
GNU Automake
For version 1.9.4, 18 December 2004

David MacKenzie
Tom Tromey
Alexandre Duret-Lutz

This manual is for GNU Automake (version 1.9.4, 18 December 2004), a program which
creates GNU standards-compliant Makefiles from template files.

Copyright c© 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software
Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document under
the terms of the GNU Free Documentation License, Version 1.2 or any later
version published by the Free Software Foundation; with no Invariant Sections,
with the Front-Cover texts being “A GNU Manual,” and with the Back-Cover
Texts as in (a) below. A copy of the license is included in the section entitled
“GNU Free Documentation License.”

(a) The FSF’s Back-Cover Text is: “You have freedom to copy and modify
this GNU Manual, like GNU software. Copies published by the Free Software
Foundation raise funds for GNU development.”

Chapter 2: General ideas 1

1 Introduction

Automake is a tool for automatically generating Makefile.ins from files called
Makefile.am. Each Makefile.am is basically a series of make variable definitions1, with
rules being thrown in occasionally. The generated Makefile.ins are compliant with the
GNU Makefile standards.

The GNU Makefile Standards Document (see Section “Makefile Conventions” in The
GNU Coding Standards) is long, complicated, and subject to change. The goal of Automake
is to remove the burden of Makefile maintenance from the back of the individual GNU
maintainer (and put it on the back of the Automake maintainer).

The typical Automake input file is simply a series of variable definitions. Each such
file is processed to create a Makefile.in. There should generally be one Makefile.am per
directory of a project.

Automake does constrain a project in certain ways; for instance it assumes that the
project uses Autoconf (see Section “Introduction” in The Autoconf Manual), and enforces
certain restrictions on the configure.ac contents2.

Automake requires perl in order to generate the Makefile.ins. However, the distribu-
tions created by Automake are fully GNU standards-compliant, and do not require perl in
order to be built.

Mail suggestions and bug reports for Automake to bug-automake@gnu.org.

2 General ideas

The following sections cover a few basic ideas that will help you understand how Automake
works.

2.1 General Operation

Automake works by reading a Makefile.am and generating a Makefile.in. Certain vari-
ables and rules defined in the Makefile.am instruct Automake to generate more specialized
code; for instance, a ‘bin_PROGRAMS’ variable definition will cause rules for compiling and
linking programs to be generated.

The variable definitions and rules in the Makefile.am are copied verbatim into the
generated file. This allows you to add arbitrary code into the generated Makefile.in. For
instance the Automake distribution includes a non-standard rule for the cvs-dist target,
which the Automake maintainer uses to make distributions from his source control system.

Note that most GNU make extensions are not recognized by Automake. Using such
extensions in a Makefile.am will lead to errors or confusing behavior.

A special exception is that the GNU make append operator, ‘+=’, is supported. This
operator appends its right hand argument to the variable specified on the left. Automake

1 These variables are also called make macros in Make terminology, however in this manual we reserve the
term macro for Autoconf’s macros.

2 Older Autoconf versions used configure.in. Autoconf 2.50 and greater promotes configure.ac over
configure.in. The rest of this documentation will refer to configure.ac, but Automake also supports
configure.in for backward compatibility.

mailto:bug-automake@gnu.org

Chapter 2: General ideas 2

will translate the operator into an ordinary ‘=’ operator; ‘+=’ will thus work with any make
program.

Automake tries to keep comments grouped with any adjoining rules or variable defini-
tions.

A rule defined in Makefile.am generally overrides any such rule of a similar name that
would be automatically generated by automake. Although this is a supported feature,
it is generally best to avoid making use of it, as sometimes the generated rules are very
particular.

Similarly, a variable defined in Makefile.am or AC_SUBST’ed from configure.ac will
override any definition of the variable that automake would ordinarily create. This feature
is more often useful than the ability to override a rule. Be warned that many of the variables
generated by automake are considered to be for internal use only, and their names might
change in future releases.

When examining a variable definition, Automake will recursively examine variables refer-
enced in the definition. For example, if Automake is looking at the content of foo_SOURCES
in this snippet

xs = a.c b.c

foo_SOURCES = c.c $(xs)

it would use the files a.c, b.c, and c.c as the contents of foo_SOURCES.

Automake also allows a form of comment which is not copied into the output; all lines
beginning with ‘##’ (leading spaces allowed) are completely ignored by Automake.

It is customary to make the first line of Makefile.am read:

Process this file with automake to produce Makefile.in

2.2 Strictness

While Automake is intended to be used by maintainers of GNU packages, it does make
some effort to accommodate those who wish to use it, but do not want to use all the GNU
conventions.

To this end, Automake supports three levels of strictness—the strictness indicating how
stringently Automake should check standards conformance.

The valid strictness levels are:

‘foreign’ Automake will check for only those things which are absolutely required for
proper operations. For instance, whereas GNU standards dictate the existence
of a NEWS file, it will not be required in this mode. The name comes from the
fact that Automake is intended to be used for GNU programs; these relaxed
rules are not the standard mode of operation.

‘gnu’ Automake will check—as much as possible—for compliance to the GNU stan-
dards for packages. This is the default.

‘gnits’ Automake will check for compliance to the as-yet-unwritten Gnits standards.
These are based on the GNU standards, but are even more detailed. Unless
you are a Gnits standards contributor, it is recommended that you avoid this
option until such time as the Gnits standard is actually published (which may
never happen).

Chapter 2: General ideas 3

For more information on the precise implications of the strictness level, see Chapter 20
[Gnits], page 80.

Automake also has a special “cygnus” mode which is similar to strictness but handled
differently. This mode is useful for packages which are put into a “Cygnus” style tree (e.g.,
the GCC tree). For more information on this mode, see Chapter 21 [Cygnus], page 81.

2.3 The Uniform Naming Scheme

Automake variables generally follow a uniform naming scheme that makes it easy to decide
how programs (and other derived objects) are built, and how they are installed. This scheme
also supports configure time determination of what should be built.

At make time, certain variables are used to determine which objects are to be built. The
variable names are made of several pieces which are concatenated together.

The piece which tells automake what is being built is commonly called the primary.
For instance, the primary PROGRAMS holds a list of programs which are to be compiled and
linked.

A different set of names is used to decide where the built objects should be installed.
These names are prefixes to the primary which indicate which standard directory should
be used as the installation directory. The standard directory names are given in the GNU
standards (see Section “Directory Variables” in The GNU Coding Standards). Automake
extends this list with pkglibdir, pkgincludedir, and pkgdatadir; these are the same
as the non-‘pkg’ versions, but with ‘$(PACKAGE)’ appended. For instance, pkglibdir is
defined as $(libdir)/$(PACKAGE).

For each primary, there is one additional variable named by prepending ‘EXTRA_’ to the
primary name. This variable is used to list objects which may or may not be built, depending
on what configure decides. This variable is required because Automake must statically
know the entire list of objects that may be built in order to generate a Makefile.in that
will work in all cases.

For instance, cpio decides at configure time which programs are built. Some of the
programs are installed in bindir, and some are installed in sbindir:

EXTRA_PROGRAMS = mt rmt

bin_PROGRAMS = cpio pax

sbin_PROGRAMS = $(MORE_PROGRAMS)

Defining a primary without a prefix as a variable, e.g., PROGRAMS, is an error.

Note that the common ‘dir’ suffix is left off when constructing the variable names; thus
one writes ‘bin_PROGRAMS’ and not ‘bindir_PROGRAMS’.

Not every sort of object can be installed in every directory. Automake will flag those
attempts it finds in error. Automake will also diagnose obvious misspellings in directory
names.

Sometimes the standard directories—even as augmented by Automake— are not enough.
In particular it is sometimes useful, for clarity, to install objects in a subdirectory of some
predefined directory. To this end, Automake allows you to extend the list of possible
installation directories. A given prefix (e.g. ‘zar’) is valid if a variable of the same name
with ‘dir’ appended is defined (e.g. zardir).

Chapter 2: General ideas 4

For instance, installation of HTML files is part of Automake, you could use this to install
raw HTML documentation:

htmldir = $(prefix)/html

html_DATA = automake.html

The special prefix ‘noinst’ indicates that the objects in question should be built but not
installed at all. This is usually used for objects required to build the rest of your package,
for instance static libraries (see Section 7.2 [A Library], page 33), or helper scripts.

The special prefix ‘check’ indicates that the objects in question should not be built until
the make check command is run. Those objects are not installed either.

The current primary names are ‘PROGRAMS’, ‘LIBRARIES’, ‘LISP’, ‘PYTHON’, ‘JAVA’,
‘SCRIPTS’, ‘DATA’, ‘HEADERS’, ‘MANS’, and ‘TEXINFOS’.

Some primaries also allow additional prefixes which control other aspects of automake’s
behavior. The currently defined prefixes are ‘dist_’, ‘nodist_’, and ‘nobase_’. These
prefixes are explained later (see Section 7.4 [Program and Library Variables], page 39).

2.4 How derived variables are named

Sometimes a Makefile variable name is derived from some text the maintainer supplies. For
instance, a program name listed in ‘_PROGRAMS’ is rewritten into the name of a ‘_SOURCES’
variable. In cases like this, Automake canonicalizes the text, so that program names and
the like do not have to follow Makefile variable naming rules. All characters in the name
except for letters, numbers, the strudel (@), and the underscore are turned into underscores
when making variable references.

For example, if your program is named sniff-glue, the derived variable name would be
sniff_glue_SOURCES, not sniff-glue_SOURCES. Similarly the sources for a library named
libmumble++.a should be listed in the libmumble___a_SOURCES variable.

The strudel is an addition, to make the use of Autoconf substitutions in variable names
less obfuscating.

2.5 Variables reserved for the user

Some Makefile variables are reserved by the GNU Coding Standards for the use of the
“user” – the person building the package. For instance, CFLAGS is one such variable.

Sometimes package developers are tempted to set user variables such as CFLAGS because
it appears to make their job easier. However, the package itself should never set a user
variable, particularly not to include switches which are required for proper compilation of
the package. Since these variables are documented as being for the package builder, that
person rightfully expects to be able to override any of these variables at build time.

To get around this problem, automake introduces an automake-specific shadow variable
for each user flag variable. (Shadow variables are not introduced for variables like CC, where
they would make no sense.) The shadow variable is named by prepending ‘AM_’ to the user
variable’s name. For instance, the shadow variable for YFLAGS is AM_YFLAGS.

See Section 26.5 [Flag Variables Ordering], page 93, for more discussion about these
variables and how they interact with per-target variables.

Chapter 2: General ideas 5

2.6 Programs automake might require

Automake sometimes requires helper programs so that the generated Makefile can do its
work properly. There are a fairly large number of them, and we list them here.

ansi2knr.c

ansi2knr.1

These two files are used by the automatic de-ANSI-fication support (see
Section 7.15 [ANSI], page 53).

compile This is a wrapper for compilers which don’t accept both ‘-c’ and ‘-o’ at the
same time. It is only used when absolutely required. Such compilers are rare.

config.guess

config.sub

These programs compute the canonical triplets for the given build, host, or
target architecture. These programs are updated regularly to support new ar-
chitectures and fix probes broken by changes in new kernel versions. You are
encouraged to fetch the latest versions of these files from ftp://ftp.gnu.org/

gnu/config/ before making a release.

depcomp This program understands how to run a compiler so that it will generate not
only the desired output but also dependency information which is then used by
the automatic dependency tracking feature.

elisp-comp

This program is used to byte-compile Emacs Lisp code.

install-sh

This is a replacement for the install program which works on platforms where
install is unavailable or unusable.

mdate-sh This script is used to generate a version.texi file. It examines a file and prints
some date information about it.

missing This wraps a number of programs which are typically only required by main-
tainers. If the program in question doesn’t exist, missing prints an informative
warning and attempts to fix things so that the build can continue.

mkinstalldirs

This script used to be a wrapper around mkdir -p, which is not portable. Now
we use prefer to use install-sh -d when configure finds that mkdir -p does
not work, this makes one less script to distribute.

For backward compatibility mkinstalldirs is still used and distributed when
automake finds it in a package. But it is no longer installed automatically, and
it should be safe to remove it.

py-compile

This is used to byte-compile Python scripts.

texinfo.tex

Not a program, this file is required for make dvi, make ps and make pdf to work
when Texinfo sources are in the package.

ftp://ftp.gnu.org/gnu/config/
ftp://ftp.gnu.org/gnu/config/

Chapter 3: Some example packages 6

ylwrap This program wraps lex and yacc and ensures that, for instance, multiple yacc
instances can be invoked in a single directory in parallel.

3 Some example packages

3.1 A simple example, start to finish

Let’s suppose you just finished writing zardoz, a program to make your head float from
vortex to vortex. You’ve been using Autoconf to provide a portability framework, but
your Makefile.ins have been ad-hoc. You want to make them bulletproof, so you turn to
Automake.

The first step is to update your configure.ac to include the commands that automake
needs. The way to do this is to add an AM_INIT_AUTOMAKE call just after AC_INIT:

AC_INIT(zardoz, 1.0)

AM_INIT_AUTOMAKE

...

Since your program doesn’t have any complicating factors (e.g., it doesn’t use gettext,
it doesn’t want to build a shared library), you’re done with this part. That was easy!

Now you must regenerate configure. But to do that, you’ll need to tell autoconf how
to find the new macro you’ve used. The easiest way to do this is to use the aclocal program
to generate your aclocal.m4 for you. But wait. . . maybe you already have an aclocal.m4,
because you had to write some hairy macros for your program. The aclocal program lets
you put your own macros into acinclude.m4, so simply rename and then run:

mv aclocal.m4 acinclude.m4

aclocal

autoconf

Now it is time to write your Makefile.am for zardoz. Since zardoz is a user program,
you want to install it where the rest of the user programs go: bindir. Additionally, zardoz
has some Texinfo documentation. Your configure.ac script uses AC_REPLACE_FUNCS, so
you need to link against ‘$(LIBOBJS)’. So here’s what you’d write:

bin_PROGRAMS = zardoz

zardoz_SOURCES = main.c head.c float.c vortex9.c gun.c

zardoz_LDADD = $(LIBOBJS)

info_TEXINFOS = zardoz.texi

Now you can run automake --add-missing to generate your Makefile.in and grab any
auxiliary files you might need, and you’re done!

3.2 A classic program

GNU hello (ftp://prep.ai.mit.edu/pub/gnu/hello-1.3.tar.gz) is renowned for its
classic simplicity and versatility. This section shows how Automake could be used with the
GNU Hello package. The examples below are from the latest beta version of GNU Hello,
but with all of the maintainer-only code stripped out, as well as all copyright comments.

ftp://prep.ai.mit.edu/pub/gnu/hello-1.3.tar.gz

Chapter 3: Some example packages 7

Of course, GNU Hello is somewhat more featureful than your traditional two-liner. GNU
Hello is internationalized, does option processing, and has a manual and a test suite.

Here is the configure.ac from GNU Hello. Please note: The calls to AC_INIT and
AM_INIT_AUTOMAKE in this example use a deprecated syntax. For the current approach, see
the description of AM_INIT_AUTOMAKE in Section 5.6.1 [Public macros], page 18.

dnl Process this file with autoconf to produce a configure script.

AC_INIT(src/hello.c)

AM_INIT_AUTOMAKE(hello, 1.3.11)

AM_CONFIG_HEADER(config.h)

dnl Set of available languages.

ALL_LINGUAS="de fr es ko nl no pl pt sl sv"

dnl Checks for programs.

AC_PROG_CC

AC_ISC_POSIX

dnl Checks for libraries.

dnl Checks for header files.

AC_STDC_HEADERS

AC_HAVE_HEADERS(string.h fcntl.h sys/file.h sys/param.h)

dnl Checks for library functions.

AC_FUNC_ALLOCA

dnl Check for st_blksize in struct stat

AC_ST_BLKSIZE

dnl internationalization macros

AM_GNU_GETTEXT

AC_OUTPUT([Makefile doc/Makefile intl/Makefile po/Makefile.in \

src/Makefile tests/Makefile tests/hello],

[chmod +x tests/hello])

The ‘AM_’ macros are provided by Automake (or the Gettext library); the rest are stan-
dard Autoconf macros.

The top-level Makefile.am:

EXTRA_DIST = BUGS ChangeLog.O

SUBDIRS = doc intl po src tests

As you can see, all the work here is really done in subdirectories.

The po and intl directories are automatically generated using gettextize; they will
not be discussed here.

In doc/Makefile.am we see:

info_TEXINFOS = hello.texi

hello_TEXINFOS = gpl.texi

Chapter 3: Some example packages 8

This is sufficient to build, install, and distribute the GNU Hello manual.

Here is tests/Makefile.am:

TESTS = hello

EXTRA_DIST = hello.in testdata

The script hello is generated by configure, and is the only test case. make check will
run this test.

Last we have src/Makefile.am, where all the real work is done:

bin_PROGRAMS = hello

hello_SOURCES = hello.c version.c getopt.c getopt1.c getopt.h system.h

hello_LDADD = $(INTLLIBS) $(ALLOCA)

localedir = $(datadir)/locale

INCLUDES = -I../intl -DLOCALEDIR=\"$(localedir)\"

3.3 Building true and false

Here is another, trickier example. It shows how to generate two programs (true and false)
from the same source file (true.c). The difficult part is that each compilation of true.c
requires different cpp flags.

bin_PROGRAMS = true false

false_SOURCES =

false_LDADD = false.o

true.o: true.c

$(COMPILE) -DEXIT_CODE=0 -c true.c

false.o: true.c

$(COMPILE) -DEXIT_CODE=1 -o false.o -c true.c

Note that there is no true_SOURCES definition. Automake will implicitly assume that
there is a source file named true.c, and define rules to compile true.o and link true.
The true.o: true.c rule supplied by the above Makefile.am, will override the Automake
generated rule to build true.o.

false_SOURCES is defined to be empty—that way no implicit value is substituted. Be-
cause we have not listed the source of false, we have to tell Automake how to link the
program. This is the purpose of the false_LDADD line. A false_DEPENDENCIES variable,
holding the dependencies of the false target will be automatically generated by Automake
from the content of false_LDADD.

The above rules won’t work if your compiler doesn’t accept both ‘-c’ and ‘-o’. The
simplest fix for this is to introduce a bogus dependency (to avoid problems with a parallel
make):

true.o: true.c false.o

$(COMPILE) -DEXIT_CODE=0 -c true.c

false.o: true.c

$(COMPILE) -DEXIT_CODE=1 -c true.c && mv true.o false.o

Chapter 4: Creating a Makefile.in 9

Also, these explicit rules do not work if the de-ANSI-fication feature is used (see
Section 7.15 [ANSI], page 53). Supporting de-ANSI-fication requires a little more work:

true_.o: true_.c false_.o

$(COMPILE) -DEXIT_CODE=0 -c true_.c

false_.o: true_.c

$(COMPILE) -DEXIT_CODE=1 -c true_.c && mv true_.o false_.o

As it turns out, there is also a much easier way to do this same task. Some of the above
techniques are useful enough that we’ve kept the example in the manual. However if you
were to build true and false in real life, you would probably use per-program compilation
flags, like so:

bin_PROGRAMS = false true

false_SOURCES = true.c

false_CPPFLAGS = -DEXIT_CODE=1

true_SOURCES = true.c

true_CPPFLAGS = -DEXIT_CODE=0

In this case Automake will cause true.c to be compiled twice, with different flags. De-
ANSI-fication will work automatically. In this instance, the names of the object files would
be chosen by automake; they would be false-true.o and true-true.o. (The name of the
object files rarely matters.)

4 Creating a Makefile.in

To create all the Makefile.ins for a package, run the automake program in the top
level directory, with no arguments. automake will automatically find each appropriate
Makefile.am (by scanning configure.ac; see Chapter 5 [configure], page 12) and generate
the corresponding Makefile.in. Note that automake has a rather simplistic view of what
constitutes a package; it assumes that a package has only one configure.ac, at the top. If
your package has multiple configure.acs, then you must run automake in each directory
holding a configure.ac. (Alternatively, you may rely on Autoconf’s autoreconf, which
is able to recurse your package tree and run automake where appropriate.)

You can optionally give automake an argument; .am is appended to the argument and
the result is used as the name of the input file. This feature is generally only used to
automatically rebuild an out-of-date Makefile.in. Note that automake must always be run
from the topmost directory of a project, even if being used to regenerate the Makefile.in
in some subdirectory. This is necessary because automake must scan configure.ac, and
because automake uses the knowledge that a Makefile.in is in a subdirectory to change
its behavior in some cases.

Automake will run autoconf to scan configure.ac and its dependencies (aclocal.m4),
therefore autoconf must be in your PATH. If there is an AUTOCONF variable in your environ-
ment it will be used instead of autoconf, this allows you to select a particular version of
Autoconf. By the way, don’t misunderstand this paragraph: Automake runs autoconf to

Chapter 4: Creating a Makefile.in 10

scan your configure.ac, this won’t build configure and you still have to run autoconf

yourself for this purpose.

automake accepts the following options:

‘-a’
‘--add-missing’

Automake requires certain common files to exist in certain situations; for in-
stance config.guess is required if configure.ac runs AC_CANONICAL_HOST.
Automake is distributed with several of these files (see Section 2.6 [Auxiliary
Programs], page 5); this option will cause the missing ones to be automatically
added to the package, whenever possible. In general if Automake tells you a
file is missing, try using this option. By default Automake tries to make a
symbolic link pointing to its own copy of the missing file; this can be changed
with --copy.

Many of the potentially-missing files are common scripts whose location may be
specified via the AC_CONFIG_AUX_DIR macro. Therefore, AC_CONFIG_AUX_DIR’s
setting affects whether a file is considered missing, and where the missing file
is added (see Section 5.2 [Optional], page 13).

‘--libdir=dir’
Look for Automake data files in directory dir instead of in the installation
directory. This is typically used for debugging.

‘-c’
‘--copy’ When used with --add-missing, causes installed files to be copied. The default

is to make a symbolic link.

‘--cygnus’
Causes the generated Makefile.ins to follow Cygnus rules, instead of GNU or
Gnits rules. For more information, see Chapter 21 [Cygnus], page 81.

‘-f’
‘--force-missing’

When used with --add-missing, causes standard files to be reinstalled even if
they already exist in the source tree. This involves removing the file from the
source tree before creating the new symlink (or, with --copy, copying the new
file).

‘--foreign’
Set the global strictness to ‘foreign’. For more information, see Section 2.2
[Strictness], page 2.

‘--gnits’ Set the global strictness to ‘gnits’. For more information, see Chapter 20
[Gnits], page 80.

‘--gnu’ Set the global strictness to ‘gnu’. For more information, see Chapter 20 [Gnits],
page 80. This is the default strictness.

‘--help’ Print a summary of the command line options and exit.

Chapter 4: Creating a Makefile.in 11

‘-i’
‘--ignore-deps’

This disables the dependency tracking feature in generated Makefiles; see
Section 7.16 [Dependencies], page 53.

‘--include-deps’
This enables the dependency tracking feature. This feature is enabled by de-
fault. This option is provided for historical reasons only and probably should
not be used.

‘--no-force’
Ordinarily automake creates all Makefile.ins mentioned in configure.ac.
This option causes it to only update those Makefile.ins which are out of date
with respect to one of their dependents.

‘-o dir’
‘--output-dir=dir’

Put the generated Makefile.in in the directory dir. Ordinarily each
Makefile.in is created in the directory of the corresponding Makefile.am.
This option is deprecated and will be removed in a future release.

‘-v’
‘--verbose’

Cause Automake to print information about which files are being read or cre-
ated.

‘--version’
Print the version number of Automake and exit.

‘-W CATEGORY’
‘--warnings=category’

Output warnings falling in category. category can be one of:

‘gnu’ warnings related to the GNU Coding Standards (see The GNU
Coding Standards).

‘obsolete’
obsolete features or constructions

‘override’
user redefinitions of Automake rules or variables

‘portability’
portability issues (e.g., use of Make features which are known not
portable)

‘syntax’ weird syntax, unused variables, typos

‘unsupported’
unsupported or incomplete features

‘all’ all the warnings

‘none’ turn off all the warnings

Chapter 5: Scanning configure.ac 12

‘error’ treat warnings as errors

A category can be turned off by prefixing its name with ‘no-’. For instance
‘-Wno-syntax’ will hide the warnings about unused variables.

The categories output by default are ‘syntax’ and ‘unsupported’. Additionally,
‘gnu’ is enabled in ‘--gnu’ and ‘--gnits’ strictness.

‘portability’ warnings are currently disabled by default, but they will be
enabled in ‘--gnu’ and ‘--gnits’ strictness in a future release.

The environment variable ‘WARNINGS’ can contain a comma separated list of
categories to enable. It will be taken into account before the command-line
switches, this way ‘-Wnone’ will also ignore any warning category enabled by
‘WARNINGS’. This variable is also used by other tools like autoconf; unknown
categories are ignored for this reason.

5 Scanning configure.ac

Automake scans the package’s configure.ac to determine certain information about the
package. Some autoconf macros are required and some variables must be defined in
configure.ac. Automake will also use information from configure.ac to further tailor
its output.

Automake also supplies some Autoconf macros to make the maintenance easier. These
macros can automatically be put into your aclocal.m4 using the aclocal program.

5.1 Configuration requirements

The one real requirement of Automake is that your configure.ac call AM_INIT_AUTOMAKE.
This macro does several things which are required for proper Automake operation (see
Section 5.6 [Macros], page 18).

Here are the other macros which Automake requires but which are not run by AM_INIT_

AUTOMAKE:

AC_CONFIG_FILES

AC_OUTPUT

Automake uses these to determine which files to create (see Section “Creating
Output Files” in The Autoconf Manual). A listed file is considered to be an
Automake generated Makefile if there exists a file with the same name and the
.am extension appended. Typically, AC_CONFIG_FILES([foo/Makefile]) will
cause Automake to generate foo/Makefile.in if foo/Makefile.am exists.

When using AC_CONFIG_FILES with multiple input files, as in AC_CONFIG_

FILES([Makefile:top.in:Makefile.in:bot.in]), Automake will generate
the first .in input file for which a .am file exists. If no such file exists the
output file is not considered to be Automake generated.

Files created by AC_CONFIG_FILES are removed by make distclean.

Chapter 5: Scanning configure.ac 13

5.2 Other things Automake recognizes

Every time Automake is run it calls Autoconf to trace configure.ac. This way it can
recognize the use of certain macros and tailor the generated Makefile.in appropriately.
Currently recognized macros and their effects are:

AC_CONFIG_HEADERS

Automake will generate rules to rebuild these headers. Older versions of
Automake required the use of AM_CONFIG_HEADER (see Section 5.6 [Macros],
page 18); this is no longer the case today.

AC_CONFIG_LINKS

Automake will generate rules to remove configure generated links on make

distclean and to distribute named source files as part of make dist.

AC_CONFIG_AUX_DIR

Automake will look for various helper scripts, such as install-sh, in
the directory named in this macro invocation. (The full list of scripts is:
config.guess, config.sub, depcomp, elisp-comp, compile, install-sh,
ltmain.sh, mdate-sh, missing, mkinstalldirs, py-compile, texinfo.tex,
and ylwrap.) Not all scripts are always searched for; some scripts will only be
sought if the generated Makefile.in requires them.

If AC_CONFIG_AUX_DIR is not given, the scripts are looked for in their standard
locations. For mdate-sh, texinfo.tex, and ylwrap, the standard location
is the source directory corresponding to the current Makefile.am. For the
rest, the standard location is the first one of ., .., or ../.. (relative to the
top source directory) that provides any one of the helper scripts. See Section
“Finding ‘configure’ Input” in The Autoconf Manual.

Required files from AC_CONFIG_AUX_DIR are automatically distributed, even if
there is no Makefile.am in this directory.

AC_CANONICAL_BUILD

AC_CANONICAL_HOST

AC_CANONICAL_TARGET

Automake will ensure that config.guess and config.sub exist. Also, the
Makefile variables ‘build_triplet’, ‘host_triplet’ and ‘target_triplet’
are introduced. See Section “Getting the Canonical System Type” in The
Autoconf Manual.

