texinfo.tex,
and ylwrap.) Not all scripts are always searched for; some scripts will only be
sought if the generated Makefile.in requires them.

If AC_CONFIG_AUX_DIR is not given, the scripts are looked for in their standard
locations. For mdate-sh, texinfo.tex, and ylwrap, the standard location
is the source directory corresponding to the current Makefile.am. For the
rest, the standard location is the first one of ., .., or ../.. (relative to the
top source directory) that provides any one of the helper scripts. See Section
“Finding ‘configure’ Input” in The Autoconf Manual.

Required files from AC_CONFIG_AUX_DIR are automatically distributed, even if
there is no Makefile.am in this directory.

AC_CONFIG_LIBOBJ_DIR
Automake will require the sources file declared with AC_LIBSOURCE (see below)
in the directory specified by this macro.

AC_CONFIG_HEADERS
Automake will generate rules to rebuild these headers. Older versions of
Automake required the use of AM_CONFIG_HEADER (see Section 6.4 [Macros|,
page 44); this is no longer the case.
As with AC_CONFIG_FILES (see Section 6.1 [Requirements], page 30), parts of
the specification using shell variables will be ignored as far as cleaning, dis-
tributing, and rebuilding is concerned.

AC_CONFIG_LINKS
Automake will generate rules to remove configure generated links on ‘make
distclean’ and to distribute named source files as part of ‘make dist’.

Chapter 6: Scanning configure.ac, using aclocal 33

As for AC_CONFIG_FILES (see Section 6.1 [Requirements], page 30), parts of
the specification using shell variables will be ignored as far as cleaning and
distributing is concerned. (There are no rebuild rules for links.)

AC_LIBOBJ

AC_LIBSQOURCE

AC_LIBSOURCES
Automake will automatically distribute any file listed in AC_LIBSOURCE or AC_
LIBSOURCES.

Note that the AC_LIBOBJ macro calls AC_LIBSOURCE. So if an Autoconf macro
is documented to call ‘AC_LIBOBJ([file])’, then file.c will be distributed
automatically by Automake. This encompasses many macros like AC_FUNC_
ALLOCA, AC_FUNC_MEMCMP, AC_REPLACE_FUNCS, and others.

By the way, direct assignments to LIBOBJS are no longer supported. You should
always use AC_LIBOBJ for this purpose. See Section “AC_LIBOBJ vs. LIBOBJS”
in The Autoconf Manual.

AC_PROG_RANLIB
This is required if any libraries are built in the package. See Section “Particular
Program Checks” in The Autoconf Manual.

AC_PROG_CXX
This is required if any C++ source is included. See Section “Particular Program
Checks” in The Autoconf Manual.

AC_PROG_0BJC
This is required if any Objective C source is included. See Section “Particular
Program Checks” in The Autoconf Manual.

AC_PROG_F77
This is required if any Fortran 77 source is included. This macro is distributed
with Autoconf version 2.13 and later. See Section “Particular Program Checks”
in The Autoconf Manual.

AC_F77_LIBRARY_LDFLAGS
This is required for programs and shared libraries that are a mixture of lan-
guages that include Fortran 77 (see Section 8.13.3 [Mixing Fortran 77 With C
and C++], page 77). See Section 6.4 [Autoconf macros supplied with Automake],
page 44.

AC_FC_SRCEXT
Automake will add the flags computed by AC_FC_SRCEXT to compilation of files
with the respective source extension (see Section “Fortran Compiler Character-
istics” in The Autoconf Manual).

AC_PROG_FC
This is required if any Fortran 90/95 source is included. This macro is dis-
tributed with Autoconf version 2.58 and later. See Section “Particular Program
Checks” in The Autoconf Manual.

Chapter 6: Scanning configure.ac, using aclocal 34

AC_PROG_LIBTOOL
Automake will turn on processing for 1ibtool (see Section “Introduction” in
The Libtool Manual).

AC_PROG_YACC
If a Yacc source file is seen, then you must either use this macro or define the
variable YACC in configure.ac. The former is preferred (see Section “Particular
Program Checks” in The Autoconf Manual).

AC_PROG_LEX
If a Lex source file is seen, then this macro must be used. See Section “Particular
Program Checks” in The Autoconf Manual.

AC_REQUIRE_AUX_FILE
For each AC_REQUIRE_AUX_FILE([file]), automake will ensure that file ex-
ists in the aux directory, and will complain otherwise. It will also automati-
cally distribute the file. This macro should be used by third-party Autoconf
macros that require some supporting files in the aux directory specified with
AC_CONFIG_AUX_DIR above. See Section “Finding configure Input” in The
Autoconf Manual.

AC_SUBST The first argument is automatically defined as a variable in each generated
Makefile.in, unless AM_SUBST_NOTMAKE is also used for this variable. See
Section “Setting Output Variables” in The Autoconf Manual.

For every substituted variable var, automake will add a line var = value to
each Makefile.in file. Many Autoconf macros invoke AC_SUBST to set output
variables this way, e.g., AC_PATH_XTRA defines X_CFLAGS and X_LIBS. Thus, you
can access these variables as $ (X_CFLAGS) and $(X_LIBS) in any Makefile.am
if AC_PATH_XTRA is called.

AM_C_PROTOTYPES
This is required when using the deprecated de-ANSI-fication feature; see
Section 8.18 [ANSI], page 80. It will be removed in the next major Automake
release.

AM_CONDITIONAL
This introduces an Automake conditional (see Chapter 20 [Conditionals],
page 113).

AM_COND_TIF
This macro allows automake to detect subsequent access within configure.ac
to a conditional previously introduced with AM_CONDITIONAL, thus enabling con-
ditional AC_CONFIG_FILES (see Section 20.1 [Usage of Conditionals], page 114).

AM_GNU_GETTEXT
This macro is required for packages that use GNU gettext (see Section 10.2
[gettext], page 89). It is distributed with gettext. If Automake sees this macro
it ensures that the package meets some of gettext’s requirements.

AM_GNU_GETTEXT_INTL_SUBDIR
This macro specifies that the intl/ subdirectory is to be built, even if the
AM_GNU_GETTEXT macro was invoked with a first argument of ‘external’.

Chapter 6: Scanning configure.ac, using aclocal 35

AM_MAINTAINER_MODE([default-mode|)
This macro adds an --enable-maintainer-mode option to configure. If this
is used, automake will cause “maintainer-only” rules to be turned off by de-
fault in the generated Makefile.ins, unless default-mode is ‘enable’. This
macro defines the MAINTAINER_MODE conditional, which you can use in your
own Makefile.am. See Section 28.2 [maintainer-mode], page 129.

AM_SUBST_NOTMAKE (var)

Prevent Automake from defining a variable var, even if it is substituted
by config.status. Normally, Automake defines a make variable for each
configure substitution, i.e., for each AC_SUBST([var]). This macro
prevents that definition from Automake. If AC_SUBST has not been called
for this variable, then AM_SUBST_NOTMAKE has no effects. Preventing variable
definitions may be useful for substitution of multi-line values, where var =
@value® might yield unintended results.

m4_include
Files included by configure.ac using this macro will be detected by Au-
tomake and automatically distributed. They will also appear as dependencies
in Makefile rules.

m4_include is seldom used by configure.ac authors, but can appear in
aclocal.m4 when aclocal detects that some required macros come from
files local to your package (as opposed to macros installed in a system-wide
directory, see Section 6.3 [Invoking aclocal], page 35).

6.3 Auto-generating aclocal.m4

Automake includes a number of Autoconf macros that can be used in your package (see
Section 6.4 [Macros], page 44); some of them are actually required by Automake in certain
situations. These macros must be defined in your aclocal.m4; otherwise they will not be
seen by autoconf.

The aclocal program will automatically generate aclocal.m4 files based on the con-
tents of configure.ac. This provides a convenient way to get Automake-provided macros,
without having to search around. The aclocal mechanism allows other packages to supply
their own macros (see Section 6.3.3 [Extending aclocal], page 40). You can also use it to
maintain your own set of custom macros (see Section 6.3.4 [Local Macros|, page 41).

At startup, aclocal scans all the .m4 files it can find, looking for macro definitions (see
Section 6.3.2 [Macro Search Path], page 37). Then it scans configure.ac. Any mention
of one of the macros found in the first step causes that macro, and any macros it in turn
requires, to be put into aclocal.m4.

Putting the file that contains the macro definition into aclocal.m4 is usually done by
copying the entire text of this file, including unused macro definitions as well as both ‘#’
and ‘dnl’ comments. If you want to make a comment that will be completely ignored by
aclocal, use ‘## as the comment leader.

When a file selected by aclocal is located in a subdirectory specified as a relative search
path with aclocal’s -I argument, aclocal assumes the file belongs to the package and uses
m4_include instead of copying it into aclocal.m4. This makes the package smaller, eases

Chapter 6: Scanning configure.ac, using aclocal 36

dependency tracking, and cause the file to be distributed automatically. (See Section 6.3.4
[Local Macros], page 41, for an example.) Any macro that is found in a system-wide
directory, or via an absolute search path will be copied. So use ‘-I ‘pwd‘/reldir’ instead
of ‘-I reldir’ whenever some relative directory should be considered outside the package.

The contents of acinclude.m4, if this file exists, are also automatically included in
aclocal.m4. We recommend against using acinclude.m4 in new packages (see Section 6.3.4
[Local Macros|, page 41).

While computing aclocal.m4, aclocal runs automédte (see Section “Using Automdte”
in The Autoconf Manual) in order to trace the macros that are really used, and omit from
aclocal.m4 all macros that are mentioned but otherwise unexpanded (this can happen
when a macro is called conditionally). autom4te is expected to be in the PATH, just as
autoconf. Its location can be overridden using the AUTOMATE environment variable.

6.3.1 aclocal Options

aclocal accepts the following options:

-—automake-acdir=dir
Look for the automake-provided macro files in dir instead of in the installation
directory. This is typically used for debugging.

--system-acdir=dir
Look for the system-wide third-party macro files (and the special dirlist file)
in dir instead of in the installation directory. This is typically used for debug-
ging.

--acdir=dir
Deprecated shorthand for “--automake-acdir=dir --system-acdir=dir”.
Will be removed in future aclocal versions.

[13

--diff [=command]
Run command on M4 file that would be installed or overwritten by ——install.
The default command is ‘diff -u’. This option implies —-install and --dry-

run.

--dry-run
Do not actually overwrite (or create) aclocal.m4 and M4 files installed by
--install.

--help Print a summary of the command line options and exit.

-I dir Add the directory dir to the list of directories searched for .m4 files.

--install
Install system-wide third-party macros into the first directory specified with ‘-1
dir’ instead of copying them in the output file.

When this option is used, and only when this option is used, aclocal will also
honor ‘#serial number’ lines that appear in macros: an M4 file is ignored if
there exists another M4 file with the same basename and a greater serial number
in the search path (see Section 6.3.5 [Serials], page 42).

Chapter 6: Scanning configure.ac, using aclocal 37

—-—force

Always overwrite the output file. The default is to overwrite the output file only
when really needed, i.e., when its contents changes or if one of its dependencies
is younger.

This option forces the update of aclocal.m4 (or the file specified with -—output
below) and only this file, it has absolutely no influence on files that may need
to be installed by --install.

--output=~file

Cause the output to be put into file instead of aclocal.m4.

--print-ac-dir

—--verbose

—--version

Prints the name of the directory that aclocal will search to find third-party .m4
files. When this option is given, normal processing is suppressed. This option
was used in the past by third-party packages to determine where to install .m4
macro files, but this usage is today discouraged, since it causes ‘$ (prefix)’ not
to be thoroughly honoured (which violates the GNU Coding Standards), and a
similar semantics can be better obtained with the ACLOCAL_PATH environment
variable; see Section 6.3.3 [Extending aclocal|, page 40.

Print the names of the files it examines.

Print the version number of Automake and exit.

-W CATEGORY
--warnings=category

Output warnings falling in category. category can be one of:

syntax dubious syntactic constructs, underquoted macros, unused macros,
etc.
unsupported

unknown macros

all all the warnings, this is the default
none turn off all the warnings
error treat warnings as errors

All warnings are output by default.

The environment variable WARNINGS is honored in the same way as it is for
automake (see Chapter 5 [Invoking Automake], page 27).

6.3.2 Macro Search Path

By default, aclocal searches for .m4 files in the following directories, in this order:

acdir-APIVERSION

This is where the .m4 macros distributed with Automake itself are stored.
APIVERSION depends on the Automake release used; for example, for Au-
tomake 1.11.x, APIVERSION = 1.11.

Chapter 6: Scanning configure.ac, using aclocal 38

acdir This directory is intended for third party .m4 files, and is configured when
automake itself is built. This is @datadir@/aclocal/, which typically expands
to ${prefix}/share/aclocal/. To find the compiled-in value of acdir, use the
--print-ac-dir option (see Section 6.3.1 [aclocal Options|, page 36).

As an example, suppose that automake-1.11.2 was configured with --prefix=
/usr/local. Then, the search path would be:
1. /usr/local/share/aclocal-1.11.2/
2. /usr/local/share/aclocal/

The paths for the acdir and acdir-APIVERSION directories can be changed respectively
through aclocal options —-system-acdir and --automake-acdir (see Section 6.3.1 [aclocal
Options|, page 36). Note however that these options are only intended for use by the
internal Automake test suite, or for debugging under highly unusual situations; they are
not ordinarily needed by end-users.

As explained in (see Section 6.3.1 [aclocal Options], page 36), there are several options
that can be used to change or extend this search path.

Modifying the Macro Search Path: ‘-I dir’

Any extra directories specified using -I options (see Section 6.3.1 [aclocal Options], page 36)
are prepended to this search list. Thus, ‘aclocal -I /foo -I /bar’ results in the following
search path:

1. /foo
2. /bar
3. acdir-APIVERSION
4. acdir

Modifying the Macro Search Path: dirlist

There is a third mechanism for customizing the search path. If a dirlist file exists in
acdir, then that file is assumed to contain a list of directory patterns, one per line. aclocal
expands these patterns to directory names, and adds them to the search list after all other
directories. dirlist entries may use shell wildcards such as ‘*’, ‘?’ or [...].

For example, suppose acdir/dirlist contains the following:

/testil
/test?2
/test3x*

and that aclocal was called with the ‘-I /foo -I /bar’ options. Then, the search path
would be

1. /foo

/bar
acdir-APIVERSION
acdir

/testl

/test2

> Gl o

Chapter 6: Scanning configure.ac, using aclocal 39

and all directories with path names starting with /test3.

If the --system-acdir=dir option is used, then aclocal will search for the dirlist
file in dir; but remember the warnings above against the use of -—system-acdir.

dirlist is useful in the following situation: suppose that automake version 1.11.2 is
installed with ‘--prefix=/usr’ by the system vendor. Thus, the default search directories
are

1. /usr/share/aclocal-1.11/
2. /usr/share/aclocal/

However, suppose further that many packages have been manually installed on the sys-
tem, with $prefix=/usr/local, as is typical. In that case, many of these “extra” .m4 files are
in /usr/local/share/aclocal. The only way to force /usr/bin/aclocal to find these
“extra” .m4 files is to always call ‘aclocal -I /usr/local/share/aclocal’. This is incon-
venient. With dirlist, one may create a file /usr/share/aclocal/dirlist containing
only the single line

/usr/local/share/aclocal
Now, the “default” search path on the affected system is
1. /usr/share/aclocal-1.11/
2. /usr/share/aclocal/
3. /usr/local/share/aclocal/

without the need for -I options; -I options can be reserved for project-specific needs
(my-source-dir/m4/), rather than using it to work around local system-dependent tool
installation directories.

Similarly, dirlist can be handy if you have installed a local copy of Automake in your
account and want aclocal to look for macros installed at other places on the system.

Modifying the Macro Search Path: ACLOCAL_PATH

The fourth and last mechanism to customize the macro search path is also the simplest.
Any directory included in the colon-separated environment variable ACLOCAL_PATH is
added to the search path and takes precedence over system directories (including those
found via dirlist), with the exception of the versioned directory acdir-APIVERSION
(see Section 6.3.2 [Macro Search Path|, page 37). However, directories passed via -I will
take precedence over directories in ACLOCAL_PATH.

Also note that, if the ——install option is used, any .m4 file containing a required macro
that is found in a directory listed in ACLOCAL_PATH will be installed locally. In this case,
serial numbers in .m4 are honoured too, see Section 6.3.5 [Serials], page 42.

Conversely to dirlist, ACLOCAL_PATH is useful if you are using a global copy of Au-
tomake and want aclocal to look for macros somewhere under your home directory.

Planned future incompatibilities

The order in which the directories in the macro search path are currently looked up is
confusing and/or suboptimal in various aspects, and is probably going to be changed in the
future Automake release. In particular, directories in ACLOCAL_PATH and acdir might end
up taking precedence over acdir-APIVERSION, and directories in acdir/dirlist might end
up taking precedence over acdir. This is a possible future incompatibility!

Chapter 6: Scanning configure.ac, using aclocal 40

6.3.3 Writing your own aclocal macros

The aclocal program doesn’t have any built-in knowledge of any macros, so it is easy to
extend it with your own macros.