AC_LIBSOURCE

AC_LIBSOURCES

AC_LIBOBJ

Automake will automatically distribute any file listed in AC_LIBSOURCE or AC_
LIBSOURCES.

Note that the AC_LIBOBJ macro calls AC_LIBSOURCE. So if an Autoconf macro
is documented to call AC_LIBOBJ([file]), then file.c will be distributed
automatically by Automake. This encompasses many macros like AC_FUNC_

ALLOCA, AC_FUNC_MEMCMP, AC_REPLACE_FUNCS, and others.

Chapter 5: Scanning configure.ac 14

By the way, direct assignments to LIBOBJS are no longer supported. You should
always use AC_LIBOBJ for this purpose. See Section “AC_LIBOBJ vs. LIBOBJS”
in The Autoconf Manual.

AC_PROG_RANLIB

This is required if any libraries are built in the package. See Section “Particular
Program Checks” in The Autoconf Manual.

AC_PROG_CXX

This is required if any C++ source is included. See Section “Particular Program
Checks” in The Autoconf Manual.

AC_PROG_F77

This is required if any Fortran 77 source is included. This macro is distributed
with Autoconf version 2.13 and later. See Section “Particular Program Checks”
in The Autoconf Manual.

AC_F77_LIBRARY_LDFLAGS

This is required for programs and shared libraries that are a mixture of lan-
guages that include Fortran 77 (see Section 7.11.3 [Mixing Fortran 77 With C
and C++], page 49). See Section 5.6 [Autoconf macros supplied with Automake],
page 18.

AC_PROG_FC

This is required if any Fortran 90/95 source is included. This macro is dis-
tributed with Autoconf version 2.58 and later. See Section “Particular Program
Checks” in The Autoconf Manual.

AC_PROG_LIBTOOL

Automake will turn on processing for libtool (see Section “Introduction” in
The Libtool Manual).

AC_PROG_YACC

If a Yacc source file is seen, then you must either use this macro or define
the variable ‘YACC’ in configure.ac. The former is preferred (see Section
“Particular Program Checks” in The Autoconf Manual).

AC_PROG_LEX

If a Lex source file is seen, then this macro must be used. See Section “Particular
Program Checks” in The Autoconf Manual.

AC_SUBST The first argument is automatically defined as a variable in each generated
Makefile.in. See Section “Setting Output Variables” in The Autoconf Man-
ual.

If the Autoconf manual says that a macro calls AC_SUBST for var, or defines the
output variable var then var will be defined in each Makefile.in generated by
Automake. E.g. AC_PATH_XTRA defines X_CFLAGS and X_LIBS, so you can use
these variables in any Makefile.am if AC_PATH_XTRA is called.

AM_C_PROTOTYPES

This is required when using automatic de-ANSI-fication; see Section 7.15
[ANSI], page 53.

Chapter 5: Scanning configure.ac 15

AM_GNU_GETTEXT

This macro is required for packages which use GNU gettext (see Section 9.2
[gettext], page 61). It is distributed with gettext. If Automake sees this macro
it ensures that the package meets some of gettext’s requirements.

AM_MAINTAINER_MODE

This macro adds a ‘--enable-maintainer-mode’ option to configure. If this is
used, automake will cause ‘maintainer-only’ rules to be turned off by default
in the generated Makefile.ins. This macro defines the ‘MAINTAINER_MODE’
conditional, which you can use in your own Makefile.am. See Section 26.2
[maintainer-mode], page 89.

m4_include

Files included by configure.ac using this macro will be detected by Au-
tomake and automatically distributed. They will also appear as dependencies
in Makefile rules.

m4_include is seldom used by configure.ac authors, but can appear in
aclocal.m4 when aclocal detects that some required macros come from
files local to your package (as opposed to macros installed in a system-wide
directory, see Section 5.3 [Invoking aclocal], page 15).

5.3 Auto-generating aclocal.m4

Automake includes a number of Autoconf macros which can be used in your package (see
Section 5.6 [Macros], page 18); some of them are actually required by Automake in certain
situations. These macros must be defined in your aclocal.m4; otherwise they will not be
seen by autoconf.

The aclocal program will automatically generate aclocal.m4 files based on the con-
tents of configure.ac. This provides a convenient way to get Automake-provided macros,
without having to search around. The aclocal mechanism allows other packages to supply
their own macros (see Section 5.7 [Extending aclocal], page 21). You can also use it to
maintain your own set of custom macros (see Section 5.8 [Local Macros], page 22).

At startup, aclocal scans all the .m4 files it can find, looking for macro definitions (see
Section 5.5 [Macro search path], page 16). Then it scans configure.ac. Any mention of
one of the macros found in the first step causes that macro, and any macros it in turn
requires, to be put into aclocal.m4.

Putting the file that contains the macro definition into aclocal.m4 is usually done by
copying the entire text of this file, including unused macro definitions as well as both ‘#’
and ‘dnl’ comments. If you want to make a comment which will be completely ignored by
aclocal, use ‘##’ as the comment leader.

When a file selected by aclocal is located in a subdirectory specified as a relative search
path with aclocal’s -I argument, aclocal assumes the file belongs to the package and uses
m4_include instead of copying it into aclocal.m4. This makes the package smaller, eases
dependency tracking, and cause the file to be distributed automatically. (See Section 5.8
[Local Macros], page 22, for an example.) Any macro which is found in a system-wide
directory, or via an absolute search path will be copied. So use -I ‘pwd‘/reldir instead
of -I reldir whenever some relative directory need to be considered outside the package.

Chapter 5: Scanning configure.ac 16

The contents of acinclude.m4, if this file exists, are also automatically included in
aclocal.m4. We recommend against using acinclude.m4 in new packages (see Section 5.8
[Local Macros], page 22).

While computing aclocal.m4, aclocal runs autom4te (see Section “Using Autom4te”
in The Autoconf Manual) in order to trace the macros which are really used, and omit from
aclocal.m4 all macros which are mentioned but otherwise unexpanded (this can happen
when a macro is called conditionally). autom4te is expected to be in the PATH, just as
autoconf. Its location can be overridden using the AUTOM4TE environment variable.

5.4 aclocal options

aclocal accepts the following options:

--acdir=dir

Look for the macro files in dir instead of the installation directory. This is
typically used for debugging.

--help Print a summary of the command line options and exit.

-I dir Add the directory dir to the list of directories searched for .m4 files.

--force Always overwrite the output file. The default is to overwrite the output file only
when really needed, i.e., when its contents changes or if one of its dependencies
is younger.

--output=file

Cause the output to be put into file instead of aclocal.m4.

--print-ac-dir

Prints the name of the directory which aclocal will search to find third-party
.m4 files. When this option is given, normal processing is suppressed. This
option can be used by a package to determine where to install a macro file.

--verbose

Print the names of the files it examines.

--version

Print the version number of Automake and exit.

5.5 Macro search path

By default, aclocal searches for .m4 files in the following directories, in this order:

acdir-APIVERSION

This is where the .m4 macros distributed with automake itself are stored.
APIVERSION depends on the automake release used; for automake 1.6.x,
APIVERSION = 1.6.

acdir This directory is intended for third party .m4 files, and is configured when
automake itself is built. This is @datadir@/aclocal/, which typically expands
to ${prefix}/share/aclocal/. To find the compiled-in value of acdir, use the
--print-ac-dir option (see Section 5.4 [aclocal options], page 16).

Chapter 5: Scanning configure.ac 17

As an example, suppose that automake-1.6.2 was configured with --prefix=/usr/local.
Then, the search path would be:

1. /usr/local/share/aclocal-1.6/

2. /usr/local/share/aclocal/

As explained in (see Section 5.4 [aclocal options], page 16), there are several options that
can be used to change or extend this search path.

5.5.1 Modifying the macro search path: --acdir

The most obvious option to modify the search path is --acdir=dir, which changes
default directory and drops the APIVERSION directory. For example, if one specifies
--acdir=/opt/private/, then the search path becomes:

1. /opt/private/

Note that this option, --acdir, is intended for use by the internal automake test suite
only; it is not ordinarily needed by end-users.

5.5.2 Modifying the macro search path: -I dir

Any extra directories specified using -I options (see Section 5.4 [aclocal options], page 16)
are prepended to this search list. Thus, aclocal -I /foo -I /bar results in the following
search path:

1. /foo

2. /bar

3. acdir-APIVERSION

4. acdir

5.5.3 Modifying the macro search path: dirlist

There is a third mechanism for customizing the search path. If a dirlist file exists in
acdir, then that file is assumed to contain a list of directories, one per line, to be added to
the search list. These directories are searched after all other directories.

For example, suppose acdir/dirlist contains the following:

/test1

/test2

and that aclocal was called with the -I /foo -I /bar options. Then, the search path
would be

1. /foo

2. /bar

3. acdir-APIVERSION

4. acdir

5. /test1

6. /test2

If the --acdir=dir option is used, then aclocal will search for the dirlist

file in dir. In the --acdir=/opt/private/ example above, aclocal would look for

Chapter 5: Scanning configure.ac 18

/opt/private/dirlist. Again, however, the --acdir option is intended for use by the
internal automake test suite only; --acdir is not ordinarily needed by end-users.

dirlist is useful in the following situation: suppose that automake version 1.6.2 is
installed with $prefix=/usr by the system vendor. Thus, the default search directories are

1. /usr/share/aclocal-1.6/

2. /usr/share/aclocal/

However, suppose further that many packages have been manually installed on the sys-
tem, with $prefix=/usr/local, as is typical. In that case, many of these “extra” .m4 files are
in /usr/local/share/aclocal. The only way to force /usr/bin/aclocal to find these
“extra” .m4 files is to always call aclocal -I /usr/local/share/aclocal. This is incon-
venient. With dirlist, one may create the file

/usr/share/aclocal/dirlist

which contains only the single line

/usr/local/share/aclocal

Now, the “default” search path on the affected system is

1. /usr/share/aclocal-1.6/

2. /usr/share/aclocal/

3. /usr/local/share/aclocal/

without the need for -I options; -I options can be reserved for project-specific needs
(my-source-dir/m4/), rather than using it to work around local system-dependent tool
installation directories.

Similarly, dirlist can be handy if you have installed a local copy Automake on your
account and want aclocal to look for macros installed at other places on the system.

5.6 Autoconf macros supplied with Automake

Automake ships with several Autoconf macros that you can use from your configure.ac.
When you use one of them it will be included by aclocal in aclocal.m4.

5.6.1 Public macros

AM_CONFIG_HEADER

Automake will generate rules to automatically regenerate the config header.
This obsolete macro is a synonym of AC_CONFIG_HEADERS today (see Section 5.2
[Optional], page 13).

AM_ENABLE_MULTILIB

This is used when a “multilib” library is being built. The first optional argument
is the name of the Makefile being generated; it defaults to ‘Makefile’. The
second option argument is used to find the top source directory; it defaults to
the empty string (generally this should not be used unless you are familiar with
the internals). See Section 17.3 [Multilibs], page 78.

AM_C_PROTOTYPES

Check to see if function prototypes are understood by the compiler. If so, define
‘PROTOTYPES’ and set the output variables ‘U’ and ‘ANSI2KNR’ to the empty

Chapter 5: Scanning configure.ac 19

string. Otherwise, set ‘U’ to ‘_’ and ‘ANSI2KNR’ to ‘./ansi2knr’. Automake
uses these values to implement automatic de-ANSI-fication.

AM_HEADER_TIOCGWINSZ_NEEDS_SYS_IOCTL

If the use of TIOCGWINSZ requires <sys/ioctl.h>, then define GWINSZ_IN_SYS_
IOCTL. Otherwise TIOCGWINSZ can be found in <termios.h>. This macro is
obsolete, you should use Autoconf’s AC_HEADER_TIOCGWINSZ instead.

AM_INIT_AUTOMAKE([OPTIONS])

AM_INIT_AUTOMAKE(PACKAGE, VERSION, [NO-DEFINE])

Runs many macros required for proper operation of the generated Makefiles.

This macro has two forms, the first of which is preferred. In this form, AM_
INIT_AUTOMAKE is called with a single argument — a space-separated list of
Automake options which should be applied to every Makefile.am in the tree.
The effect is as if each option were listed in AUTOMAKE_OPTIONS (see Chapter 16
[Options], page 74).

The second, deprecated, form of AM_INIT_AUTOMAKE has two required argu-
ments: the package and the version number. This form is obsolete because the
package and version can be obtained from Autoconf’s AC_INIT macro (which
itself has an old and a new form).

If your configure.ac has:

AC_INIT(src/foo.c)

AM_INIT_AUTOMAKE(mumble, 1.5)

you can modernize it as follows:

AC_INIT(mumble, 1.5)

AC_CONFIG_SRCDIR(src/foo.c)

AM_INIT_AUTOMAKE

Note that if you’re upgrading your configure.ac from an earlier version of
Automake, it is not always correct to simply move the package and version
arguments from AM_INIT_AUTOMAKE directly to AC_INIT, as in the example
above. The first argument to AC_INIT should be the name of your package
(e.g. ‘GNU Automake’), not the tarball name (e.g. ‘automake’) that you used
to pass to AM_INIT_AUTOMAKE. Autoconf tries to derive a tarball name from
the package name, which should work for most but not all package names. (If
it doesn’t work for yours, you can use the four-argument form of AC_INIT —
supported in Autoconf versions greater than 2.52g — to provide the tarball
name explicitly).

By default this macro AC_DEFINE’s ‘PACKAGE’ and ‘VERSION’. This can be
avoided by passing the ‘no-define’ option, as in:

AM_INIT_AUTOMAKE([gnits 1.5 no-define dist-bzip2])

or by passing a third non-empty argument to the obsolete form.

AM_PATH_LISPDIR

Searches for the program emacs, and, if found, sets the output variable lispdir
to the full path to Emacs’ site-lisp directory.

Note that this test assumes the emacs found to be a version that supports
Emacs Lisp (such as gnu Emacs or XEmacs). Other emacsen can cause this

Chapter 5: Scanning configure.ac 20

test to hang (some, like old versions of MicroEmacs, start up in interactive
mode, requiring ‘C-x C-c’ to exit, which is hardly obvious for a non-emacs
user). In most cases, however, you should be able to use ‘C-c’ to kill the test.
In order to avoid problems, you can set EMACS to “no” in the environment,
or use the ‘--with-lispdir’ option to configure to explicitly set the correct
path (if you’re sure you have an emacs that supports Emacs Lisp.

AM_PROG_AS

Use this macro when you have assembly code in your project. This will choose
the assembler for you (by default the C compiler) and set CCAS, and will also
set CCASFLAGS if required.

AM_PROG_CC_C_O

This is like AC_PROG_CC_C_O, but it generates its results in the manner required
by automake. You must use this instead of AC_PROG_CC_C_O when you need
this functionality.

AM_PROG_LEX

Like AC_PROG_LEX (see Section “Particular Program Checks” in The Autoconf
Manual), but uses the missing script on systems that do not have lex. ‘HP-UX
10’ is one such system.

AM_PROG_GCJ

This macro finds the gcj program or causes an error. It sets ‘GCJ’ and
‘GCJFLAGS’. gcj is the Java front-end to the GNU Compiler Collection.

AM_SYS_POSIX_TERMIOS

Check to see if POSIX termios headers and functions are available on the sys-
tem. If so, set the shell variable am_cv_sys_posix_termios to ‘yes’. If not,
set the variable to ‘no’. This macro is obsolete, you should use Autoconf’s
AC_SYS_POSIX_TERMIOS instead.

AM_WITH_DMALLOC

Add support for the dmalloc (ftp://ftp.letters.com/src/dmalloc/
dmalloc.tar.gz) package. If the user configures with ‘--with-dmalloc’, then
define WITH_DMALLOC and add ‘-ldmalloc’ to LIBS.

AM_WITH_REGEX

Adds ‘--with-regex’ to the configure command line. If specified (the de-
fault), then the ‘regex’ regular expression library is used, regex.o is put into
‘LIBOBJS’, and ‘WITH_REGEX’ is defined. If ‘--without-regex’ is given, then
the ‘rx’ regular expression library is used, and rx.o is put into ‘LIBOBJS’.

5.6.2 Private macros

The following macros are private macros you should not call directly. They are called by
the other public macros when appropriate. Do not rely on them, as they might be changed
in a future version. Consider them as implementation details; or better, do not consider
them at all: skip this section!

ftp://ftp.letters.com/src/dmalloc/dmalloc.tar.gz
ftp://ftp.letters.com/src/dmalloc/dmalloc.tar.gz

Chapter 5: Scanning configure.ac 21

_AM_DEPENDENCIES

AM_SET_DEPDIR

AM_DEP_TRACK

AM_OUTPUT_DEPENDENCY_COMMANDS

These macros are used to implement Automake’s automatic dependency track-
ing scheme. They are called automatically by automake when required, and
there should be no need to invoke them manually.

AM_MAKE_INCLUDE

This macro is used to discover how the user’s make handles include statements.
This macro is automatically invoked when needed; there should be no need to
invoke it manually.

AM_PROG_INSTALL_STRIP

This is used to find a version of install which can be used to strip a program
at installation time. This macro is automatically included when required.

AM_SANITY_CHECK

This checks to make sure that a file created in the build directory is newer than
a file in the source directory. This can fail on systems where the clock is set
incorrectly. This macro is automatically run from AM_INIT_AUTOMAKE.

5.7 Writing your own aclocal macros

The aclocal program doesn’t have any built-in knowledge of any macros, so it is easy to
extend it with your own macros.

This can be used by libraries which want to supply their own Autoconf macros for use by
other programs. For instance the gettext library supplies a macro AM_GNU_GETTEXT which
should be used by any package using gettext. When the library is installed, it installs this
macro so that aclocal will find it.

A macro file’s name should end in .m4. Such files should be installed in
$(datadir)/aclocal. This is as simple as writing:

aclocaldir = $(datadir)/aclocal

aclocal_DATA = mymacro.m4 myothermacro.m4

A file of macros should be a series of properly quoted AC_DEFUN’s (see Section “Macro Def-
initions” in The Autoconf Manual). The aclocal programs also understands AC_REQUIRE
(see Section “Prerequisite Macros” in The Autoconf Manual), so it is safe to put each macro
in a separate file. Each file should have no side effects but macro definitions. Especially,
any call to AC_PREREQ should be done inside the defined macro, not at the beginning of the
file.

Starting with Automake 1.8, aclocal will warn about all underquoted calls to AC_DEFUN.
We realize this will annoy a lot of people, because aclocal was not so strict in the past
and many third party macros are underquoted; and we have to apologize for this temporary
inconvenience. The reason we have to be stricter is that a future implementation of aclocal
(see Section 5.9 [Future of aclocal], page 23) will have to temporary include all these third
party .m4 files, maybe several times, even those which are not actually needed. Doing so
should alleviate many problem of the current implementation, however it requires a stricter
style from the macro authors. Hopefully it is easy to revise the existing macros. For instance

Chapter 5: Scanning configure.ac 22

bad style

AC_PREREQ(2.57)

AC_DEFUN(AX_FOOBAR,

[AC_REQUIRE([AX_SOMETHING])dnl

AX_FOO

AX_BAR

])

should be rewritten as

AC_DEFUN([AX_FOOBAR],

[AC_PREREQ(2.57)dnl

AC_REQUIRE([AX_SOMETHING])dnl

AX_FOO

AX_BAR

])

Wrapping the AC_PREREQ call inside the macro ensures that Autoconf 2.57 will not be
required if AX_FOOBAR is not actually used. Most importantly, quoting the first argument of
AC_DEFUN allows the macro to be redefined or included twice (otherwise this first argument
would be expansed during the second definition).

If you have been directed here by the aclocal diagnostic but are not the maintainer
of the implicated macro, you will want to contact the maintainer of that macro. Please
make sure you have the last version of the macro and that the problem already hasn’t been
reported before doing so: people tend to work faster when they aren’t flooded by mails.

Another situation where aclocal is commonly used is to manage macros which are used
locally by the package, Section 5.8 [Local Macros], page 22.

5.8 Handling Local Macros

Feature tests offered by Autoconf do not cover all needs. People often have to supplement
existing tests with their own macros, or with third-party macros.

There are two ways to organize custom macros in a package.

The first possibility (the historical practice) is to list all your macros in acinclude.m4.
This file will be included in aclocal.m4 when you run aclocal, and its macro(s) will
henceforth be visible to autoconf. However if it contains numerous macros, it will rapidly
become difficult to maintain, and it will be almost impossible to share macros between
packages.

The second possibility, which we do recommend, is to write each macro in its own file
and gather all these files in a directory. This directory is usually called m4/. To build
aclocal.m4, one should therefore instruct aclocal to scan m4/. From the command line,
this is done with aclocal -I m4. The top-level Makefile.am should also be updated to
define

ACLOCAL_AMFLAGS = -I m4

ACLOCAL_AMFLAGS contains options to pass to aclocal when aclocal.m4 is to be rebuilt
by make. This line is also used by autoreconf (see Section “Using autoreconf to Update
configure Scripts” in The Autoconf Manual) to run aclocal with suitable options, or
by autopoint (see Section “Invoking the autopoint Program” in GNU gettext tools) and

Chapter 5: Scanning configure.ac 23

gettextize (see Section “Invoking the gettextize Program” in GNU gettext tools) to
locate the place where Gettext’s macros should be installed. So even if you do not really
care about the rebuild rules, you should define ACLOCAL_AMFLAGS.

When aclocal -I m4 is run, it will build a aclocal.m4 that m4_includes any file from
m4/ that defines a required macro. Macros not found locally will still be searched in system-
wide directories, as explained in Section 5.5 [Macro search path], page 16.

Custom macros should be distributed for the same reason that configure.ac is: so that
other people have all the sources of your package if they want to work on it. Actually, this
distribution happens automatically because all m4_included files are distributed.

However there is no consensus on the distribution of third-party macros that your package
may use. Many libraries install their own macro in the system-wide aclocal directory
(see Section 5.7 [Extending aclocal], page 21). For instance Guile ships with a file called
guile.m4 that contains the macro GUILE_FLAGS which can be used to define setup compiler
and linker flags appropriate for using Guile. Using GUILE_FLAGS in configure.ac will cause
aclocal to copy guile.m4 into aclocal.m4, but as guile.m4 is not part of the project, it
will not be distributed. Technically, that means a user which needs to rebuild aclocal.m4

will have to install Guile first. This is probably OK, if Guile already is a requirement to
build the package. However, if Guile is only an optional feature, or if your package might run
on architectures where Guile cannot be installed, this requirement will hinder development.
An easy solution is to copy such third-party macros in your local m4/ directory so they get
distributed.

5.9 The Future of aclocal

aclocal is expected to disappear. This feature really should not be offered by Automake.
Automake should focus on generating Makefiles; dealing with M4 macros really is Au-
toconf’s job. That some people install Automake just to use aclocal, but do not use
automake otherwise is an indication of how that feature is misplaced.

The new implementation will probably be done slightly differently. For instance it could
enforce the m4/-style layout discussed in Section 5.8 [Local Macros], page 22, and take care
of copying (and even updating) third-party macros from /usr/share/aclocal/ into the
local m4/ directory.

We have no idea when and how this will happen. This has been discussed several times
in the past, but someone still has to commit itself to that non-trivial task.

From the user point of view, aclocal’s removal might turn out to be painful. There is a
simple precaution that you may take to make that switch more seamless: never call aclocal
yourself. Keep this guy under the exclusive control of autoreconf and Automake’s rebuild
rules. Hopefully you won’t need to worry about things breaking, when aclocal disappears,
because everything will have been taken care of. If otherwise you used to call aclocal
directly yourself or from some script, you will quickly notice the change.

Many packages come with a script called bootstrap.sh or autogen.sh, that will just call
aclocal, libtoolize, gettextize or autopoint, autoconf, autoheader, and automake

in the right order. Actually this is precisely what autoreconf can do for you. If your
package has such a bootstrap.sh or autogen.sh script, consider using autoreconf. That
should simplify its logic a lot (less things to maintain, yum!), it’s even likely you will not
need the script anymore, and more to the point you will not call aclocal directly anymore.

Chapter 6: Directories 24

For the time being, third-party packages should continue to install public macros into
/usr/share/aclocal/. If aclocal is replaced by another tool it might make sense to
rename the directory, but supporting /usr/share/aclocal/ for backward compatibility
should be really easy provided all macros are properly written (see Section 5.7 [Extending
aclocal], page 21).

6 Directories

For simple projects that distributes all files in the same directory it is enough to have a
single Makefile.am that builds everything in place.

In larger projects it is common to organize files in different directories, in a tree. For in-
stance one directory per program, per library or per module. The traditional approach is to
build these subdirectory recursively: each directory contains its Makefile (generated from
Makefile.am), and when make is run from the top level directory it enters each subdirectory
in turn to build its contents.

6.1 Recursing subdirectories

In packages with subdirectories, the top level Makefile.am must tell Automake which
subdirectories are to be built. This is done via the SUBDIRS variable.

The SUBDIRS variable holds a list of subdirectories in which building of various sorts can
occur. The rules for many targets (e.g. all) in the generated Makefile will run commands
both locally and in all specified subdirectories. Note that the directories listed in SUBDIRS

are not required to contain Makefile.ams; only Makefiles (after configuration). This allows
inclusion of libraries from packages which do not use Automake (such as gettext; see also
Section 22.2 [Third-Party Makefiles], page 83).

In packages that use subdirectories, the top-level Makefile.am is often very short. For
instance, here is the Makefile.am from the GNU Hello distribution:

EXTRA_DIST = BUGS ChangeLog.O README-alpha

SUBDIRS = doc intl po src tests

When Automake invokes make in a subdirectory, it uses the value of the MAKE variable.
It passes the value of the variable AM_MAKEFLAGS to the make invocation; this can be set in
Makefile.am if there are flags you must always pass to make.

The directories mentioned in SUBDIRS are usually direct children of the current direc-
tory, each subdirectory containing its own Makefile.am with a SUBDIRS pointing to deeper
subdirectories. Automake can be used to construct packages of arbitrary depth this way.

By default, Automake generates Makefiles which work depth-first in postfix order: the
subdirectories are built before the current directory. However, it is possible to change this
ordering. You can do this by putting ‘.’ into SUBDIRS. For instance, putting ‘.’ first will
cause a ‘prefix’ ordering of directories.

Using

SUBDIRS = lib src . test

will cause lib/ to be built before src/, then the current directory will be built, finally the
test/ directory will be built. It is customary to arrange test directories to be built after
everything else since they are meant to test what has been constructed.

Chapter 6: Directories 25

All ‘clean’ rules are run in reverse order of build rules.

6.2 Conditional Subdirectories

It is possible to define the SUBDIRS variable conditionally if, like in the case of GNU
Inetutils, you want to only build a subset of the entire package.

To illustrate how this works, let’s assume we have two directories src/ and opt/. src/
should always be built, but we want to decide in ./configure whether opt/ will be built
or not. (For this example we will assume that opt/ should be built when the variable
$want_opt was set to yes.)

Running make should thus recurse into src/ always, and then maybe in opt/.

However make dist should always recurse into both src/ and opt/. Because opt/

should be distributed even if it is not needed in the current configuration. This means
opt/Makefile should be created unconditionally.

There are two ways to setup a project like this. You can use Automake conditionals
(see Chapter 19 [Conditionals], page 79) or use Autoconf AC_SUBST variables (see Section
“Setting Output Variables” in The Autoconf Manual). Using Automake conditionals is the
preferred solution. Before we illustrate these two possibility, let’s introduce DIST_SUBDIRS.

6.2.1 SUBDIRS vs. DIST_SUBDIRS

Automake considers two sets of directories, defined by the variables SUBDIRS and DIST_

SUBDIRS.

SUBDIRS contains the subdirectories of the current directory that must be built (see
Section 6.1 [Subdirectories], page 24). It must be defined manually; Automake will never
guess a directory is to be built. As we will see in the next two sections, it is possible to
define it conditionally so that some directory will be omitted from the build.

DIST_SUBDIRS is used in rules that need to recurse in all directories, even those which
have been conditionally left out of the build. Recall our example where we may not want
to build subdirectory opt/, but yet we want to distribute it? This is where DIST_SUBDIRS
come into play: opt may not appear in SUBDIRS, but it must appear in DIST_SUBDIRS.

Precisely, DIST_SUBDIRS is used by make dist, make distclean, and make

maintainer-clean. All other recursive rules use SUBDIRS.

If SUBDIRS is defined conditionally using Automake conditionals, Automake will define
DIST_SUBDIRS automatically from the possibles values of SUBDIRS in all conditions.

If SUBDIRS contains AC_SUBST variables, DIST_SUBDIRS will not be defined correctly
because Automake does not know the possible values of these variables. In this case DIST_
SUBDIRS needs to be defined manually.

6.2.2 Conditional subdirectories with AM_CONDITIONAL

configure should output the Makefile for each directory and define a condition into which
opt/ should be built.

...

AM_CONDITIONAL([COND_OPT], [test "$want_opt" = yes])

AC_CONFIG_FILES([Makefile src/Makefile opt/Makefile])

...

Chapter 6: Directories 26

Then SUBDIRS can be defined in the top-level Makefile.am as follows.

if COND_OPT

MAYBE_OPT = opt

endif

SUBDIRS = src $(MAYBE_OPT)

As you can see, running make will rightly recurse into src/ and maybe opt/.

As you can’t see, running make dist will recurse into both src/ and opt/ directories
because make dist, unlike make all, doesn’t use the SUBDIRS variable. It uses the DIST_

SUBDIRS variable.

In this case Automake will define DIST_SUBDIRS = src opt automatically because it
knows that MAYBE_OPT can contain opt in some condition.

6.2.3 Conditional Subdirectories with AC_SUBST

Another possibility is to define MAYBE_OPT from ./configure using AC_SUBST:

...

if test "$want_opt" = yes; then

MAYBE_OPT=opt

else

MAYBE_OPT=

fi

AC_SUBST([MAYBE_OPT])

AC_CONFIG_FILES([Makefile src/Makefile opt/Makefile])

...

In this case the top-level Makefile.am should look as follows.

SUBDIRS = src $(MAYBE_OPT)

DIST_SUBDIRS = src opt

The drawback is that since Automake cannot guess what the possible values of MAYBE_
OPT are, it is necessary to define DIST_SUBDIRS.

6.2.4 Non-configured Subdirectories

The semantic of DIST_SUBDIRS is often misunderstood by some users that try to configure
and build subdirectories conditionally. Here by configuring we mean creating the Makefile
(it might also involve running a nested configure script: this is a costly operation that
explains why people want to do it conditionally, but only the Makefile is relevant to the
discussion).

The above examples all assume that every Makefile is created, even in directories that
are not going to be built. The simple reason is that we want make dist to distribute even
the directories that are not being built (e.g. platform-dependent code), hence make dist

must recurse into the subdirectory, hence this directory must be configured and appear in
DIST_SUBDIRS.

Building packages that do not configure every subdirectory is a tricky business, and we
do not recommend it to the novice as it is easy to produce an incomplete tarball by mistake.
We will not discuss this topic in depth here, yet for the adventurous here are a few rules to
remember.

Chapter 6: Directories 27

� �
• SUBDIRS should always be a subset of DIST_SUBDIRS.

It makes little sense to have a directory in SUBDIRS that is not in DIST_SUBDIRS. Think
of the former as a way to tell which directories listed in the latter should be built.

• Any directory listed in DIST_SUBDIRS and SUBDIRS must be configured.

I.e., the Makefile must exists or the recursive make rules will not be able to process
the directory.

• Any configured directory must be listed in DIST_SUBDIRS.

So that the cleaning rule remove the generated Makefiles. It would be correct to see
DIST_SUBDIRS as a variable that lists all the directories that have been configured.
 	

In order to prevent recursion in some non-configured directory you must therefore ensure
that this directory does not appear in DIST_SUBDIRS (and SUBDIRS). For instance if you
define SUBDIRS conditionally using AC_SUBST and do not define DIST_SUBDIRS explicitly, it
will be default to $(SUBDIRS); another possibility is to force DIST_SUBDIRS = $(SUBDIRS).

Of course, directories which are omitted from DIST_SUBDIRS will not be distributed
unless you make other arrangements for this to happen (for instance always running make

dist in a configuration where all directories are known to appear in DIST_SUBDIRS; or
writing a dist-hook target to distribute these directories).

In few packages, non-configured directories are not even expected to be distributed.
Although these packages do not require the aforementioned extra arrangements, there is
another pitfall. If the name of a directory appears in SUBDIRS or DIST_SUBDIRS, automake
will make sure the directory exists. Consequently automake cannot be run on such a
distribution when one directory has been omitted. One way to avoid this check is to use
the AC_SUBST method to declare conditional directories; since automake does not know the
values of AC_SUBST variables it cannot ensure the corresponding directory exist.

6.3 An Alternative Approach to Subdirectories

If you’ve ever read Peter Miller’s excellent paper, Recursive Make Considered Harmful
(http://www.pcug.org.au/~millerp/rmch/recu-make-cons-harm.html), the preceding
sections on the use of subdirectories will probably come as unwelcome advice. For those
who haven’t read the paper, Miller’s main thesis is that recursive make invocations are both
slow and error-prone.

Automake provides sufficient cross-directory support3 to enable you to write a single
Makefile.am for a complex multi-directory package.

By default an installable file specified in a subdirectory will have its directory name
stripped before installation. For instance, in this example, the header file will be installed
as $(includedir)/stdio.h:

include_HEADERS = inc/stdio.h

However, the ‘nobase_’ prefix can be used to circumvent this path stripping. In this
example, the header file will be installed as $(includedir)/sys/types.h:

nobase_include_HEADERS = sys/types.h

3 We believe. This work is new and there are probably warts. See Chapter 1 [Introduction], page 1, for
information on reporting bugs.

http://www.pcug.org.au/~millerp/rmch/recu-make-cons-harm.html
http://www.pcug.org.au/~millerp/rmch/recu-make-cons-harm.html

Chapter 6: Directories 28

‘nobase_’ should be specified first when used in conjunction with either ‘dist_’ or
‘nodist_’ (see Chapter 13 [Dist], page 68). For instance:

nobase_dist_pkgdata_DATA = images/vortex.pgm

6.4 Nesting Packages

In the GNU Build System, packages can be nested to arbitrary depth. This means that a
package can embedded other packages with their own configure, Makefiles, etc.

These other packages should just appear as subdirectories of their parent package.
They must be listed in SUBDIRS like other ordinary directories. However the subpackage’s
Makefiles should be output by its own configure script, not by the parent’s configure.
This is achieved using the AC_CONFIG_SUBDIRS Autoconf macro (see Section “Configuring
Other Packages in Subdirectories” in The Autoconf Manual).

Here is an example package for an arm program that links with an hand library that is
a nested package in subdirectory hand/.

arm’s configure.ac:

AC_INIT([arm], [1.0])

AC_CONFIG_AUX_DIR([.])

AM_INIT_AUTOMAKE

AC_PROG_CC

AC_CONFIG_FILES([Makefile])

Call hand’s ./configure script recursively.

AC_CONFIG_SUBDIRS([hand])

AC_OUTPUT

arm’s Makefile.am:

Build the library in the hand subdirectory first.

SUBDIRS = hand

Include hand’s header when compiling this directory.

AM_CPPFLAGS = -I$(srcdir)/hand

bin_PROGRAMS = arm

arm_SOURCES = arm.c

link with the hand library.

arm_LDADD = hand/libhand.a

Now here is hand’s hand/configure.ac:

AC_INIT([hand], [1.2])

AC_CONFIG_AUX_DIR([.])

AM_INIT_AUTOMAKE

AC_PROG_CC

AC_PROG_RANLIB

AC_CONFIG_FILES([Makefile])

AC_OUTPUT

and its hand/Makefile.am:

lib_LIBRARIES = libhand.a

Chapter 7: Building Programs and Libraries 29

libhand_a_SOURCES = hand.c

When make dist is run from the top-level directory it will create an archive
arm-1.0.tar.gz that contains the arm code as well as the hand subdirectory. This
package can be built and installed like any ordinary package, with the usual ./configure
&& make && make install sequence (the hand subpackage will be built and installed by
the process).

When make dist is run from the hand directory, it will create a self-contained
hand-1.2.tar.gz archive. So although it appears to be embedded in another package, it
can still be used separately.

The purpose of the AC_CONFIG_AUX_DIR([.]) instruction is to force Automake and
Autoconf into search auxiliary script in the current directory. For instance this means that
there will be two copies of install-sh: one in the top-level of the arm package, and another
one in the hand/ subdirectory for the hand package.

The historical default is to search these auxiliary scripts in the immediate parent and
grand-parent directories. So if the AC_CONFIG_AUX_DIR([.]) line was removed from
hand/configure.ac, that subpackage would share the auxiliary script of the arm package.
This may looks like a gain in size (a few kilobytes), but it is actually a loss of modularity
as the hand subpackage is no longer self-contained (make dist in the subdirectory will not
work anymore).

Packages that do not use Automake need more work to be integrated this way. See
Section 22.2 [Third-Party Makefiles], page 83.

7 Building Programs and Libraries

A large part of Automake’s functionality is dedicated to making it easy to build programs
and libraries.

7.1 Building a program

In order to build a program, you need to tell Automake which sources are part of it, and
which libraries it should be linked with.

This section also covers conditional compilation of sources or programs. Most of the
comments about these also apply to libraries (see Section 7.2 [A Library], page 33) and
libtool libraries (see Section 7.3 [A Shared Library], page 33).

7.1.1 Defining program sources

In a directory containing source that gets built into a program (as opposed to a library or
a script), the ‘PROGRAMS’ primary is used. Programs can be installed in bindir, sbindir,
libexecdir, pkglibdir, or not at all (‘noinst’). They can also be built only for make

check, in which case the prefix is ‘check’.

For instance:

bin_PROGRAMS = hello

In this simple case, the resulting Makefile.in will contain code to generate a program
named hello.

Chapter 7: Building Programs and Libraries 30

Associated with each program are several assisting variables which are named after the
program. These variables are all optional, and have reasonable defaults. Each variable, its
use, and default is spelled out below; we use the “hello” example throughout.

The variable hello_SOURCES is used to specify which source files get built into an exe-
cutable:

hello_SOURCES = hello.c version.c getopt.c getopt1.c getopt.h system.h

This causes each mentioned ‘.c’ file to be compiled into the corresponding ‘.o’. Then
all are linked to produce hello.

If ‘hello_SOURCES’ is not specified, then it defaults to the single file hello.c (see
Section 7.5 [Default SOURCES], page 42).

Multiple programs can be built in a single directory. Multiple programs can share a
single source file, which must be listed in each ‘_SOURCES’ definition.

Header files listed in a ‘_SOURCES’ definition will be included in the distribution but
otherwise ignored. In case it isn’t obvious, you should not include the header file generated
by configure in a ‘_SOURCES’ variable; this file should not be distributed. Lex (‘.l’) and
Yacc (‘.y’) files can also be listed; see Section 7.8 [Yacc and Lex], page 45.

7.1.2 Linking the program

If you need to link against libraries that are not found by configure, you can use LDADD

to do so. This variable is used to specify additional objects or libraries to link with; it is
inappropriate for specifying specific linker flags, you should use AM_LDFLAGS for this purpose.

Sometimes, multiple programs are built in one directory but do not share the same link-
time requirements. In this case, you can use the ‘prog_LDADD’ variable (where prog is the
name of the program as it appears in some ‘_PROGRAMS’ variable, and usually written in
lowercase) to override the global LDADD. If this variable exists for a given program, then
that program is not linked using LDADD.

For instance, in GNU cpio, pax, cpio and mt are linked against the library libcpio.a.
However, rmt is built in the same directory, and has no such link requirement. Also, mt and
rmt are only built on certain architectures. Here is what cpio’s src/Makefile.am looks like
(abridged):

bin_PROGRAMS = cpio pax $(MT)

libexec_PROGRAMS = $(RMT)

EXTRA_PROGRAMS = mt rmt

LDADD = ../lib/libcpio.a $(INTLLIBS)

rmt_LDADD =

cpio_SOURCES = ...

pax_SOURCES = ...

mt_SOURCES = ...

rmt_SOURCES = ...

‘prog_LDADD’ is inappropriate for passing program-specific linker flags (except for ‘-l’,
‘-L’, ‘-dlopen’ and ‘-dlpreopen’). So, use the ‘prog_LDFLAGS’ variable for this purpose.

Chapter 7: Building Programs and Libraries 31

It is also occasionally useful to have a program depend on some other target which is not
actually part of that program. This can be done using the ‘prog_DEPENDENCIES’ variable.
Each program depends on the contents of such a variable, but no further interpretation is
done.

If ‘prog_DEPENDENCIES’ is not supplied, it is computed by Automake. The
automatically-assigned value is the contents of ‘prog_LDADD’, with most configure
substitutions, ‘-l’, ‘-L’, ‘-dlopen’ and ‘-dlpreopen’ options removed. The configure
substitutions that are left in are only ‘$(LIBOBJS)’ and ‘$(ALLOCA)’; these are left because
it is known that they will not cause an invalid value for ‘prog_DEPENDENCIES’ to be
generated.

7.1.3 Conditional compilation of sources

You can’t put a configure substitution (e.g., ‘@FOO@’ or ‘$(FOO)’ where FOO is defined via
AC_SUBST) into a ‘_SOURCES’ variable. The reason for this is a bit hard to explain, but
suffice to say that it simply won’t work. Automake will give an error if you try to do this.

Fortunately there are two other ways to achieve the same result. One is to use configure
substitutions in _LDADD variables, the other is to use an Automake conditional.

7.1.3.1 Conditional compilation using _LDADD substitutions

Automake must know all the source files that could possibly go into a program, even if not
all the files are built in every circumstance. Any files which are only conditionally built
should be listed in the appropriate ‘EXTRA_’ variable. For instance, if hello-linux.c or
hello-generic.c were conditionally included in hello, the Makefile.am would contain:

bin_PROGRAMS = hello

hello_SOURCES = hello-common.c

EXTRA_hello_SOURCES = hello-linux.c hello-generic.c

hello_LDADD = $(HELLO_SYSTEM)

hello_DEPENDENCIES = $(HELLO_SYSTEM)

You can then setup the $(HELLO_SYSTEM) substitution from configure.ac:

...

case $host in

linux) HELLO_SYSTEM=’hello-linux.$(OBJEXT)’ ;;

*) HELLO_SYSTEM=’hello-generic.$(OBJEXT)’ ;;

esac

AC_SUBST([HELLO_SYSTEM])

...

In this case, HELLO_SYSTEM should be replaced by hello-linux.o or hello-generic.o,
and added to hello_DEPENDENCIES and hello_LDADD in order to be built and linked in.

7.1.3.2 Conditional compilation using Automake conditionals

An often simpler way to compile source files conditionally is to use Automake conditionals.
For instance, you could use this Makefile.am construct to build the same hello example:

bin_PROGRAMS = hello

if LINUX

hello_SOURCES = hello-linux.c hello-common.c

Chapter 7: Building Programs and Libraries 32

else

hello_SOURCES = hello-generic.c hello-common.c

endif

In this case, your configure.ac should setup the LINUX conditional using
AM_CONDITIONAL (see Chapter 19 [Conditionals], page 79).

When using conditionals like this you don’t need to use the ‘EXTRA_’ variable, because
Automake will examine the contents of each variable to construct the complete list of source
files.

If your program uses a lot of files, you will probably prefer a conditional +=.

bin_PROGRAMS = hello

hello_SOURCES = hello-common.c

if LINUX

hello_SOURCES += hello-linux.c

else

hello_SOURCES += hello-generic.c

endif

7.1.4 Conditional compilation of programs

Sometimes it is useful to determine the programs that are to be built at configure time.
For instance, GNU cpio only builds mt and rmt under special circumstances. The means
to achieve conditional compilation of programs are the same you can use to compile source
files conditionally: substitutions or conditionals.

7.1.4.1 Conditional programs using configure substitutions

In this case, you must notify Automake of all the programs that can possibly be built,
but at the same time cause the generated Makefile.in to use the programs specified by
configure. This is done by having configure substitute values into each ‘_PROGRAMS’
definition, while listing all optionally built programs in EXTRA_PROGRAMS.

bin_PROGRAMS = cpio pax $(MT)

libexec_PROGRAMS = $(RMT)

EXTRA_PROGRAMS = mt rmt

As explained in Section 7.17 [EXEEXT], page 54, Automake will rewrite bin_PROGRAMS,
libexec_PROGRAMS, and EXTRA_PROGRAMS, appending $(EXEEXT) to each binary. Ob-
viously it cannot rewrite values obtained at run-time through configure substitutions,
therefore you should take care of appending $(EXEEXT) yourself, as in AC_SUBST([MT],

[’mt${EXEEXT}’]).

7.1.4.2 Conditional programs using Automake conditionals

You can also use Automake conditionals (see Chapter 19 [Conditionals], page 79) to select
programs to be built. In this case you don’t have to worry about $(EXEEXT) or EXTRA_

PROGRAMS.

bin_PROGRAMS = cpio pax

if WANT_MT

bin_PROGRAMS += mt

endif

Chapter 7: Building Programs and Libraries 33

if WANT_RMT

libexec_PROGRAMS = rmt

endif

7.2 Building a library

Building a library is much like building a program. In this case, the name of the primary
is ‘LIBRARIES’. Libraries can be installed in libdir or pkglibdir.

See Section 7.3 [A Shared Library], page 33, for information on how to build shared
libraries using libtool and the ‘LTLIBRARIES’ primary.

Each ‘_LIBRARIES’ variable is a list of the libraries to be built. For instance to create a
library named libcpio.a, but not install it, you would write:

noinst_LIBRARIES = libcpio.a

The sources that go into a library are determined exactly as they are for programs,
via the ‘_SOURCES’ variables. Note that the library name is canonicalized (see Section 2.4
[Canonicalization], page 4), so the ‘_SOURCES’ variable corresponding to liblob.a is
‘liblob_a_SOURCES’, not ‘liblob.a_SOURCES’.

Extra objects can be added to a library using the ‘library_LIBADD’ variable. This
should be used for objects determined by configure. Again from cpio:

libcpio_a_LIBADD = $(LIBOBJS) $(ALLOCA)

In addition, sources for extra objects that will not exist until configure-time must be
added to the BUILT_SOURCES variable (see Section 8.4 [Sources], page 56).

Building a static library is done by compiling all object files, then by invoking $(AR)

$(ARFLAGS) followed by the name of the library and the list of objects, and finally by calling
$(RANLIB) on that library. You should call AC_PROG_RANLIB from your configure.ac to
define RANLIB (Automake will complain otherwise). AR and ARFLAGS default to ar and cru

respectively; you can override these two variables my setting them in your Makefile.am, by
AC_SUBSTing them from your configure.ac, or by defining a per-library maude_AR variable
(see Section 7.4 [Program and Library Variables], page 39).

7.3 Building a Shared Library

Building shared libraries portably is a relatively complex matter. For this reason, GNU
Libtool (see Section “Introduction” in The Libtool Manual) was created to help build shared
libraries in a platform-independent way.

7.3.1 The Libtool Concept

Libtool abstracts shared and static libraries into a unified concept henceforth called libtool
libraries. Libtool libraries are files using the .la suffix, and can designate a static library, a
shared library, or maybe both. Their exact nature cannot be determined until ./configure
is run: not all platforms support all kinds of libraries, and users can explicitly select which
libraries should be built. (However the package’s maintainers can tune the default, see
Section “The AC_PROG_LIBTOOL macro” in The Libtool Manual.)

Because object files for shared and static libraries must be compiled differently, libtool
is also used during compilation. Object files built by libtool are called libtool objects: these
are files using the .lo suffix. Libtool libraries are built from these libtool objects.

Chapter 7: Building Programs and Libraries 34

You should not assume anything about the structure of .la or .lo files and how libtool
constructs them: this is libtool’s concern, and the last thing one wants is to learn about
libtool’s guts. However the existence of these files matters, because they are used as targets
and dependencies in Makefiles rules when building libtool libraries. There are situations
where you may have to refer to these, for instance when expressing dependencies for building
source files conditionally (see Section 7.3.4 [Conditional Libtool Sources], page 35).

People considering writing a plug-in system, with dynamically loaded modules, should
look into libltdl: libtool’s dlopening library (see Section “Using libltdl” in The Libtool
Manual). This offers a portable dlopening facility to load libtool libraries dynamically, and
can also achieve static linking where unavoidable.

Before we discuss how to use libtool with Automake in details, it should be noted that
the libtool manual also has a section about how to use Automake with libtool (see Section
“Using Automake with Libtool” in The Libtool Manual).

7.3.2 Building Libtool Libraries

Automake uses libtool to build libraries declared with the ‘LTLIBRARIES’ primary. Each
‘_LTLIBRARIES’ variable is a list of libtool libraries to build. For instance, to create a libtool
library named libgettext.la, and install it in ‘libdir’, write:

lib_LTLIBRARIES = libgettext.la

libgettext_la_SOURCES = gettext.c gettext.h ...

Automake predefines the variable ‘pkglibdir’, so you can use pkglib_LTLIBRARIES to
install libraries in $(libdir)/@PACKAGE@/.

7.3.3 Building Libtool Libraries Conditionally

Like conditional programs (see Section 7.1.4 [Conditional Programs], page 32), there are two
main ways to build conditional libraries: using Automake conditionals or using Autoconf
AC_SUBSTitutions.

The important implementation detail you have to be aware of is that the place where a
library will be installed matters to libtool: it needs to be indicated at link-time using the
-rpath option.

For libraries whose destination directory is known when Automake runs, Automake will
automatically supply the appropriate ‘-rpath’ option to libtool. This is the case for libraries
listed explicitly in some installable _LTLIBRARIES variables such as lib_LTLIBRARIES.

However, for libraries determined at configure time (and thus mentioned in EXTRA_

LTLIBRARIES), Automake does not know the final installation directory. For such libraries
you must add the ‘-rpath’ option to the appropriate ‘_LDFLAGS’ variable by hand.

The examples below illustrate the differences between these two methods.

Here is an example where $(WANTEDLIBS) is an AC_SUBSTed variable set at ./configure-
time to either libfoo.la, libbar.la, both, or none. Although $(WANTEDLIBS) appears
in the lib_LTLIBRARIES, Automake cannot guess it relates to libfoo.la or libbar.la by
the time it creates the link rule for these two libraries. Therefore the -rpath argument
must be explicitly supplied.

EXTRA_LTLIBRARIES = libfoo.la libbar.la

lib_LTLIBRARIES = $(WANTEDLIBS)

Chapter 7: Building Programs and Libraries 35

libfoo_la_SOURCES = foo.c ...

libfoo_la_LDFLAGS = -rpath ’$(libdir)’

libbar_la_SOURCES = bar.c ...

libbar_la_LDFLAGS = -rpath ’$(libdir)’

Here is how the same Makefile.am would look using Automake conditionals named
WANT_LIBFOO and WANT_LIBBAR. Now Automake is able to compute the -rpath setting
itself, because it’s clear that both libraries will end up in $(libdir) if they are installed.

lib_LTLIBRARIES =

if WANT_LIBFOO

lib_LTLIBRARIES += libfoo.la

endif

if WANT_LIBBAR

lib_LTLIBRARIES += libbar.la

endif

libfoo_la_SOURCES = foo.c ...

libbar_la_SOURCES = bar.c ...

7.3.4 Libtool Libraries with Conditional Sources

Conditional compilation of sources in a library can be achieved in the same way as condi-
tional compilation of sources in a program (see Section 7.1.3 [Conditional Sources], page 31).
The only difference is that _LIBADD should be used instead of _LDADD and that it should
mention libtool objects (.lo files).

So, to mimic the hello example from Section 7.1.3 [Conditional Sources], page 31, we
could build a libhello.la library using either hello-linux.c or hello-generic.c with
the following Makefile.am.

lib_LTLIBRARIES = libhello.la

libhello_la_SOURCES = hello-common.c

EXTRA_libhello_la_SOURCES = hello-linux.c hello-generic.c

libhello_la_LIBADD = $(HELLO_SYSTEM)

libhello_la_DEPENDENCIES = $(HELLO_SYSTEM)

And make sure $(HELLO_SYSTEM) is set to either hello-linux.lo or hello-generic.lo
in ./configure.

Or we could simply use an Automake conditional as follows.

lib_LTLIBRARIES = libhello.la

libhello_la_SOURCES = hello-common.c

if LINUX

libhello_la_SOURCES += hello-linux.c

else

libhello_la_SOURCES += hello-generic.c

endif

7.3.5 Libtool Convenience Libraries

Sometimes you want to build libtool libraries which should not be installed. These are
called libtool convenience libraries and are typically used to encapsulate many sublibraries,
later gathered into one big installed library.

Chapter 7: Building Programs and Libraries 36

Libtool convenience libraries are declared by noinst_LTLIBRARIES, check_

LTLIBRARIES, or even EXTRA_LTLIBRARIES. Unlike installed libtool libraries they do not
need an -rpath flag at link time (actually this is the only difference).

Convenience libraries listed in noinst_LTLIBRARIES are always built. Those listed in
check_LTLIBRARIES are built only upon make check. Finally, libraries listed in EXTRA_

LTLIBRARIES are never built explicitly: Automake outputs rules to build them, but if the
library does not appear as a Makefile dependency anywhere it won’t be built (this is why
EXTRA_LTLIBRARIES is used for conditional compilation).

Here is a sample setup merging libtool convenience libraries from subdirectories into one
main libtop.la library.

-- Top-level Makefile.am --

SUBDIRS = sub1 sub2 ...

lib_LTLIBRARIES = libtop.la

libtop_la_SOURCES =

libtop_la_LIBADD = \

sub1/libsub1.la \

sub2/libsub2.la \

...

-- sub1/Makefile.am --

noinst_LTLIBRARIES = libsub1.la

libsub1_la_SOURCES = ...

-- sub2/Makefile.am --

showing nested convenience libraries

SUBDIRS = sub2.1 sub2.2 ...

noinst_LTLIBRARIES = libsub2.la

libsub2_la_SOURCES =

libsub2_la_LIBADD = \

sub21/libsub21.la \

sub22/libsub22.la \

...

When using such setup, beware that automake will assume libtop.la is to be linked
with the C linker. This is because libtop_la_SOURCES is empty, so automake picks C as
default language. If libtop_la_SOURCES was not empty, automake would select the linker
as explained in Section 7.11.3.1 [How the Linker is Chosen], page 51.

If one of the sublibraries contains non-C source, it is important that the appropriate
linker be chosen. One way to achieve this is to pretend that there is such a non-C file
among the sources of the library, thus forcing automake to select the appropriate linker.
Here is the top-level Makefile of our example updated to force C++ linking.

SUBDIRS = sub1 sub2 ...

lib_LTLIBRARIES = libtop.la

libtop_la_SOURCES =

Dummy C++ source to cause C++ linking.

nodist_EXTRA_libtop_la_SOURCES = dummy.cxx

Chapter 7: Building Programs and Libraries 37

libtop_la_LIBADD = \

sub1/libsub1.la \

sub2/libsub2.la \

...

EXTRA_*_SOURCES variables are used to keep track of source files that might be compiled
(this is mostly useful when doing conditional compilation using AC_SUBST, see Section 7.3.4
[Conditional Libtool Sources], page 35), and the nodist_ prefix means the listed sources are
not to be distributed (see Section 7.4 [Program and Library Variables], page 39). In effect
the file dummy.cxx does not need to exist in the source tree. Of course if you have some real
source file to list in libtop_la_SOURCES there is no point in cheating with nodist_EXTRA_

libtop_la_SOURCES.

7.3.6 Libtool Modules

These are libtool libraries meant to be dlopened. They are indicated to libtool by passing
-module at link-time.

pkglib_LTLIBRARIES = mymodule.la

mymodule_la_SOURCES = doit.c

mymodule_la_LDFLAGS = -module

Ordinarily, Automake requires that a library’s name starts with ‘lib’. However, when
building a dynamically loadable module you might wish to use a "nonstandard" name.
Automake will not complain about such nonstandard name if it knows the library being
built is a libtool module, i.e., if ‘-module’ explicitly appears in the library’s _LDFLAGS

variable (or in the common AM_LDFLAGS variable when no per-library _LDFLAGS variable is
defined).