This can be used by libraries that want to supply their own Autoconf macros for use by
other programs. For instance, the gettext library supplies a macro AM_GNU_GETTEXT that
should be used by any package using gettext. When the library is installed, it installs this
macro so that aclocal will find it.

A macro file’s name should end in .m4. Such files should be installed in
$(datadir)/aclocal. This is as simple as writing:

aclocaldir = $(datadir)/aclocal
aclocal _DATA = mymacro.m4 myothermacro.m4

Please do use $(datadir)/aclocal, and not something based on the result of ‘aclocal
--print-ac-dir’ (see Section 28.10 [Hard-Coded Install Paths|, page 143, for arguments).
It might also be helpful to suggest to the user to add the $(datadir)/aclocal directory
to his ACLOCAL_PATH variable (see [ACLOCAL_PATH], page 39) so that aclocal will find
the .m4 files installed by your package automatically.

A file of macros should be a series of properly quoted AC_DEFUN’s (see Section “Macro Def-
initions” in The Autoconf Manual). The aclocal programs also understands AC_REQUIRE
(see Section “Prerequisite Macros” in The Autoconf Manual), so it is safe to put each macro
in a separate file. Each file should have no side effects but macro definitions. Especially,
any call to AC_PREREQ should be done inside the defined macro, not at the beginning of the
file.

Starting with Automake 1.8, aclocal will warn about all underquoted calls to AC_
DEFUN. We realize this will annoy a lot of people, because aclocal was not so strict in
the past and many third party macros are underquoted; and we have to apologize for this
temporary inconvenience. The reason we have to be stricter is that a future implementation
of aclocal (see Section 6.3.6 [Future of aclocal], page 44) will have to temporarily include
all these third party .m4 files, maybe several times, including even files that are not actually
needed. Doing so should alleviate many problems of the current implementation, however
it requires a stricter style from the macro authors. Hopefully it is easy to revise the existing
macros. For instance,

bad style

AC_PREREQ(2.57)

AC_DEFUN (AX_FOOBAR,
[AC_REQUIRE([AX_SOMETHING])dnl
AX_FO00

AX_BAR

D

should be rewritten as

AC_DEFUN([AX_FOOBAR],
[AC_PREREQ([2.57])dnl
AC_REQUIRE([AX_SOMETHING])dnl
AX_F0O0

AX_BAR

Chapter 6: Scanning configure.ac, using aclocal 41

D

Wrapping the AC_PREREQ call inside the macro ensures that Autoconf 2.57 will not be
required if AX_FOOBAR is not actually used. Most importantly, quoting the first argument of
AC_DEFUN allows the macro to be redefined or included twice (otherwise this first argument
would be expanded during the second definition). For consistency we like to quote even
arguments such as 2.57 that do not require it.

If you have been directed here by the aclocal diagnostic but are not the maintainer of
the implicated macro, you will want to contact the maintainer of that macro. Please make
sure you have the latest version of the macro and that the problem hasn’t already been
reported before doing so: people tend to work faster when they aren’t flooded by mails.

Another situation where aclocal is commonly used is to manage macros that are used
locally by the package, Section 6.3.4 [Local Macros|, page 41.

6.3.4 Handling Local Macros

Feature tests offered by Autoconf do not cover all needs. People often have to supplement
existing tests with their own macros, or with third-party macros.

There are two ways to organize custom macros in a package.

The first possibility (the historical practice) is to list all your macros in acinclude.m4.
This file will be included in aclocal.m4 when you run aclocal, and its macro(s) will
henceforth be visible to autoconf. However if it contains numerous macros, it will rapidly
become difficult to maintain, and it will be almost impossible to share macros between
packages.

The second possibility, which we do recommend, is to write each macro in its own file
and gather all these files in a directory. This directory is usually called m4/. To build
aclocal.m4, one should therefore instruct aclocal to scan m4/. From the command line,
this is done with ‘aclocal -I m4’. The top-level Makefile.am should also be updated to
define

ACLOCAL_AMFLAGS = -I m4

ACLOCAL_AMFLAGS contains options to pass to aclocal when aclocal.m4 is to be rebuilt
by make. This line is also used by autoreconf (see Section “Using autoreconf to Update
configure Scripts” in The Autoconf Manual) to run aclocal with suitable options, or
by autopoint (see Section “Invoking the autopoint Program” in GNU gettext tools) and
gettextize (see Section “Invoking the gettextize Program” in GNU gettext tools) to
locate the place where Gettext’s macros should be installed. So even if you do not really
care about the rebuild rules, you should define ACLOCAL_AMFLAGS.

When ‘aclocal -I m4’ is run, it will build an aclocal.m4 that m4_includes any file
from m4/ that defines a required macro. Macros not found locally will still be searched in
system-wide directories, as explained in Section 6.3.2 [Macro Search Path], page 37.

Custom macros should be distributed for the same reason that configure.ac is: so that
other people have all the sources of your package if they want to work on it. Actually, this
distribution happens automatically because all m4_included files are distributed.

However there is no consensus on the distribution of third-party macros that your package
may use. Many libraries install their own macro in the system-wide aclocal directory (see
Section 6.3.3 [Extending aclocal], page 40). For instance, Guile ships with a file called

Chapter 6: Scanning configure.ac, using aclocal 42

guile.m4 that contains the macro GUILE_FLAGS that can be used to define setup compiler
and linker flags appropriate for using Guile. Using GUILE_FLAGS in configure.ac will cause
aclocal to copy guile.m4 into aclocal.m4, but as guile.m4 is not part of the project, it
will not be distributed. Technically, that means a user who needs to rebuild aclocal .m4 will
have to install Guile first. This is probably OK, if Guile already is a requirement to build
the package. However, if Guile is only an optional feature, or if your package might run
on architectures where Guile cannot be installed, this requirement will hinder development.
An easy solution is to copy such third-party macros in your local m4/ directory so they get
distributed.

Since Automake 1.10, aclocal offers an option to copy these system-wide third-party
macros in your local macro directory, solving the above problem. Simply use:

ACLOCAL_AMFLAGS = -I m4 --install

With this setup, system-wide macros will be copied to m4/ the first time you run
autoreconf. Then the locally installed macros will have precedence over the system-wide
installed macros each time aclocal is run again.

One reason why you should keep --install in the flags even after the first run is that
when you later edit configure.ac and depend on a new macro, this macro will be installed
in your m4/ automatically. Another one is that serial numbers (see Section 6.3.5 [Serials],
page 42) can be used to update the macros in your source tree automatically when new
system-wide versions are installed. A serial number should be a single line of the form

#serial nnn
where nnn contains only digits and dots. It should appear in the M4 file before any macro

definition. It is a good practice to maintain a serial number for each macro you distribute,
even if you do not use the -—install option of aclocal: this allows other people to use it.

6.3.5 Serial Numbers

Because third-party macros defined in *.m4 files are naturally shared between multiple
projects, some people like to version them. This makes it easier to tell which of two M4
files is newer. Since at least 1996, the tradition is to use a ‘#serial’ line for this.

A serial number should be a single line of the form
serial version
where version is a version number containing only digits and dots. Usually people use a
single integer, and they increment it each time they change the macro (hence the name of
“serial”). Such a line should appear in the M4 file before any macro definition.
The ‘4’ must be the first character on the line, and it is OK to have extra words after
the version, as in
#serial version garbage
Normally these serial numbers are completely ignored by aclocal and autoconf, like any
genuine comment. However when using aclocal’s ——install feature, these serial numbers
will modify the way aclocal selects the macros to install in the package: if two files with

the same basename exist in your search path, and if at least one of them uses a ‘#serial’
line, aclocal will ignore the file that has the older ‘#serial’ line (or the file that has none).

Note that a serial number applies to a whole M4 file, not to any macro it contains. A
file can contains multiple macros, but only one serial.

Chapter 6: Scanning configure.ac, using aclocal 43

Here is a use case that illustrates the use of --install and its interaction
with serial numbers. Let’s assume we maintain a package called MyPackage, the
configure.ac of which requires a third-party macro AX_THIRD_PARTY defined in
/usr/share/aclocal/thirdparty.m4 as follows:

serial 1
AC_DEFUN([AX_THIRD_PARTY], [...])
MyPackage uses an m4/ directory to store local macros as explained in Section 6.3.4
[Local Macros|, page 41, and has
ACLOCAL_AMFLAGS = -I m4 --install
in its top-level Makefile.am.

Initially the m4/ directory is empty. The first time we run autoreconf, it will fetch the
options to pass to aclocal in Makefile.am, and run ‘aclocal -I m4 --install’. aclocal
will notice that

e configure.ac uses AX_THIRD_PARTY
e No local macros define AX_THIRD_PARTY

e /usr/share/aclocal/thirdparty.m4 defines AX_THIRD_PARTY with serial 1.

Because /usr/share/aclocal/thirdparty.m4 is a system-wide macro and aclocal was
given the --install option, it will copy this file in m4/thirdparty.m4, and output an
aclocal.m4 that contains ‘m4_include([m4/thirdparty.m4])’.

The next time ‘aclocal -I m4 --install’ is run (either via autoreconf, by hand, or
from the Makefile rebuild rules) something different happens. aclocal notices that
e configure.ac uses AX_THIRD_PARTY
e m4/thirdparty.mé defines AX_THIRD_PARTY with serial 1.
e /usr/share/aclocal/thirdparty.m4 defines AX_THIRD_PARTY with serial 1.

Because both files have the same serial number, aclocal uses the first it found in its
search path order (see Section 6.3.2 [Macro Search Path], page 37). aclocal therefore
ignores /usr/share/aclocal/thirdparty.m4 and outputs an aclocal.m4 that contains
‘m4_include([m4/thirdparty.m4])’.
Local directories specified with -I are always searched before system-wide directories, so
a local file will always be preferred to the system-wide file in case of equal serial numbers.
Now suppose the system-wide third-party macro is changed. This can happen if the
package installing this macro is updated. Let’s suppose the new macro has serial number
2. The next time ‘aclocal -I m4 ——install’ is run the situation is the following:
e configure.ac uses AX_THIRD_PARTY
e m4/thirdparty.mé defines AX_THIRD_PARTY with serial 1.
e /usr/share/aclocal/thirdparty.m4 defines AX_THIRD_PARTY with serial 2.

When aclocal sees a greater serial number, it immediately forgets anything it knows from
files that have the same basename and a smaller serial number. So after it has found
/usr/share/aclocal/thirdparty.mé with serial 2, aclocal will proceed as if it had never
seen m4/thirdparty.m4. This brings us back to a situation similar to that at the beginning
of our example, where no local file defined the macro. aclocal will install the new version

Chapter 6: Scanning configure.ac, using aclocal 44

of the macro in m4/thirdparty.m4, in this case overriding the old version. MyPackage just
had its macro updated as a side effect of running aclocal.

If you are leery of letting aclocal update your local macro, you can run ‘aclocal -I m4
--diff’ to review the changes ‘aclocal -I m4 --install’ would perform on these macros.

Finally, note that the —-force option of aclocal has absolutely no effect on the files
installed by --install. For instance, if you have modified your local macros, do not
expect —-install --force to replace the local macros by their system-wide versions. If
you want to do so, simply erase the local macros you want to revert, and run ‘aclocal -I
m4 --install’.

6.3.6 The Future of aclocal

aclocal is expected to disappear. This feature really should not be offered by Automake.
Automake should focus on generating Makefiles; dealing with M4 macros really is Auto-
conf’s job. The fact that some people install Automake just to use aclocal, but do not use
automake otherwise is an indication of how that feature is misplaced.

The new implementation will probably be done slightly differently. For instance, it could
enforce the m4/-style layout discussed in Section 6.3.4 [Local Macros|, page 41.

We have no idea when and how this will happen. This has been discussed several times
in the past, but someone still has to commit to that non-trivial task.

From the user point of view, aclocal’s removal might turn out to be painful. There is a
simple precaution that you may take to make that switch more seamless: never call aclocal
yourself. Keep this guy under the exclusive control of autoreconf and Automake’s rebuild
rules. Hopefully you won’t need to worry about things breaking, when aclocal disappears,
because everything will have been taken care of. If otherwise you used to call aclocal
directly yourself or from some script, you will quickly notice the change.

Many packages come with a script called bootstrap.sh or autogen. sh, that will just call
aclocal, libtoolize, gettextize or autopoint, autoconf, autoheader, and automake
in the right order. Actually this is precisely what autoreconf can do for you. If your
package has such a bootstrap.sh or autogen. sh script, consider using autoreconf. That
should simplify its logic a lot (less things to maintain, yum!), it’s even likely you will not
need the script anymore, and more to the point you will not call aclocal directly anymore.

For the time being, third-party packages should continue to install public macros into
/usr/share/aclocal/. If aclocal is replaced by another tool it might make sense to
rename the directory, but supporting /usr/share/aclocal/ for backward compatibility
should be really easy provided all macros are properly written (see Section 6.3.3 [Extending
aclocal], page 40).

6.4 Autoconf macros supplied with Automake

Automake ships with several Autoconf macros that you can use from your configure.ac.
When you use one of them it will be included by aclocal in aclocal.m4.

6.4.1 Public Macros

AM_ENABLE_MULTILIB
This is used when a “multilib” library is being built. The first optional argument
is the name of the Makefile being generated; it defaults to ‘Makefile’. The

Chapter 6: Scanning configure.ac, using aclocal 45

second optional argument is used to find the top source directory; it defaults
to the empty string (generally this should not be used unless you are familiar
with the internals). See Section 18.3 [Multilibs], page 113.

AM_INIT_AUTOMAKE([OPTIONS])
AM_INIT_AUTOMAKE (PACKAGE, VERSION, [NO-DEFINE])
Runs many macros required for proper operation of the generated Makefiles.

This macro has two forms, the first of which is preferred. In this form, AM_INIT_
AUTOMAKE is called with a single argument: a space-separated list of Automake
options that should be applied to every Makefile.am in the tree. The effect is
as if each option were listed in AUTOMAKE_OPTIONS (see Chapter 17 [Options],
page 107).

The second, deprecated, form of AM_INIT_AUTOMAKE has two required argu-
ments: the package and the version number. This form is obsolete because the
package and version can be obtained from Autoconf’s AC_INIT macro (which
itself has an old and a new form).

If your configure.ac has:

AC_INIT([src/foo.c])
AM_INIT_AUTOMAKE([mumble], [1.5])

you can modernize it as follows:

AC_INIT([mumble], [1.5])
AC_CONFIG_SRCDIR([src/foo.cl)
AM_INIT_AUTOMAKE

Note that if you're upgrading your configure.ac from an earlier version of
Automake, it is not always correct to simply move the package and version
arguments from AM_INIT_AUTOMAKE directly to AC_INIT, as in the example
above. The first argument to AC_INIT should be the name of your package
(e.g., ‘GNU Automake’), not the tarball name (e.g., ‘automake’) that you used
to pass to AM_INIT_AUTOMAKE. Autoconf tries to derive a tarball name from
the package name, which should work for most but not all package names. (If
it doesn’t work for yours, you can use the four-argument form of AC_INIT to
provide the tarball name explicitly).

By default this macro AC_DEFINE’s PACKAGE and VERSION. This can be avoided
by passing the no-define option, as in:
AM_INIT_AUTOMAKE([gnits 1.5 no-define dist-bzip2])

or by passing a third non-empty argument to the obsolete form.

AM_PATH_LISPDIR
Searches for the program emacs, and, if found, sets the output variable 1ispdir
to the full path to Emacs’ site-lisp directory.

Note that this test assumes the emacs found to be a version that supports
Emacs Lisp (such as GNU Emacs or XEmacs). Other emacsen can cause this
test to hang (some, like old versions of MicroEmacs, start up in interactive
mode, requiring C-x C-c to exit, which is hardly obvious for a non-emacs user).
In most cases, however, you should be able to use C-c to kill the test. In
order to avoid problems, you can set EMACS to “no” in the environment, or use

Chapter 6: Scanning configure.ac, using aclocal 46

the —-with-lispdir option to configure to explicitly set the correct path (if
you're sure you have an emacs that supports Emacs Lisp).

AM_PROG_AR([act-if-fail])
You must use this macro when you use the archiver in your project, if you
want support for unusual archivers such as Microsoft 1ib. The content of the
optional argument is executed if the archiver interface is not recognized; the
default action is to abort configure with an error message.

AM_PROG_AS
Use this macro when you have assembly code in your project. This will choose
the assembler for you (by default the C compiler) and set CCAS, and will also
set CCASFLAGS if required.

AM_PROG_CC_C_O
This is like AC_PROG_CC_C_0, but it generates its results in the manner required
by Automake. You must use this instead of AC_PROG_CC_C_0 when you need
this functionality, that is, when using per-target flags or subdir-objects with C
sources.

AM_PROG_LEX
Like AC_PROG_LEX (see Section “Particular Program Checks” in The Autoconf
Manual), but uses the missing script on systems that do not have lex. HP-UX
10 is one such system.

AM_PROG_GCJ
This macro finds the gcj program or causes an error. It sets GCJ and GCIJFLAGS.
gcj is the Java front-end to the GNU Compiler Collection.

AM_PROG_UPC([compiler-search-1ist])
Find a compiler for Unified Parallel C and define the UPC variable. The de-
fault compiler-search-list is ‘upcc upc’. This macro will abort configure if no
Unified Parallel C compiler is found.

AM_STILENT_RULES
Enable the machinery for less verbose build output (see Chapter 17 [Options],
page 107).

AM_WITH_DMALLOC
Add support for the Dmalloc package (http://dmalloc.com/). If the user
runs configure with --with-dmalloc, then define WITH_DMALLOC and add
-ldmalloc to LIBS.

AM_WITH_REGEX
Adds --with-regex to the configure command line. If specified (the default),
then the ‘regex’ regular expression library is used, regex .o is put into LIBOBJS,
and WITH_REGEX is defined. If --without-regex is given, then the rx regular
expression library is used, and rx.o is put into LIBOBJS.

6.4.2 Obsolete Macros

Although using some of the following macros was required in past releases, you should not
use any of them in new code. Running autoupdate should adjust your configure.ac au-

http://dmalloc.com/

Chapter 6: Scanning configure.ac, using aclocal 47

tomatically (see Section “Using autoupdate to Modernize configure.ac” in The Autoconf
Manual).

AM_C_PROTOTYPES
Check to see if function prototypes are understood by the compiler. If so, define
‘PROTOTYPES’ and set the output variables U and ANSI2KNR to the empty string.
Otherwise, set U to ‘_’ and ANSI2KNR to ‘./ansi2knr’. Automake used these
values to implement the deprecated de-ANSI-fication feature; however, support
for that feature will be removed in the next major Automake release, and then

these macros and vartables will go away as well.

AM_CONFIG_HEADER
Automake will generate rules to automatically regenerate the config header.
This obsolete macro is a synonym of AC_CONFIG_HEADERS today (see Section 6.2
[Optional], page 32).

AM_HEADER_TIOCGWINSZ_NEEDS_SYS_IOCTL
If the use of TIOCGWINSZ requires <sys/ioctl.h>, then define GWINSZ_IN_SYS_
IOCTL. Otherwise TIOCGWINSZ can be found in <termios.h>. This macro is
obsolete, you should use Autoconf’s AC_HEADER_TIOCGWINSZ instead.

AM_PROG_MKDIR_P
From Automake 1.8 to 1.9.6 this macro used to define the output variable
mkdir_p to one of mkdir -p, install-sh -d, or mkinstalldirs.

Nowadays Autoconf provides a similar functionality with AC_PROG_MKDIR_P (see
Section “Particular Program Checks” in The Autoconf Manual), however this
defines the output variable MKDIR_P instead. Therefore AM_PROG_MKDIR_P has
been rewritten as a thin wrapper around AC_PROG_MKDIR_P to define mkdir_p
to the same value as MKDIR_P for backward compatibility.

If you are using Automake, there is normally no reason to call this macro, be-
cause AM_INIT_AUTOMAKE already does so. However, make sure that the custom
rules in your Makefiles use $(MKDIR_P) and not $(mkdir_p). Even if both
variables still work, the latter should be considered obsolete.

If you are not using Automake, please call AC_PROG_MKDIR_P instead of AM_
PROG_MKDIR_P.

AM_SYS_POSIX_TERMIOS
Check to see if POSIX termios headers and functions are available on the sys-
tem. If so, set the shell variable am_cv_sys_posix_termios to ‘yes’. If not,
set the variable to ‘no’. This macro is obsolete, you should use Autoconf’s
AC_SYS_POSIX_TERMIOS instead.

6.4.3 Private Macros

The following macros are private macros you should not call directly. They are called by
the other public macros when appropriate. Do not rely on them, as they might be changed
in a future version. Consider them as implementation details; or better, do not consider
them at all: skip this section!

Chapter 7: Directories 48

_AM_DEPENDENCIES

AM_SET_DEPDIR

AM_DEP_TRACK

AM_OUTPUT_DEPENDENCY_COMMANDS
These macros are used to implement Automake’s automatic dependency track-
ing scheme. They are called automatically by Automake when required, and
there should be no need to invoke them manually.

AM_MAKE_INCLUDE
This macro is used to discover how the user’s make handles include statements.
This macro is automatically invoked when needed; there should be no need to
invoke it manually.

AM_PROG_INSTALL_STRIP
This is used to find a version of install that can be used to strip a program
at installation time. This macro is automatically included when required.

AM_SANITY_CHECK
This checks to make sure that a file created in the build directory is newer than
a file in the source directory. This can fail on systems where the clock is set
incorrectly. This macro is automatically run from AM_INIT_AUTOMAKE.

7 Directories

For simple projects that distribute all files in the same directory it is enough to have a
single Makefile.am that builds everything in place.

In larger projects it is common to organize files in different directories, in a tree. For
instance one directory per program, per library or per module. The traditional approach
is to build these subdirectories recursively: each directory contains its Makefile (gener-
ated from Makefile.am), and when make is run from the top level directory it enters each
subdirectory in turn to build its contents.

7.1 Recursing subdirectories

In packages with subdirectories, the top level Makefile.am must tell Automake which
subdirectories are to be built. This is done via the SUBDIRS variable.

The SUBDIRS variable holds a list of subdirectories in which building of various sorts can
occur. The rules for many targets (e.g., all) in the generated Makefile will run commands
both locally and in all specified subdirectories. Note that the directories listed in SUBDIRS
are not required to contain Makefile.ams; only Makefiles (after configuration). This allows
inclusion of libraries from packages that do not use Automake (such as gettext; see also
Section 24.2 [Third-Party Makefiles], page 122).

In packages that use subdirectories, the top-level Makefile.am is often very short. For
instance, here is the Makefile.am from the GNU Hello distribution:

EXTRA_DIST = BUGS Changelog.0 README-alpha
SUBDIRS = doc intl po src tests

Chapter 7: Directories 49

When Automake invokes make in a subdirectory, it uses the value of the MAKE variable.
It passes the value of the variable AM_MAKEFLAGS to the make invocation; this can be set in
Makefile.am if there are flags you must always pass to make.

The directories mentioned in SUBDIRS are usually direct children of the current direc-
tory, each subdirectory containing its own Makefile.am with a SUBDIRS pointing to deeper
subdirectories. Automake can be used to construct packages of arbitrary depth this way.

By default, Automake generates Makefiles that work depth-first in postfix order: the
subdirectories are built before the current directory. However, it is possible to change this
ordering. You can do this by putting ‘.’ into SUBDIRS. For instance, putting ‘.’ first will
cause a prefix ordering of directories.

Using
SUBDIRS = 1lib src . test

will cause 1ib/ to be built before src/, then the current directory will be built, finally the
test/ directory will be built. It is customary to arrange test directories to be built after
everything else since they are meant to test what has been constructed.

All clean rules are run in reverse order of build rules.

7.2 Conditional Subdirectories

It is possible to define the SUBDIRS variable conditionally if, like in the case of GNU Inetutils,
you want to only build a subset of the entire package.

To illustrate how this works, let’s assume we have two directories src/ and opt/. src/
should always be built, but we want to decide in configure whether opt/ will be built
or not. (For this example we will assume that opt/ should be built when the variable
‘$want_opt’ was set to ‘yes’.)

Running make should thus recurse into src/ always, and then maybe in opt/.

However ‘make dist’ should always recurse into both src/ and opt/. Because opt/
should be distributed even if it is not needed in the current configuration. This means
opt/Makefile should be created unconditionally.

There are two ways to setup a project like this. You can use Automake conditionals
(see Chapter 20 [Conditionals]|, page 113) or use Autoconf AC_SUBST variables (see Section
“Setting Output Variables” in The Autoconf Manual). Using Automake conditionals is the
preferred solution. Before we illustrate these two possibilities, let’s introduce DIST_SUBDIRS.

7.2.1 SUBDIRS vs. DIST_SUBDIRS

Automake considers two sets of directories, defined by the variables SUBDIRS and DIST_
SUBDIRS.

SUBDIRS contains the subdirectories of the current directory that must be built (see
Section 7.1 [Subdirectories], page 48). It must be defined manually; Automake will never
guess a directory is to be built. As we will see in the next two sections, it is possible to
define it conditionally so that some directory will be omitted from the build.

DIST_SUBDIRS is used in rules that need to recurse in all directories, even those that
have been conditionally left out of the build. Recall our example where we may not want
to build subdirectory opt/, but yet we want to distribute it? This is where DIST_SUBDIRS
comes into play: ‘opt’ may not appear in SUBDIRS, but it must appear in DIST_SUBDIRS.

Chapter 7: Directories 50

Precisely, DIST_SUBDIRS is used by ‘make maintainer-clean’, ‘make distclean’ and
‘make dist’. All other recursive rules use SUBDIRS.

If SUBDIRS is defined conditionally using Automake conditionals, Automake will define
DIST_SUBDIRS automatically from the possible values of SUBDIRS in all conditions.

If SUBDIRS contains AC_SUBST variables, DIST_SUBDIRS will not be defined correctly

because Automake does not know the possible values of these variables. In this case DIST_
SUBDIRS needs to be defined manually.

7.2.2 Subdirectories with AM_CONDITIONAL

configure should output the Makefile for each directory and define a condition into which
opt/ should be built.

AM_CONDITIONAL([COND_OPT], [test "$want_opt" = yes])
AC_CONFIG_FILES([Makefile src/Makefile opt/Makefile])

Then SUBDIRS can be defined in the top-level Makefile.am as follows.

if COND_OPT
MAYBE_OPT = opt
endif
SUBDIRS = src $(MAYBE_OPT)

As you can see, running make will rightly recurse into src/ and maybe opt/.

As you can’t see, running ‘make dist’ will recurse into both src/ and opt/ directories
because ‘make dist’, unlike ‘make all’, doesn’t use the SUBDIRS variable. It uses the DIST_
SUBDIRS variable.

In this case Automake will define ‘DIST_SUBDIRS = src opt’ automatically because it
knows that MAYBE_OPT can contain ‘opt’ in some condition.

7.2.3 Subdirectories with AC_SUBST
Another possibility is to define MAYBE_OPT from ./configure using AC_SUBST:

if test "$want_opt" = yes; then
MAYBE_OPT=opt
else
MAYBE_OPT=
fi
AC_SUBST ([MAYBE_OPT])
AC_CONFIG_FILES([Makefile src/Makefile opt/Makefile])

In this case the top-level Makefile.am should look as follows.

SUBDIRS = src $(MAYBE_OPT)
DIST_SUBDIRS = src opt

The drawback is that since Automake cannot guess what the possible values of MAYBE_
OPT are, it is necessary to define DIST_SUBDIRS.

Chapter 7: Directories 51

7.2.4 Unconfigured Subdirectories

The semantics of DIST_SUBDIRS are often misunderstood by some users that try to configure
and build subdirectories conditionally. Here by configuring we mean creating the Makefile
(it might also involve running a nested configure script: this is a costly operation that
explains why people want to do it conditionally, but only the Makefile is relevant to the
discussion).

The above examples all assume that every Makefile is created, even in directories that
are not going to be built. The simple reason is that we want ‘make dist’ to distribute even
the directories that are not being built (e.g., platform-dependent code), hence make dist
must recurse into the subdirectory, hence this directory must be configured and appear in
DIST_SUBDIRS.

Building packages that do not configure every subdirectory is a tricky business, and we
do not recommend it to the novice as it is easy to produce an incomplete tarball by mistake.
We will not discuss this topic in depth here, yet for the adventurous here are a few rules to
remember.

(N

e SUBDIRS should always be a subset of DIST_SUBDIRS.

It makes little sense to have a directory in SUBDIRS that is not in DIST_SUBDIRS. Think
of the former as a way to tell which directories listed in the latter should be built.

e Any directory listed in DIST_SUBDIRS and SUBDIRS must be configured.
I.e., the Makefile must exists or the recursive make rules will not be able to process
the directory.

e Any configured directory must be listed in DIST_SUBDIRS.

So that the cleaning rules remove the generated Makefiles. It would be correct to see
DIST_SUBDIRS as a variable that lists all the directories that have been configured.

In order to prevent recursion in some unconfigured directory you must therefore ensure
that this directory does not appear in DIST_SUBDIRS (and SUBDIRS). For instance, if you
define SUBDIRS conditionally using AC_SUBST and do not define DIST_SUBDIRS explicitly, it
will be default to ‘¢ (SUBDIRS)’; another possibility is to force DIST_SUBDIRS = $ (SUBDIRS).

Of course, directories that are omitted from DIST_SUBDIRS will not be distributed unless
you make other arrangements for this to happen (for instance, always running ‘make dist’
in a configuration where all directories are known to appear in DIST_SUBDIRS; or writing a
dist-hook target to distribute these directories).

In few packages, unconfigured directories are not even expected to be distributed. Al-
though these packages do not require the aforementioned extra arrangements, there is an-
other pitfall. If the name of a directory appears in SUBDIRS or DIST_SUBDIRS, automake
will make sure the directory exists. Consequently automake cannot be run on such a dis-
tribution when one directory has been omitted. One way to avoid this check is to use
the AC_SUBST method to declare conditional directories; since automake does not know the
values of AC_SUBST variables it cannot ensure the corresponding directory exists.

Chapter 7: Directories 52

7.3 An Alternative Approach to Subdirectories

If you've ever read Peter Miller’s excellent paper, Recursive Make Considered Harmful
(http://miller.emu.id.au/pmiller/books/rmch/), the preceding sections on the use of
subdirectories will probably come as unwelcome advice. For those who haven’t read the
paper, Miller’s main thesis is that recursive make invocations are both slow and error-prone.

Automake provides sufficient cross-directory support® to enable you to write a single
Makefile.am for a complex multi-directory package.

By default an installable file specified in a subdirectory will have its directory name
stripped before installation. For instance, in this example, the header file will be installed
as $(includedir)/stdio.h:

include_HEADERS = inc/stdio.h
However, the ‘nobase_’ prefix can be used to circumvent this path stripping. In this
example, the header file will be installed as $(includedir)/sys/types.h:
nobase_include_HEADERS = sys/types.h

)

‘nobase_’ should be specified first when used in conjunction with either ‘dist_’ or
‘nodist_’ (see Section 14.2 [Fine-grained Distribution Control], page 98). For instance:

nobase_dist_pkgdata_DATA = images/vortex.pgm sounds/whirl.ogg

Finally, note that a variable using the ‘nobase_’ prefix can often be replaced by several
variables, one for each destination directory (see Section 3.3 [Uniform], page 20). For
instance, the last example could be rewritten as follows:

imagesdir = $(pkgdatadir)/images
soundsdir = $(pkgdatadir)/sounds
dist_images_DATA = images/vortex.pgm
dist_sounds_DATA = sounds/whirl.ogg

This latter syntax makes it possible to change one destination directory without changing
the layout of the source tree.

Currently, ‘nobase_*_LTLIBRARIES’ are the only exception to this rule, in that there
is no particular installation order guarantee for an otherwise equivalent set of variables
without ‘nobase_’ prefix.

7.4 Nesting Packages

In the GNU Build System, packages can be nested to arbitrary depth. This means that a
package can embed other packages with their own configure, Makefiles, etc.

These other packages should just appear as subdirectories of their parent package.
They must be listed in SUBDIRS like other ordinary directories. However the subpackage’s
Makefiles should be output by its own configure script, not by the parent’s configure.
This is achieved using the AC_CONFIG_SUBDIRS Autoconf macro (see Section “Configuring
Other Packages in Subdirectories” in The Autoconf Manual).

Here is an example package for an arm program that links with a hand library that is a
nested package in subdirectory hand/.

3 We believe. This work is new and there are probably warts. See Chapter 1 [Introduction], page 1, for
information on reporting bugs.

http://miller.emu.id.au/pmiller/books/rmch/
http://miller.emu.id.au/pmiller/books/rmch/

Chapter 7: Directories 53

arm’s configure.ac:

AC_INIT([arm], [1.0])

AC_CONFIG_AUX_DIR([.1)

AM_INIT_AUTOMAKE

AC_PROG_CC

AC_CONFIG_FILES([Makefile])

Call hand’s ./configure script recursively.
AC_CONFIG_SUBDIRS([hand])

AC_OUTPUT

arm’s Makefile.am:

Build the library in the hand subdirectory first.
SUBDIRS = hand

Include hand’s header when compiling this directory.
AM_CPPFLAGS = -I$(srcdir)/hand

bin_PROGRAMS = arm
arm_SOURCES = arm.c

link with the hand library.
arm_LDADD = hand/libhand.a

Now here is hand’s hand/configure.ac:

AC_INIT([hand], [1.2])
AC_CONFIG_AUX_DIR([.])
AM_INIT_AUTOMAKE
AC_PROG_CC

AM_PROG_AR

AC_PROG_RANLIB
AC_CONFIG_FILES([Makefile])
AC_OUTPUT

and its hand/Makefile.am:

1ib_LIBRARIES = libhand.a
libhand_a_SOURCES = hand.c

When ‘make dist’ is run from the top-level directory it will create an archive
arm-1.0.tar.gz that contains the arm code as well as the hand subdirectory. This
package can be built and installed like any ordinary package, with the usual ‘. /configure
&& make && make install’ sequence (the hand subpackage will be built and installed by
the process).

When ‘make dist’ is run from the hand directory, it will create a self-contained
hand-1.2.tar.gz archive. So although it appears to be embedded in another package, it
can still be used separately.