As always, AC_SUBST variables are black boxes to Automake since their values are not
yet known when automake is run. Therefore if -module is set via such a variable, Automake
cannot notice it and will proceed as if the library was an ordinary libtool library, with strict
naming.

If ‘mymodule_la_SOURCES’ is not specified, then it defaults to the single file mymodule.c
(see Section 7.5 [Default SOURCES], page 42).

7.3.7 LIBADD and LDFLAGS

As shown in previous sections, the ‘library_LIBADD’ variable should be used to list extra
libtool objects (.lo files) or libtool libraries (.la) to add to library.

The ‘library_LDFLAGS’ variable is the place to list additional libtool flags, such as
‘-version-info’, ‘-static’, and a lot more. See Section “Link mode” in The Libtool
Manual.

7.3.8 LTLIBOBJS and LTALLOCA

Where an ordinary library might include $(LIBOBJS) or $(ALLOCA) (see Section 7.6 [LI-
BOBJS], page 43), a libtool library must use $(LTLIBOBJS) or $(LTALLOCA). This is
required because the object files that libtool operates on do not necessarily end in .o.

Nowadays, the computation of LTLIBOBJS from LIBOBJS is performed automatically by
Autoconf (see Section “AC_LIBOBJ vs. LIBOBJS” in The Autoconf Manual).

Chapter 7: Building Programs and Libraries 38

7.3.9 Common Issues Related to Libtool’s Use

7.3.9.1 required file ‘./ltmain.sh’ not found

Libtool comes with a tool called libtoolize that will install libtool’s supporting files into
a package. Running this command will install ltmain.sh. You should execute it before
aclocal and automake.

People upgrading old packages to newer autotools are likely to face this issue because
older Automake versions used to call libtoolize. Therefore old build scripts do not call
libtoolize.

Since Automake 1.6, it has been decided that running libtoolize was none of Au-
tomake’s business. Instead, that functionality has been moved into the autoreconf com-
mand (see Section “Using autoreconf” in The Autoconf Manual). If you do not want to
remember what to run and when, just learn the autoreconf command. Hopefully, replacing
existing bootstrap.sh or autogen.sh scripts by a call to autoreconf should also free you
from any similar incompatible change in the future.

7.3.9.2 Objects created with both libtool and without

Sometimes, the same source file is used both to build a libtool library and to build another
non-libtool target (be it a program or another library).

Let’s consider the following Makefile.am.

bin_PROGRAMS = prog

prog_SOURCES = prog.c foo.c ...

lib_LTLIBRARIES = libfoo.la

libfoo_la_SOURCES = foo.c ...

(In this trivial case the issue could be avoided by linking libfoo.la with prog instead of
listing foo.c in prog_SOURCES. But let’s assume we really want to keep prog and libfoo.la

separate.)

Technically, it means that we should build foo.$(OBJEXT) for prog, and foo.lo for
libfoo.la. The problem is that in the course of creating foo.lo, libtool may erase (or
replace) foo.$(OBJEXT) – and this cannot be avoided.

Therefore, when Automake detects this situation it will complain with a message such
as

object ‘foo.$(OBJEXT)’ created both with libtool and without

A workaround for this issue is to ensure that these two objects get different basenames.
As explained in Section 26.6 [renamed objects], page 96, this happens automatically when
per-targets flags are used.

bin_PROGRAMS = prog

prog_SOURCES = prog.c foo.c ...

prog_CFLAGS = $(AM_CFLAGS)

lib_LTLIBRARIES = libfoo.la

libfoo_la_SOURCES = foo.c ...

Chapter 7: Building Programs and Libraries 39

Adding prog_CFLAGS = $(AM_CFLAGS) is almost a no-op, because when the prog_CFLAGS is
defined, it is used instead of AM_CFLAGS. However as a side effect it will cause prog.c and
foo.c to be compiled as prog-prog.$(OBJEXT) and prog-foo.$(OBJEXT) which solves the
issue.

7.4 Program and Library Variables

Associated with each program are a collection of variables which can be used to modify
how that program is built. There is a similar list of such variables for each library. The
canonical name of the program (or library) is used as a base for naming these variables.

In the list below, we use the name “maude” to refer to the program or library. In your
Makefile.am you would replace this with the canonical name of your program. This list
also refers to “maude” as a program, but in general the same rules apply for both static and
dynamic libraries; the documentation below notes situations where programs and libraries
differ.

‘maude_SOURCES’
This variable, if it exists, lists all the source files which are compiled to build the
program. These files are added to the distribution by default. When building
the program, Automake will cause each source file to be compiled to a single
.o file (or .lo when using libtool). Normally these object files are named after
the source file, but other factors can change this. If a file in the ‘_SOURCES’
variable has an unrecognized extension, Automake will do one of two things
with it. If a suffix rule exists for turning files with the unrecognized extension
into .o files, then automake will treat this file as it will any other source file
(see Section 7.14 [Support for Other Languages], page 52). Otherwise, the file
will be ignored as though it were a header file.

The prefixes ‘dist_’ and ‘nodist_’ can be used to control whether files listed
in a ‘_SOURCES’ variable are distributed. ‘dist_’ is redundant, as sources are
distributed by default, but it can be specified for clarity if desired.

It is possible to have both ‘dist_’ and ‘nodist_’ variants of a given ‘_SOURCES’
variable at once; this lets you easily distribute some files and not others, for
instance:

nodist_maude_SOURCES = nodist.c

dist_maude_SOURCES = dist-me.c

By default the output file (on Unix systems, the .o file) will be put into the cur-
rent build directory. However, if the option subdir-objects is in effect in the
current directory then the .o file will be put into the subdirectory named after
the source file. For instance, with subdir-objects enabled, sub/dir/file.c
will be compiled to sub/dir/file.o. Some people prefer this mode of opera-
tion. You can specify subdir-objects in AUTOMAKE_OPTIONS (see Chapter 16
[Options], page 74).

‘EXTRA_maude_SOURCES’
Automake needs to know the list of files you intend to compile statically. For
one thing, this is the only way Automake has of knowing what sort of language

Chapter 7: Building Programs and Libraries 40

support a given Makefile.in requires.4 This means that, for example, you can’t
put a configure substitution like ‘@my_sources@’ into a ‘_SOURCES’ variable. If
you intend to conditionally compile source files and use configure to substitute
the appropriate object names into, e.g., ‘_LDADD’ (see below), then you should
list the corresponding source files in the ‘EXTRA_’ variable.

This variable also supports ‘dist_’ and ‘nodist_’ prefixes, e.g.,
‘nodist_EXTRA_maude_SOURCES’.

‘maude_AR’
A static library is created by default by invoking $(AR) $(ARFLAGS) followed
by the name of the library and then the objects being put into the library. You
can override this by setting the ‘_AR’ variable. This is usually used with C++;
some C++ compilers require a special invocation in order to instantiate all the
templates which should go into a library. For instance, the SGI C++ compiler
likes this variable set like so:

libmaude_a_AR = $(CXX) -ar -o

‘maude_LIBADD’
Extra objects can be added to a library using the ‘_LIBADD’ variable. For in-
stance this should be used for objects determined by configure (see Section 7.2
[A Library], page 33).

‘maude_LDADD’
Extra objects can be added to a program by listing them in the ‘_LDADD’ vari-
able. For instance this should be used for objects determined by configure

(see Section 7.1.2 [Linking], page 30).

‘_LDADD’ and ‘_LIBADD’ are inappropriate for passing program-specific linker
flags (except for ‘-l’, ‘-L’, ‘-dlopen’ and ‘-dlpreopen’). Use the ‘_LDFLAGS’
variable for this purpose.

For instance, if your configure.ac uses AC_PATH_XTRA, you could link your
program against the X libraries like so:

maude_LDADD = $(X_PRE_LIBS) $(X_LIBS) $(X_EXTRA_LIBS)

‘maude_LDFLAGS’
This variable is used to pass extra flags to the link step of a program or a shared
library.

‘maude_DEPENDENCIES’
It is also occasionally useful to have a program depend on some other tar-
get which is not actually part of that program. This can be done using the
‘_DEPENDENCIES’ variable. Each program depends on the contents of such a
variable, but no further interpretation is done.

If ‘_DEPENDENCIES’ is not supplied, it is computed by Automake. The
automatically-assigned value is the contents of ‘_LDADD’ or ‘_LIBADD’, with
most configure substitutions, ‘-l’, ‘-L’, ‘-dlopen’ and ‘-dlpreopen’ options
removed. The configure substitutions that are left in are only ‘$(LIBOBJS)’

4 There are other, more obscure reasons for this limitation as well.

Chapter 7: Building Programs and Libraries 41

and ‘$(ALLOCA)’; these are left because it is known that they will not cause an
invalid value for ‘_DEPENDENCIES’ to be generated.

‘maude_LINK’
You can override the linker on a per-program basis. By default the linker is
chosen according to the languages used by the program. For instance, a program
that includes C++ source code would use the C++ compiler to link. The ‘_LINK’
variable must hold the name of a command which can be passed all the .o file
names as arguments. Note that the name of the underlying program is not
passed to ‘_LINK’; typically one uses ‘$@’:

maude_LINK = $(CCLD) -magic -o $@

‘maude_CCASFLAGS’
‘maude_CFLAGS’
‘maude_CPPFLAGS’
‘maude_CXXFLAGS’
‘maude_FFLAGS’
‘maude_GCJFLAGS’
‘maude_LFLAGS’
‘maude_OBJCFLAGS’
‘maude_RFLAGS’
‘maude_YFLAGS’

Automake allows you to set compilation flags on a per-program (or per-library)
basis. A single source file can be included in several programs, and it will poten-
tially be compiled with different flags for each program. This works for any lan-
guage directly supported by Automake. These per-target compilation flags are
‘_CCASFLAGS’, ‘_CFLAGS’, ‘_CPPFLAGS’, ‘_CXXFLAGS’, ‘_FFLAGS’, ‘_GCJFLAGS’,
‘_LFLAGS’, ‘_OBJCFLAGS’, ‘_RFLAGS’, and ‘_YFLAGS’.

When using a per-target compilation flag, Automake will choose a different
name for the intermediate object files. Ordinarily a file like sample.c will be
compiled to produce sample.o. However, if the program’s ‘_CFLAGS’ variable
is set, then the object file will be named, for instance, maude-sample.o. (See
also Section 26.6 [renamed objects], page 96.)

In compilations with per-target flags, the ordinary ‘AM_’ form of the flags vari-
able is not automatically included in the compilation (however, the user form
of the variable is included). So for instance, if you want the hypothetical maude
compilations to also use the value of ‘AM_CFLAGS’, you would need to write:

maude_CFLAGS = ... your flags ... $(AM_CFLAGS)

See Section 26.5 [Flag Variables Ordering], page 93, for more discussion about
the interaction between user variables, AM_ shadow variables, and per-target
variables.

‘maude_SHORTNAME’
On some platforms the allowable file names are very short. In order to support
these systems and per-target compilation flags at the same time, Automake
allows you to set a “short name” which will influence how intermediate object
files are named. For instance, in the following example,

bin_PROGRAMS = maude

Chapter 7: Building Programs and Libraries 42

maude_CPPFLAGS = -DSOMEFLAG

maude_SHORTNAME = m

maude_SOURCES = sample.c ...

the object file would be named m-sample.o rather than maude-sample.o.

This facility is rarely needed in practice, and we recommend avoiding it until
you find it is required.

7.5 Default _SOURCES

_SOURCES variables are used to specify source files of programs (see Section 7.1 [A Pro-
gram], page 29), libraries (see Section 7.2 [A Library], page 33), and Libtool libraries (see
Section 7.3 [A Shared Library], page 33).

When no such variable is specified for a target, Automake will define one itself. The
default is to compile a single C file whose base name is the name of the target itself, with
any extension replaced by .c. (Defaulting to C is terrible but we are stuck with it for
historical reasons.)

For example if you have the following somewhere in your Makefile.am with no corre-
sponding ‘libfoo_a_SOURCES’:

lib_LIBRARIES = libfoo.a sub/libc++.a

libfoo.a will be built using a default source file named libfoo.c, and sub/libc++.a

will be built from sub/libc++.c. (In older versions sub/libc++.a would be built from
sub_libc___a.c, i.e., the default source was the canonized name of the target, with .c

appended. We believe the new behavior is more sensible, but for backward compatibility
automake will use the old name if a file or a rule with that name exist.)

Default sources are mainly useful in test suites, when building many tests programs each
from a single source. For instance in

check_PROGRAMS = test1 test2 test3

test1, test2, and test3 will be built from test1.c, test2.c, and test3.c.

Another case where is this convenient is building many Libtool modules (moduleN.la),
each defined in its own file (moduleN.c).

AM_LDFLAGS = -module

lib_LTLIBRARIES = module1.la module2.la module3.la

Finally, there is one situation where this default source computation needs to be avoided:
when a target should not be built from sources. We already saw such an example in
Section 3.3 [true], page 8; this happens when all the constituents of a target have already
been compiled and need just to be combined using a _LDADD variable. Then it is necessary
to define an empty _SOURCES variable, so that automake does not compute a default.

bin_PROGRAMS = target

target_SOURCES =

target_LDADD = libmain.a libmisc.a

Chapter 7: Building Programs and Libraries 43

7.6 Special handling for LIBOBJS and ALLOCA

The $(LIBOBJS) and $(ALLOCA) variables list object files that should be compiled into the
project to provide an implementation for functions that are missing or broken on the host
system. They are substituted by configure.

These variables are defined by Autoconf macros such as AC_LIBOBJ, AC_REPLACE_FUNCS
(see Section “Generic Function Checks” in The Autoconf Manual), or AC_FUNC_ALLOCA (see
Section “Particular Function Checks” in The Autoconf Manual). Many other Autoconf
macros call AC_LIBOBJ or AC_REPLACE_FUNCS to populate $(LIBOBJS).

Using these variables is very similar to doing conditional compilation using AC_SUBST

variables, as described in Section 7.1.3 [Conditional Sources], page 31. That is, when build-
ing a program, $(LIBOBJS) and $(ALLOCA) should be added to the associated ‘*_LDADD’
variable, or to the ‘*_LIBADD’ variable when building a library. However there is no need
to list the corresponding sources in EXTRA_*_SOURCES nor to define *_DEPENDENCIES. Au-
tomake automatically adds $(LIBOBJS) and $(ALLOCA) to the dependencies, and it will
discover the list of corresponding source files automatically (by tracing the invocations of
the AC_LIBSOURCE Autoconf macros).

These variables are usually used to build a portability library that is linked with all the
programs of the project. We now review a sample setup. First, configure.ac contains
some checks that affect either LIBOBJS or ALLOCA.

configure.ac

...

AC_CONFIG_LIBOBJ_DIR([lib])

...

AC_FUNC_MALLOC dnl May add malloc.$(OBJEXT) to LIBOBJS

AC_FUNC_MEMCMP dnl May add memcmp.$(OBJEXT) to LIBOBJS

AC_REPLACE_FUNCS([strdup]) dnl May add strdup.$(OBJEXT) to LIBOBJS

AC_FUNC_ALLOCA dnl May add alloca.$(OBJEXT) to ALLOCA

...

AC_CONFIG_FILES([

lib/Makefile

src/Makefile

])

AC_OUTPUT

The AC_CONFIG_LIBOBJ_DIR tells Autoconf that the source files of these object files are
to be found in the lib/ directory. Automake does not yet use this information; it knows
the source files are expected to be in the directory where the $(LIBOBJS) and $(ALLOCA)

variables are used.

The lib/ directory should therefore contain malloc.c, memcmp.c, strdup.c, alloca.c.
Here is its Makefile.am:

lib/Makefile.am

noinst_LIBRARIES = libcompat.a

libcompat_a_SOURCES =

libcompat_a_LIBADD = $(LIBOBJS) $(ALLOCA)

Chapter 7: Building Programs and Libraries 44

Nothing else is required. The library can have any name, of course, and anyway it is
not going to be installed: it just holds the replacement versions of the missing or broken
functions so we can later link them in. In many projects also include extra functions, specific
to the project, in that library: they are simply added on the _SOURCES line.

Finally here is how this library could be used from the src/ directory.

src/Makefile.am

Link all programs in this directory with libcompat.a

LDADD = ../lib/libcompat.a

bin_PROGRAMS = tool1 tool2 ...

tool1_SOURCES = ...

tool2_SOURCES = ...

Please note it would be wrong to use the $(LIBOBJS) or $(ALLOCA) in
src/Makefile.am, because these variables contains unprefixed object names, and for
instance malloc.$(OBJEXT) is not buildable in the src/ directory. (Actually if you
try using $(LIBOBJS) in src/, Automake will require a copy of malloc.c, memcmp.c,
strdup.c, alloca.c in src/ too.)

Because $(LIBOBJS) and $(ALLOCA) contain object filenames that end with .$(OBJEXT),
they are not suitable for Libtool libraries (where the expected object extension is .lo):
LTLIBOBJS and LTALLOCA should be used instead.

LTLIBOBJS is defined automatically by Autoconf and should not be defined by hand (as
in the past), however at the time of writing LTALLOCA still needs to be defined from ALLOCA

manually. See Section “AC_LIBOBJ vs. LIBOBJS” in The Autoconf Manual.

7.7 Variables used when building a program

Occasionally it is useful to know which Makefile variables Automake uses for compilations;
for instance you might need to do your own compilation in some special cases.

Some variables are inherited from Autoconf; these are CC, CFLAGS, CPPFLAGS, DEFS,
LDFLAGS, and LIBS.

There are some additional variables which Automake itself defines:

AM_CPPFLAGS

The contents of this variable are passed to every compilation which invokes the
C preprocessor; it is a list of arguments to the preprocessor. For instance, ‘-I’
and ‘-D’ options should be listed here.

Automake already provides some ‘-I’ options automatically. In particular it
generates ‘-I$(srcdir)’, ‘-I.’, and a ‘-I’ pointing to the directory holding
config.h (if you’ve used AC_CONFIG_HEADERS or AM_CONFIG_HEADER). You
can disable the default ‘-I’ options using the ‘nostdinc’ option.

AM_CPPFLAGS is ignored in preference to a per-executable (or per-library) _

CPPFLAGS variable if it is defined.

INCLUDES This does the same job as ‘AM_CPPFLAGS’ (or any per-target ‘_CPPFLAGS’ vari-
able if it is used). It is an older name for the same functionality. This variable

Chapter 7: Building Programs and Libraries 45

is deprecated; we suggest using ‘AM_CPPFLAGS’ and per-target ‘_CPPFLAGS’ in-
stead.

AM_CFLAGS

This is the variable which the Makefile.am author can use to pass in additional
C compiler flags. It is more fully documented elsewhere. In some situations,
this is not used, in preference to the per-executable (or per-library) _CFLAGS.

COMPILE This is the command used to actually compile a C source file. The filename is
appended to form the complete command line.

AM_LDFLAGS

This is the variable which the Makefile.am author can use to pass in additional
linker flags. In some situations, this is not used, in preference to the per-
executable (or per-library) _LDFLAGS.

LINK This is the command used to actually link a C program. It already includes
‘-o $@’ and the usual variable references (for instance, CFLAGS); it takes as
“arguments” the names of the object files and libraries to link in.

7.8 Yacc and Lex support

Automake has somewhat idiosyncratic support for Yacc and Lex.

Automake assumes that the .c file generated by yacc (or lex) should be named using
the basename of the input file. That is, for a yacc source file foo.y, Automake will cause
the intermediate file to be named foo.c (as opposed to y.tab.c, which is more traditional).

The extension of a yacc source file is used to determine the extension of the resulting ‘C’
or ‘C++’ file. Files with the extension ‘.y’ will be turned into ‘.c’ files; likewise, ‘.yy’ will
become ‘.cc’; ‘.y++’, ‘c++’; and ‘.yxx’, ‘.cxx’.

Likewise, lex source files can be used to generate ‘C’ or ‘C++’; the extensions ‘.l’, ‘.ll’,
‘.l++’, and ‘.lxx’ are recognized.

You should never explicitly mention the intermediate (‘C’ or ‘C++’) file in any ‘SOURCES’
variable; only list the source file.

The intermediate files generated by yacc (or lex) will be included in any distribution
that is made. That way the user doesn’t need to have yacc or lex.

If a yacc source file is seen, then your configure.ac must define the variable ‘YACC’.
This is most easily done by invoking the macro ‘AC_PROG_YACC’ (see Section “Particular
Program Checks” in The Autoconf Manual).

When yacc is invoked, it is passed ‘YFLAGS’ and ‘AM_YFLAGS’. The former is a user
variable and the latter is intended for the Makefile.am author.

‘AM_YFLAGS’ is usually used to pass the -d option to yacc. Automake knows what this
means and will automatically adjust its rules to update and distribute the header file built
by yacc -d. What Automake cannot guess, though, is where this header will be used: it is
up to you to ensure the header gets built before it is first used. Typically this is necessary
in order for dependency tracking to work when the header is included by another file. The
common solution is listing the header file in BUILT_SOURCES (see Section 8.4 [Sources],
page 56) as follows.

BUILT_SOURCES = parser.h

Chapter 7: Building Programs and Libraries 46

AM_YFLAGS = -d

bin_PROGRAMS = foo

foo_SOURCES = ... parser.y ...

If a lex source file is seen, then your configure.ac must define the variable ‘LEX’.
You can use ‘AC_PROG_LEX’ to do this (see Section “Particular Program Checks” in The
Autoconf Manual), but using AM_PROG_LEX macro (see Section 5.6 [Macros], page 18) is
recommended.

When lex is invoked, it is passed ‘LFLAGS’ and ‘AM_LFLAGS’. The former is a user variable
and the latter is intended for the Makefile.am author.

Automake makes it possible to include multiple yacc (or lex) source files in a single
program. When there is more than one distinct yacc (or lex) source file in a directory,
Automake uses a small program called ylwrap to run yacc (or lex) in a subdirectory. This
is necessary because yacc’s output filename is fixed, and a parallel make could conceivably
invoke more than one instance of yacc simultaneously. The ylwrap program is distributed
with Automake. It should appear in the directory specified by ‘AC_CONFIG_AUX_DIR’, or one
of its default locations (see Section “Finding ‘configure’ Input” in The Autoconf Manual).

For yacc, simply managing locking is insufficient. The output of yacc always uses the
same symbol names internally, so it isn’t possible to link two yacc parsers into the same
executable.

We recommend using the following renaming hack used in gdb:

#define yymaxdepth c_maxdepth

#define yyparse c_parse

#define yylex c_lex

#define yyerror c_error

#define yylval c_lval

#define yychar c_char

#define yydebug c_debug

#define yypact c_pact

#define yyr1 c_r1

#define yyr2 c_r2

#define yydef c_def

#define yychk c_chk

#define yypgo c_pgo

#define yyact c_act

#define yyexca c_exca

#define yyerrflag c_errflag

#define yynerrs c_nerrs

#define yyps c_ps

#define yypv c_pv

#define yys c_s

#define yy_yys c_yys

#define yystate c_state

#define yytmp c_tmp

#define yyv c_v

#define yy_yyv c_yyv

Chapter 7: Building Programs and Libraries 47

#define yyval c_val

#define yylloc c_lloc

#define yyreds c_reds

#define yytoks c_toks

#define yylhs c_yylhs

#define yylen c_yylen

#define yydefred c_yydefred

#define yydgoto c_yydgoto

#define yysindex c_yysindex

#define yyrindex c_yyrindex

#define yygindex c_yygindex

#define yytable c_yytable

#define yycheck c_yycheck

#define yyname c_yyname

#define yyrule c_yyrule

For each define, replace the ‘c_’ prefix with whatever you like. These defines work for
bison, byacc, and traditional yaccs. If you find a parser generator that uses a symbol not
covered here, please report the new name so it can be added to the list.

7.9 C++ Support

Automake includes full support for C++.

Any package including C++ code must define the output variable ‘CXX’ in configure.ac;
the simplest way to do this is to use the AC_PROG_CXX macro (see Section “Particular
Program Checks” in The Autoconf Manual).

A few additional variables are defined when a C++ source file is seen:

CXX The name of the C++ compiler.

CXXFLAGS Any flags to pass to the C++ compiler.

AM_CXXFLAGS

The maintainer’s variant of CXXFLAGS.

CXXCOMPILE

The command used to actually compile a C++ source file. The file name is
appended to form the complete command line.

CXXLINK The command used to actually link a C++ program.

7.10 Assembly Support

Automake includes some support for assembly code.

The variable CCAS holds the name of the compiler used to build assembly code. This
compiler must work a bit like a C compiler; in particular it must accept ‘-c’ and ‘-o’.
The values of CCASFLAGS and AM_CCASFLAGS (or its per-target definition) are passed to the
compilation.

The autoconf macro AM_PROG_AS will define CCAS and CCASFLAGS for you (unless they
are already set, it simply sets CCAS to the C compiler and CCASFLAGS to the C compiler
flags), but you are free to define these variables by other means.

Chapter 7: Building Programs and Libraries 48

Only the suffixes ‘.s’ and ‘.S’ are recognized by automake as being files containing
assembly code.

7.11 Fortran 77 Support

Automake includes full support for Fortran 77.

Any package including Fortran 77 code must define the output variable ‘F77’ in
configure.ac; the simplest way to do this is to use the AC_PROG_F77 macro (see Section
“Particular Program Checks” in The Autoconf Manual).

A few additional variables are defined when a Fortran 77 source file is seen:

F77 The name of the Fortran 77 compiler.

FFLAGS Any flags to pass to the Fortran 77 compiler.

AM_FFLAGS

The maintainer’s variant of FFLAGS.

RFLAGS Any flags to pass to the Ratfor compiler.

AM_RFLAGS

The maintainer’s variant of RFLAGS.

F77COMPILE

The command used to actually compile a Fortran 77 source file. The file name
is appended to form the complete command line.

FLINK The command used to actually link a pure Fortran 77 program or shared library.

Automake can handle preprocessing Fortran 77 and Ratfor source files in addition to
compiling them5. Automake also contains some support for creating programs and shared
libraries that are a mixture of Fortran 77 and other languages (see Section 7.11.3 [Mixing
Fortran 77 With C and C++], page 49).

These issues are covered in the following sections.

7.11.1 Preprocessing Fortran 77

N.f is made automatically from N.F or N.r. This rule runs just the preprocessor to convert
a preprocessable Fortran 77 or Ratfor source file into a strict Fortran 77 source file. The
precise command used is as follows:

.F $(F77) -F $(DEFS) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(AM_

FFLAGS) $(FFLAGS)

.r $(F77) -F $(AM_FFLAGS) $(FFLAGS) $(AM_RFLAGS) $(RFLAGS)

7.11.2 Compiling Fortran 77 Files

N.o is made automatically from N.f, N.F or N.r by running the Fortran 77 compiler. The
precise command used is as follows:

.f $(F77) -c $(AM_FFLAGS) $(FFLAGS)

5 Much, if not most, of the information in the following sections pertaining to preprocessing Fortran 77
programs was taken almost verbatim from Section “Catalogue of Rules” in The GNU Make Manual.

Chapter 7: Building Programs and Libraries 49

.F $(F77) -c $(DEFS) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(AM_

FFLAGS) $(FFLAGS)

.r $(F77) -c $(AM_FFLAGS) $(FFLAGS) $(AM_RFLAGS) $(RFLAGS)

7.11.3 Mixing Fortran 77 With C and C++

Automake currently provides limited support for creating programs and shared libraries
that are a mixture of Fortran 77 and C and/or C++. However, there are many other issues
related to mixing Fortran 77 with other languages that are not (currently) handled by
Automake, but that are handled by other packages6.

6 For example, the cfortran package (http://www-zeus.desy.de/~burow/cfortran/) addresses all of these
inter-language issues, and runs under nearly all Fortran 77, C and C++ compilers on nearly all platforms.
However, cfortran is not yet Free Software, but it will be in the next major release.

http://www-zeus.desy.de/~burow/cfortran/

Chapter 7: Building Programs and Libraries 50

Automake can help in two ways:

1. Automatic selection of the linker depending on which combinations of source code.

2. Automatic selection of the appropriate linker flags (e.g. ‘-L’ and ‘-l’) to pass to the
automatically selected linker in order to link in the appropriate Fortran 77 intrinsic
and run-time libraries.

These extra Fortran 77 linker flags are supplied in the output variable FLIBS by the
AC_F77_LIBRARY_LDFLAGS Autoconf macro supplied with newer versions of Autoconf
(Autoconf version 2.13 and later). See Section “Fortran 77 Compiler Characteristics”
in The Autoconf .

If Automake detects that a program or shared library (as mentioned in some _PROGRAMS
or _LTLIBRARIES primary) contains source code that is a mixture of Fortran 77 and C and/or
C++, then it requires that the macro AC_F77_LIBRARY_LDFLAGS be called in configure.ac,
and that either $(FLIBS) appear in the appropriate _LDADD (for programs) or _LIBADD (for
shared libraries) variables. It is the responsibility of the person writing the Makefile.am

to make sure that $(FLIBS) appears in the appropriate _LDADD or _LIBADD variable.

For example, consider the following Makefile.am:

bin_PROGRAMS = foo

foo_SOURCES = main.cc foo.f

foo_LDADD = libfoo.la $(FLIBS)

pkglib_LTLIBRARIES = libfoo.la

libfoo_la_SOURCES = bar.f baz.c zardoz.cc

libfoo_la_LIBADD = $(FLIBS)

In this case, Automake will insist that AC_F77_LIBRARY_LDFLAGS is mentioned
in configure.ac. Also, if $(FLIBS) hadn’t been mentioned in foo_LDADD and
libfoo_la_LIBADD, then Automake would have issued a warning.

Chapter 7: Building Programs and Libraries 51

7.11.3.1 How the Linker is Chosen

The following diagram demonstrates under what conditions a particular linker is chosen by
Automake.

For example, if Fortran 77, C and C++ source code were to be compiled into a program,
then the C++ linker will be used. In this case, if the C or Fortran 77 linkers required any
special libraries that weren’t included by the C++ linker, then they must be manually added
to an _LDADD or _LIBADD variable by the user writing the Makefile.am.

\ Linker

source \

code \ C C++ Fortran

----------------- +---------+---------+---------+

| | | |

C | x | | |

| | | |

+---------+---------+---------+

| | | |

C++ | | x | |

| | | |

+---------+---------+---------+

| | | |

Fortran | | | x |

| | | |

+---------+---------+---------+

| | | |

C + C++ | | x | |

| | | |

+---------+---------+---------+

| | | |

C + Fortran | | | x |

| | | |

+---------+---------+---------+

| | | |

C++ + Fortran | | x | |

| | | |

+---------+---------+---------+

| | | |

C + C++ + Fortran | | x | |

| | | |

+---------+---------+---------+

7.12 Fortran 9x Support

Automake includes full support for Fortran 9x.

Any package including Fortran 9x code must define the output variable ‘FC’ in
configure.ac; the simplest way to do this is to use the AC_PROG_FC macro (see Section
“Particular Program Checks” in The Autoconf Manual).

Chapter 7: Building Programs and Libraries 52

A few additional variables are defined when a Fortran 9x source file is seen:

FC The name of the Fortran 9x compiler.

FCFLAGS Any flags to pass to the Fortran 9x compiler.

AM_FCFLAGS

The maintainer’s variant of FCFLAGS.

FCCOMPILE

The command used to actually compile a Fortran 9x source file. The file name
is appended to form the complete command line.

FCLINK The command used to actually link a pure Fortran 9x program or shared library.

7.12.1 Compiling Fortran 9x Files

N.o is made automatically from N.f90 or N.f95 by running the Fortran 9x compiler. The
precise command used is as follows:

.f9x $(FC) -c $(AM_FCFLAGS) $(FCFLAGS)

7.13 Java Support

Automake includes support for compiled Java, using gcj, the Java front end to the GNU
Compiler Collection.

Any package including Java code to be compiled must define the output variable
‘GCJ’ in configure.ac; the variable ‘GCJFLAGS’ must also be defined somehow (either in
configure.ac or Makefile.am). The simplest way to do this is to use the AM_PROG_GCJ

macro.

By default, programs including Java source files are linked with gcj.

As always, the contents of ‘AM_GCJFLAGS’ are passed to every compilation invoking
gcj (in its role as an ahead-of-time compiler – when invoking it to create .class

files, ‘AM_JAVACFLAGS’ is used instead). If it is necessary to pass options to gcj from
Makefile.am, this variable, and not the user variable ‘GCJFLAGS’, should be used.

gcj can be used to compile .java, .class, .zip, or .jar files.

When linking, gcj requires that the main class be specified using the ‘--main=’ option.
The easiest way to do this is to use the _LDFLAGS variable for the program.

7.14 Support for Other Languages

Automake currently only includes full support for C, C++ (see Section 7.9 [C++ Support],
page 47), Fortran 77 (see Section 7.11 [Fortran 77 Support], page 48), Fortran 9x (see
Section 7.12 [Fortran 9x Support], page 51), and Java (see Section 7.13 [Java Support],
page 52). There is only rudimentary support for other languages, support for which will be
improved based on user demand.

Some limited support for adding your own languages is available via the suffix rule
handling (see Section 17.2 [Suffixes], page 78).

Chapter 7: Building Programs and Libraries 53

7.15 Automatic de-ANSI-fication

Although the GNU standards allow the use of ANSI C, this can have the effect of limiting
portability of a package to some older compilers (notably the SunOS C compiler).

Automake allows you to work around this problem on such machines by de-ANSI-fying
each source file before the actual compilation takes place.

If the Makefile.am variable AUTOMAKE_OPTIONS (see Chapter 16 [Options], page 74)
contains the option ansi2knr then code to handle de-ANSI-fication is inserted into the
generated Makefile.in.

This causes each C source file in the directory to be treated as ANSI C. If an ANSI C
compiler is available, it is used. If no ANSI C compiler is available, the ansi2knr program
is used to convert the source files into K&R C, which is then compiled.

The ansi2knr program is simple-minded. It assumes the source code will be formatted
in a particular way; see the ansi2knr man page for details.

Support for de-ANSI-fication requires the source files ansi2knr.c and ansi2knr.1 to
be in the same package as the ANSI C source; these files are distributed with Automake.
Also, the package configure.ac must call the macro AM_C_PROTOTYPES (see Section 5.6
[Macros], page 18).

Automake also handles finding the ansi2knr support files in some other directory in the
current package. This is done by prepending the relative path to the appropriate directory
to the ansi2knr option. For instance, suppose the package has ANSI C code in the src

and lib subdirectories. The files ansi2knr.c and ansi2knr.1 appear in lib. Then this
could appear in src/Makefile.am:

AUTOMAKE_OPTIONS = ../lib/ansi2knr

If no directory prefix is given, the files are assumed to be in the current directory.

Note that automatic de-ANSI-fication will not work when the package is being built
for a different host architecture. That is because automake currently has no way to build
ansi2knr for the build machine.

Using LIBOBJS with source de-ANSI-fication used to require hand-crafted code in
configure to append $U to basenames in LIBOBJS. This is no longer true today. Starting
with version 2.54, Autoconf takes care of rewriting LIBOBJS and LTLIBOBJS. (see Section
“AC_LIBOBJ vs. LIBOBJS” in The Autoconf Manual)

7.16 Automatic dependency tracking

As a developer it is often painful to continually update the Makefile.in whenever the
include-file dependencies change in a project. Automake supplies a way to automatically
track dependency changes.

Automake always uses complete dependencies for a compilation, including system head-
ers. Automake’s model is that dependency computation should be a side effect of the build.
To this end, dependencies are computed by running all compilations through a special
wrapper program called depcomp. depcomp understands how to coax many different C and
C++ compilers into generating dependency information in the format it requires. automake
-a will install depcomp into your source tree for you. If depcomp can’t figure out how to
properly invoke your compiler, dependency tracking will simply be disabled for your build.

Chapter 7: Building Programs and Libraries 54

Experience with earlier versions of Automake (see Section 27.2 [Dependency Tracking
Evolution], page 112) taught us that it is not reliable to generate dependencies only on the
maintainer’s system, as configurations vary too much. So instead Automake implements
dependency tracking at build time.

Automatic dependency tracking can be suppressed by putting no-dependencies in the
variable AUTOMAKE_OPTIONS, or passing no-dependencies as an argument to AM_INIT_

AUTOMAKE (this should be the preferred way). Or, you can invoke automake with the -i

option. Dependency tracking is enabled by default.

The person building your package also can choose to disable dependency tracking by
configuring with --disable-dependency-tracking.

7.17 Support for executable extensions

On some platforms, such as Windows, executables are expected to have an extension such as
‘.exe’. On these platforms, some compilers (GCC among them) will automatically generate
foo.exe when asked to generate foo.

Automake provides mostly-transparent support for this. Unfortunately mostly doesn’t
yet mean fully. Until the English dictionary is revised, you will have to assist Automake if
your package must support those platforms.

One thing you must be aware of is that, internally, Automake rewrites something like
this:

bin_PROGRAMS = liver

to this:

bin_PROGRAMS = liver$(EXEEXT)

The targets Automake generates are likewise given the ‘$(EXEEXT)’ extension. EXEEXT

However, Automake cannot apply this rewriting to configure substitutions. This means
that if you are conditionally building a program using such a substitution, then your
configure.ac must take care to add ‘$(EXEEXT)’ when constructing the output variable.

With Autoconf 2.13 and earlier, you must explicitly use AC_EXEEXT to get this sup-
port. With Autoconf 2.50, AC_EXEEXT is run automatically if you configure a compiler (say,
through AC_PROG_CC).

Sometimes maintainers like to write an explicit link rule for their program. Without
executable extension support, this is easy—you simply write a rule whose target is the
name of the program. However, when executable extension support is enabled, you must
instead add the ‘$(EXEEXT)’ suffix.

Unfortunately, due to the change in Autoconf 2.50, this means you must always add this
extension. However, this is a problem for maintainers who know their package will never run
on a platform that has executable extensions. For those maintainers, the no-exeext option
(see Chapter 16 [Options], page 74) will disable this feature. This works in a fairly ugly way;
if no-exeext is seen, then the presence of a rule for a target named foo in Makefile.am will
override an automake-generated rule for foo$(EXEEXT). Without the no-exeext option,
this use will give a diagnostic.

Chapter 8: Other Derived Objects 55

8 Other Derived Objects

Automake can handle derived objects which are not C programs. Sometimes the support
for actually building such objects must be explicitly supplied, but Automake will still au-
tomatically handle installation and distribution.

8.1 Executable Scripts

It is possible to define and install programs which are scripts. Such programs are listed
using the ‘SCRIPTS’ primary name. Automake doesn’t define any dependencies for scripts;
the Makefile.am should include the appropriate rules.

Automake does not assume that scripts are derived objects; such objects must be deleted
by hand (see Chapter 12 [Clean], page 67).

The automake program itself is a Perl script that is generated from automake.in. Here
is how this is handled:

bin_SCRIPTS = automake

CLEANFILES = $(bin_SCRIPTS)

do_subst = sed -e ’s,[@]datadir[@],$(datadir),g’ \

-e ’s,[@]PERL[@],$(PERL),g’ \

-e ’s,[@]PACKAGE[@],$(PACKAGE),g’ \

-e ’s,[@]VERSION[@],$(VERSION),g’ \

...

automake: automake.in Makefile

$(do_subst) < $(srcdir)/automake.in > automake

chmod +x automake

Because—as we have just seen—scripts can be built, they are not distributed by default.
Scripts that should be distributed can be specified using a dist_ prefix as in other primaries.
For instance the following Makefile.am declares that my_script should be distributed and
installed in $(sbindir).

dist_sbin_SCRIPTS = my_script

Script objects can be installed in bindir, sbindir, libexecdir, or pkgdatadir.

Scripts that need not being installed can be listed in noinst_SCRIPTS, and among them,
those which are needed only by make check should go in check_SCRIPTS.

8.2 Header files

Header files that must be installed are specified by the ‘HEADERS’ family of variables. Headers
can be installed in includedir, oldincludedir, pkgincludedir or any other directory you
may have defined (see Section 2.3 [Uniform], page 3). For instance

include_HEADERS = foo.h bar/bar.h

will install the two files as $(includedir)/foo.h and $(includedir)/bar.h.

The ‘nobase_’ prefix is also supported,

nobase_include_HEADERS = foo.h bar/bar.h

Chapter 8: Other Derived Objects 56

will install the two files as $(includedir)/foo.h and $(includedir)/bar/bar.h (see
Section 6.3 [Alternative], page 27).

Usually, only header files that accompany installed libraries need to be installed. Headers
used by programs or convenience libraries are not installed. The noinst_HEADERS variable
can be used for such headers. However when the header actually belongs to one convenient
library or program, we recommend listing it in the program’s or library’s ‘_SOURCES’ variable
(see Section 7.1.1 [Program Sources], page 29) instead of in noinst_HEADERS. This is
clearer for the Makefile.am reader. noinst_HEADERS would be the right variable to use in
a directory containing only headers and no associated library or program.

All header files must be listed somewhere; in a ‘_SOURCES’ variable or in a ‘_HEADERS’
variable. Missing ones will not appear in the distribution.

For header files that are built and must not be distributed, use the ‘nodist_’ prefix
as in nodist_include_HEADERS or nodist_prog_SOURCES. If these generated headers are
needed during the build, you must also ensure they exist before they are used (see Section 8.4
[Sources], page 56).

8.3 Architecture-independent data files

Automake supports the installation of miscellaneous data files using the ‘DATA’ family of
variables.

Such data can be installed in the directories datadir, sysconfdir, sharedstatedir,
localstatedir, or pkgdatadir.

By default, data files are not included in a distribution. Of course, you can use the
‘dist_’ prefix to change this on a per-variable basis.

Here is how Automake declares its auxiliary data files:

dist_pkgdata_DATA = clean-kr.am clean.am ...

8.4 Built sources

Because Automake’s automatic dependency tracking works as a side-effect of compilation
(see Section 7.16 [Dependencies], page 53) there is a bootstrap issue: a target should not
be compiled before its dependencies are made, but these dependencies are unknown until
the target is first compiled.

Ordinarily this is not a problem, because dependencies are distributed sources: they
preexist and do not need to be built. Suppose that foo.c includes foo.h. When it first
compiles foo.o, make only knows that foo.o depends on foo.c. As a side-effect of this
compilation depcomp records the foo.h dependency so that following invocations of make
will honor it. In these conditions, it’s clear there is no problem: either foo.o doesn’t exist
and has to be built (regardless of the dependencies), or accurate dependencies exist and
they can be used to decide whether foo.o should be rebuilt.

It’s a different story if foo.h doesn’t exist by the first make run. For instance there
might be a rule to build foo.h. This time file.o’s build will fail because the compiler
can’t find foo.h. make failed to trigger the rule to build foo.h first by lack of dependency
information.

The BUILT_SOURCES variable is a workaround for this problem. A source file listed in
BUILT_SOURCES is made on make all or make check (or even make install) before other

Chapter 8: Other Derived Objects 57

targets are processed. However, such a source file is not compiled unless explicitly requested
by mentioning it in some other ‘_SOURCES’ variable.

So, to conclude our introductory example, we could use BUILT_SOURCES = foo.h to
ensure foo.h gets built before any other target (including foo.o) during make all or make
check.

BUILT_SOURCES is actually a bit of a misnomer, as any file which must be created early
in the build process can be listed in this variable. Moreover, all built sources do not
necessarily have to be listed in BUILT_SOURCES. For instance a generated .c file doesn’t
need to appear in BUILT_SOURCES (unless it is included by another source), because it’s a
known dependency of the associated object.

It might be important to emphasize that BUILT_SOURCES is honored only by make all,
make check and make install. This means you cannot build a specific target (e.g., make
foo) in a clean tree if it depends on a built source. However it will succeed if you have run
make all earlier, because accurate dependencies are already available.

The next section illustrates and discusses the handling of built sources on a toy example.

8.4.1 Built sources example

Suppose that foo.c includes bindir.h, which is installation-dependent and not distributed:
it needs to be built. Here bindir.h defines the preprocessor macro bindir to the value of
the make variable bindir (inherited from configure).

We suggest several implementations below. It’s not meant to be an exhaustive listing of
all ways to handle built sources, but it will give you a few ideas if you encounter this issue.

First try

This first implementation will illustrate the bootstrap issue mentioned in the previous sec-
tion (see Section 8.4 [Sources], page 56).

Here is a tentative Makefile.am.

This won’t work.

bin_PROGRAMS = foo

foo_SOURCES = foo.c

nodist_foo_SOURCES = bindir.h

CLEANFILES = bindir.h

bindir.h: Makefile

echo ’#define bindir "$(bindir)"’ >$@

This setup doesn’t work, because Automake doesn’t know that foo.c includes bindir.h.
Remember, automatic dependency tracking works as a side-effect of compilation, so the
dependencies of foo.o will be known only after foo.o has been compiled (see Section 7.16
[Dependencies], page 53). The symptom is as follows.

% make

source=’foo.c’ object=’foo.o’ libtool=no \

depfile=’.deps/foo.Po’ tmpdepfile=’.deps/foo.TPo’ \

depmode=gcc /bin/sh ./depcomp \

gcc -I. -I. -g -O2 -c ‘test -f ’foo.c’ || echo ’./’‘foo.c

foo.c:2: bindir.h: No such file or directory

make: *** [foo.o] Error 1

Chapter 8: Other Derived Objects 58

In this example bindir.h is not distributed, not installed, and it is not even being built
on-time. One may wonder what the nodist_foo_SOURCES = bindir.h line has any use at
all. This line simply states that bindir.h is a source of foo, so for instance it should be
inspected while generating tags (see Section 17.1 [Tags], page 77). In other words, it does
not help our present problem, and the build would fail identically without it.

Using BUILT_SOURCES

A solution is to require bindir.h to be built before anything else. This is what BUILT_

SOURCES is meant for (see Section 8.4 [Sources], page 56).

bin_PROGRAMS = foo

foo_SOURCES = foo.c

nodist_foo_SOURCES = bindir.h

BUILT_SOURCES = bindir.h

CLEANFILES = bindir.h

bindir.h: Makefile

echo ’#define bindir "$(bindir)"’ >$@

See how bindir.h get built first:

% make

echo ’#define bindir "/usr/local/bin"’ >bindir.h

make all-am

make[1]: Entering directory ‘/home/adl/tmp’

source=’foo.c’ object=’foo.o’ libtool=no \

depfile=’.deps/foo.Po’ tmpdepfile=’.deps/foo.TPo’ \

depmode=gcc /bin/sh ./depcomp \

gcc -I. -I. -g -O2 -c ‘test -f ’foo.c’ || echo ’./’‘foo.c

gcc -g -O2 -o foo foo.o

make[1]: Leaving directory ‘/home/adl/tmp’

However, as said earlier, BUILT_SOURCES applies only to the all, check, and install

targets. It still fails if you try to run make foo explicitly:

% make clean

test -z "bindir.h" || rm -f bindir.h

test -z "foo" || rm -f foo

rm -f *.o

% : > .deps/foo.Po # Suppress previously recorded dependencies

% make foo

source=’foo.c’ object=’foo.o’ libtool=no \

depfile=’.deps/foo.Po’ tmpdepfile=’.deps/foo.TPo’ \

depmode=gcc /bin/sh ./depcomp \

gcc -I. -I. -g -O2 -c ‘test -f ’foo.c’ || echo ’./’‘foo.c

foo.c:2: bindir.h: No such file or directory

make: *** [foo.o] Error 1

Recording dependencies manually

Usually people are happy enough with BUILT_SOURCES because they never build targets such
as make foo before make all, as in the previous example. However if this matters to you,
you can avoid BUILT_SOURCES and record such dependencies explicitly in the Makefile.am.

Chapter 8: Other Derived Objects 59

bin_PROGRAMS = foo

foo_SOURCES = foo.c

nodist_foo_SOURCES = bindir.h

foo.$(OBJEXT): bindir.h

CLEANFILES = bindir.h

bindir.h: Makefile

echo ’#define bindir "$(bindir)"’ >$@

You don’t have to list all the dependencies of foo.o explicitly, only those which might
need to be built. If a dependency already exists, it will not hinder the first compilation
and will be recorded by the normal dependency tracking code. (Note that after this first
compilation the dependency tracking code will also have recorded the dependency between
foo.o and bindir.h; so our explicit dependency is really useful to the first build only.)

Adding explicit dependencies like this can be a bit dangerous if you are not careful
enough. This is due to the way Automake tries not to overwrite your rules (it assumes
you know better than it). foo.$(OBJEXT): bindir.h supersedes any rule Automake may
want to output to build foo.$(OBJEXT). It happens to work in this case because Automake
doesn’t have to output any foo.$(OBJEXT): target: it relies on a suffix rule instead (i.e.,
.c.$(OBJEXT):). Always check the generated Makefile.in if you do this.

Build bindir.h from configure

It’s possible to define this preprocessor macro from configure, either in config.h (see
Section “Defining Directories” in The Autoconf Manual), or by processing a bindir.h.in

file using AC_CONFIG_FILES (see Section “Configuration Actions” in The Autoconf Manual).

At this point it should be clear that building bindir.h from configure work well for
this example. bindir.h will exist before you build any target, hence will not cause any
dependency issue.

The Makefile can be shrunk as follows. We do not even have to mention bindir.h.

bin_PROGRAMS = foo

foo_SOURCES = foo.c

However, it’s not always possible to build sources from configure, especially when these
sources are generated by a tool that needs to be built first...

Build bindir.c, not bindir.h.

Another attractive idea is to define bindir as a variable or function exported from bindir.o,
and build bindir.c instead of bindir.h.

noinst_PROGRAMS = foo

foo_SOURCES = foo.c bindir.h

nodist_foo_SOURCES = bindir.c

CLEANFILES = bindir.c

bindir.c: Makefile

echo ’const char bindir[] = "$(bindir)";’ >$@

bindir.h contains just the variable’s declaration and doesn’t need to be built, so it
won’t cause any trouble. bindir.o is always dependent on bindir.c, so bindir.c will get
built first.

Chapter 9: Other GNU Tools 60

Which is best?

There is no panacea, of course. Each solution has its merits and drawbacks.

You cannot use BUILT_SOURCES if the ability to run make foo on a clean tree is important
to you.

You won’t add explicit dependencies if you are leery of overriding an Automake rule by
mistake.

Building files from ./configure is not always possible, neither is converting .h files into
.c files.

9 Other GNU Tools

Since Automake is primarily intended to generate Makefile.ins for use in GNU programs,
it tries hard to interoperate with other GNU tools.

9.1 Emacs Lisp

Automake provides some support for Emacs Lisp. The ‘LISP’ primary is used to hold a
list of .el files. Possible prefixes for this primary are ‘lisp_’ and ‘noinst_’. Note that
if lisp_LISP is defined, then configure.ac must run AM_PATH_LISPDIR (see Section 5.6
[Macros], page 18).

Lisp sources are not distributed by default. You can prefix the LISP primary with
dist_, as in dist_lisp_LISP or dist_noinst_LISP, to indicate that these files should be
distributed.

Automake will byte-compile all Emacs Lisp source files using the Emacs found by AM_

PATH_LISPDIR, if any was found.

Byte-compiled Emacs Lisp files are not portable among all versions of Emacs, so it
makes sense to turn this off if you expect sites to have more than one version of Emacs
installed. Furthermore, many packages don’t actually benefit from byte-compilation. Still,
we recommend that you byte-compile your Emacs Lisp sources. It is probably better for
sites with strange setups to cope for themselves than to make the installation less nice for
everybody else.

There are two ways to avoid byte-compiling. Historically, we have recommended the
following construct.

lisp_LISP = file1.el file2.el

ELCFILES =

ELCFILES is an internal Automake variable that normally lists all .elc files that must be
byte-compiled. Automake defines ELCFILES automatically from lisp_LISP. Emptying this
variable explicitly prevents byte-compilation to occur.

Since Automake 1.8, we now recommend using lisp_DATA instead. As in

lisp_DATA = file1.el file2.el

Note that these two constructs are not equivalent. _LISP will not install a file if Emacs
is not installed, while _DATA will always install its files.

Chapter 9: Other GNU Tools 61

9.2 Gettext

If AM_GNU_GETTEXT is seen in configure.ac, then Automake turns on support for GNU
gettext, a message catalog system for internationalization (see Section “GNU Gettext” in
GNU gettext utilities).

The gettext support in Automake requires the addition of two subdirectories to the
package, intl and po. Automake insures that these directories exist and are mentioned in
SUBDIRS.

9.3 Libtool

Automake provides support for GNU Libtool (see Section “Introduction” in The Libtool
Manual) with the ‘LTLIBRARIES’ primary. See Section 7.3 [A Shared Library], page 33.

9.4 Java

Automake provides some minimal support for Java compilation with the ‘JAVA’ primary.

Any .java files listed in a ‘_JAVA’ variable will be compiled with JAVAC at build time.
By default, .java files are not included in the distribution, you should use the dist_ prefix
to distribute them.

Here is a typical setup for distributing .java files and installing the .class files resulting
from their compilation.

javadir = $(datadir)/java

dist_java_JAVA = a.java b.java ...

Currently Automake enforces the restriction that only one ‘_JAVA’ primary can be used
in a given Makefile.am. The reason for this restriction is that, in general, it isn’t possible to
know which .class files were generated from which .java files – so it would be impossible
to know which files to install where. For instance, a .java file can define multiple classes;
the resulting .class file names cannot be predicted without parsing the .java file.

There are a few variables which are used when compiling Java sources:

JAVAC The name of the Java compiler. This defaults to ‘javac’.

JAVACFLAGS

The flags to pass to the compiler. This is considered to be a user variable (see
Section 2.5 [User Variables], page 4).

AM_JAVACFLAGS

More flags to pass to the Java compiler. This, and not JAVACFLAGS, should be
used when it is necessary to put Java compiler flags into Makefile.am.

JAVAROOT The value of this variable is passed to the ‘-d’ option to javac. It defaults to
‘$(top_builddir)’.

CLASSPATH_ENV

This variable is an sh expression which is used to set the CLASSPATH environ-
ment variable on the javac command line. (In the future we will probably
handle class path setting differently.)

Chapter 9: Other GNU Tools 62

9.5 Python

Automake provides support for Python compilation with the ‘PYTHON’ primary.

Any files listed in a ‘_PYTHON’ variable will be byte-compiled with py-compile at install
time. py-compile actually creates both standard (.pyc) and byte-compiled (.pyo) versions
of the source files. Note that because byte-compilation occurs at install time, any files listed
in ‘noinst_PYTHON’ will not be compiled. Python source files are included in the distribution
by default.

Automake ships with an Autoconf macro called AM_PATH_PYTHON which will deter-
mine some Python-related directory variables (see below). If you have called AM_PATH_

PYTHON from configure.ac, then you may use the following variables to list you Python
source files in your variables: ‘python_PYTHON’, ‘pkgpython_PYTHON’, ‘pyexecdir_PYTHON’,
‘pkgpyexecdir_PYTHON’, depending where you want your files installed.

AM_PATH_PYTHON([VERSION], [ACTION-IF-FOUND], [ACTION-IF-NOT-FOUND]) takes
three optional arguments. It will search a Python interpreter on the system. The
first argument, if present, is the minimum version of Python required for this package:
AM_PATH_PYTHON will skip any Python interpreter which is older than VERSION. If an
interpreter is found and satisfies VERSION, then ACTION-IF-FOUND is run. Otherwise,
ACTION-IF-NOT-FOUND is run.

If ACTION-IF-NOT-FOUND is not specified, the default is to abort configure. This is
fine when Python is an absolute requirement for the package. Therefore if Python >= 2.2
is only optional to the package, AM_PATH_PYTHON could be called as follows.

AM_PATH_PYTHON(2.2,, :)

AM_PATH_PYTHON creates several output variables based on the Python installation found
during configuration.

PYTHON The name of the Python executable, or : if no suitable interpreter could be
found.