The purpose of the ‘AC_CONFIG_AUX_DIR([.])’ instruction is to force Automake and
Autoconf to search for auxiliary scripts in the current directory. For instance, this means
that there will be two copies of install-sh: one in the top-level of the arm package, and
another one in the hand/ subdirectory for the hand package.

Chapter 8: Building Programs and Libraries 54

The historical default is to search for these auxiliary scripts in the parent directory and
the grandparent directory. So if the ‘AC_CONFIG_AUX_DIR([.])’ line was removed from
hand/configure.ac, that subpackage would share the auxiliary script of the arm package.
This may looks like a gain in size (a few kilobytes), but it is actually a loss of modularity
as the hand subpackage is no longer self-contained (‘make dist’ in the subdirectory will not
work anymore).

Packages that do not use Automake need more work to be integrated this way. See
Section 24.2 [Third-Party Makefiles], page 122.

8 Building Programs and Libraries

A large part of Automake’s functionality is dedicated to making it easy to build programs
and libraries.

8.1 Building a program

In order to build a program, you need to tell Automake which sources are part of it, and
which libraries it should be linked with.

This section also covers conditional compilation of sources or programs. Most of the
comments about these also apply to libraries (see Section 8.2 [A Library|, page 58) and
libtool libraries (see Section 8.3 [A Shared Library]|, page 59).

8.1.1 Defining program sources

In a directory containing source that gets built into a program (as opposed to a library or
a script), the PROGRAMS primary is used. Programs can be installed in bindir, sbindir,
libexecdir, pkglibexecdir, or not at all (noinst_). They can also be built only for ‘make
check’, in which case the prefix is ‘check_’.

For instance:
bin_PROGRAMS = hello

In this simple case, the resulting Makefile.in will contain code to generate a program
named hello.

Associated with each program are several assisting variables that are named after the
program. These variables are all optional, and have reasonable defaults. Each variable, its
use, and default is spelled out below; we use the “hello” example throughout.

The variable hello_SOURCES is used to specify which source files get built into an exe-
cutable:

hello_SOURCES = hello.c version.c getopt.c getoptl.c getopt.h system.h

This causes each mentioned .c file to be compiled into the corresponding .o. Then all
are linked to produce hello.

If hello_SOURCES is not specified, then it defaults to the single file hello.c (see
Section 8.5 [Default _SOURCES], page 69).

Multiple programs can be built in a single directory. Multiple programs can share a
single source file, which must be listed in each _SOURCES definition.

Chapter 8: Building Programs and Libraries 55

Header files listed in a _SOURCES definition will be included in the distribution but
otherwise ignored. In case it isn’t obvious, you should not include the header file generated
by configure in a _SOURCES variable; this file should not be distributed. Lex (.1) and
Yacc (.y) files can also be listed; see Section 8.8 [Yacc and Lex], page 72.

8.1.2 Linking the program

If you need to link against libraries that are not found by configure, you can use LDADD
to do so. This variable is used to specify additional objects or libraries to link with; it is
inappropriate for specifying specific linker flags, you should use AM_LDFLAGS for this purpose.

Sometimes, multiple programs are built in one directory but do not share the same
link-time requirements. In this case, you can use the prog_LDADD variable (where prog is
the name of the program as it appears in some _PROGRAMS variable, and usually written in
lowercase) to override LDADD. If this variable exists for a given program, then that program
is not linked using LDADD.

For instance, in GNU cpio, pax, cpio and mt are linked against the library 1ibcpio.a.
However, rmt is built in the same directory, and has no such link requirement. Also, mt and
rmt are only built on certain architectures. Here is what cpio’s src/Makefile.am looks like
(abridged):

bin_PROGRAMS = cpio pax $(MT)
libexec_PROGRAMS = $(RMT)
EXTRA_PROGRAMS = mt rmt

LDADD = ../lib/libcpio.a $(INTLLIBS)
rmt_LDADD =

cpio_SOURCES = ...
pax_SOURCES = ...
mt_SOURCES = ...

rmt_SOURCES = ...

prog_LDADD is inappropriate for passing program-specific linker flags (except for -1, -L,
-dlopen and -dlpreopen). So, use the prog_LDFLAGS variable for this purpose.

It is also occasionally useful to have a program depend on some other target that is not
actually part of that program. This can be done using the prog_DEPENDENCIES variable.
Each program depends on the contents of such a variable, but no further interpretation is
done.

Since these dependencies are associated to the link rule used to create the programs they
should normally list files used by the link command. That is *.$(0BJEXT), *.a, or *.la
files. In rare cases you may need to add other kinds of files such as linker scripts, but listing
a source file in _DEPENDENCIES s wrong. If some source file needs to be built before all the
components of a program are built, consider using the BUILT_SOURCES variable instead (see
Section 9.4 [Sources], page 84).

If prog_DEPENDENCIES is not supplied, it is computed by Automake. The automatically-
assigned value is the contents of prog_LDADD, with most configure substitutions, -1, -L,
-dlopen and -dlpreopen options removed. The configure substitutions that are left in are

Chapter 8: Building Programs and Libraries 56

only ‘$(LIBOBJS)’ and ‘$(ALLOCA)’; these are left because it is known that they will not
cause an invalid value for prog_DEPENDENCIES to be generated.

Section 8.1.3 [Conditional Sources], page 56, shows a situation where _DEPENDENCIES
may be used.

We recommend that you avoid using -1 options in LDADD or prog_LDADD when referring
to libraries built by your package. Instead, write the file name of the library explicitly as
in the above cpio example. Use -1 only to list third-party libraries. If you follow this rule,
the default value of prog_DEPENDENCIES will list all your local libraries and omit the other
ones.

8.1.3 Conditional compilation of sources

You can’t put a configure substitution (e.g., ‘@F00@’ or ‘$ (FO0)’ where FOO is defined via
AC_SUBST) into a _SOURCES variable. The reason for this is a bit hard to explain, but suffice
to say that it simply won’t work. Automake will give an error if you try to do this.

Fortunately there are two other ways to achieve the same result. One is to use configure
substitutions in _LDADD variables, the other is to use an Automake conditional.

Conditional Compilation using _LDADD Substitutions

Automake must know all the source files that could possibly go into a program, even if
not all the files are built in every circumstance. Any files that are only conditionally built
should be listed in the appropriate EXTRA_ variable. For instance, if hello-linux.c or
hello-generic.c were conditionally included in hello, the Makefile.am would contain:

bin_PROGRAMS = hello

hello_SOURCES = hello-common.c

EXTRA_hello_SOURCES = hello-linux.c hello-generic.c
hello_LDADD = $(HELLO_SYSTEM)

hello_DEPENDENCIES = $(HELLO_SYSTEM)

You can then setup the ‘$ (HELLO_SYSTEM)’ substitution from configure.ac:

case $host in
1inux) HELLO_SYSTEM=’hello-linux.$(0OBJEXT)’ ;;
*) HELLO_SYSTEM=’hello-generic.$(0BJEXT)’ ;;
esac
AC_SUBST([HELLO_SYSTEM])

In this case, the variable HELLO_SYSTEM should be replaced by either hello-1linux.o or
hello-generic.o, and added to both hello_DEPENDENCIES and hello_LDADD in order to
be built and linked in.

Conditional Compilation using Automake Conditionals

An often simpler way to compile source files conditionally is to use Automake conditionals.
For instance, you could use this Makefile.am construct to build the same hello example:

bin_PROGRAMS = hello
if LINUX
hello_SOURCES = hello-linux.c hello-common.c

Chapter 8: Building Programs and Libraries 57

else
hello_SOURCES = hello-generic.c hello-common.c
endif
In this case, configure.ac should setup the LINUX conditional using AM_CONDITIONAL
(see Chapter 20 [Conditionals], page 113).
When using conditionals like this you don’t need to use the EXTRA_ variable, because

Automake will examine the contents of each variable to construct the complete list of source
files.

If your program uses a lot of files, you will probably prefer a conditional ‘+=’.

bin_PROGRAMS = hello
hello_SOURCES = hello-common.c

if LINUX

hello_SOURCES += hello-linux.c
else

hello_SOURCES += hello-generic.c
endif

8.1.4 Conditional compilation of programs

Sometimes it is useful to determine the programs that are to be built at configure time.
For instance, GNU cpio only builds mt and rmt under special circumstances. The means
to achieve conditional compilation of programs are the same you can use to compile source
files conditionally: substitutions or conditionals.

Conditional Programs using configure Substitutions

In this case, you must notify Automake of all the programs that can possibly be built,
but at the same time cause the generated Makefile.in to use the programs specified by
configure. This is done by having configure substitute values into each _PROGRAMS
definition, while listing all optionally built programs in EXTRA_PROGRAMS.

bin_PROGRAMS = cpio pax $(MT)
libexec_PROGRAMS = $(RMT)
EXTRA_PROGRAMS = mt rmt

As explained in Section 8.20 [EXEEXT], page 82, Automake will rewrite bin_PROGRAMS,
libexec_PROGRAMS, and EXTRA_PROGRAMS, appending ‘$(EXEEXT)’ to each binary. Ob-
viously it cannot rewrite values obtained at run-time through configure substitutions,
therefore you should take care of appending ‘$ (EXEEXT)’ yourself, as in ‘AC_SUBST([MT],
[’mt${EXEEXT}’])’ .

Conditional Programs using Automake Conditionals

You can also use Automake conditionals (see Chapter 20 [Conditionals|, page 113) to select
programs to be built. In this case you don’t have to worry about ‘$ (EXEEXT)’ or EXTRA_
PROGRAMS.
bin_PROGRAMS = cpio pax
if WANT_MT
bin_PROGRAMS += mt
endif

Chapter 8: Building Programs and Libraries 58

if WANT_RMT
libexec_PROGRAMS = rmt
endif

8.2 Building a library

Building a library is much like building a program. In this case, the name of the primary
is LIBRARIES. Libraries can be installed in 1ibdir or pkglibdir.

See Section 8.3 [A Shared Library], page 59, for information on how to build shared
libraries using libtool and the LTLIBRARIES primary.

Each _LIBRARIES variable is a list of the libraries to be built. For instance, to create a
library named libcpio.a, but not install it, you would write:

noinst_LIBRARIES = libcpio.a
libcpio_a_SOURCES = ...

The sources that go into a library are determined exactly as they are for programs,
via the _SOURCES variables. Note that the library name is canonicalized (see Section 3.5
[Canonicalization], page 22), so the _SOURCES variable corresponding to libcpio.a is
‘libcpio_a_SOURCES’, not ‘libcpio.a_SOURCES’.

Extra objects can be added to a library using the 1ibrary_LIBADD variable. This should
be used for objects determined by configure. Again from cpio:

libcpio_a_LIBADD = $(LIBOBJS) $(ALLOCA)

In addition, sources for extra objects that will not exist until configure-time must be
added to the BUILT_SOURCES variable (see Section 9.4 [Sources|, page 84).

Building a static library is done by compiling all object files, then by invoking ‘$ (AR)
$ (ARFLAGS)’ followed by the name of the library and the list of objects, and finally by calling
‘$ (RANLIB)’ on that library. You should call AC_PROG_RANLIB from your configure.ac to
define RANLIB (Automake will complain otherwise). You should also call AM_PROG_AR to
define AR, in order to support unusual archivers such as Microsoft lib. ARFLAGS will default
to cru; you can override this variable by setting it in your Makefile.am or by AC_SUBSTing
it from your configure.ac. You can override the AR variable by defining a per-library
maude_AR variable (see Section 8.4 [Program and Library Variables|, page 65).

Be careful when selecting library components conditionally. Because building an empty
library is not portable, you should ensure that any library always contains at least one
object.

To use a static library when building a program, add it to LDADD for this program. In
the following example, the program cpio is statically linked with the library libcpio.a.

noinst_LIBRARIES = libcpio.a
libcpio_a_SOURCES = ...

bin_PROGRAMS = cpio
cpio_SOURCES = cpio.c ...
cpio_LDADD = libcpio.a

Chapter 8: Building Programs and Libraries 59

8.3 Building a Shared Library

Building shared libraries portably is a relatively complex matter. For this reason, GNU
Libtool (see Section “Introduction” in The Libtool Manual) was created to help build shared
libraries in a platform-independent way.

8.3.1 The Libtool Concept

Libtool abstracts shared and static libraries into a unified concept henceforth called libtool
libraries. Libtool libraries are files using the .1a suffix, and can designate a static library, a
shared library, or maybe both. Their exact nature cannot be determined until . /configure
is run: not all platforms support all kinds of libraries, and users can explicitly select which
libraries should be built. (However the package’s maintainers can tune the default, see
Section “The AC_PROG_LIBTOOL macro” in The Libtool Manual.)

Because object files for shared and static libraries must be compiled differently, libtool
is also used during compilation. Object files built by libtool are called libtool objects: these
are files using the .1lo suffix. Libtool libraries are built from these libtool objects.

You should not assume anything about the structure of .1a or .1lo files and how libtool
constructs them: this is libtool’s concern, and the last thing one wants is to learn about
libtool’s guts. However the existence of these files matters, because they are used as targets
and dependencies in Makefiles rules when building libtool libraries. There are situations
where you may have to refer to these, for instance when expressing dependencies for building
source files conditionally (see Section 8.3.4 [Conditional Libtool Sources], page 61).

People considering writing a plug-in system, with dynamically loaded modules, should
look into 1ibltdl: libtool’s dlopening library (see Section “Using libltdl” in The Libtool
Manual). This offers a portable dlopening facility to load libtool libraries dynamically, and
can also achieve static linking where unavoidable.

Before we discuss how to use libtool with Automake in details, it should be noted that
the libtool manual also has a section about how to use Automake with libtool (see Section
“Using Automake with Libtool” in The Libtool Manual).

8.3.2 Building Libtool Libraries

Automake uses libtool to build libraries declared with the LTLIBRARIES primary. Each
_LTLIBRARIES variable is a list of libtool libraries to build. For instance, to create a libtool
library named libgettext.la, and install it in 1ibdir, write:

1lib_LTLIBRARIES = libgettext.la
libgettext_la_SOURCES = gettext.c gettext.h ...

Automake predefines the variable pkglibdir, so you can use pkglib_LTLIBRARIES to
install libraries in ‘$(1ibdir)/@PACKAGEQ/’.

If gettext.h is a public header file that needs to be installed in order for people to
use the library, it should be declared using a _HEADERS variable, not in libgettext_la_
SOURCES. Headers listed in the latter should be internal headers that are not part of the
public interface.

1ib_LTLIBRARIES = libgettext.la

libgettext_la_SOURCES = gettext.c ...
include_HEADERS = gettext.h ...

Chapter 8: Building Programs and Libraries 60

A package can build and install such a library along with other programs that use it.
This dependency should be specified using LDADD. The following example builds a program
named hello that is linked with libgettext.la.

1ib_LTLIBRARIES = libgettext.la
libgettext_la_SOURCES = gettext.c ...

bin_PROGRAMS = hello
hello_SOURCES = hello.c ...
hello_LDADD = libgettext.la

Whether hello is statically or dynamically linked with libgettext.la is not yet known:
this will depend on the configuration of libtool and the capabilities of the host.

8.3.3 Building Libtool Libraries Conditionally

Like conditional programs (see Section 8.1.4 [Conditional Programs|, page 57), there are two
main ways to build conditional libraries: using Automake conditionals or using Autoconf
AC_SUBSTitutions.

The important implementation detail you have to be aware of is that the place where a
library will be installed matters to libtool: it needs to be indicated at link-time using the
-rpath option.

For libraries whose destination directory is known when Automake runs, Automake will
automatically supply the appropriate —rpath option to libtool. This is the case for libraries
listed explicitly in some installable _LTLIBRARIES variables such as 1ib_LTLIBRARIES.

However, for libraries determined at configure time (and thus mentioned in EXTRA_
LTLIBRARIES), Automake does not know the final installation directory. For such libraries
you must add the -rpath option to the appropriate _LDFLAGS variable by hand.

The examples below illustrate the differences between these two methods.

Here is an example where WANTEDLIBS is an AC_SUBSTed variable set at ./configure-
time to either 1ibfoo.la, libbar.la, both, or none. Although ‘¢ (WANTEDLIBS) appears
in the 1ib_LTLIBRARIES, Automake cannot guess it relates to 1ibfoo.la or 1libbar.la at
the time it creates the link rule for these two libraries. Therefore the -rpath argument
must be explicitly supplied.

EXTRA_LTLIBRARIES = libfoo.la libbar.la
1ib_LTLIBRARIES = $(WANTEDLIBS)

libfoo_la_SOURCES = foo.c ...
libfoo_la_LDFLAGS = -rpath ’$(libdir)’
libbar_la_SOURCES = bar.c ...

libbar_la_LDFLAGS -rpath ’$(1libdir)’

Here is how the same Makefile.am would look using Automake conditionals named
WANT_LIBFOO and WANT_LIBBAR. Now Automake is able to compute the -rpath setting
itself, because it’s clear that both libraries will end up in ‘$(1ibdir)’ if they are installed.

1ib_LTLIBRARIES =

if WANT_LIBFOO
1ib_LTLIBRARIES += libfoo.la
endif

Chapter 8: Building Programs and Libraries 61

if WANT_LIBBAR
1ib_LTLIBRARIES += libbar.la
endif

libfoo_la_SOURCES
libbar_la_SOURCES

8.3.4 Libtool Libraries with Conditional Sources

Conditional compilation of sources in a library can be achieved in the same way as condi-
tional compilation of sources in a program (see Section 8.1.3 [Conditional Sources|, page 56).
The only difference is that _LIBADD should be used instead of _LDADD and that it should
mention libtool objects (.1o files).

foo.c ...
bar.c ...

So, to mimic the hello example from Section 8.1.3 [Conditional Sources|, page 56, we
could build a 1ibhello.la library using either hello-linux.c or hello-generic.c with
the following Makefile.am.

1ib_LTLIBRARIES = libhello.la
libhello_la_SOURCES = hello-common.c
EXTRA_libhello_la_SOURCES = hello-linux.c hello-generic.c
libhello_la_LIBADD = $(HELLO_SYSTEM)
libhello_la_DEPENDENCIES = $(HELLO_SYSTEM)
And make sure configure defines HELLO_SYSTEM as either hello-linux.lo or hello-
generic.lo.

Or we could simply use an Automake conditional as follows.

1ib_LTLIBRARIES = libhello.la
libhello_la_SOURCES = hello-common.c

if LINUX

libhello_la_SOURCES += hello-linux.c
else

libhello_la_SOURCES += hello-generic.c
endif

8.3.5 Libtool Convenience Libraries

Sometimes you want to build libtool libraries that should not be installed. These are called
libtool convenience libraries and are typically used to encapsulate many sublibraries, later
gathered into one big installed library.

Libtool convenience libraries are declared by directory-less variables such as noinst_
LTLIBRARIES, check _LTLIBRARIES, or even EXTRA_LTLIBRARIES. Unlike installed libtool
libraries they do not need an -rpath flag at link time (actually this is the only difference).

Convenience libraries listed in noinst_LTLIBRARIES are always built. Those listed in
check_LTLIBRARIES are built only upon ‘make check’. Finally, libraries listed in EXTRA_
LTLIBRARIES are never built explicitly: Automake outputs rules to build them, but if the
library does not appear as a Makefile dependency anywhere it won’t be built (this is why
EXTRA_LTLIBRARIES is used for conditional compilation).

Here is a sample setup merging libtool convenience libraries from subdirectories into one
main libtop.1la library.

—-- Top-level Makefile.am --

Chapter 8: Building Programs and Libraries 62

SUBDIRS = subl sub2 ...
1ib_LTLIBRARIES = libtop.la
libtop_la_SOURCES =
libtop_la_LIBADD = \
subl/libsubl.la \
sub2/libsub2.la \

-— subl/Makefile.am --
noinst_LTLIBRARIES libsubl.la
libsubil_la_SOURCES

-- sub2/Makefile.am --

showing nested convenience libraries

SUBDIRS = sub2.1 sub2.2 ...

noinst_LTLIBRARIES = libsub2.la

libsub2_la_SOURCES

libsub2_la_LIBADD = \
sub21/libsub21.la \
sub22/1ibsub22.1la \

When using such setup, beware that automake will assume libtop.1la is to be linked
with the C linker. This is because 1libtop_la_SOURCES is empty, so automake picks C as
default language. If libtop_la_SOURCES was not empty, automake would select the linker
as explained in Section 8.13.3.1 [How the Linker is Chosen], page 78.

If one of the sublibraries contains non-C source, it is important that the appropriate
linker be chosen. One way to achieve this is to pretend that there is such a non-C file
among the sources of the library, thus forcing automake to select the appropriate linker.
Here is the top-level Makefile of our example updated to force C++ linking.

SUBDIRS = subl sub2 ...
lib_LTLIBRARIES = libtop.la
libtop_la_SOURCES =
Dummy C++ source to cause C++ linking.
nodist_EXTRA_libtop_la_SOURCES = dummy.cxx
libtop_la_LIBADD = \

subl/libsubl.la \

sub2/1libsub2.1la \

‘EXTRA_*_SOURCES’ variables are used to keep track of source files that might be compiled
(this is mostly useful when doing conditional compilation using AC_SUBST, see Section 8.3.4
[Conditional Libtool Sources], page 61), and the nodist_ prefix means the listed sources are
not to be distributed (see Section 8.4 [Program and Library Variables|, page 65). In effect
the file dummy . cxx does not need to exist in the source tree. Of course if you have some real
source file to list in 1ibtop_la_SOURCES there is no point in cheating with nodist_EXTRA_
libtop_la_SOURCES.

Chapter 8: Building Programs and Libraries 63

8.3.6 Libtool Modules

These are libtool libraries meant to be dlopened. They are indicated to libtool by passing
-module at link-time.

pkglib_LTLIBRARIES = mymodule.la
mymodule_la_SOURCES = doit.c
mymodule_la_LDFLAGS = -module

Ordinarily, Automake requires that a library’s name start with 1ib. However, when
building a dynamically loadable module you might wish to use a "nonstandard" name.
Automake will not complain about such nonstandard names if it knows the library being
built is a libtool module, i.e., if -module explicitly appears in the library’s _LDFLAGS variable
(or in the common AM_LDFLAGS variable when no per-library _LDFLAGS variable is defined).

As always, AC_SUBST variables are black boxes to Automake since their values are not
yet known when automake is run. Therefore if -module is set via such a variable, Automake
cannot notice it and will proceed as if the library was an ordinary libtool library, with strict
naming.

If mymodule_la_SOURCES is not specified, then it defaults to the single file mymodule.c
(see Section 8.5 [Default _-SOURCES], page 69).

8.3.7 _LIBADD, _LDFLAGS, and _LIBTOOLFLAGS

As shown in previous sections, the ‘1ibrary_LIBADD’ variable should be used to list extra
libtool objects (.1lo files) or libtool libraries (.1la) to add to library.

The ‘library_LDFLAGS’ variable is the place to list additional libtool linking flags, such
as -version-info, -static, and a lot more. See Section “Link mode” in The Libtool
Manual.

The libtool command has two kinds of options: mode-specific options and generic
options. Mode-specific options such as the aforementioned linking flags should be
lumped with the other flags passed to the tool invoked by libtool (hence the use of
‘library_LDFLAGS’ for libtool linking flags). Generic options include --tag=tag and
--silent (see Section “Invoking libtool” in The Libtool Manual for more options)
should appear before the mode selection on the command line; in Makefile.ams they
should be listed in the ‘Iibrary_LIBTOOLFLAGS’ variable.

If ‘Iibrary_LIBTOOLFLAGS’ is not defined, then the variable AM_LIBTOOLFLAGS is used
instead.

These flags are passed to libtool after the --tag=tag option computed by Automake
(if any), so ‘library_LIBTOOLFLAGS’ (or AM_LIBTOOLFLAGS) is a good place to override or
supplement the --tag=tag setting.

The libtool rules also use a LIBTOOLFLAGS variable that should not be set in
Makefile.am: this is a user variable (see Section 28.6 [Flag Variables Ordering], page 134.
It allows users to run ‘make LIBTOOLFLAGS=--silent’, for instance. Note that the
verbosity of 1ibtool can also be influenced with the Automake silent-rules option (see
Chapter 17 [Options], page 107).

Chapter 8: Building Programs and Libraries 64

8.3.8 LTLIBOBJS and LTALLOCA

Where an ordinary library might include ‘$(LIBOBJS)’ or ‘$(ALLOCA)’ (see Section 8.6
[LIBOBJS], page 69), a libtool library must use ‘¢ (LTLIBOBJS)’ or ‘$(LTALLOCA)’. This is
required because the object files that libtool operates on do not necessarily end in .o.

Nowadays, the computation of LTLIBOBJS from LIBOBJS is performed automatically by
Autoconf (see Section “AC_LIBOBJ vs. LIBOBJS” in The Autoconf Manual).

8.3.9 Common Issues Related to Libtool’s Use

8.3.9.1 Error: ‘required file ‘./ltmain.sh’ not found’

Libtool comes with a tool called 1ibtoolize that will install libtool’s supporting files into
a package. Running this command will install 1tmain.sh. You should execute it before
aclocal and automake.

People upgrading old packages to newer autotools are likely to face this issue because
older Automake versions used to call 1libtoolize. Therefore old build scripts do not call
libtoolize.

Since Automake 1.6, it has been decided that running libtoolize was none of Au-
tomake’s business. Instead, that functionality has been moved into the autoreconf com-
mand (see Section “Using autoreconf” in The Autoconf Manual). If you do not want to
remember what to run and when, just learn the autoreconf command. Hopefully, replacing
existing bootstrap.sh or autogen. sh scripts by a call to autoreconf should also free you
from any similar incompatible change in the future.

8.3.9.2 Objects ‘created with both libtool and without’
Sometimes, the same source file is used both to build a libtool library and to build another
non-libtool target (be it a program or another library).

Let’s consider the following Makefile.am.

bin_PROGRAMS = prog
prog_SOURCES = prog.c foo.c ...

1ib_LTLIBRARIES = libfoo.la

libfoo_la_SOURCES = foo.c ...
(In this trivial case the issue could be avoided by linking 1libfoo.la with prog instead of
listing foo. c in prog_SOURCES. But let’s assume we really want to keep prog and 1ibfoo.la
separate.)

Technically, it means that we should build foo.$(0BJEXT) for prog, and foo.lo for
libfoo.la. The problem is that in the course of creating foo.1lo, libtool may erase (or
replace) foo.$(0BJEXT), and this cannot be avoided.

Therefore, when Automake detects this situation it will complain with a message such
as

object ‘foo.$(0BJEXT)’ created both with libtool and without

A workaround for this issue is to ensure that these two objects get different basenames.
As explained in Section 28.7 [Renamed Objects], page 137, this happens automatically when
per-targets flags are used.

bin_PROGRAMS = prog

Chapter 8: Building Programs and Libraries 65

prog_SOURCES = prog.c foo.c ...
prog_CFLAGS = $(AM_CFLAGS)

1ib_LTLIBRARIES = libfoo.la
libfoo_la_SOURCES = foo.c ...

Adding ‘prog_CFLAGS = $(AM_CFLAGS)’ is almost a no-op, because when the prog_CFLAGS
is defined, it is used instead of AM_CFLAGS. However as a side effect it will cause prog.c and
foo.c to be compiled as prog-prog.$(0BJEXT) and prog-foo.$(0BJEXT), which solves
the issue.

8.4 Program and Library Variables

Associated with each program is a collection of variables that can be used to modify how
that program is built. There is a similar list of such variables for each library. The canonical
name of the program (or library) is used as a base for naming these variables.

In the list below, we use the name “maude” to refer to the program or library. In your
Makefile.am you would replace this with the canonical name of your program. This list
also refers to “maude” as a program, but in general the same rules apply for both static and
dynamic libraries; the documentation below notes situations where programs and libraries
differ.

maude_SOURCES

This variable, if it exists, lists all the source files that are compiled to build the
program. These files are added to the distribution by default. When building
the program, Automake will cause each source file to be compiled to a single .o
file (or .1o when using libtool). Normally these object files are named after the
source file, but other factors can change this. If a file in the _SOURCES variable
has an unrecognized extension, Automake will do one of two things with it. If a
suffix rule exists for turning files with the unrecognized extension into .o files,
then automake will treat this file as it will any other source file (see Section 8.17
[Support for Other Languages], page 80). Otherwise, the file will be ignored as
though it were a header file.

The prefixes dist_ and nodist_ can be used to control whether files listed
in a _SOURCES variable are distributed. dist_ is redundant, as sources are
distributed by default, but it can be specified for clarity if desired.

It is possible to have both dist_ and nodist_ variants of a given _SOURCES
variable at once; this lets you easily distribute some files and not others, for
instance:

nodist_maude_SOURCES = nodist.c
dist_maude_SOURCES = dist-me.c

By default the output file (on Unix systems, the .o file) will be put into the cur-
rent build directory. However, if the option subdir-objects is in effect in the
current directory then the .o file will be put into the subdirectory named after
the source file. For instance, with subdir-objects enabled, sub/dir/file.c
will be compiled to sub/dir/file.o. Some people prefer this mode of opera-
tion. You can specify subdir-objects in AUTOMAKE_OPTIONS (see Chapter 17
[Options], page 107).

Chapter 8: Building Programs and Libraries 66

EXTRA_maude_SOURCES

maude_AR

Automake needs to know the list of files you intend to compile statically. For
one thing, this is the only way Automake has of knowing what sort of language
support a given Makefile.in requires.* This means that, for example, you can’t
put a configure substitution like ‘@my_sources@’ into a ‘_SOURCES’ variable. If
you intend to conditionally compile source files and use configure to substitute
the appropriate object names into, e.g., _LDADD (see below), then you should
list the corresponding source files in the EXTRA_ variable.

This variable also supports dist_ and nodist_ prefixes. For instance, nodist_
EXTRA_maude_SOURCES would list extra sources that may need to be built, but
should not be distributed.

A static library is created by default by invoking ‘¢ (AR) $(ARFLAGS)’ followed
by the name of the library and then the objects being put into the library. You
can override this by setting the _AR variable. This is usually used with C++;
some C++ compilers require a special invocation in order to instantiate all the
templates that should go into a library. For instance, the SGI C++ compiler
likes this variable set like so:

libmaude_a_AR = $(CXX) -ar -o

maude_LIBADD

Extra objects can be added to a library using the _LIBADD variable. For in-
stance, this should be used for objects determined by configure (see Section 8.2
[A Library], page 58).

In the case of libtool libraries, maude_LIBADD can also refer to other libtool
libraries.

maude_LDADD

Extra objects (*.$(0BJEXT)) and libraries (*.a, *.1a) can be added to a pro-
gram by listing them in the _LDADD variable. For instance, this should be used
for objects determined by configure (see Section 8.1.2 [Linking], page 55).

_LDADD and _LIBADD are inappropriate for passing program-specific linker flags
(except for -1, -L, -dlopen and -dlpreopen). Use the _LDFLAGS variable for
this purpose.

For instance, if your configure.ac uses AC_PATH_XTRA, you could link your
program against the X libraries like so:

maude_LDADD = $(X_PRE_LIBS) $(X_LIBS) $(X_EXTRA_LIBS)

We recommend that you use -1 and -L only when referring to third-party
libraries, and give the explicit file names of any library built by your package.
Doing so will ensure that maude_DEPENDENCIES (see below) is correctly defined
by default.

maude_LDFLAGS

This variable is used to pass extra flags to the link step of a program or a shared
library. It overrides the AM_LDFLAGS variable.

4 There are other, more obscure reasons for this limitation as well.

Chapter 8: Building Programs and Libraries 67

maude_LIBTOOLFLAGS
This variable is used to pass extra options to libtool. It overrides the
AM_LIBTOOLFLAGS variable. These options are output before libtool’s
--mode=mode option, so they should not be mode-specific options (those belong
to the compiler or linker flags). See Section 8.3.7 [Libtool Flags|, page 63.

maude_DEPENDENCIES
It is also occasionally useful to have a target (program or library) depend on
some other file that is not actually part of that target. This can be done using
the _DEPENDENCIES variable. Each target depends on the contents of such a
variable, but no further interpretation is done.

Since these dependencies are associated to the link rule used to create the
programs they should normally list files used by the link command. That is
*.$(0BJEXT), *.a, or *.la files for programs; *.1lo and *.1la files for Libtool
libraries; and *.$(0BJEXT) files for static libraries. In rare cases you may need
to add other kinds of files such as linker scripts, but listing a source file in
_DEPENDENCIES s wrong. If some source file needs to be built before all the
components of a program are built, consider using the BUILT_SOURCES variable
(see Section 9.4 [Sources|, page 84).

If _DEPENDENCIES is not supplied, it is computed by Automake. The
automatically-assigned value is the contents of _LDADD or _LIBADD, with most
configure substitutions, -1, -L, -dlopen and -dlpreopen options removed.
The configure substitutions that are left in are only ‘$(LIBOBJS)’ and
‘$ (ALLOCA)’; these are left because it is known that they will not cause an
invalid value for _DEPENDENCIES to be generated.

_DEPENDENCIES is more likely used to perform conditional compilation using an
AC_SUBST variable that contains a list of objects. See Section 8.1.3 [Conditional
Sources], page 56, and Section 8.3.4 [Conditional Libtool Sources|, page 61.

maude_LINK
You can override the linker on a per-program basis. By default the linker is
chosen according to the languages used by the program. For instance, a program
that includes C++ source code would use the C++ compiler to link. The _LINK
variable must hold the name of a command that can be passed all the .o file
names and libraries to link against as arguments. Note that the name of the
underlying program is not passed to _LINK; typically one uses ‘$@’:

maude_LINK = $(CCLD) -magic -o $@
If a _LINK variable is not supplied, it may still be generated and used by Au-

tomake due to the use of per-target link flags such as _CFLAGS, _LDFLAGS or
_LIBTOOLFLAGS, in cases where they apply.