Assuming ACTION-IF-NOT-FOUND is used (otherwise ./configure will
abort if Python is absent), the value of PYTHON can be used to setup a
conditional in order to disable the relevant part of a build as follows.

AM_PATH_PYTHON(,, :)

AM_CONDITIONAL([HAVE_PYTHON], [test "$PYTHON" != :])

If the ACTION-IF-NOT-FOUND is specified

PYTHON_VERSION

The Python version number, in the form major.minor (e.g. ‘1.5’). This is
currently the value of sys.version[:3].

PYTHON_PREFIX

The string ${prefix}. This term may be used in future work which needs the
contents of Python’s sys.prefix, but general consensus is to always use the
value from configure.

PYTHON_EXEC_PREFIX

The string ${exec_prefix}. This term may be used in future work which needs
the contents of Python’s sys.exec_prefix, but general consensus is to always
use the value from configure.

Chapter 10: Building documentation 63

PYTHON_PLATFORM

The canonical name used by Python to describe the operating system, as given
by sys.platform. This value is sometimes needed when building Python ex-
tensions.

pythondir

The directory name for the site-packages subdirectory of the standard Python
install tree.

pkgpythondir

This is is the directory under pythondir which is named after the package.
That is, it is ‘$(pythondir)/$(PACKAGE)’. It is provided as a convenience.

pyexecdir

This is the directory where Python extension modules (shared libraries) should
be installed.

pkgpyexecdir

This is a convenience variable which is defined as ‘$(pyexecdir)/$(PACKAGE)’.

All these directory variables have values that start with either ${prefix} or ${exec_

prefix} unexpanded. This works fine in Makefiles, but it makes these variables hard to
use in configure. This is mandated by the GNU coding standards, so that the user can
run make prefix=/foo install. The Autoconf manual has a section with more details on
this topic (see Section “Installation Directory Variables” in The Autoconf Manual).

10 Building documentation

Currently Automake provides support for Texinfo and man pages.

10.1 Texinfo

If the current directory contains Texinfo source, you must declare it with the ‘TEXINFOS’
primary. Generally Texinfo files are converted into info, and thus the info_TEXINFOS

variable is most commonly used here. Any Texinfo source file must end in the .texi, .txi,
or .texinfo extension. We recommend .texi for new manuals.

Automake generates rules to build .info, .dvi, .ps, .pdf and .html files from your
Texinfo sources. The .info files are built by make all and installed by make install

(unless you use no-installinfo, see below). The other files can be built on request by
make dvi, make ps, make pdf and make html.

If the .texi file @includes version.texi, then that file will be automatically generated.
The file version.texi defines four Texinfo flag you can reference using @value{EDITION},
@value{VERSION}, @value{UPDATED}, and @value{UPDATED-MONTH}.

EDITION

VERSION Both of these flags hold the version number of your program. They are kept
separate for clarity.

UPDATED This holds the date the primary .texi file was last modified.

Chapter 10: Building documentation 64

UPDATED-MONTH

This holds the name of the month in which the primary .texi file was last
modified.

The version.texi support requires the mdate-sh program; this program is supplied
with Automake and automatically included when automake is invoked with the --add-

missing option.

If you have multiple Texinfo files, and you want to use the version.texi feature, then
you have to have a separate version file for each Texinfo file. Automake will treat any include
in a Texinfo file that matches ‘vers*.texi’ just as an automatically generated version file.

Sometimes an info file actually depends on more than one .texi file. For instance, in
GNU Hello, hello.texi includes the file gpl.texi. You can tell Automake about these
dependencies using the texi_TEXINFOS variable. Here is how GNU Hello does it:

info_TEXINFOS = hello.texi

hello_TEXINFOS = gpl.texi

By default, Automake requires the file texinfo.tex to appear in the same directory
as the Texinfo source (this can be changed using the TEXINFO_TEX variable, see below).
However, if you used AC_CONFIG_AUX_DIR in configure.ac (see Section “Finding ‘configure’
Input” in The Autoconf Manual), then texinfo.tex is looked for there. Automake supplies
texinfo.tex if ‘--add-missing’ is given.

The option ‘no-texinfo.tex’ can be used to eliminate the requirement for texinfo.tex.
Use of the variable TEXINFO_TEX is preferable, however, because that allows the dvi, ps,
and pdf targets to still work.

Automake generates an install-info rule; some people apparently use this. By default,
info pages are installed by ‘make install’. This can be prevented via the no-installinfo
option.

The following variables are used by the Texinfo build rules.

MAKEINFO The name of the program invoked to build .info files. This variable is defined
by Automake. If the makeinfo program is found on the system then it will be
used by default; otherwise missing will be used instead.

MAKEINFOHTML

The command invoked to build .html files. Automake defines this to
$(MAKEINFO) --html.

MAKEINFOFLAGS

User flags passed to each invocation of $(MAKEINFO) and $(MAKEINFOHTML).
This user variable (see Section 2.5 [User Variables], page 4) is not expected to
be defined in any Makefile; it can be used by users to pass extra flags to suit
their needs.

AM_MAKEINFOFLAGS

AM_MAKEINFOHTMLFLAGS

Maintainer flags passed to each makeinfo invocation. These are maintainer
variables that can be overridden in Makefile.am. $(AM_MAKEINFOFLAGS) is
passed to makeinfo when building .info files; and $(AM_MAKEINFOHTMLFLAGS)

is used when building .html files.

Chapter 10: Building documentation 65

For instance the following setting can be used to obtain one single .html file
per manual, without node separators.

AM_MAKEINFOHTMLFLAGS = --no-headers --no-split

By default, $(AM_MAKEINFOHTMLFLAGS) is set to $(AM_MAKEINFOFLAGS).
This means that defining $(AM_MAKEINFOFLAGS) without defining
$(AM_MAKEINFOHTMLFLAGS) will impact builds of both .info and .html files.

TEXI2DVI The name of the command that converts a .texi file into a .dvi file. This
defaults to texi2dvi, a script that ships with the Texinfo package.

TEXI2PDF The name of the command that translates a .texi file into a .pdf file. This
defaults to $(TEXI2DVI) --pdf --batch.

DVIPS The name of the command that build a .ps file out of a .dvi file. This defaults
to dvips.

TEXINFO_TEX

If your package has Texinfo files in many directories, you can use the variable
TEXINFO_TEX to tell Automake where to find the canonical texinfo.tex for
your package. The value of this variable should be the relative path from the
current Makefile.am to texinfo.tex:

TEXINFO_TEX = ../doc/texinfo.tex

10.2 Man pages

A package can also include man pages (but see the GNU standards on this matter, Section
“Man Pages” in The GNU Coding Standards.) Man pages are declared using the ‘MANS’
primary. Generally the man_MANS variable is used. Man pages are automatically installed
in the correct subdirectory of mandir, based on the file extension.

File extensions such as ‘.1c’ are handled by looking for the valid part of the extension
and using that to determine the correct subdirectory of mandir. Valid section names are
the digits ‘0’ through ‘9’, and the letters ‘l’ and ‘n’.

Sometimes developers prefer to name a man page something like foo.man in the source,
and then rename it to have the correct suffix, e.g. foo.1, when installing the file. Automake
also supports this mode. For a valid section named SECTION, there is a corresponding
directory named ‘manSECTIONdir’, and a corresponding ‘_MANS’ variable. Files listed in
such a variable are installed in the indicated section. If the file already has a valid suffix,
then it is installed as-is; otherwise the file suffix is changed to match the section.

For instance, consider this example:

man1_MANS = rename.man thesame.1 alsothesame.1c

In this case, rename.man will be renamed to rename.1 when installed, but the other files
will keep their names.

By default, man pages are installed by ‘make install’. However, since the GNU project
does not require man pages, many maintainers do not expend effort to keep the man pages
up to date. In these cases, the no-installman option will prevent the man pages from being
installed by default. The user can still explicitly install them via ‘make install-man’.

Chapter 11: What Gets Installed 66

Here is how the man pages are handled in GNU cpio (which includes both Texinfo
documentation and man pages):

man_MANS = cpio.1 mt.1

EXTRA_DIST = $(man_MANS)

Man pages are not currently considered to be source, because it is not uncommon for
man pages to be automatically generated. Therefore they are not automatically included
in the distribution. However, this can be changed by use of the ‘dist_’ prefix.

The ‘nobase_’ prefix is meaningless for man pages and is disallowed.

11 What Gets Installed

11.1 Basics of installation

Naturally, Automake handles the details of actually installing your program once it has been
built. All files named by the various primaries are automatically installed in the appropriate
places when the user runs make install.

A file named in a primary is installed by copying the built file into the appropriate
directory. The base name of the file is used when installing.

bin_PROGRAMS = hello subdir/goodbye

In this example, both ‘hello’ and ‘goodbye’ will be installed in $(bindir).

Sometimes it is useful to avoid the basename step at install time. For instance, you
might have a number of header files in subdirectories of the source tree which are laid out
precisely how you want to install them. In this situation you can use the ‘nobase_’ prefix
to suppress the base name step. For example:

nobase_include_HEADERS = stdio.h sys/types.h

Will install stdio.h in $(includedir) and types.h in $(includedir)/sys.

11.2 The two parts of install

Automake generates separate install-data and install-exec rules, in case the installer
is installing on multiple machines which share directory structure—these targets allow the
machine-independent parts to be installed only once. install-exec installs platform-
dependent files, and install-data installs platform-independent files. The install target
depends on both of these targets. While Automake tries to automatically segregate objects
into the correct category, the Makefile.am author is, in the end, responsible for making
sure this is done correctly.

Variables using the standard directory prefixes ‘data’, ‘info’, ‘man’, ‘include’,
‘oldinclude’, ‘pkgdata’, or ‘pkginclude’ (e.g. ‘data_DATA’) are installed by
‘install-data’.

Variables using the standard directory prefixes ‘bin’, ‘sbin’, ‘libexec’, ‘sysconf’,
‘localstate’, ‘lib’, or ‘pkglib’ (e.g. ‘bin_PROGRAMS’) are installed by ‘install-exec’.

Any variable using a user-defined directory prefix with ‘exec’ in the name (e.g.
‘myexecbin_PROGRAMS’) is installed by ‘install-exec’. All other user-defined prefixes are
installed by ‘install-data’.

Chapter 12: What Gets Cleaned 67

11.3 Extending installation

It is possible to extend this mechanism by defining an install-exec-local or
install-data-local rule. If these rules exist, they will be run at ‘make install’ time.
These rules can do almost anything; care is required.

Automake also supports two install hooks, install-exec-hook and install-data-

hook. These hooks are run after all other install rules of the appropriate type, exec or data,
have completed. So, for instance, it is possible to perform post-installation modifications
using an install hook. Section 22.1 [Extending], page 81, gives some examples.

11.4 Staged installs

Automake generates support for the ‘DESTDIR’ variable in all install rules. ‘DESTDIR’ is used
during the ‘make install’ step to relocate install objects into a staging area. Each object
and path is prefixed with the value of ‘DESTDIR’ before being copied into the install area.
Here is an example of typical DESTDIR usage:

mkdir /tmp/staging &&

make DESTDIR=/tmp/staging install

The mkdir command avoids a security problem if the attacker creates a symbolic
link from /tmp/staging to a victim area; then make places install objects in a directory
tree built under /tmp/staging. If /gnu/bin/foo and /gnu/share/aclocal/foo.m4

are to be installed, the above command would install /tmp/staging/gnu/bin/foo and
/tmp/staging/gnu/share/aclocal/foo.m4.

This feature is commonly used to build install images and packages. For more informa-
tion, see Section “Makefile Conventions” in The GNU Coding Standards.

Support for ‘DESTDIR’ is implemented by coding it directly into the install rules. If your
Makefile.am uses a local install rule (e.g., install-exec-local) or an install hook, then
you must write that code to respect ‘DESTDIR’.

11.5 Rules for the user

Automake also generates rules for targets uninstall, installdirs, and install-strip.

Automake supports uninstall-local and uninstall-hook. There is no notion of sep-
arate uninstalls for “exec” and “data”, as these features would not provide additional func-
tionality.

Note that uninstall is not meant as a replacement for a real packaging tool.

12 What Gets Cleaned

The GNU Makefile Standards specify a number of different clean rules. See Section “Stan-
dard Targets for Users” in The GNU Coding Standards.

Generally the files that can be cleaned are determined automatically by Automake. Of
course, Automake also recognizes some variables that can be defined to specify additional
files to clean. These variables are MOSTLYCLEANFILES, CLEANFILES, DISTCLEANFILES, and
MAINTAINERCLEANFILES.

Chapter 13: What Goes in a Distribution 68

When cleaning involves more than deleting some hard-coded list of files, it is also possible
to supplement the cleaning rules with your own commands. Simply define a rule for any of
the mostlyclean-local, clean-local, distclean-local, or maintainer-clean-local

targets (see Section 22.1 [Extending], page 81). A common case is deleting a directory, for
instance a directory created by the test suite:

clean-local:

-rm -rf testSubDir

As the GNU Standards aren’t always explicit as to which files should be removed by
which rule, we’ve adopted a heuristic which we believe was first formulated by François
Pinard:

• If make built it, and it is commonly something that one would want to rebuild (for
instance, a .o file), then mostlyclean should delete it.

• Otherwise, if make built it, then clean should delete it.

• If configure built it, then distclean should delete it.

• If the maintainer built it (for instance, a .info file), then maintainer-clean should
delete it. However maintainer-clean should not delete anything that needs to exist
in order to run ./configure && make.

We recommend that you follow this same set of heuristics in your Makefile.am.

13 What Goes in a Distribution

13.1 Basics of distribution

The dist rule in the generated Makefile.in can be used to generate a gzip’d tar file
and other flavors of archive for distribution. The files is named based on the ‘PACKAGE’ and
‘VERSION’ variables defined by AM_INIT_AUTOMAKE (see Section 5.6 [Macros], page 18); more
precisely the gzip’d tar file is named ‘package-version.tar.gz’. You can use the make

variable ‘GZIP_ENV’ to control how gzip is run. The default setting is ‘--best’.

For the most part, the files to distribute are automatically found by Automake: all source
files are automatically included in a distribution, as are all Makefile.ams and Makefile.ins.
Automake also has a built-in list of commonly used files which are automatically included if
they are found in the current directory (either physically, or as the target of a Makefile.am

rule). This list is printed by ‘automake --help’. Also, files which are read by configure (i.e.
the source files corresponding to the files specified in various Autoconf macros such as AC_
CONFIG_FILES and siblings) are automatically distributed. Files included in Makefile.ams
(using include) or in configure.ac (using m4_include), and helper scripts installed with
‘automake --add-missing’ are also distributed.

Still, sometimes there are files which must be distributed, but which are not covered
in the automatic rules. These files should be listed in the EXTRA_DIST variable. You can
mention files from subdirectories in EXTRA_DIST.

You can also mention a directory in EXTRA_DIST; in this case the entire directory will be
recursively copied into the distribution. Please note that this will also copy everything in
the directory, including CVS/RCS version control files. We recommend against using this
feature.

Chapter 13: What Goes in a Distribution 69

If you define SUBDIRS, Automake will recursively include the subdirectories in the dis-
tribution. If SUBDIRS is defined conditionally (see Chapter 19 [Conditionals], page 79),
Automake will normally include all directories that could possibly appear in SUBDIRS in
the distribution. If you need to specify the set of directories conditionally, you can set the
variable DIST_SUBDIRS to the exact list of subdirectories to include in the distribution (see
Section 6.2 [Conditional Subdirectories], page 25).

13.2 Fine-grained distribution control

Sometimes you need tighter control over what does not go into the distribution; for instance
you might have source files which are generated and which you do not want to distribute. In
this case Automake gives fine-grained control using the ‘dist’ and ‘nodist’ prefixes. Any
primary or ‘_SOURCES’ variable can be prefixed with ‘dist_’ to add the listed files to the
distribution. Similarly, ‘nodist_’ can be used to omit the files from the distribution.

As an example, here is how you would cause some data to be distributed while leaving
some source code out of the distribution:

dist_data_DATA = distribute-this

bin_PROGRAMS = foo

nodist_foo_SOURCES = do-not-distribute.c

13.3 The dist hook

Occasionally it is useful to be able to change the distribution before it is packaged up. If the
dist-hook rule exists, it is run after the distribution directory is filled, but before the actual
tar (or shar) file is created. One way to use this is for distributing files in subdirectories for
which a new Makefile.am is overkill:

dist-hook:

mkdir $(distdir)/random

cp -p $(srcdir)/random/a1 $(srcdir)/random/a2 $(distdir)/random

Another way to to use this is for removing unnecessary files that get recursively included
by specifying a directory in EXTRA DIST:

EXTRA_DIST = doc

dist-hook:

rm -rf ‘find $(distdir)/doc -name CVS‘

Two variables that come handy when writing dist-hook rules are $(distdir) and
$(top_distdir).

$(distdir) points to the directory where the dist rule will copy files from the current
directory before creating the tarball. If you are at the top-level directory, then distdir

= $(PACKAGE)-$(VERSION). When used from subdirectory named foo/, then distdir =

../$(PACKAGE)-$(VERSION)/foo. $(distdir) can be a relative or absolute path, do not
assume any form.

$(top_distdir) always points to the root directory of the distributed tree. At
the top-level it’s equal to $(distdir). In the foo/ subdirectory top_distdir =

../$(PACKAGE)-$(VERSION). $(top_distdir) too can be a relative or absolute path.

Chapter 13: What Goes in a Distribution 70

Note that when packages are nested using AC_CONFIG_SUBDIRS (see Section 6.4 [Sub-
packages], page 28), then $(distdir) and $(top_distdir) are relative to the package
where make dist was run, not to any sub-packages involved.

13.4 Checking the distribution

Automake also generates a distcheck rule which can be of help to ensure that a given
distribution will actually work. distcheck makes a distribution, then tries to do a VPATH

build, run the test suite, and finally make another tarfile to ensure the distribution is self-
contained.

Building the package involves running ./configure. If you need to supply additional
flags to configure, define them in the DISTCHECK_CONFIGURE_FLAGS variable, either in
your top-level Makefile.am, or on the command line when invoking make.

If the distcheck-hook rule is defined in your top-level Makefile.am, then it will be
invoked by distcheck after the new distribution has been unpacked, but before the un-
packed copy is configured and built. Your distcheck-hook can do almost anything, though
as always caution is advised. Generally this hook is used to check for potential distribu-
tion errors not caught by the standard mechanism. Note that distcheck-hook as well
as DISTCHECK_CONFIGURE_FLAGS are not honored in a subpackage Makefile.am, but the
DISTCHECK_CONFIGURE_FLAGS are passed down to the configure script of the subpackage.

Speaking about potential distribution errors, distcheck will also ensure that
the distclean rule actually removes all built files. This is done by running make

distcleancheck at the end of the VPATH build. By default, distcleancheck will
run distclean and then make sure the build tree has been emptied by running
$(distcleancheck_listfiles). Usually this check will find generated files that you
forgot to add to the DISTCLEANFILES variable (see Chapter 12 [Clean], page 67).

The distcleancheck behavior should be OK for most packages, otherwise you
have the possibility to override the definition of either the distcleancheck rule, or
the $(distcleancheck_listfiles) variable. For instance to disable distcleancheck

completely, add the following rule to your top-level Makefile.am:

distcleancheck:

@:

If you want distcleancheck to ignore built files which have not been cleaned because
they are also part of the distribution, add the following definition instead:

distcleancheck_listfiles = \

find -type f -exec sh -c ’test -f $(srcdir)/{} || echo {}’ ’;’

The above definition is not the default because it’s usually an error if your Makefiles
cause some distributed files to be rebuilt when the user build the package. (Think about
the user missing the tool required to build the file; or if the required tool is built by your
package, consider the cross-compilation case where it can’t be run.) There is a FAQ entry
about this (see Section 26.4 [distcleancheck], page 92), make sure you read it before playing
with distcleancheck_listfiles.

distcheck also checks that the uninstall rule works properly, both for ordinary and
‘DESTDIR’ builds. It does this by invoking make uninstall, and then it checks the install

Chapter 14: Support for test suites 71

tree to see if any files are left over. This check will make sure that you correctly coded your
uninstall-related rules.

By default, the checking is done by the distuninstallcheck rule, and the list of files
in the install tree is generated by $(distuninstallcheck_listfiles) (this is a variable
whose value is a shell command to run that prints the list of files to stdout).

Either of these can be overridden to modify the behavior of distcheck. For instance,
to disable this check completely, you would write:

distuninstallcheck:

@:

13.5 The types of distributions

Automake generates rules to provide archives of the project for distributions in various
formats. Their targets are:

dist-bzip2

Generate a bzip2 tar archive of the distribution. bzip2 archives are frequently
smaller than gzipped archives.

dist-gzip

Generate a gzip tar archive of the distribution.

dist-shar

Generate a shar archive of the distribution.

dist-zip Generate a zip archive of the distribution.

dist-tarZ

Generate a compressed tar archive of the distribution.

The rule dist (and its historical synonym dist-all) will create archives in all the
enabled formats, Chapter 16 [Options], page 74. By default, only the dist-gzip target is
hooked to dist.

14 Support for test suites

Automake supports two forms of test suites.

14.1 Simple Tests

If the variable TESTS is defined, its value is taken to be a list of programs to run in order to
do the testing. The programs can either be derived objects or source objects; the generated
rule will look both in srcdir and .. Programs needing data files should look for them in
srcdir (which is both an environment variable and a make variable) so they work when
building in a separate directory (see Section “Build Directories ” in The Autoconf Manual),
and in particular for the distcheck rule (see Chapter 13 [Dist], page 68).

The number of failures will be printed at the end of the run. If a given test program
exits with a status of 77, then its result is ignored in the final count. This feature allows
non-portable tests to be ignored in environments where they don’t make sense.

Chapter 15: Rebuilding Makefiles 72

The variable TESTS_ENVIRONMENT can be used to set environment variables for the test
run; the environment variable srcdir is set in the rule. If all your test programs are scripts,
you can also set TESTS_ENVIRONMENT to an invocation of the shell (e.g. ‘$(SHELL) -x’); this
can be useful for debugging the tests.

You may define the variable XFAIL_TESTS to a list of tests (usually a subset of TESTS)
that are expected to fail. This will reverse the result of those tests.

Automake ensures that each program listed in TESTS is built before any tests are run;
you can list both source and derived programs in TESTS. For instance, you might want
to run a C program as a test. To do this you would list its name in TESTS and also in
check_PROGRAMS, and then specify it as you would any other program.

14.2 DejaGnu Tests

If ‘dejagnu’ (ftp://ftp.gnu.org/gnu/dejagnu/) appears in AUTOMAKE_OPTIONS, then a
dejagnu-based test suite is assumed. The variable DEJATOOL is a list of names which are
passed, one at a time, as the --tool argument to runtest invocations; it defaults to the
name of the package.

The variable RUNTESTDEFAULTFLAGS holds the --tool and --srcdir flags that are passed
to dejagnu by default; this can be overridden if necessary.

The variables EXPECT and RUNTEST can also be overridden to provide project-specific
values. For instance, you will need to do this if you are testing a compiler toolchain,
because the default values do not take into account host and target names.

The contents of the variable RUNTESTFLAGS are passed to the runtest invocation. This
is considered a “user variable” (see Section 2.5 [User Variables], page 4). If you need to set
runtest flags in Makefile.am, you can use AM_RUNTESTFLAGS instead.

Automake will generate rules to create a local site.exp file, defining various variables
detected by ./configure. This file is automatically read by DejaGnu. It is OK for the user
of a package to edit this file in order to tune the test suite. However this is not the place
where the test suite author should define new variables: this should be done elsewhere in
the real test suite code. Especially, site.exp should not be distributed.

For more information regarding DejaGnu test suites, see The DejaGnu Manual.

In either case, the testing is done via ‘make check’.

14.3 Install Tests

The installcheck target is available to the user as a way to run any tests after the package
has been installed. You can add tests to this by writing an installcheck-local rule.

15 Rebuilding Makefiles

Automake generates rules to automatically rebuild Makefiles, configure, and other de-
rived files like Makefile.in.

If you are using AM_MAINTAINER_MODE in configure.ac, then these automatic rebuilding
rules are only enabled in maintainer mode.

ftp://ftp.gnu.org/gnu/dejagnu/

Chapter 15: Rebuilding Makefiles 73

Sometimes you need to run aclocal with an argument like -I to tell it where to find .m4

files. Since sometimes make will automatically run aclocal, you need a way to specify these
arguments. You can do this by defining ACLOCAL_AMFLAGS; this holds arguments which are
passed verbatim to aclocal. This variable is only useful in the top-level Makefile.am.

Sometimes it is convenient to supplement the rebuild rules for configure or
config.status with additional dependencies. The variables CONFIGURE_DEPENDENCIES

and CONFIG_STATUS_DEPENDENCIES can be used to list these extra dependencies. These
variable should be defined in all Makefiles of the tree (because these two rebuild rules are
output in all them), so it is safer and easier to AC_SUBST them from configure.ac. For
instance the following statement will cause configure to be rerun each time version.sh

is changed.

AC_SUBST([CONFIG_STATUS_DEPENDENCIES], [’$(top_srcdir)/version.sh’])

Note the $(top_srcdir)/ in the filename. Since this variable is to be used in all Makefiles,
its value must be sensible at any level in the build hierarchy.

Beware not to mistake CONFIGURE_DEPENDENCIES for CONFIG_STATUS_DEPENDENCIES.

CONFIGURE_DEPENDENCIES adds dependencies to the configure rule, whose effect is to
run autoconf. This variable should be seldom used, because automake already tracks m4_
included files. However it can be useful when playing tricky games with m4_esyscmd or
similar non-recommendable macros with side effects.

CONFIG_STATUS_DEPENDENCIES adds dependencies to the config.status rule, whose
effect is to run configure. This variable should therefore carry any non-standard source
that may be read as a side effect of running configure, like version.sh in the example
above.

Speaking of version.sh scripts, we recommend against them today. They are mainly
used when the version of a package is updated automatically by a script (e.g., in daily
builds). Here is what some old-style configure.acs may look like:

AC_INIT

. $srcdir/version.sh

AM_INIT_AUTOMAKE([name], $VERSION_NUMBER)

...

Here, version.sh is a shell fragment that sets VERSION_NUMBER. The problem with this ex-
ample is that automake cannot track dependencies (listing version.sh in CONFIG_STATUS_

DEPENDENCIES, and distributing this file is up to the user), and that it uses the obsolete
form of AC_INIT and AM_INIT_AUTOMAKE. Upgrading to the new syntax is not straightfor-
ward, because shell variables are not allowed in AC_INIT’s arguments. We recommend that
version.sh be replaced by an M4 file that is included by configure.ac:

m4_include([version.m4])

AC_INIT([name], VERSION_NUMBER)

AM_INIT_AUTOMAKE

...

Here version.m4 could contain something like m4_define([VERSION_NUMBER], [1.2]).
The advantage of this second form is that automake will take care of the dependencies when
defining the rebuild rule, and will also distribute the file automatically. An inconvenience
is that autoconf will now be rerun each time the version number is bumped, when only
configure had to be rerun in the previous setup.