Chapter 8: Building Programs and Libraries

maude_CCASFLAGS
maude_CFLAGS
maude_CPPFLAGS
maude_CXXFLAGS
maude_FFLAGS
maude_GCJFLAGS
maude_LFLAGS
maude_0BJCFLAGS
maude_RFLAGS
maude_UPCFLAGS
maude_YFLAGS

68

Automake allows you to set compilation flags on a per-program (or per-library)
basis. A single source file can be included in several programs, and it will poten-
tially be compiled with different flags for each program. This works for any lan-
guage directly supported by Automake. These per-target compilation flags are
‘_CCASFLAGS’, ‘_CFLAGS’, ‘_CPPFLAGS’, ‘_CXXFLAGS’, ‘_FFLAGS’, ‘_GCJFLAGS’,
‘_LFLAGS’, ‘'_0OBJCFLAGS’, ‘_RFLAGS’, ‘'_UPCFLAGS’, and ‘_YFLAGS’.

When using a per-target compilation flag, Automake will choose a different
name for the intermediate object files. Ordinarily a file like sample.c will be
compiled to produce sample.o. However, if the program’s _CFLAGS variable is
set, then the object file will be named, for instance, maude-sample.o. (See also
Section 28.7 [Renamed Objects|, page 137.) The use of per-target compilation
flags with C sources requires that the macro AM_PROG_CC_C_0O be called from
configure.ac.

In compilations with per-target flags, the ordinary ‘AM_’ form of the flags vari-
able is not automatically included in the compilation (however, the user form
of the variable is included). So for instance, if you want the hypothetical maude
compilations to also use the value of AM_CFLAGS, you would need to write:

maude_CFLAGS = ... your flags ... $(AM_CFLAGS)

See Section 28.6 [Flag Variables Ordering], page 134, for more discussion about
the interaction between user variables, ‘AM_’ shadow variables, and per-target
variables.

maude_SHORTNAME

On some platforms the allowable file names are very short. In order to support
these systems and per-target compilation flags at the same time, Automake
allows you to set a “short name” that will influence how intermediate object
files are named. For instance, in the following example,

bin_PROGRAMS = maude
maude_CPPFLAGS = -DSOMEFLAG
maude_SHORTNAME = m
maude_SOURCES = sample.c ...

the object file would be named m-sample.o rather than maude-sample.o.

This facility is rarely needed in practice, and we recommend avoiding it until
you find it is required.

Chapter 8: Building Programs and Libraries 69

8.5 Default _SOURCES

_SOURCES variables are used to specify source files of programs (see Section 8.1 [A Pro-
gram]|, page 54), libraries (see Section 8.2 [A Library], page 58), and Libtool libraries (see
Section 8.3 [A Shared Library], page 59).

When no such variable is specified for a target, Automake will define one itself. The
default is to compile a single C file whose base name is the name of the target itself, with
any extension replaced by AM_DEFAULT_SOURCE_EXT, which defaults to .c.

For example if you have the following somewhere in your Makefile.am with no corre-
sponding libfoo_a_SOURCES:

1lib_LIBRARIES = libfoo.a sub/libc++.a

libfoo.a will be built using a default source file named libfoo.c, and sub/libc++.a
will be built from sub/libc++.c. (In older versions sub/libc++.a would be built from
sub_libc___a.c, i.e., the default source was the canonized name of the target, with .c
appended. We believe the new behavior is more sensible, but for backward compatibility
automake will use the old name if a file or a rule with that name exists and AM_DEFAULT_
SOURCE_EXT is not used.)

Default sources are mainly useful in test suites, when building many test programs each
from a single source. For instance, in

check_PROGRAMS = testl test2 test3
AM_DEFAULT_SOURCE_EXT = .cpp

testl, test2, and test3 will be built from testl.cpp, test2.cpp, and test3.cpp. With-
out the last line, they will be built from testl.c, test2.c, and test3.c.

Another case where this is convenient is building many Libtool modules (modulen.la),
each defined in its own file (modulen.c).

AM_LDFLAGS = -module
1ib_LTLIBRARIES = modulel.la module2.la module3.la

Finally, there is one situation where this default source computation needs to be avoided:
when a target should not be built from sources. We already saw such an example in
Section 4.2 [true], page 26; this happens when all the constituents of a target have already
been compiled and just need to be combined using a _LDADD variable. Then it is necessary
to define an empty _SOURCES variable, so that automake does not compute a default.

bin_PROGRAMS = target

target _SOURCES =
target _LDADD = libmain.a libmisc.a

8.6 Special handling for LIBOBJS and ALLOCA

The ‘$(LIBOBJS)’ and ‘$ (ALLOCA)’ variables list object files that should be compiled into
the project to provide an implementation for functions that are missing or broken on the
host system. They are substituted by configure.

These variables are defined by Autoconf macros such as AC_LIBOBJ, AC_REPLACE_FUNCS
(see Section “Generic Function Checks” in The Autoconf Manual), or AC_FUNC_ALLOCA (see
Section “Particular Function Checks” in The Autoconf Manual). Many other Autoconf
macros call AC_LIBOBJ or AC_REPLACE_FUNCS to populate ‘$ (LIBOBJS)’.

Chapter 8: Building Programs and Libraries 70

Using these variables is very similar to doing conditional compilation using AC_SUBST
variables, as described in Section 8.1.3 [Conditional Sources], page 56. That is, when build-
ing a program, ‘$ (LIBOBJS)’ and ‘$ (ALLOCA)’ should be added to the associated ‘*_LDADD’
variable, or to the ‘*_LIBADD’ variable when building a library. However there is no need to
list the corresponding sources in ‘EXTRA_*_SOURCES’ nor to define ‘*_DEPENDENCIES’. Au-
tomake automatically adds ‘$ (LIBOBJS)’ and ‘$ (ALLOCA)’ to the dependencies, and it will
discover the list of corresponding source files automatically (by tracing the invocations of the
AC_LIBSOURCE Autoconf macros). However, if you have already defined ‘*_DEPENDENCIES’
explicitly for an unrelated reason, then you have to add these variables manually.

These variables are usually used to build a portability library that is linked with all the
programs of the project. We now review a sample setup. First, configure.ac contains
some checks that affect either LIBOBJS or ALLOCA.

configure.ac
AC_CONFIG_LIBOBJ_DIR([1ib])

AC_FUNC_MALLOC dnl May add malloc.$(OBJEXT) to LIBOBJS

AC_FUNC_MEMCMP dnl May add memcmp.$(OBJEXT) to LIBOBJS
AC_REPLACE_FUNCS ([strdup]) dnl May add strdup.$(OBJEXT) to LIBOBJS
AC_FUNC_ALLOCA dnl May add alloca.$(OBJEXT) to ALLOCA

AC_CONFIG_FILES(L[
lib/Makefile
src/Makefile

D

AC_OUTPUT

The AC_CONFIG_LIBOBJ_DIR tells Autoconf that the source files of these object files are
to be found in the 1ib/ directory. Automake can also use this information, otherwise it
expects the source files are to be in the directory where the ‘¢ (LIBOBJS)’ and ‘$ (ALLOCA)’
variables are used.

The 1ib/ directory should therefore contain malloc.c, memcmp.c, strdup.c, alloca.c.
Here is its Makefile.am:

lib/Makefile.am

noinst_LIBRARIES = libcompat.a
libcompat_a_SOURCES =
libcompat_a_LIBADD = $(LIBOBJS) $(ALLOCA)

The library can have any name, of course, and anyway it is not going to be installed: it
just holds the replacement versions of the missing or broken functions so we can later link
them in. Many projects also include extra functions, specific to the project, in that library:
they are simply added on the _SOURCES line.

There is a small trap here, though: ‘¢ (LIBOBJS)’ and ‘$ (ALLOCA)’ might be empty, and
building an empty library is not portable. You should ensure that there is always something
to put in libcompat.a. Most projects will also add some utility functions in that directory,
and list them in libcompat_a_SOURCES, so in practice libcompat.a cannot be empty.

Chapter 8: Building Programs and Libraries 71

Finally here is how this library could be used from the src/ directory.

src/Makefile.am

Link all programs in this directory with libcompat.a
LDADD = ../lib/libcompat.a

bin_PROGRAMS = tooll tool2 ...
too0ll_SOURCES = ...
t00l12_SOURCES = ...

When option subdir-objects is not used, as in the above example, the variables
‘$(LIBOBJS)’ or ‘$(ALLOCA)’ can only be used in the directory where their sources lie.
E.g., here it would be wrong to use ‘$(LIBOBJS)’ or ‘$(ALLOCA)’ in src/Makefile.am.
However if both subdir-objects and AC_CONFIG_LIBOBJ_DIR are used, it is OK to use
these variables in other directories. For instance src/Makefile.am could be changed as
follows.

src/Makefile.am

AUTOMAKE_QOPTIONS = subdir-objects
LDADD = $(LIBOBJS) $(ALLOCA)

bin_PROGRAMS = tooll tool2 ...
to00l1_SOURCES = ...
t00l12_SOURCES = ...

Because ‘$(LIBOBJS)’ and ‘$(ALLOCA)’ contain object file names that end with
‘.$(0BJEXT)’, they are not suitable for Libtool libraries (where the expected object
extension is .1lo): LTLIBOBJS and LTALLOCA should be used instead.

LTLIBOBJS is defined automatically by Autoconf and should not be defined by hand (as
in the past), however at the time of writing LTALLOCA still needs to be defined from ALLOCA
manually. See Section “AC_LIBOBJ vs. LIBOBJS” in The Autoconf Manual.

8.7 Variables used when building a program

Occasionally it is useful to know which Makefile variables Automake uses for compilations,
and in which order (see Section 28.6 [Flag Variables Ordering], page 134); for instance, you
might need to do your own compilation in some special cases.

Some variables are inherited from Autoconf; these are CC, CFLAGS, CPPFLAGS, DEFS,
LDFLAGS, and LIBS.

There are some additional variables that Automake defines on its own:

AM_CPPFLAGS
The contents of this variable are passed to every compilation that invokes the
C preprocessor; it is a list of arguments to the preprocessor. For instance, -I
and -D options should be listed here.
Automake already provides some -I options automatically, in a separate vari-

able that is also passed to every compilation that invokes the C preprocessor. In
particular it generates ‘-I.’, ‘-I$(srcdir)’, and a -I pointing to the directory

Chapter 8: Building Programs and Libraries 72

INCLUDES

AM_CFLAGS

COMPILE

AM_LDFLAGS

LINK

holding config.h (if you've used AC_CONFIG_HEADERS or AM_CONFIG_HEADER).
You can disable the default -I options using the nostdinc option.

When a file to be included is generated during the build and not part
of a distribution tarball, its location is under $(builddir), not under
$(srcdir). This matters especially for packages that use header files placed
in sub-directories and want to allow builds outside the source tree (see
Section 2.2.6 [VPATH Builds], page 6). In that case we recommend to use a
pair of -I options, such as, e.g., ‘~-Isome/subdir -I$(srcdir)/some/subdir’
or ‘-I$(top_builddir)/some/subdir -I$(top_srcdir)/some/subdir’. Note
that the reference to the build tree should come before the reference to the
source tree, so that accidentally leftover generated files in the source directory
are ignored.

AM_CPPFLAGS is ignored in preference to a per-executable (or per-library) _
CPPFLAGS variable if it is defined.

This does the same job as AM_CPPFLAGS (or any per-target _CPPFLAGS variable
if it is used). It is an older name for the same functionality. This variable is
deprecated; we suggest using AM_CPPFLAGS and per-target _CPPFLAGS instead.

This is the variable the Makefile.am author can use to pass in additional C
compiler flags. It is more fully documented elsewhere. In some situations, this
is not used, in preference to the per-executable (or per-library) _CFLAGS.

This is the command used to actually compile a C source file. The file name is
appended to form the complete command line.

This is the variable the Makefile.am author can use to pass in additional linker
flags. In some situations, this is not used, in preference to the per-executable
(or per-library) _LDFLAGS.

This is the command used to actually link a C program. It already includes
‘-0 $@ and the usual variable references (for instance, CFLAGS); it takes as
“arguments” the names of the object files and libraries to link in. This variable
is not used when the linker is overridden with a per-target _LINK variable or
per-target flags cause Automake to define such a _LINK variable.

8.8 Yacc and Lex support

Automake has somewhat idiosyncratic support for Yacc and Lex.

Automake assumes that the .c file generated by yacc (or lex) should be named using
the basename of the input file. That is, for a yacc source file foo.y, Automake will cause
the intermediate file to be named foo.c (as opposed to y.tab.c, which is more traditional).

The extension of a yacc source file is used to determine the extension of the resulting
C or C++ file. Files with the extension .y will be turned into .c files; likewise, .yy will
become .cc; .y++, c++; .yxx, .cxx; and .ypp, .Cpp.

Likewise, lex source files can be used to generate C or C++; the extensions .1, .11, .1++,
.1xx, and .1lpp are recognized.

Chapter 8: Building Programs and Libraries 73

You should never explicitly mention the intermediate (C or C++) file in any SOURCES
variable; only list the source file.

The intermediate files generated by yacc (or lex) will be included in any distribution
that is made. That way the user doesn’t need to have yacc or lex.

If a yacc source file is seen, then your configure.ac must define the variable YACC. This
is most easily done by invoking the macro AC_PROG_YACC (see Section “Particular Program
Checks” in The Autoconf Manual).

When yacc is invoked, it is passed AM_YFLAGS and YFLAGS. The latter is a user variable
and the former is intended for the Makefile.am author.

AM_YFLAGS is usually used to pass the -d option to yacc. Automake knows what this
means and will automatically adjust its rules to update and distribute the header file built
by ‘yacc -d’®>. What Automake cannot guess, though, is where this header will be used: it
is up to you to ensure the header gets built before it is first used. Typically this is necessary
in order for dependency tracking to work when the header is included by another file. The
common solution is listing the header file in BUILT_SOURCES (see Section 9.4 [Sources],
page 84) as follows.

BUILT_SOURCES = parser.h
AM_YFLAGS = -d

bin_PROGRAMS = foo
foo_SOURCES = ... parser.y ...

If a lex source file is seen, then your configure.ac must define the variable LEX. You
can use AC_PROG_LEX to do this (see Section “Particular Program Checks” in The Autoconf
Manual), but using AM_PROG_LEX macro (see Section 6.4 [Macros|, page 44) is recommended.

When lex is invoked, it is passed AM_LFLAGS and LFLAGS. The latter is a user variable
and the former is intended for the Makefile.am author.

When AM_MAINTAINER_MODE (see Section 28.2 [maintainer-mode], page 129) is used, the
rebuild rule for distributed Yacc and Lex sources are only used when maintainer-mode is
enabled, or when the files have been erased.

When lex or yacc sources are used, automake -i automatically installs an auxiliary
program called ylwrap in your package (see Section 3.7 [Auxiliary Programs|, page 23).
This program is used by the build rules to rename the output of these tools, and makes
it possible to include multiple yacc (or lex) source files in a single directory. (This is
necessary because yacc’s output file name is fixed, and a parallel make could conceivably
invoke more than one instance of yacc simultaneously.)

For yacc, simply managing locking is insufficient. The output of yacc always uses the
same symbol names internally, so it isn’t possible to link two yacc parsers into the same
executable.

We recommend using the following renaming hack used in gdb:

#define yymaxdepth c_maxdepth
#define yyparse c_parse
#define yylex c_lex

#define yyerror c_error

5 Please note that automake recognizes -d in AM_YFLAGS only if it is not clustered with other options; for
example, it won’t be recognized if AM_YFLAGS is -dt, but it will be if AM_YFLAGS is -d -t or -d -t

Chapter 8: Building Programs and Libraries

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

yylval
yychar
yydebug
yypact
yyril

yyr2
yydef

yychk
Yypgo

yyact
yyexca

c_lval
c_char
c_debug
c_pact
c_rl
c_r2
c_def
c_chk
c_pgo
c_act
c_exca

yyerrflag c_errflag

yynerrs

yyps
yypv

yys
yy-yys
yystate
yytmp
yyv
yy-yyv
yyval
yylloc
yyreds
yytoks
yylhs
yylen
yydefred
yydgoto
yysindex
yyrindex
yygindex
yytable
yycheck
yyname
yyrule

c_nerrs

c_ps

Cc_pv

c_s

c_yys

c_state

c_tmp

c_v

C_yyv

c_val

c_lloc

c_reds

c_toks

c_yylhs

c_yylen
c_yydefred
c_yydgoto
c_yysindex
c_yyrindex
c_yygindex
c_yytable
c_yycheck
c_yyname
c_yyrule

74

For each define, replace the ‘c_’ prefix with whatever you like. These defines work for
bison, byacc, and traditional yaccs. If you find a parser generator that uses a symbol not

covered here, please report the new name so it can be added to the list.

8.9 C++ Support

Automake includes full support for C++.

Any package including C++ code must define the output variable CXX in configure.ac
the simplest way to do this is to use the AC_PROG_CXX macro (see Section “Particular

Program Checks” in The Autoconf Manual).
A few additional variables are defined when a C++ source file is seen:

Chapter 8: Building Programs and Libraries 75

CXX The name of the C++ compiler.
CXXFLAGS Any flags to pass to the C++ compiler.

AM_CXXFLAGS
The maintainer’s variant of CXXFLAGS.

CXXCOMPILE
The command used to actually compile a C++ source file. The file name is
appended to form the complete command line.

CXXLINK The command used to actually link a C++ program.

8.10 Objective C Support

Automake includes some support for Objective C.

Any package including Objective C code must define the output variable 0BJC in
configure.ac; the simplest way to do this is to use the AC_PROG_0BJC macro (see Section
“Particular Program Checks” in The Autoconf Manual).

A few additional variables are defined when an Objective C source file is seen:
0BJC The name of the Objective C compiler.

0OBJCFLAGS
Any flags to pass to the Objective C compiler.

AM_OBJCFLAGS
The maintainer’s variant of 0BJCFLAGS.

0OBJCCOMPILE
The command used to actually compile an Objective C source file. The file
name is appended to form the complete command line.

0BJCLINK The command used to actually link an Objective C program.

8.11 Unified Parallel C Support

Automake includes some support for Unified Parallel C.

Any package including Unified Parallel C code must define the output variable UPC
in configure.ac; the simplest way to do this is to use the AM_PROG_UPC macro (see
Section 6.4.1 [Public Macros|, page 44).

A few additional variables are defined when a Unified Parallel C source file is seen:
UPC The name of the Unified Parallel C compiler.
UPCFLAGS Any flags to pass to the Unified Parallel C compiler.

AM_UPCFLAGS
The maintainer’s variant of UPCFLAGS.

UPCCOMPILE
The command used to actually compile a Unified Parallel C source file. The
file name is appended to form the complete command line.

UPCLINK The command used to actually link a Unified Parallel C program.

Chapter 8: Building Programs and Libraries 76

8.12 Assembly Support

Automake includes some support for assembly code. There are two forms of assembler files:
normal (*.s) and preprocessed by CPP (*.S or *.sx).

The variable CCAS holds the name of the compiler used to build assembly code. This com-
piler must work a bit like a C compiler; in particular it must accept —-c and -o. The values
of CCASFLAGS and AM_CCASFLAGS (or its per-target definition) is passed to the compilation.
For preprocessed files, DEFS, DEFAULT_INCLUDES, INCLUDES, CPPFLAGS and AM_CPPFLAGS
are also used.

The autoconf macro AM_PROG_AS will define CCAS and CCASFLAGS for you (unless they
are already set, it simply sets CCAS to the C compiler and CCASFLAGS to the C compiler
flags), but you are free to define these variables by other means.

Only the suffixes .s, .S, and .sx are recognized by automake as being files containing
assembly code.

8.13 Fortran 77 Support

Automake includes full support for Fortran 77.

Any package including Fortran 77 code must define the output variable F77 in
configure.ac; the simplest way to do this is to use the AC_PROG_F77 macro (see Section
“Particular Program Checks” in The Autoconf Manual).

A few additional variables are defined when a Fortran 77 source file is seen:
F77 The name of the Fortran 77 compiler.
FFLAGS Any flags to pass to the Fortran 77 compiler.

AM_FFLAGS
The maintainer’s variant of FFLAGS.

RFLAGS Any flags to pass to the Ratfor compiler.

AM_RFLAGS
The maintainer’s variant of RFLAGS.

F77COMPILE
The command used to actually compile a Fortran 77 source file. The file name
is appended to form the complete command line.

FLINK The command used to actually link a pure Fortran 77 program or shared library.

Automake can handle preprocessing Fortran 77 and Ratfor source files in addition to
compiling them®. Automake also contains some support for creating programs and shared
libraries that are a mixture of Fortran 77 and other languages (see Section 8.13.3 [Mixing
Fortran 77 With C and C++], page 77).

These issues are covered in the following sections.

6 Much, if not most, of the information in the following sections pertaining to preprocessing Fortran 77
programs was taken almost verbatim from Section “Catalogue of Rules” in The GNU Make Manual.

Chapter 8: Building Programs and Libraries 77

8.13.1 Preprocessing Fortran 77

N.f is made automatically from N.F or N.r. This rule runs just the preprocessor to convert
a preprocessable Fortran 77 or Ratfor source file into a strict Fortran 77 source file. The
precise command used is as follows:

.F $(F77) -F $(DEFS) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS)
$ (AM_FFLAGS) $(FFLAGS)

.T $(F77) -F $(AM_FFLAGS) $(FFLAGS) $(AM_RFLAGS) $(RFLAGS)

8.13.2 Compiling Fortran 77 Files

N.o is made automatically from N.£, N.F or N.r by running the Fortran 77 compiler. The
precise command used is as follows:

£ $(F77) -c $(AM_FFLAGS) $(FFLAGS)

.F $(F77) -c $(DEFS) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS)
$ (AM_FFLAGS) $(FFLAGS)

.T $(F77) -c $(AM_FFLAGS) $(FFLAGS) $(AM_RFLAGS) $(RFLAGS)

8.13.3 Mixing Fortran 77 With C and C++

Automake currently provides limited support for creating programs and shared libraries
that are a mixture of Fortran 77 and C and/or C++. However, there are many other issues
related to mixing Fortran 77 with other languages that are not (currently) handled by
Automake, but that are handled by other packages”.

Automake can help in two ways:
1. Automatic selection of the linker depending on which combinations of source code.

2. Automatic selection of the appropriate linker flags (e.g., -L and -1) to pass to the
automatically selected linker in order to link in the appropriate Fortran 77 intrinsic
and run-time libraries.

These extra Fortran 77 linker flags are supplied in the output variable FLIBS by the
AC_F77_LIBRARY_LDFLAGS Autoconf macro supplied with newer versions of Autoconf
(Autoconf version 2.13 and later). See Section “Fortran Compiler Characteristics” in
The Autoconf Manual.

If Automake detects that a program or shared library (as mentioned in some _PROGRAMS
or _LTLIBRARIES primary) contains source code that is a mixture of Fortran 77 and C and/or
C++, then it requires that the macro AC_F77_LIBRARY_LDFLAGS be called in configure.ac,
and that either $ (FLIBS) appear in the appropriate _LDADD (for programs) or _LIBADD (for
shared libraries) variables. It is the responsibility of the person writing the Makefile.am
to make sure that ‘$ (FLIBS) appears in the appropriate _LDADD or _LIBADD variable.

For example, consider the following Makefile.am:

bin_PROGRAMS = foo
foo_SOURCES = main.cc foo.f

7 For example, the cfortran package (http://www-zeus.desy.de/ burow/cfortran/) addresses all of these
inter-language issues, and runs under nearly all Fortran 77, C and C++ compilers on nearly all platforms.
However, cfortran is not yet Free Software, but it will be in the next major release.

http://www-zeus.desy.de/~burow/cfortran/

Chapter 8: Building Programs and Libraries 78

foo_LDADD = libfoo.la $(FLIBS)
pkglib_LTLIBRARIES = libfoo.la
libfoo_la_SOURCES = bar.f baz.c zardoz.cc
libfoo_la_LIBADD = $(FLIBS)

In this case, Automake will insist that AC_F77_LIBRARY_LDFLAGS is mentioned
in configure.ac. Also, if ‘$(FLIBS)’ hadn’t been mentioned in foo_LDADD and
libfoo_la_LIBADD, then Automake would have issued a warning.

8.13.3.1 How the Linker is Chosen

When a program or library mixes several languages, Automake choose the linker according
to the following priorities. (The names in parentheses are the variables containing the link
command.)

1. Native Java (GCJLINK)

C++ (CXXLINK)

Fortran 77 (F77LINK)
Fortran (FCLINK)

Objective C (OBJCLINK)
Unified Parallel C (UPCLINK)
C (LINK)

NS ot N

For example, if Fortran 77, C and C++ source code is compiled into a program, then the
C++ linker will be used. In this case, if the C or Fortran 77 linkers required any special
libraries that weren’t included by the C++ linker, then they must be manually added to an
_LDADD or _LIBADD variable by the user writing the Makefile.am.

Automake only looks at the file names listed in _SOURCES variables to choose the linker,
and defaults to the C linker. Sometimes this is inconvenient because you are linking against
a library written in another language and would like to set the linker more appropriately.
See Section 8.3.5 [Libtool Convenience Libraries|, page 61, for a trick with nodist_EXTRA_
.. ._SOURCES.

A per-target _LINK variable will override the above selection. Per-target link flags will
cause Automake to write a per-target _LINK variable according to the language chosen as
above.

8.14 Fortran 9x Support

Automake includes support for Fortran 9x.

Any package including Fortran 9x code must define the output variable FC in
configure.ac; the simplest way to do this is to use the AC_PROG_FC macro (see Section
“Particular Program Checks” in The Autoconf Manual).

A few additional variables are defined when a Fortran 9x source file is seen:
FC The name of the Fortran 9x compiler.

FCFLAGS Any flags to pass to the Fortran 9x compiler.

Chapter 8: Building Programs and Libraries 79

AM_FCFLAGS
The maintainer’s variant of FCFLAGS.

FCCOMPILE
The command used to actually compile a Fortran 9x source file. The file name
is appended to form the complete command line.

FCLINK The command used to actually link a pure Fortran 9x program or shared library.

8.14.1 Compiling Fortran 9x Files

file.o is made automatically from file.f90, file.f95, file.f03, or file.f08 by run-
ning the Fortran 9x compiler. The precise command used is as follows:

.£90 $ (FC) $(AM_FCFLAGS) $(FCFLAGS) -c $(FCFLAGS_f90) $<
.95 $(FC) $(AM_FCFLAGS) $(FCFLAGS) -c $(FCFLAGS_f95) $<
.£03 $ (FC) $(AM_FCFLAGS) $(FCFLAGS) -c $(FCFLAGS_f03) $<
.£08 $ (FC) $(AM_FCFLAGS) $(FCFLAGS) -c $(FCFLAGS_f08) $<

8.15 Compiling Java sources using gcj

Automake includes support for natively compiled Java, using gcj, the Java front end to the
GNU Compiler Collection (rudimentary support for compiling Java to bytecode using the
javac compiler is also present, albeit deprecated; see Section 10.4 [Java], page 89).

Any package including Java code to be compiled must define the output variable
GCJ in configure.ac; the variable GCJFLAGS must also be defined somehow (either in
configure.ac or Makefile.am). The simplest way to do this is to use the AM_PROG_GCJ
macro.

By default, programs including Java source files are linked with gcj.
As always, the contents of AM_GCJFLAGS are passed to every compilation invoking gcj (in
its role as an ahead-of-time compiler, when invoking it to create . class files, AM_JAVACFLAGS

is used instead). If it is necessary to pass options to gcj from Makefile.am, this variable,
and not the user variable GCJFLAGS, should be used.

gcj can be used to compile .java, .class, .zip, or .jar files.

When linking, gcj requires that the main class be specified using the --main= option.
The easiest way to do this is to use the _LDFLAGS variable for the program.

8.16 Vala Support

Automake provides initial support for Vala (http://www.vala-project.org/). This re-
quires valac version 0.7.0 or later, and currently requires the user to use GNU make.
foo_SOURCES = foo.vala bar.vala zardoc.c
Any .vala file listed in a _SOURCES variable will be compiled into C code by the Vala

compiler. The generated . c files are distributed. The end user does not need to have a Vala
compiler installed.

Automake ships with an Autoconf macro called AM_PROG_VALAC that will locate the Vala
compiler and optionally check its version number.

http://www.vala-project.org/

Chapter 8: Building Programs and Libraries 80

AM_PROG_VALAC (|minimum-version]) [Macro]
Try to find a Vala compiler in PATH. If it is found, the variable VALAC is set. Optionally
a minimum release number of the compiler can be requested:

AM_PROG_VALAC([0.7.0])

There are a few variables that are used when compiling Vala sources:
VALAC Path to the Vala compiler.

VALAFLAGS
Additional arguments for the Vala compiler.

AM_VALAFLAGS
The maintainer’s variant of VALAFLAGS.

1ib_LTLIBRARIES = libfoo.la
libfoo_la_SOURCES = foo.vala

Note that currently, you cannot use per-target *_VALAFLAGS (see Section 28.7 [Renamed
Objects|, page 137) to produce different C files from one Vala source file.

8.17 Support for Other Languages

Automake currently only includes full support for C, C++ (see Section 8.9 [C++ Support],
page 74), Objective C (see Section 8.10 [Objective C Support|, page 75), Fortran 77 (see
Section 8.13 [Fortran 77 Support], page 76), Fortran 9x (see Section 8.14 [Fortran 9x Sup-
port], page 78), and Java (see Section 8.15 [Java Support with gcj|, page 79). There is only
rudimentary support for other languages, support for which will be improved based on user
demand.

Some limited support for adding your own languages is available via the suffix rule
handling (see Section 18.2 [Suffixes]|, page 112).

8.18 Automatic de-ANSI-fication (deprecated, soon to be
removed)

The features described in this section are deprecated; you must not use any of them in new
code, and remove their use from older but still maintained code: they will be withdrawn in
the next major Automake release.

When the C language was standardized in 1989, there was a long transition period where
package developers needed to worry about porting to older systems that did not support
ANSI C by default. These older systems are no longer in practical use and are no longer
supported by their original suppliers, so developers need not worry about this problem any
more.

Automake allows you to write packages that are portable to K&R C by de-ANSI-fying
each source file before the actual compilation takes place.

If the Makefile.am variable AUTOMAKE_OPTIONS (see Chapter 17 [Options], page 107)
contains the option ansi2knr then code to handle de-ANSI-fication is inserted into the
generated Makefile.in.

Chapter 8: Building Programs and Libraries 81

This causes each C source file in the directory to be treated as ANSI C. If an ANSI C
compiler is available, it is used. If no ANSI C compiler is available, the ansi2knr program
is used to convert the source files into K&R C, which is then compiled.

The ansi2knr program is simple-minded. It assumes the source code will be formatted
in a particular way; see the ansi2knr man page for details.

Support for the obsolete de-ANSI-fication feature requires the source files ansi2knr.c
and ansi2knr.1 to be in the same package as the ANSI C source; these files are distributed
with Automake. Also, the package configure.ac must call the macro AM_C_PROTOTYPES
(see Section 6.4 [Macros|, page 44).

Automake also handles finding the ansi2knr support files in some other directory in the
current package. This is done by prepending the relative path to the appropriate directory
to the ansi2knr option. For instance, suppose the package has ANSI C code in the src
and 1ib subdirectories. The files ansi2knr.c and ansi2knr.1 appear in 1ib. Then this
could appear in src/Makefile.am:

AUTOMAKE_OPTIONS = ../lib/ansi2knr
If no directory prefix is given, the files are assumed to be in the current directory.

Note that automatic de-ANSI-fication will not work when the package is being built
for a different host architecture. That is because automake currently has no way to build
ansi2knr for the build machine.

Using LIBOBJS with source de-ANSI-fication used to require hand-crafted code in
configure to append ‘$U’ to basenames in LIBOBJS. This is no longer true today. Starting
with version 2.54, Autoconf takes care of rewriting LIBOBJS and LTLIBOBJS. (see Section
“AC_LIBOBJ vs. LIBOBJS” in The Autoconf Manual)

8.19 Automatic dependency tracking

As a developer it is often painful to continually update the Makefile.am whenever the
include-file dependencies change in a project. Automake supplies a way to automatically
track dependency changes (see Section 2.2.12 [Dependency Tracking], page 11).

Automake always uses complete dependencies for a compilation, including system head-
ers. Automake’s model is that dependency computation should be a side effect of the build.
To this end, dependencies are computed by running all compilations through a special
wrapper program called depcomp. depcomp understands how to coax many different C and
C++ compilers into generating dependency information in the format it requires. ‘automake
-a’ will install depcomp into your source tree for you. If depcomp can’t figure out how to
properly invoke your compiler, dependency tracking will simply be disabled for your build.

Experience with earlier versions of Automake (see Section 29.2 [Dependency Tracking
Evolution], page 157) taught us that it is not reliable to generate dependencies only on the
maintainer’s system, as configurations vary too much. So instead Automake implements
dependency tracking at build time.

Automatic dependency tracking can be suppressed by putting no-dependencies in the
variable AUTOMAKE_OPTIONS, or passing no-dependencies as an argument to AM_INIT_
AUTOMAKE (this should be the preferred way). Or, you can invoke automake with the -i
option. Dependency tracking is enabled by default.

Chapter 9: Other Derived Objects 82

The person building your package also can choose to disable dependency tracking by
configuring with --disable-dependency-tracking.

8.20 Support for executable extensions

On some platforms, such as Windows, executables are expected to have an extension such as
.exe. On these platforms, some compilers (GCC among them) will automatically generate
foo.exe when asked to generate foo.

Automake provides mostly-transparent support for this. Unfortunately mostly doesn’t
yet mean fully. Until the English dictionary is revised, you will have to assist Automake if
your package must support those platforms.

One thing you must be aware of is that, internally, Automake rewrites something like
this:

bin_PROGRAMS = liver
to this:
bin_PROGRAMS = liver$ (EXEEXT)

The targets Automake generates are likewise given the ‘$ (EXEEXT)’ extension.

The variables TESTS and XFAIL_TESTS (see Section 15.1 [Simple Tests|, page 102) are
also rewritten if they contain filenames that have been declared as programs in the same
Makefile. (This is mostly useful when some programs from check_PROGRAMS are listed in
TESTS.)