Chapter 16: Changing Automake’s Behavior 74

16 Changing Automake’s Behavior

Various features of Automake can be controlled by options in the Makefile.am. Such
options are applied on a per-Makefile basis when listed in a special Makefile variable
named AUTOMAKE_OPTIONS. They are applied globally to all processed Makefiles when
listed in the first argument of AM_INIT_AUTOMAKE in configure.ac. Currently understood
options are:

gnits

gnu

foreign

cygnus

Set the strictness as appropriate. The gnits option also implies readme-alpha
and check-news.

ansi2knr

path/ansi2knr

Turn on automatic de-ANSI-fication. See Section 7.15 [ANSI], page 53. If pre-
ceded by a path, the generated Makefile.in will look in the specified directory
to find the ansi2knr program. The path should be a relative path to another
directory in the same distribution (Automake currently does not check this).

check-news

Cause make dist to fail unless the current version number appears in the first
few lines of the NEWS file.

dejagnu Cause dejagnu-specific rules to be generated. See Chapter 14 [Tests], page 71.

dist-bzip2

Hook dist-bzip2 to dist.

dist-shar

Hook dist-shar to dist.

dist-zip Hook dist-zip to dist.

dist-tarZ

Hook dist-tarZ to dist.

filename-length-max=99

Abort if filenames longer than 99 characters are found during make dist. Such
long filenames are generally considered not to be portable in tarballs. See the
tar-v7 and tar-ustar options below. This option should be used in the top-
level Makefile.am or as an argument of AM_INIT_AUTOMAKE in configure.ac,
it will be ignored otherwise.

no-define

This options is meaningful only when passed as an argument to AM_INIT_

AUTOMAKE. It will prevent the PACKAGE and VERSION variables to be AC_DEFINEd.

no-dependencies

This is similar to using ‘--include-deps’ on the command line, but is useful
for those situations where you don’t have the necessary bits to make automatic

Chapter 16: Changing Automake’s Behavior 75

dependency tracking work (see Section 7.16 [Dependencies], page 53). In this
case the effect is to effectively disable automatic dependency tracking.

no-dist Don’t emit any code related to dist target. This is useful when a package has
its own method for making distributions.

no-dist-gzip

Do not hook dist-gzip to dist.

no-exeext

If your Makefile.am defines a rule for target ‘foo’, it will override a rule for a
target named ‘foo$(EXEEXT)’. This is necessary when EXEEXT is found to be
empty. However, by default automake will generate an error for this use. The
no-exeext option will disable this error. This is intended for use only where
it is known in advance that the package will not be ported to Windows, or any
other operating system using extensions on executables.

no-installinfo

The generated Makefile.in will not cause info pages to be built or installed by
default. However, info and install-info targets will still be available. This
option is disallowed at ‘GNU’ strictness and above.

no-installman

The generated Makefile.in will not cause man pages to be installed by default.
However, an install-man target will still be available for optional installation.
This option is disallowed at ‘GNU’ strictness and above.

nostdinc This option can be used to disable the standard ‘-I’ options which are ordinarily
automatically provided by Automake.

no-texinfo.tex

Don’t require texinfo.tex, even if there are texinfo files in this directory.

readme-alpha

If this release is an alpha release, and the file README-alpha exists, then it
will be added to the distribution. If this option is given, version numbers are
expected to follow one of two forms. The first form is ‘MAJOR.MINOR.ALPHA’,
where each element is a number; the final period and number should be left off
for non-alpha releases. The second form is ‘MAJOR.MINORALPHA’, where ALPHA
is a letter; it should be omitted for non-alpha releases.

std-options

Make the installcheck rule check that installed scripts and programs support
the --help and --version options. This also provides a basic check that the
program’s run-time dependencies are satisfied after installation.

In a few situations, programs (or scripts) have to be exempted from this test.
For instance false (from GNU sh-utils) is never successful, even for --help

or --version. You can list such programs in the variable AM_INSTALLCHECK_

STD_OPTIONS_EXEMPT. Programs (not scripts) listed in this variable should be
suffixed by $(EXEEXT) for the sake of Win32 or OS/2. For instance suppose we
build false as a program but true.sh as a script, and that neither of them
support --help or --version:

Chapter 16: Changing Automake’s Behavior 76

AUTOMAKE_OPTIONS = std-options

bin_PROGRAMS = false ...

bin_SCRIPTS = true.sh ...

AM_INSTALLCHECK_STD_OPTIONS_EXEMPT = false$(EXEEXT) true.sh

subdir-objects

If this option is specified, then objects are placed into the subdirectory of the
build directory corresponding to the subdirectory of the source file. For in-
stance if the source file is subdir/file.cxx, then the output file would be
subdir/file.o.

tar-v7

tar-ustar

tar-pax

These three mutually exclusive options select the tar format to use when gen-
erating tarballs with make dist. (The tar file created is then compressed ac-
cording to the set of no-dist-gzip, dist-bzip2 and dist-tarZ options in
use.)

These options must be passed as argument to AM_INIT_AUTOMAKE (see
Section 5.6 [Macros], page 18) because they can require additional configure
checks. Automake will complain if it sees such options in a AUTOMAKE_OPTIONS

variable.

tar-v7 selects the old V7 tar format. This is the historical default. This anti-
quated format is understood by all tar implementations and supports filenames
with up to 99 characters. When given longer filenames some tar implementa-
tions will diagnose the problem while other will generate broken tarballs or use
non-portable extensions. Furthermore, the V7 format cannot store empty direc-
tories. When using this format, consider using the filename-length-max=99

option to catch filenames too long.

tar-ustar selects the ustar format defined by POSIX 1003.1-1988. This format
is believed to be old enough to be portable. It fully supports empty directories.
It can store filenames with up to 256 characters, provided that the filename
can be split at directory separator in two parts, first of them being at most 155
bytes long. So, in most cases the maximum file name length will be shorter
than 256 characters. However you may run against broken tar implementations
that incorrectly handle filenames longer than 99 characters (please report them
to bug-automake@gnu.org so we can document this accurately).

tar-pax selects the new pax interchange format defined by POSIX 1003.1-2001.
It does not limit the length of filenames. However, this format is very young
and should probably be restricted to packages which target only very modern
platforms. There are moves to change the pax format in an upward-compatible
way, so this option may refer to a more recent version in the future.

See Section “Controlling the Archive Format” in GNU Tar, for further discus-
sion about tar formats.

configure knows several ways to construct these formats. It will not abort if
it cannot find a tool up to the task (so that the package can still be built), but
make dist will fail.

mailto:bug-automake@gnu.org

Chapter 17: Miscellaneous Rules 77

version A version number (e.g. ‘0.30’) can be specified. If Automake is not newer than
the version specified, creation of the Makefile.in will be suppressed.

-Wcategory or --warnings=category
These options behave exactly like their command-line counterpart (see
Chapter 4 [Invoking Automake], page 9). This allows you to enable or disable
some warning categories on a per-file basis. You can also setup some warnings
for your entire project; for instance try AM_INIT_AUTOMAKE([-Wall]) in your
configure.ac.

Unrecognized options are diagnosed by automake.

If you want an option to apply to all the files in the tree, you can use the AM_INIT_

AUTOMAKE macro in configure.ac. See Section 5.6 [Macros], page 18.

17 Miscellaneous Rules

There are a few rules and variables that didn’t fit anywhere else.

17.1 Interfacing to etags

Automake will generate rules to generate TAGS files for use with GNU Emacs under some
circumstances.

If any C, C++ or Fortran 77 source code or headers are present, then tags and TAGS

rules will be generated for the directory. All files listed using the _SOURCES, _HEADERS, and
_LISP primaries will be used to generate tags. Note that generated source files that are not
distributed must be declared in variables like nodist_noinst_HEADERS or nodist_prog_

SOURCES or they will be ignored.

At the topmost directory of a multi-directory package, a tags rule will be output which,
when run, will generate a TAGS file that includes by reference all TAGS files from subdirec-
tories.

The tags rule will also be generated if the variable ETAGS_ARGS is defined. This variable
is intended for use in directories which contain taggable source that etags does not under-
stand. The user can use the ETAGSFLAGS to pass additional flags to etags; AM_ETAGSFLAGS
is also available for use in Makefile.am.

Here is how Automake generates tags for its source, and for nodes in its Texinfo file:

ETAGS_ARGS = automake.in --lang=none \

--regex=’/^@node[\t]+\([^,]+\)/\1/’ automake.texi

If you add filenames to ‘ETAGS_ARGS’, you will probably also want to set
‘TAGS_DEPENDENCIES’. The contents of this variable are added directly to the dependencies
for the tags rule.

Automake also generates a ctags rule which can be used to build vi-style tags files.
The variable CTAGS is the name of the program to invoke (by default ‘ctags’); CTAGSFLAGS
can be used by the user to pass additional flags, and AM_CTAGSFLAGS can be used by the
Makefile.am.

Automake will also generate an ID rule which will run mkid on the source. This is only
supported on a directory-by-directory basis.

Chapter 18: Include 78

Automake also supports the GNU Global Tags program (http://www.gnu.org/
software/global/). The GTAGS rule runs Global Tags automatically and puts the result
in the top build directory. The variable GTAGS_ARGS holds arguments which are passed to
gtags.

17.2 Handling new file extensions

It is sometimes useful to introduce a new implicit rule to handle a file type that Automake
does not know about.

For instance, suppose you had a compiler which could compile ‘.foo’ files to ‘.o’ files.
You would simply define an suffix rule for your language:

.foo.o:

foocc -c -o $@ $<

Then you could directly use a ‘.foo’ file in a ‘_SOURCES’ variable and expect the correct
results:

bin_PROGRAMS = doit

doit_SOURCES = doit.foo

This was the simpler and more common case. In other cases, you will have to help
Automake to figure which extensions you are defining your suffix rule for. This usually
happens when your extensions does not start with a dot. Then, all you have to do is to put
a list of new suffixes in the SUFFIXES variable before you define your implicit rule.

For instance the following definition prevents Automake to misinterpret ‘.idlC.cpp:’
as an attempt to transform ‘.idlC’ into ‘.cpp’.

SUFFIXES = .idl C.cpp

.idlC.cpp:

whatever

As you may have noted, the SUFFIXES variable behaves like the .SUFFIXES special target
of make. You should not touch .SUFFIXES yourself, but use SUFFIXES instead and let
Automake generate the suffix list for .SUFFIXES. Any given SUFFIXES go at the start of
the generated suffixes list, followed by Automake generated suffixes not already in the list.

17.3 Support for Multilibs

Automake has support for an obscure feature called multilibs. A multilib is a library which
is built for multiple different ABIs at a single time; each time the library is built with a
different target flag combination. This is only useful when the library is intended to be
cross-compiled, and it is almost exclusively used for compiler support libraries.

The multilib support is still experimental. Only use it if you are familiar with multilibs
and can debug problems you might encounter.

18 Include

Automake supports an include directive which can be used to include other Makefile

fragments when automake is run. Note that these fragments are read and interpreted by
automake, not by make. As with conditionals, make has no idea that include is in use.

http://www.gnu.org/software/global/
http://www.gnu.org/software/global/

Chapter 19: Conditionals 79

There are two forms of include:

include $(srcdir)/file

Include a fragment which is found relative to the current source directory.

include $(top_srcdir)/file

Include a fragment which is found relative to the top source directory.

Note that if a fragment is included inside a conditional, then the condition applies to
the entire contents of that fragment.

Makefile fragments included this way are always distributed because there are needed to
rebuild Makefile.in.

19 Conditionals

Automake supports a simple type of conditionals.

Before using a conditional, you must define it by using AM_CONDITIONAL in the
configure.ac file (see Section 5.6 [Macros], page 18).

[Macro]AM_CONDITIONAL (conditional, condition)
The conditional name, conditional, should be a simple string starting with a letter
and containing only letters, digits, and underscores. It must be different from ‘TRUE’
and ‘FALSE’ which are reserved by Automake.

The shell condition (suitable for use in a shell if statement) is evaluated when
configure is run. Note that you must arrange for every AM_CONDITIONAL to be
invoked every time configure is run – if AM_CONDITIONAL is run conditionally (e.g.,
in a shell if statement), then the result will confuse automake.

Conditionals typically depend upon options which the user provides to the configure

script. Here is an example of how to write a conditional which is true if the user uses the
‘--enable-debug’ option.

AC_ARG_ENABLE(debug,

[--enable-debug Turn on debugging],

[case "${enableval}" in

yes) debug=true ;;

no) debug=false ;;

*) AC_MSG_ERROR(bad value ${enableval} for --enable-debug) ;;

esac],[debug=false])

AM_CONDITIONAL(DEBUG, test x$debug = xtrue)

Here is an example of how to use that conditional in Makefile.am:

if DEBUG

DBG = debug

else

DBG =

endif

noinst_PROGRAMS = $(DBG)

Chapter 20: The effect of --gnu and --gnits 80

This trivial example could also be handled using EXTRA PROGRAMS (see
Section 7.1.4 [Conditional Programs], page 32).

You may only test a single variable in an if statement, possibly negated using ‘!’. The
else statement may be omitted. Conditionals may be nested to any depth. You may
specify an argument to else in which case it must be the negation of the condition used
for the current if. Similarly you may specify the condition which is closed by an end:

if DEBUG

DBG = debug

else !DEBUG

DBG =

endif !DEBUG

Unbalanced conditions are errors.

Note that conditionals in Automake are not the same as conditionals in GNU Make.
Automake conditionals are checked at configure time by the configure script, and affect
the translation from Makefile.in to Makefile. They are based on options passed to
configure and on results that configure has discovered about the host system. GNU
Make conditionals are checked at make time, and are based on variables passed to the make
program or defined in the Makefile.

Automake conditionals will work with any make program.

20 The effect of --gnu and --gnits

The ‘--gnu’ option (or ‘gnu’ in the ‘AUTOMAKE_OPTIONS’ variable) causes automake to check
the following:

• The files INSTALL, NEWS, README, AUTHORS, and ChangeLog, plus one of COPYING.LIB,
COPYING.LESSER or COPYING, are required at the topmost directory of the package.

• The options ‘no-installman’ and ‘no-installinfo’ are prohibited.

Note that this option will be extended in the future to do even more checking; it is
advisable to be familiar with the precise requirements of the GNU standards. Also, ‘--gnu’
can require certain non-standard GNU programs to exist for use by various maintainer-only
rules; for instance in the future pathchk might be required for ‘make dist’.

The ‘--gnits’ option does everything that ‘--gnu’ does, and checks the following as
well:

• ‘make installcheck’ will check to make sure that the --help and --version really
print a usage message and a version string, respectively. This is the std-options

option (see Chapter 16 [Options], page 74).

• ‘make dist’ will check to make sure the NEWS file has been updated to the current
version.

• ‘VERSION’ is checked to make sure its format complies with Gnits standards.

• If ‘VERSION’ indicates that this is an alpha release, and the file README-alpha appears
in the topmost directory of a package, then it is included in the distribution. This
is done in ‘--gnits’ mode, and no other, because this mode is the only one where
version number formats are constrained, and hence the only mode where Automake
can automatically determine whether README-alpha should be included.

Chapter 22: When Automake Isn’t Enough 81

• The file THANKS is required.

21 The effect of --cygnus

Some packages, notably GNU GCC and GNU gdb, have a build environment originally
written at Cygnus Support (subsequently renamed Cygnus Solutions, and then later pur-
chased by Red Hat). Packages with this ancestry are sometimes referred to as “Cygnus”
trees.

A Cygnus tree has slightly different rules for how a Makefile.in is to be constructed.
Passing ‘--cygnus’ to automake will cause any generated Makefile.in to comply with
Cygnus rules.

Here are the precise effects of ‘--cygnus’:

• Info files are always created in the build directory, and not in the source directory.

• texinfo.tex is not required if a Texinfo source file is specified. The assumption is that
the file will be supplied, but in a place that Automake cannot find. This assumption
is an artifact of how Cygnus packages are typically bundled.

• ‘make dist’ is not supported, and the rules for it are not generated. Cygnus-style trees
use their own distribution mechanism.

• Certain tools will be searched for in the build tree as well as in the user’s ‘PATH’. These
tools are runtest, expect, makeinfo and texi2dvi.

• --foreign is implied.

• The options ‘no-installinfo’ and ‘no-dependencies’ are implied.

• The macros ‘AM_MAINTAINER_MODE’ and ‘AM_CYGWIN32’ are required.

• The check target doesn’t depend on all.

GNU maintainers are advised to use ‘gnu’ strictness in preference to the special Cygnus
mode. Some day, perhaps, the differences between Cygnus trees and GNU trees will disap-
pear (for instance, as GCC is made more standards compliant). At that time the special
Cygnus mode will be removed.

22 When Automake Isn’t Enough

In some situations, where Automake is not up to one task, one has to resort to handwritten
rules or even handwritten Makefiles.

22.1 Extending Automake Rules

With some minor exceptions (like _PROGRAMS variables being rewritten to append
$(EXEEXT)), the contents of a Makefile.am is copied to Makefile.in verbatim.

These copying semantics means that many problems can be worked around by simply
adding some make variables and rules to Makefile.am. Automake will ignore these addi-
tions.

Since a Makefile.in is built from data gathered from three different places
(Makefile.am, configure.ac, and automake itself), it is possible to have conflicting

Chapter 22: When Automake Isn’t Enough 82

definitions of rules or variables. When building Makefile.in the following priorities
are respected by automake to ensure the user always have the last word. User defined
variables in Makefile.am have priority over variables AC_SUBSTed from configure.ac,
and AC_SUBSTed variables have priority over automake-defined variables. As far rules are
concerned, a user-defined rule overrides any automake-defined rule for the same target.

These overriding semantics make it possible to fine tune some default settings of Au-
tomake, or replace some of its rules. Overriding Automake rules is often inadvisable, par-
ticularly in the topmost directory of a package with subdirectories. The -Woverride option
(see Chapter 4 [Invoking Automake], page 9) comes handy to catch overridden definitions.

Note that Automake does not make any difference between rules with commands and
rules that only specify dependencies. So it is not possible to append new dependencies to
an automake-defined target without redefining the entire rule.

However, various useful targets have a ‘-local’ version you can specify in your
Makefile.am. Automake will supplement the standard target with these user-supplied
targets.

The targets that support a local version are all, info, dvi, ps, pdf, html, check,
install-data, install-exec, uninstall, installdirs, installcheck and the various
clean targets (mostlyclean, clean, distclean, and maintainer-clean). Note that
there are no uninstall-exec-local or uninstall-data-local targets; just use
uninstall-local. It doesn’t make sense to uninstall just data or just executables.

For instance, here is one way to install a file in /etc:

install-data-local:

$(INSTALL_DATA) $(srcdir)/afile $(DESTDIR)/etc/afile

Some rule also have a way to run another rule, called a hook, after their work is done.
The hook is named after the principal target, with ‘-hook’ appended. The targets allowing
hooks are install-data, install-exec, uninstall, dist, and distcheck.

For instance, here is how to create a hard link to an installed program:

install-exec-hook:

ln $(DESTDIR)$(bindir)/program$(EXEEXT) \

$(DESTDIR)$(bindir)/proglink$(EXEEXT)

Although cheaper and more portable than symbolic links, hard links will not work every-
where (for instance OS/2 does not have ln). Ideally you should fall back to cp -p when ln

does not work. An easy way, if symbolic links are acceptable to you, is to add AC_PROG_LN_S

to configure.ac (see Section “Particular Program Checks” in The Autoconf Manual) and
use $(LN_S) in Makefile.am.

For instance, here is how you could install a versioned copy of a program using $(LN_S):

install-exec-hook:

cd $(DESTDIR)$(bindir) && \

mv -f prog$(EXEEXT) prog-$(VERSION)$(EXEEXT) && \

$(LN_S) prog-$(VERSION)$(EXEEXT) prog$(EXEEXT)

Note that we rename the program so that a new version will erase the symbolic link, not
the real binary. Also we cd into the destination directory in order to create relative links.

When writing install-exec-hook or install-data-hook, please bear in mind that
the exec/data distinction is based on the installation directory, not on the primary used

Chapter 22: When Automake Isn’t Enough 83

(see Chapter 11 [Install], page 66). So a foo_SCRIPTS will be installed by install-data,
and a barexec_SCRIPTS will be installed by install-exec. You should define your hooks
consequently.

22.2 Third-Party Makefiles

In most projects all Makefiles are generated by Automake. In some cases, however, projects
need to embed subdirectories with handwritten Makefiles. For instance one subdirectory
could be a third-party project with its own build system, not using Automake.

It is possible to list arbitrary directories in SUBDIRS or DIST_SUBDIRS provided each of
these directories has a Makefile that recognizes all the following recursive targets.

When a user runs one of these targets, that target is run recursively in all subdirectories.
This is why it is important that even third-party Makefiles support them.

all Compile the entire package. This is the default target in Automake-generated
Makefiles, but it does not need to be the default in third-party Makefiles.

distdir Copy files to distribute into $(distdir), before a tarball is constructed. Of
course this target is not required if the no-dist option (see Chapter 16 [Op-
tions], page 74) is used.

The variables $(top_distdir) and $(distdir) (see Chapter 13 [Dist], page 68)
will be passed from the outer package to the subpackage when the distdir

target is invoked. These two variables have been adjusted for the directory
which is being recursed into, so they are ready to use.

install

install-data

install-exec

uninstall

Install or uninstall files (see Chapter 11 [Install], page 66).

install-info

Install only the Texinfo documentation (see Section 10.1 [Texinfo], page 63).

installdirs

Create install directories, but do not install any files.

check

installcheck

Check the package (see Chapter 14 [Tests], page 71).

mostlyclean

clean

distclean

maintainer-clean

Cleaning rules (see Chapter 12 [Clean], page 67).

Chapter 22: When Automake Isn’t Enough 84

dvi

pdf

ps

info

html Build the documentation in various formats (see Section 10.1 [Texinfo],
page 63).

tags

ctags Build TAGS and CTAGS (see Section 17.1 [Tags], page 77).

If you have ever used Gettext in a project, this is a good example of how third-party
Makefiles can be used with Automake. The Makefiles gettextize puts in the po/ and
intl/ directories are handwritten Makefiles that implement all these targets. That way
they can be added to SUBDIRS in Automake packages.

Directories which are only listed in DIST_SUBDIRS but not in SUBDIRS need only the
distclean, maintainer-clean, and distdir rules (see Section 6.2 [Conditional Subdirec-
tories], page 25).

Usually, many of these rules are irrelevant to the third-party subproject, but they are
required for the whole package to work. It’s OK to have a rule that does nothing, so if
you are integrating a third-party project with no documentation or tag support, you could
simply augment its Makefile as follows:

EMPTY_AUTOMAKE_TARGETS = dvi pdf ps info html tags ctags

.PHONY: $(EMPTY_AUTOMAKE_TARGETS)

$(EMPTY_AUTOMAKE_TARGETS):

Another aspect of integrating third-party build systems is whether they support VPATH
builds. Obviously if the subpackage does not support VPATH builds the whole package will
not support VPATH builds. This in turns means that make distcheck will not work,
because it relies on VPATH builds. Some people can live without this (actually, many
Automake users have never heard of make distcheck). Other people may prefer to re-
vamp the existing Makefiles to support VPATH. Doing so does not necessarily require
Automake, only Autoconf is needed (see Section “Build Directories” in The Autoconf Man-
ual). The necessary substitutions: @scrdir@, @top_srcdir@, and @top_builddir@ are de-
fined by configure when it processes a Makefile (see Section “Preset Output Variables”
in The Autoconf Manual), they are not computed by the Makefile like the aforementioned
$(distdir) and $(top_distdir) variables..

It is sometimes inconvenient to modify a third-party Makefile to introduce the above
required targets. For instance one may want to keep the third-party sources untouched to
ease upgrades to new versions.

Here are two other ideas. If GNU make is assumed, one possibility is to add to that
subdirectory a GNUmakefile that defines the required targets and include the third-party
Makefile. For this to work in VPATH builds, GNUmakefile must lie in the build directory;
the easiest way to do this is to write a GNUmakefile.in instead, and have it processed with
AC_CONFIG_FILES from the outer package. For example if we assume Makefile defines all
targets except the documentation targets, and that the check target is actually called test,
we could write GNUmakefile (or GNUmakefile.in) like this:

First, include the real Makefile

Chapter 23: Distributing Makefile.ins 85

include Makefile

Then, define the other targets needed by Automake Makefiles.

.PHONY: dvi pdf ps info html check

dvi pdf ps info html:

check: test

A similar idea that does not use include is to write a proxy Makefile that dispatches
rules to the real Makefile, either with $(MAKE) -f Makefile.real $(AM_MAKEFLAGS)

target (if it’s OK to rename the original Makefile) or with cd subdir && $(MAKE)

$(AM_MAKEFLAGS) target (if it’s OK to store the subdirectory project one directory
deeper). The good news is that this proxy Makefile can be generated with Automake.
All we need are -local targets (see Section 22.1 [Extending], page 81) that perform the
dispatch. Of course the other Automake features are available, so you could decide to let
Automake perform distribution or installation. Here is a possible Makefile.am:

all-local:

cd subdir && $(MAKE) $(AM_MAKEFLAGS) all

check-local:

cd subdir && $(MAKE) $(AM_MAKEFLAGS) test

clean-local:

cd subdir && $(MAKE) $(AM_MAKEFLAGS) clean

Assuming the package knows how to install itself

install-data-local:

cd subdir && $(MAKE) $(AM_MAKEFLAGS) install-data

install-exec-local:

cd subdir && $(MAKE) $(AM_MAKEFLAGS) install-exec

uninstall-local:

cd subdir && $(MAKE) $(AM_MAKEFLAGS) uninstall

Distribute files from here.

EXTRA_DIST = subdir/Makefile subdir/program.c ...

Pushing this idea to the extreme, it is also possible to ignore the subproject build system
and build everything from this proxy Makefile.am. This might sounds very sensible if you
need VPATH builds but the subproject does not support them.

23 Distributing Makefile.ins

Automake places no restrictions on the distribution of the resulting Makefile.ins. We still
encourage software authors to distribute their work under terms like those of the GPL, but
doing so is not required to use Automake.

Some of the files that can be automatically installed via the --add-missing switch do
fall under the GPL. However, these also have a special exception allowing you to distribute
them with your package, regardless of the licensing you choose.

Chapter 24: Automake API versioning 86

24 Automake API versioning

New Automake releases usually include bug fixes and new features. Unfortunately they
may also introduce new bugs and incompatibilities. This makes four reasons why a package
may require a particular Automake version.

Things get worse when maintaining a large tree of packages, each one requiring a different
version of Automake. In the past, this meant that any developer (and sometime users) had
to install several versions of Automake in different places, and switch ‘$PATH’ appropriately
for each package.

Starting with version 1.6, Automake installs versioned binaries. This means you can
install several versions of Automake in the same ‘$prefix’, and can select an arbitrary
Automake version by running ‘automake-1.6’ or ‘automake-1.7’ without juggling with
‘$PATH’. Furthermore, Makefile’s generated by Automake 1.6 will use ‘automake-1.6’
explicitly in their rebuild rules.

The number ‘1.6’ in ‘automake-1.6’ is Automake’s API version, not Automake’s version.
If a bug fix release is made, for instance Automake 1.6.1, the API version will remain 1.6.
This means that a package which work with Automake 1.6 should also work with 1.6.1;
after all, this is what people expect from bug fix releases.

If your package relies on a feature or a bug fix introduced in a release, you can pass this
version as an option to Automake to ensure older releases will not be used. For instance,
use this in your configure.ac:

AM_INIT_AUTOMAKE(1.6.1) dnl Require Automake 1.6.1 or better.

or, in a particular Makefile.am:

AUTOMAKE_OPTIONS = 1.6.1 # Require Automake 1.6.1 or better.

Automake will print an error message if its version is older than the requested version.

What is in the API

Automake’s programming interface is not easy to define. Basically it should include at least
all documented variables and targets that a ‘Makefile.am’ author can use, any behavior
associated with them (e.g. the places where ‘-hook’’s are run), the command line interface
of ‘automake’ and ‘aclocal’, . . .

What is not in the API

Every undocumented variable, target, or command line option, is not part of the API. You
should avoid using them, as they could change from one version to the other (even in bug
fix releases, if this helps to fix a bug).

If it turns out you need to use such a undocumented feature, contact automake@gnu.org
and try to get it documented and exercised by the test-suite.

mailto:automake@gnu.org

Chapter 26: Frequently Asked Questions about Automake 87

25 Upgrading a Package to a Newer Automake
Version

Automake maintains three kind of files in a package.

• aclocal.m4

• Makefile.ins

• auxiliary tools like install-sh or py-compile

aclocal.m4 is generated by aclocal and contains some Automake-supplied M4 macros.
Auxiliary tools are installed by ‘automake --add-missing’ when needed. Makefile.ins
are built from Makefile.am by automake, and rely on the definitions of the M4 macros put
in aclocal.m4 as well as the behavior of the auxiliary tools installed.