However, Automake cannot apply this rewriting to configure substitutions. This means
that if you are conditionally building a program using such a substitution, then your
configure.ac must take care to add ‘$ (EXEEXT)’ when constructing the output variable.

With Autoconf 2.13 and earlier, you must explicitly use AC_EXEEXT to get this sup-
port. With Autoconf 2.50, AC_EXEEXT is run automatically if you configure a compiler (say,
through AC_PROG_CC).

Sometimes maintainers like to write an explicit link rule for their program. Without
executable extension support, this is easy—you simply write a rule whose target is the
name of the program. However, when executable extension support is enabled, you must
instead add the ‘$ (EXEEXT)’ suffix.

Unfortunately, due to the change in Autoconf 2.50, this means you must always add this
extension. However, this is a problem for maintainers who know their package will never
run on a platform that has executable extensions. For those maintainers, the no-exeext
option (see Chapter 17 [Options|, page 107) will disable this feature. This works in a fairly
ugly way; if no-exeext is seen, then the presence of a rule for a target named foo in
Makefile.am will override an automake-generated rule for ‘foo$ (EXEEXT)’. Without the
no-exeext option, this use will give a diagnostic.

9 Other Derived Objects

Automake can handle derived objects that are not C programs. Sometimes the support for
actually building such objects must be explicitly supplied, but Automake will still automat-
ically handle installation and distribution.

Chapter 9: Other Derived Objects 83

9.1 Executable Scripts

It is possible to define and install programs that are scripts. Such programs are listed using
the SCRIPTS primary name. When the script is distributed in its final, installable form, the
Makefile usually looks as follows:

Install my_script in $(bindir) and distribute it.
dist_bin_SCRIPTS = my_script
Scripts are not distributed by default; as we have just seen, those that should be dis-
tributed can be specified using a dist_ prefix as with other primaries.

Scripts can be installed in bindir, sbindir, 1ibexecdir, or pkgdatadir.

Scripts that need not be installed can be listed in noinst_SCRIPTS, and among them,
those which are needed only by ‘make check’ should go in check_SCRIPTS.

When a script needs to be built, the Makefile.am should include the appropriate
rules. For instance the automake program itself is a Perl script that is generated from
automake.in. Here is how this is handled:

bin_SCRIPTS = automake
CLEANFILES = $(bin_SCRIPTS)
EXTRA_DIST = automake.in

do_subst = sed -e ’s, [@]datadir[@],$(datadir),g’ \
-e ’s, [@]PERL[@],$(PERL) ,g’ \
-e ’s, [@]PACKAGE[@],$(PACKAGE) ,g’ \
-e ’s, [@]VERSION[@],$(VERSION),g’ \

automake: automake.in Makefile
$(do_subst) < $(srcdir)/automake.in > automake
chmod +x automake

Such scripts for which a build rule has been supplied need to be deleted explicitly using
CLEANFILES (see Chapter 13 [Clean], page 97), and their sources have to be distributed,
usually with EXTRA_DIST (see Section 14.1 [Basics of Distribution], page 98).

Another common way to build scripts is to process them from configure with AC_
CONFIG_FILES. In this situation Automake knows which files should be cleaned and dis-
tributed, and what the rebuild rules should look like.

For instance if configure.ac contains
AC_CONFIG_FILES([src/my_script], [chmod +x src/my_script])
to build src/my_script from src/my_script.in, then a src/Makefile.am to install this
script in $(bindir) can be as simple as
bin_SCRIPTS = my_script
CLEANFILES = $(bin_SCRIPTS)
There is no need for EXTRA_DIST or any build rule: Automake infers them from AC_CONFIG_

FILES (see Section 6.1 [Requirements|, page 30). CLEANFILES is still useful, because by
default Automake will clean targets of AC_CONFIG_FILES in distclean, not clean.

Although this looks simpler, building scripts this way has one drawback: directory vari-
ables such as $(datadir) are not fully expanded and may refer to other directory variables.

Chapter 9: Other Derived Objects 84

9.2 Header files

Header files that must be installed are specified by the HEADERS family of variables. Headers
can be installed in includedir, oldincludedir, pkgincludedir or any other directory you
may have defined (see Section 3.3 [Uniform]|, page 20). For instance,

include_HEADERS = foo.h bar/bar.h
will install the two files as $ (includedir) /foo.h and $(includedir)/bar.h.
The nobase_ prefix is also supported,
nobase_include_HEADERS = foo.h bar/bar.h

will install the two files as $(includedir)/foo.h and $(includedir)/bar/bar.h (see
Section 7.3 [Alternative], page 52).

Usually, only header files that accompany installed libraries need to be installed. Headers
used by programs or convenience libraries are not installed. The noinst_HEADERS variable
can be used for such headers. However when the header actually belongs to a single conve-
nience library or program, we recommend listing it in the program’s or library’s _SOURCES
variable (see Section 8.1.1 [Program Sources|, page 54) instead of in noinst_HEADERS. This
is clearer for the Makefile.am reader. noinst_HEADERS would be the right variable to use
in a directory containing only headers and no associated library or program.

All header files must be listed somewhere; in a _SOURCES variable or in a _HEADERS
variable. Missing ones will not appear in the distribution.

For header files that are built and must not be distributed, use the nodist_ prefix
as in nodist_include_HEADERS or nodist_prog_SOURCES. If these generated headers are
needed during the build, you must also ensure they exist before they are used (see Section 9.4
[Sources|, page 84).

9.3 Architecture-independent data files
Automake supports the installation of miscellaneous data files using the DATA family of
variables.

Such data can be installed in the directories datadir, sysconfdir, sharedstatedir,
localstatedir, or pkgdatadir.

By default, data files are not included in a distribution. Of course, you can use the
dist_ prefix to change this on a per-variable basis.

Here is how Automake declares its auxiliary data files:

dist_pkgdata_DATA = clean-kr.am clean.am ...

9.4 Built Sources

Because Automake’s automatic dependency tracking works as a side-effect of compilation
(see Section 8.19 [Dependencies|, page 81) there is a bootstrap issue: a target should not
be compiled before its dependencies are made, but these dependencies are unknown until
the target is first compiled.

Ordinarily this is not a problem, because dependencies are distributed sources: they
preexist and do not need to be built. Suppose that foo.c includes foo.h. When it first
compiles foo.o, make only knows that foo.o depends on foo.c. As a side-effect of this

Chapter 9: Other Derived Objects 85

compilation depcomp records the foo.h dependency so that following invocations of make
will honor it. In these conditions, it’s clear there is no problem: either foo.o doesn’t exist
and has to be built (regardless of the dependencies), or accurate dependencies exist and
they can be used to decide whether foo.o should be rebuilt.

It’s a different story if foo.h doesn’t exist by the first make run. For instance, there
might be a rule to build foo.h. This time file.o’s build will fail because the compiler
can’t find foo.h. make failed to trigger the rule to build foo.h first by lack of dependency
information.

The BUILT_SOURCES variable is a workaround for this problem. A source file listed in
BUILT_SOURCES is made on ‘make all’ or ‘make check’ (or even ‘make install’) before
other targets are processed. However, such a source file is not compiled unless explicitly
requested by mentioning it in some other _SOURCES variable.

So, to conclude our introductory example, we could use ‘BUILT_SOURCES = foo.h’ to
ensure foo.h gets built before any other target (including foo.o) during ‘make all’ or
‘make check’.

BUILT_SOURCES is actually a bit of a misnomer, as any file which must be created early
in the build process can be listed in this variable. Moreover, all built sources do not
necessarily have to be listed in BUILT_SOURCES. For instance, a generated .c file doesn’t
need to appear in BUILT_SOURCES (unless it is included by another source), because it’s a
known dependency of the associated object.

It might be important to emphasize that BUILT_SOURCES is honored only by ‘make all’,
‘make check’ and ‘make install’. This means you cannot build a specific target (e.g., ‘make
foo’) in a clean tree if it depends on a built source. However it will succeed if you have run
‘make all’ earlier, because accurate dependencies are already available.

The next section illustrates and discusses the handling of built sources on a toy example.

9.4.1 Built Sources Example

Suppose that foo.c includes bindir.h, which is installation-dependent and not distributed:
it needs to be built. Here bindir.h defines the preprocessor macro bindir to the value of
the make variable bindir (inherited from configure).

We suggest several implementations below. It’s not meant to be an exhaustive listing of
all ways to handle built sources, but it will give you a few ideas if you encounter this issue.

First Try

This first implementation will illustrate the bootstrap issue mentioned in the previous sec-
tion (see Section 9.4 [Sources|, page 84).

Here is a tentative Makefile.am.

This won’t work.
bin_PROGRAMS = foo
foo_SOURCES = foo.c
nodist_foo_SOURCES = bindir.h
CLEANFILES = bindir.h
bindir.h: Makefile
echo ’#define bindir "$(bindir)"’> >$e@

Chapter 9: Other Derived Objects 86

This setup doesn’t work, because Automake doesn’t know that foo.c includes bindir.h.
Remember, automatic dependency tracking works as a side-effect of compilation, so the
dependencies of foo.o will be known only after foo.o has been compiled (see Section 8.19
[Dependencies], page 81). The symptom is as follows.

% make

source=’foo.c’ object="foo.0’ libtool=no \
depfile=’.deps/foo.Po’ tmpdepfile=’.deps/foo.TPo’ \
depmode=gcc /bin/sh ./depcomp \

gcc -I. -I. -g -02 -c ‘test -f ’foo.c’ || echo ’./’‘foo.c
foo.c:2: bindir.h: No such file or directory

make: *x* [foo.o] Error 1

In this example bindir.h is not distributed nor installed, and it is not even being built
on-time. One may wonder if the ‘nodist_foo_SOURCES = bindir.h’ line has any use at
all. This line simply states that bindir.h is a source of foo, so for instance, it should be
inspected while generating tags (see Section 18.1 [Tags]|, page 111). In other words, it does
not help our present problem, and the build would fail identically without it.

Using BUILT_SOURCES

A solution is to require bindir.h to be built before anything else. This is what BUILT_
SOURCES is meant for (see Section 9.4 [Sources|, page 84).

bin_PROGRAMS = foo
foo_SOURCES = foo.c
nodist_foo_SOURCES = bindir.h
BUILT_SOURCES = bindir.h
CLEANFILES = bindir.h
bindir.h: Makefile
echo ’#define bindir "$(bindir)"’ >$e@

See how bindir.h gets built first:

% make

echo ’#define bindir "/usr/local/bin"’ >bindir.h

make all-am

make[1] : Entering directory ‘/home/adl/tmp’
source=’foo.c’ object="foo.0’ libtool=no \
depfile=’.deps/foo.Po’ tmpdepfile=’.deps/foo.TPo’ \
depmode=gcc /bin/sh ./depcomp \

gcc -I. -I. -g -02 -c ‘test -f ’foo.c’ || echo ’./’‘foo.c
gcc -g -02 -o foo foo.o0

make[1]: Leaving directory ‘/home/adl/tmp’

However, as said earlier, BUILT_SOURCES applies only to the all, check, and install
targets. It still fails if you try to run ‘make foo’ explicitly:

% make clean

test -z "bindir.h" || rm -f bindir.h

test -z "foo" || rm -f foo

rm -f *.0

% : > .deps/foo.Po # Suppress previously recorded dependencies

Chapter 9: Other Derived Objects 87

% make foo

source=’foo.c’ object="foo.0’ libtool=no \
depfile=’.deps/foo.Po’ tmpdepfile=’.deps/foo.TPo’ \
depmode=gcc /bin/sh ./depcomp \

gcc -I. -I. -g -02 -c ‘test -f ’foo.c’ || echo ’./’‘foo.c
foo.c:2: bindir.h: No such file or directory

make: *** [foo.o] Error 1

Recording Dependencies manually

Usually people are happy enough with BUILT_SOURCES because they never build targets such
as ‘make foo’ before ‘make all’, as in the previous example. However if this matters to you,
you can avoid BUILT_SOURCES and record such dependencies explicitly in the Makefile.am.

bin_PROGRAMS = foo
foo_SOURCES = foo.c
nodist_foo_SOURCES = bindir.h
foo.$(0OBJEXT) : bindir.h
CLEANFILES = bindir.h
bindir.h: Makefile
echo ’#define bindir "$(bindir)"’ >$6

You don’t have to list all the dependencies of foo.o explicitly, only those that might
need to be built. If a dependency already exists, it will not hinder the first compilation
and will be recorded by the normal dependency tracking code. (Note that after this first
compilation the dependency tracking code will also have recorded the dependency between
foo.o and bindir.h; so our explicit dependency is really useful to the first build only.)

Adding explicit dependencies like this can be a bit dangerous if you are not careful
enough. This is due to the way Automake tries not to overwrite your rules (it assumes you
know better than it). ‘foo.$(0BJEXT) : bindir.h’ supersedes any rule Automake may want
to output to build ‘foo.$(0BJEXT)’. It happens to work in this case because Automake
doesn’t have to output any ‘foo.$(0BJEXT) :’ target: it relies on a suffix rule instead (i.e.,
‘.c.$(0BJEXT):’). Always check the generated Makefile.in if you do this.

Build bindir.h from configure

It’s possible to define this preprocessor macro from configure, either in config.h (see
Section “Defining Directories” in The Autoconf Manual), or by processing a bindir.h.in
file using AC_CONFIG_FILES (see Section “Configuration Actions” in The Autoconf Manual).

At this point it should be clear that building bindir.h from configure works well for
this example. bindir.h will exist before you build any target, hence will not cause any
dependency issue.

The Makefile can be shrunk as follows. We do not even have to mention bindir.h.

bin_PROGRAMS = foo
foo_SOURCES = foo.c

However, it’s not always possible to build sources from configure, especially when these
sources are generated by a tool that needs to be built first.

Chapter 10: Other GNU Tools 88

Build bindir.c, not bindir.h.

Another attractive idea is to define bindir as a variable or function exported from bindir.o,
and build bindir.c instead of bindir.h.

noinst_PROGRAMS = foo
foo_SOURCES = foo.c bindir.h
nodist_foo_SOURCES = bindir.c
CLEANFILES = bindir.c
bindir.c: Makefile
echo ’const char bindir[] = "$(bindir)";’ >$0

bindir.h contains just the variable’s declaration and doesn’t need to be built, so it
won’t cause any trouble. bindir.o is always dependent on bindir.c, so bindir.c will get
built first.

Which is best?

There is no panacea, of course. Each solution has its merits and drawbacks.

You cannot use BUILT_SOURCES if the ability to run ‘make foo’ on a clean tree is impor-
tant to you.

You won’t add explicit dependencies if you are leery of overriding an Automake rule by
mistake.

Building files from ./configure is not always possible, neither is converting .h files into
.c files.

10 Other GNU Tools

Since Automake is primarily intended to generate Makefile.ins for use in GNU programs,
it tries hard to interoperate with other GNU tools.

10.1 Emacs Lisp

Automake provides some support for Emacs Lisp. The LISP primary is used to hold a list
of .el files. Possible prefixes for this primary are lisp_ and noinst_. Note that if 1isp_
LISP is defined, then configure.ac must run AM_PATH_LISPDIR (see Section 6.4 [Macros|,
page 44).

Lisp sources are not distributed by default. You can prefix the LISP primary with
dist_, as in dist_1isp_LISP or dist_noinst_LISP, to indicate that these files should be
distributed.

Automake will byte-compile all Emacs Lisp source files using the Emacs found by AM_
PATH_LISPDIR, if any was found.

Byte-compiled Emacs Lisp files are not portable among all versions of Emacs, so it
makes sense to turn this off if you expect sites to have more than one version of Emacs
installed. Furthermore, many packages don’t actually benefit from byte-compilation. Still,
we recommend that you byte-compile your Emacs Lisp sources. It is probably better for
sites with strange setups to cope for themselves than to make the installation less nice for
everybody else.

Chapter 10: Other GNU Tools 89

There are two ways to avoid byte-compiling. Historically, we have recommended the
following construct.

lisp_LISP = filel.el file2.el
ELCFILES =

ELCFILES is an internal Automake variable that normally lists all .elc files that must be
byte-compiled. Automake defines ELCFILES automatically from 1lisp_LISP. Emptying this
variable explicitly prevents byte-compilation.

Since Automake 1.8, we now recommend using 1isp_DATA instead:
lisp_DATA = filel.el file2.el

Note that these two constructs are not equivalent. _LISP will not install a file if Emacs
is not installed, while _DATA will always install its files.

10.2 Gettext

If AM_GNU_GETTEXT is seen in configure.ac, then Automake turns on support for GNU
gettext, a message catalog system for internationalization (see Section “Introduction” in
GNU gettext utilities).

The gettext support in Automake requires the addition of one or two subdirectories
to the package: po and possibly also intl. The latter is needed if AM_GNU_GETTEXT is
not invoked with the ‘external’ argument, or if AM_GNU_GETTEXT_INTL_SUBDIR is used.
Automake ensures that these directories exist and are mentioned in SUBDIRS.

10.3 Libtool

Automake provides support for GNU Libtool (see Section “Introduction” in The Libtool
Manual) with the LTLIBRARIES primary. See Section 8.3 [A Shared Library], page 59.

10.4 Java bytecode compilation (deprecated)

Automake provides some minimal support for Java bytecode compilation with the JAVA pri-
mary (