Because all these files are closely related, it is important to regenerate all of them when
upgrading to a newer Automake release. The usual way to do that is

aclocal # with any option needed (such a -I m4)

autoconf

automake --add-missing --force-missing

or more conveniently:

autoreconf -vfi

The use of --force-missing ensures that auxiliary tools will be overridden by new
versions (see Chapter 4 [Invoking Automake], page 9).

It is important to regenerate all these files each time Automake is upgraded, even between
bug fixes releases. For instance it is not unusual for a bug fix to involve changes to both
the rules generated in Makefile.in and the supporting M4 macros copied to aclocal.m4.

Presently automake is able to diagnose situations where aclocal.m4 has been generated
with another version of aclocal. However it never checks whether auxiliary scripts are
up-to-date. In other words, automake will tell you when aclocal needs to be rerun, but it
will never diagnose a missing --force-missing.

Before upgrading to a new major release, it is a good idea to read the file NEWS. This
file lists all changes between releases: new features, obsolete constructs, known incompati-
bilities, and workarounds.

26 Frequently Asked Questions about Automake

This chapter covers some questions that often come up on the mailing lists.

26.1 CVS and generated files

26.1.1 Background: distributed generated files

Packages made with Autoconf and Automake ship with some generated files like configure
or Makefile.in. These files were generated on the developer’s host and are distributed
so that end-users do not have to install the maintainer tools required to rebuild them.
Other generated files like Lex scanners, Yacc parsers, or Info documentation, are usually
distributed on similar grounds.

Chapter 26: Frequently Asked Questions about Automake 88

Automake outputs rules in Makefiles to rebuild these files. For instance make will run
autoconf to rebuild configure whenever configure.ac is changed. This makes develop-
ment safer by ensuring a configure is never out-of-date with respect to configure.ac.

As generated files shipped in packages are up-to-date, and because tar preserves times-
tamps, these rebuild rules are not triggered when a user unpacks and builds a package.

26.1.2 Background: CVS and timestamps

Unless you use CVS keywords (in which case files must be updated at commit time), CVS
preserves timestamp during cvs commit and cvs import -d operations.

When you check out a file using cvs checkout its timestamp is set to that of the revision
which is being checked out.

However, during cvs update, files will have the date of the update, not the original
timestamp of this revision. This is meant to make sure that make notices sources files have
been updated.

This timestamp shift is troublesome when both sources and generated files are kept
under CVS. Because CVS processes files in alphabetical order, configure.ac will appear
older than configure after a cvs update that updates both files, even if configure was
newer than configure.ac when it was checked in. Calling make will then trigger a spurious
rebuild of configure.

26.1.3 Living with CVS in Autoconfiscated projects

There are basically two clans amongst maintainers: those who keep all distributed files
under CVS, including generated files, and those who keep generated files out of CVS.

All files in CVS

• The CVS repository contains all distributed files so you know exactly what is dis-
tributed, and you can checkout any prior version entirely.

• Maintainers can see how generated files evolve (for instance you can see what happens
to your Makefile.ins when you upgrade Automake and make sure they look OK).

• Users do not need the autotools to build a checkout of the project, it works just like a
released tarball.

• If users use cvs update to update their copy, instead of cvs checkout to fetch a fresh
one, timestamps will be inaccurate. Some rebuild rules will be triggered and attempt
to run developer tools such as autoconf or automake.

Actually, calls to such tools are all wrapped into a call to the missing script discussed
later (see Section 26.2 [maintainer-mode], page 89). missing will take care of fixing
the timestamps when these tools are not installed, so that the build can continue.

• In distributed development, developers are likely to have different version of the main-
tainer tools installed. In this case rebuilds triggered by timestamp lossage will lead to
spurious changes to generated files. There are several solutions to this:

• All developers should use the same versions, so that the rebuilt files are identical
to files in CVS. (This starts to be difficult when each project you work on uses
different versions.)

• Or people use a script to fix the timestamp after a checkout (the GCC folks have
such a script).

Chapter 26: Frequently Asked Questions about Automake 89

• Or configure.ac uses AM_MAINTAINER_MODE, which will disable all these rebuild
rules by default. This is further discussed in Section 26.2 [maintainer-mode],
page 89.

• Although we focused on spurious rebuilds, the converse can also happen. CVS’s time-
stamp handling can also let you think an out-of-date file is up-to-date.

For instance, suppose a developer has modified Makefile.am and rebuilt Makefile.in,
and then decide to do a last-minute change to Makefile.am right before checking in
both files (without rebuilding Makefile.in to account for the change).

This last change to Makefile.am make the copy of Makefile.in out-of-date. Since
CVS processes files alphabetically, when another developer cvs update his or her tree,
Makefile.in will happen to be newer than Makefile.am. This other developer will
not see Makefile.in is out-of-date.

Generated files out of CVS

One way to get CVS and make working peacefully is to never store generated files in CVS,
i.e., do not CVS-control files which are Makefile targets (also called derived files).

This way developers are not annoyed by changes to generated files. It does not
matter if they all have different versions (assuming they are compatible, of course).
And finally, timestamps are not lost, changes to sources files can’t be missed as in the
Makefile.am/Makefile.in example discussed earlier.

The drawback is that the CVS repository is not an exact copy of what is distributed
and that users now need to install various development tools (maybe even specific versions)
before they can build a checkout. But, after all, CVS’s job is versioning, not distribution.

Allowing developers to use different versions of their tools can also hide bugs during
distributed development. Indeed, developers will be using (hence testing) their own gen-
erated files, instead of the generated files that will be released actually. The developer
who prepares the tarball might be using a version of the tool that produces bogus output
(for instance a non-portable C file), something other developers could have noticed if they
weren’t using their own versions of this tool.

26.1.4 Third-party files

Another class of files not discussed here (because they do not cause timestamp issues) are
files which are shipped with a package, but maintained elsewhere. For instance tools like
gettextize and autopoint (from Gettext) or libtoolize (from Libtool), will install or
update files in your package.

These files, whether they are kept under CVS or not, raise similar concerns about version
mismatch between developers’ tools. The Gettext manual has a section about this, see
Section “Integrating with CVS” in GNU gettext tools.

26.2 missing and AM_MAINTAINER_MODE

26.2.1 missing

The missing script is a wrapper around several maintainer tools, designed to warn users if a
maintainer tool is required but missing. Typical maintainer tools are autoconf, automake,

Chapter 26: Frequently Asked Questions about Automake 90

bison, etc. Because file generated by these tools are shipped with the other sources of a
package, these tools shouldn’t be required during a user build and they are not checked for
in configure.

However, if for some reason a rebuild rule is triggered and involves a missing tool,
missing will notice it and warn the user. Besides the warning, when a tool is missing,
missing will attempt to fix timestamps in a way which allow the build to continue. For
instance missing will touch configure if autoconf is not installed. When all distributed
files are kept under CVS, this feature of missing allows user with no maintainer tools to
build a package off CVS, bypassing any timestamp inconsistency implied by cvs update.

If the required tool is installed, missing will run it and won’t attempt to continue after
failures. This is correct during development: developers love fixing failures. However, users
with wrong versions of maintainer tools may get an error when the rebuild rule is spuriously
triggered, halting the build. This failure to let the build continue is one of the arguments
of the AM_MAINTAINER_MODE advocates.

26.2.2 AM_MAINTAINER_MODE

AM_MAINTAINER_MODE disables the so called "rebuild rules" by default. If you have AM_

MAINTAINER_MODE in configure.ac, and run ./configure && make, then make will *never*
attempt to rebuilt configure, Makefile.ins, Lex or Yacc outputs, etc. I.e., this disables
build rules for files which are usually distributed and that users should normally not have
to update.

If you run ./configure --enable-maintainer-mode, then these rebuild rules will be
active.

People use AM_MAINTAINER_MODE either because they do want their users (or themselves)
annoyed by timestamps lossage (see Section 26.1 [CVS], page 87), or because they simply
can’t stand the rebuild rules and prefer running maintainer tools explicitly.

AM_MAINTAINER_MODE also allows you to disable some custom build rules conditionally.
Some developers use this feature to disable rules that need exotic tools that users may not
have available.

Several years ago François Pinard pointed out several arguments against AM_

MAINTAINER_MODE. Most of them relate to insecurity. By removing dependencies you get
non-dependable builds: change to sources files can have no effect on generated files and
this can be very confusing when unnoticed. He adds that security shouldn’t be reserved
to maintainers (what --enable-maintainer-mode suggests), on the contrary. If one user
has to modify a Makefile.am, then either Makefile.in should be updated or a warning
should be output (this is what Automake uses missing for) but the last thing you want is
that nothing happens and the user doesn’t notice it (this is what happens when rebuild
rules are disabled by AM_MAINTAINER_MODE).

Jim Meyering, the inventor of the AM_MAINTAINER_MODE macro was swayed by François’s
arguments, and got rid of AM_MAINTAINER_MODE in all of his packages.

Still many people continue to use AM_MAINTAINER_MODE, because it helps them working
on projects where all files are kept under CVS, and because missing isn’t enough if you
have the wrong version of the tools.

Chapter 26: Frequently Asked Questions about Automake 91

26.3 Why doesn’t Automake support wildcards?

Developers are lazy. They often would like to use wildcards in Makefile.ams, so they don’t
need to remember they have to update Makefile.ams every time they add, delete, or rename
a file.

There are several objections to this:

• When using CVS (or similar) developers need to remember they have to run cvs add

or cvs rm anyway. Updating Makefile.am accordingly quickly becomes a reflex.

Conversely, if your application doesn’t compile because you forgot to add a file in
Makefile.am, it will help you remember to cvs add it.

• Using wildcards makes easy to distribute files by mistake. For instance some code a
developer is experimenting with (a test case, say) but which should not be part of the
distribution.

• Using wildcards it’s easy to omit some files by mistake. For instance one developer
creates a new file, uses it at many places, but forget to commit it. Another developer
then checkout the incomplete project and is able to run ‘make dist’ successfully, even
though a file is missing.

• Listing files, you control *exactly* what you distribute. If some file that should be
distributed is missing from your tree, make dist will complain. Besides, you don’t
distribute more than what you listed.

• Finally it’s really hard to forget adding a file to Makefile.am, because if you don’t
add it, it doesn’t get compiled nor installed, so you can’t even test it.

Still, these are philosophical objections, and as such you may disagree, or find enough
value in wildcards to dismiss all of them. Before you start writing a patch against Automake
to teach it about wildcards, let’s see the main technical issue: portability.

Although $(wildcard ...) works with GNU make, it is not portable to other make

implementations.

The only way Automake could support $(wildcard ...) is by expending $(wildcard

...) when automake is run. Resulting Makefile.ins would be portable since they would
list all files and not use $(wildcard ...). However that means developers need to remember
they must run automake each time they add, delete, or rename files.

Compared to editing Makefile.am, this is really little win. Sure, it’s easier and faster
to type automake; make than to type emacs Makefile.am; make. But nobody bothered
enough to write a patch add support for this syntax. Some people use scripts to generated
file lists in Makefile.am or in separate Makefile fragments.

Even if you don’t care about portability, and are tempted to use $(wildcard ...)

anyway because you target only GNU Make, you should know there are many places where
Automake need to know exactly which files should be processed. As Automake doesn’t
know how to expand $(wildcard ...), you cannot use it in these places. $(wildcard

...) is a black box comparable to AC_SUBSTed variables as far Automake is concerned.

You can get warnings about $(wildcard ...) constructs using the -Wportability flag.

Chapter 26: Frequently Asked Questions about Automake 92

26.4 Files left in build directory after distclean

This is a diagnostic you might encounter while running make distcheck.

As explained in Chapter 13 [Dist], page 68, make distcheck attempts to build and check
your package for errors like this one.

make distcheck will perform a VPATH build of your package, and then call make

distclean. Files left in the build directory after make distclean has run are listed after
this error.

This diagnostic really covers two kinds of errors:

• files that are forgotten by distclean;

• distributed files that are erroneously rebuilt.

The former left-over files are not distributed, so the fix is to mark them for cleaning (see
Chapter 12 [Clean], page 67), this is obvious and doesn’t deserve more explanations.

The latter bug is not always easy to understand and fix, so let’s proceed with an example.
Suppose our package contains a program for which we want to build a man page using
help2man. GNU help2man produces simple manual pages from the --help and --version

output of other commands (see Section “Overview” in The Help2man Manual). Because
we don’t to force want our users to install help2man, we decide to distribute the generated
man page using the following setup.

This Makefile.am is bogus.

bin_PROGRAMS = foo

foo_SOURCES = foo.c

dist_man_MANS = foo.1

foo.1: foo$(EXEEXT)

help2man --output=foo.1 ./foo$(EXEEXT)

This will effectively distribute the man page. However, make distcheck will fail with:

ERROR: files left in build directory after distclean:

./foo.1

Why was foo.1 rebuilt? Because although distributed, foo.1 depends on a non-
distributed built file: foo$(EXEEXT). foo$(EXEEXT) is built by the user, so it will always
appear to be newer than the distributed foo.1.

make distcheck caught an inconsistency in our package. Our intent was to distribute
foo.1 so users do not need installing help2man, however since this our rule causes this file
to be always rebuilt, users do need help2man. Either we should ensure that foo.1 is not
rebuilt by users, or there is no point in distributing foo.1.

More generally, the rule is that distributed files should never depend on non-distributed
built files. If you distribute something generated, distribute its sources.

One way to fix the above example, while still distributing foo.1 is to not depend on
foo$(EXEEXT). For instance, assuming foo --version and foo --help do not change
unless foo.c or configure.ac change, we could write the following Makefile.am:

bin_PROGRAMS = foo

foo_SOURCES = foo.c

dist_man_MANS = foo.1

Chapter 26: Frequently Asked Questions about Automake 93

foo.1: foo.c $(top_srcdir)/configure.ac

$(MAKE) $(AM_MAKEFLAGS) foo$(EXEEXT)

help2man --output=foo.1 ./foo$(EXEEXT)

This way, foo.1 will not get rebuilt every time foo$(EXEEXT) changes. The make call
makes sure foo$(EXEEXT) is up-to-date before help2man. Another way to ensure this would
be to use separate directories for binaries and man pages, and set SUBDIRS so that binaries
are built before man pages.

We could also decide not to distribute foo.1. In this case it’s fine to have foo.1

dependent upon foo$(EXEEXT), since both will have to be rebuilt. However it would be
impossible to build the package in a cross-compilation, because building foo.1 involves an
execution of foo$(EXEEXT).

Another context where such errors are common is when distributed files are built by
tools which are built by the package. The pattern is similar:

distributed-file: built-tools distributed-sources

build-command

should be changed to

distributed-file: distributed-sources

$(MAKE) $(AM_MAKEFLAGS) built-tools

build-command

or you could choose not to distribute distributed-file, if cross-compilation does not
matter.

The points made through these examples are worth a summary:� �
• Distributed files should never depend upon non-distributed built files.

• Distributed files should be distributed will all their dependencies.

• If a file is intended be rebuilt by users, there is no point in distributing it.
 	
For desperate cases, it’s always possible to disable this check by setting distcleancheck_

listfiles as documented in Chapter 13 [Dist], page 68. Make sure you do understand the
reason why make distcheck complains before you do this. distcleancheck_listfiles is
a way to hide errors, not to fix them. You can always do better.

26.5 Flag Variables Ordering

What is the difference between AM_CFLAGS, CFLAGS, and
mumble_CFLAGS?

Why does automake output CPPFLAGS after
AM_CPPFLAGS on compile lines? Shouldn’t it be the converse?

My configure adds some warning flags into CXXFLAGS. In
one Makefile.am I would like to append a new flag, however if I
put the flag into AM_CXXFLAGS it is prepended to the other
flags, not appended.

Chapter 26: Frequently Asked Questions about Automake 94

26.5.1 Compile Flag Variables

This section attempts to answer all the above questions. We will mostly discuss CPPFLAGS
in our examples, but actually the answer holds for all the compile flags used in Automake:
CCASFLAGS, CFLAGS, CPPFLAGS, CXXFLAGS, FCFLAGS, FFLAGS, GCJFLAGS, LDFLAGS, LFLAGS,
OBJCFLAGS, RFLAGS, and YFLAGS.

CPPFLAGS, AM_CPPFLAGS, and mumble_CPPFLAGS are three variables that can be used to
pass flags to the C preprocessor (actually these variables are also used for other languages
like C++ or preprocessed Fortran). CPPFLAGS is the user variable (see Section 2.5 [User
Variables], page 4), AM_CPPFLAGS is the Automake variable, and mumble_CPPFLAGS is the
variable specific to the mumble target (we call this a per-target variable, see Section 7.4
[Program and Library Variables], page 39).

Automake always uses two of these variables when compiling C sources files. When
compiling an object file for the mumble target, the first variable will be mumble_CPPFLAGS

if it is defined, or AM_CPPFLAGS otherwise. The second variable is always CPPFLAGS.

In the following example,

bin_PROGRAMS = foo bar

foo_SOURCES = xyz.c

bar_SOURCES = main.c

foo_CPPFLAGS = -DFOO

AM_CPPFLAGS = -DBAZ

xyz.o will be compiled with $(foo_CPPFLAGS) $(CPPFLAGS), (because xyz.o is part of the
foo target), while main.o will be compiled with $(AM_CPPFLAGS) $(CPPFLAGS) (because
there is no per-target variable for target bar).

The difference between mumble_CPPFLAGS and AM_CPPFLAGS being clear enough, let’s
focus on CPPFLAGS. CPPFLAGS is a user variable, i.e., a variable that users are entitled to
modify in order to compile the package. This variable, like many others, is documented at
the end of the output of configure --help.

For instance, someone who needs to add /home/my/usr/include to the C compiler’s
search path would configure a package with

./configure CPPFLAGS=’-I /home/my/usr/include’

and this flag would be propagated to the compile rules of all Makefiles.

It is also not uncommon to override a user variable at make-time. Many installers do
this with prefix, but this can be useful with compiler flags too. For instance if, while
debugging a C++ project, you need to disable optimization in one specific object file, you
can run something like

rm file.o

make CXXFLAGS=-O0 file.o

make

The reason $(CPPFLAGS) appears after $(AM_CPPFLAGS) or $(mumble_CPPFLAGS) in the
compile command is that users should always have the last say. It probably makes more
sense if you think about it while looking at the CXXFLAGS=-O0 above, which should supersede
any other switch from AM_CXXFLAGS or mumble_CXXFLAGS (and this of course replaces the
previous value of CXXFLAGS).

Chapter 26: Frequently Asked Questions about Automake 95

You should never redefine a user variable such as CPPFLAGS in Makefile.am. Use
automake -Woverride to diagnose such mistakes. Even something like

CPPFLAGS = -DDATADIR=\"$(datadir)\" @CPPFLAGS@

is erroneous. Although this preserves configure’s value of CPPFLAGS, the definition of
DATADIR will disappear if a user attempts to override CPPFLAGS from the make command
line.

AM_CPPFLAGS = -DDATADIR=\"$(datadir)\"

is all what is needed here if no per-target flags are used.

You should not add options to these variables from inside configure either, for the same
reason. Occasionally you need to modify these variables to perform a test, but you should
reset their value afterwards.

What we recommend is that you define extra flags in separate variables. For instance you
may write an Autoconf macro that computes a set of warning options for the C compiler, and
AC_SUBST them in WARNINGCFLAGS; you may also have an Autoconf macro that determines
which compiler and which linker flags should be used to link with library libfoo, and AC_

SUBST these in LIBFOOCFLAGS and LIBFOOLDFLAGS. Then, a Makefile.am could use these
variables as follows:

AM_CFLAGS = $(WARNINGCFLAGS)

bin_PROGRAMS = prog1 prog2

prog1_SOURCES = ...

prog2_SOURCES = ...

prog2_CFLAGS = $(LIBFOOCFLAGS) $(AM_CFLAGS)

prog2_LDFLAGS = $(LIBFOOLDFLAGS)

In this example both programs will be compiled with the flags substituted into
$(WARNINGCFLAGS), and prog2 will additionally be compiled with the flags required to
link with libfoo.

Note that listing AM_CFLAGS in a per-target CFLAGS variable is a common idiom to ensure
that AM_CFLAGS applies to every target in a Makefile.in.

Using variables like this gives you full control over the ordering of the flags. For instance
if there is a flag in $(WARNINGCFLAGS) that you want to negate for a particular target,
you can use something like prog1_CFLAGS = $(AM_CFLAGS) -no-flag. If all these flags had
been forcefully appended to CFLAGS, there would be no way to disable one flag. Yet another
reason to leave user variables to users.

Finally, we have avoided naming the variable of the example LIBFOO_LDFLAGS (with an
underscore) because that would cause Automake to think that this is actually a per-target
variable (like mumble_LDFLAGS) for some non-declared LIBFOO target.

26.5.2 Other Variables

There are other variables in Automake that follow similar principles to allow user options.
For instance Texinfo rules (see Section 10.1 [Texinfo], page 63) uses MAKEINFOFLAGS

and AM_MAKEINFOFLAGS. Similarly, DejaGnu tests (see Chapter 14 [Tests], page 71)
use RUNTESTDEFAULTFLAGS and AM_RUNTESTDEFAULTFLAGS. The tags and ctags rules
(see Section 17.1 [Tags], page 77) use ETAGSFLAGS, AM_ETAGSFLAGS, CTAGSFLAGS, and
AM_CTAGSFLAGS. Java rules (see Section 9.4 [Java], page 61) use JAVACFLAGS and
AM_JAVACFLAGS. None of these rules do support per-target flags (yet).

Chapter 26: Frequently Asked Questions about Automake 96

To some extent, even AM_MAKEFLAGS (see Section 6.1 [Subdirectories], page 24) obeys this
naming scheme. The slight difference is that MAKEFLAGS is passed to sub-makes implicitly
by make itself.

However you should not think that all variables ending with FLAGS follow this conven-
tion. For instance DISTCHECK_CONFIGURE_FLAGS (see Chapter 13 [Dist], page 68), ACLOCAL_
AMFLAGS (see Chapter 15 [Rebuilding], page 72, and Section 5.8 [Local Macros], page 22),
are two variables that are only useful to the maintainer and have no user counterpart.

ARFLAGS (see Section 7.2 [A Library], page 33) is usually defined by Automake and has
neither AM_ nor per-target cousin.

Finally you should not think either that the existence of a per-target variable implies
that of an AM_ variable or that of a user variable. For instance the mumble_LDADD per-target
variable overrides the global LDADD variable (which is not a user variable), and mumble_

LIBADD exists only as a per-target variable. See Section 7.4 [Program and Library Variables],
page 39.

26.6 Why are object files sometimes renamed?

This happens when per-target compilation flags are used. Object files need to be renamed
just in case they would clash with object files compiled from the same sources, but with
different flags. Consider the following example.

bin_PROGRAMS = true false

true_SOURCES = generic.c

true_CPPFLAGS = -DEXIT_CODE=0

false_SOURCES = generic.c

false_CPPFLAGS = -DEXIT_CODE=1

Obviously the two programs are built from the same source, but it would be bad if they
shared the same object, because generic.o cannot be built with both -DEXIT_CODE=0

and -DEXIT_CODE=1. Therefore automake outputs rules to build two different objects:
true-generic.o and false-generic.o.

automake doesn’t actually look whether source files are shared to decide if it must rename
objects. It will just rename all objects of a target as soon as it sees per-target compilation
flags are used.

It’s OK to share object files when per-target compilation flags are not used. For instance
true and false will both use version.o in the following example.

AM_CPPFLAGS = -DVERSION=1.0

bin_PROGRAMS = true false

true_SOURCES = true.c version.c

false_SOURCES = false.c version.c

Note that the renaming of objects is also affected by the _SHORTNAME variable (see
Section 7.4 [Program and Library Variables], page 39).

26.7 Per-Object Flags Emulation

One of my source files needs to be compiled with different flags. How
do I do?

Chapter 26: Frequently Asked Questions about Automake 97

Automake supports per-program and per-library compilation flags (see Section 7.4 [Pro-
gram and Library Variables], page 39, and Section 26.5 [Flag Variables Ordering], page 93).
With this you can define compilation flags that apply to all files compiled for a target. For
instance in

bin_PROGRAMS = foo

foo_SOURCES = foo.c foo.h bar.c bar.h main.c

foo_CFLAGS = -some -flags

foo-foo.o, foo-bar.o, and foo-main.o will all be compiled with -some -flags. (If you
wonder about the names of these object files, see Section 26.6 [renamed objects], page 96.)
Note that foo_CFLAGS gives the flags to use when compiling all the C sources of the program
foo, it has nothing to do with foo.c or foo-foo.o specifically.

What if foo.c needs to be compiled into foo.o using some specific flags, that none of
the other files require? Obviously per-program flags are not directly applicable here. Some-
thing like per-object flags are expected, i.e., flags that would be used only when creating
foo-foo.o. Automake does not support that, however this is easy to simulate using a
library that contains only that object, and compiling this library with per-library flags.

bin_PROGRAMS = foo

foo_SOURCES = bar.c bar.h main.c

foo_CFLAGS = -some -flags

foo_LDADD = libfoo.a

noinst_LIBRARIES = libfoo.a

libfoo_a_SOURCES = foo.c foo.h

libfoo_a_CFLAGS = -some -other -flags

Here foo-bar.o and foo-main.o will all be compiled with -some -flags, while libfoo_
a-foo.o will be compiled using -some -other -flags. Eventually, all three objects will be
linked to form foo.

This trick can also be achieved using Libtool convenience libraries, i.e., noinst_

LTLIBRARIES = libfoo.la (see Section 7.3.5 [Libtool Convenience Libraries],
page 35).

Another tempting idea to implement per-object flags is to override the compile rules
automake would output for these files. Automake will not define a rule for a target you
have defined, so you could think about defining the foo-foo.o: foo.c rule yourself. We
recommend against this, because this is error prone. For instance if you add such a rule to
the first example, it will break the day you decide to remove foo_CFLAGS (because foo.c

will then be compiled as foo.o instead of foo-foo.o, see Section 26.6 [renamed objects],
page 96). Also in order to support dependency tracking, the two .o/.obj extensions, and
all the other flags variables involved in a compilation, you will end up modifying a copy of
the rule previously output by automake for this file. If a new release of Automake generates
a different rule, your copy will need to be updated by hand.

26.8 Handling Tools that Produce Many Outputs

This section describes a make idiom that can be used when a tool produces multiple output
files. It is not specific to Automake and can be used in ordinary Makefiles.

Chapter 26: Frequently Asked Questions about Automake 98

Suppose we have a program called foo that will read one file called data.foo and produce
two files named data.c and data.h. We want to write a Makefile rule that captures this
one-to-two dependency.

The naive rule is incorrect:

This is incorrect.

data.c data.h: data.foo

foo data.foo

What the above rule really says is that data.c and data.h each depend on data.foo, and
can each be built by running foo data.foo. In other words it is equivalent to:

We do not want this.

data.c: data.foo

foo data.foo

data.h: data.foo

foo data.foo

which means that foo can be run twice. Usually it will not be run twice, because make

implementations are smart enough to check for the existence of the second file after the
first one has been built; they will therefore detect that it already exists. However there are
a few situations where it can run twice anyway:

• The most worrying case is when running a parallel make. If data.c and data.h are
built in parallel, two foo data.foo commands will run concurrently. This is harmful.

• Another case is when the dependency (here data.foo) is (or depends upon) a phony
target.

A solution that works with parallel make but not with phony dependencies is the follow-
ing:

data.c data.h: data.foo

foo data.foo

data.h: data.c

The above rules are equivalent to

data.c: data.foo

foo data.foo

data.h: data.foo data.c

foo data.foo

therefore a parallel make will have to serialize the builds of data.c and data.h, and will
detect that the second is no longer needed once the first is over.

Using this pattern is probably enough for most cases. However it does not scale easily to
more output files (in this scheme all output files must be totally ordered by the dependency
relation), so we will explore a more complicated solution.

Another idea is to write the following:

There is still a problem with this one.

data.c: data.foo

foo data.foo

data.h: data.c

Chapter 26: Frequently Asked Questions about Automake 99

The idea is that foo data.foo is run only when data.c needs to be updated, but we further
state that data.h depends upon data.c. That way, if data.h is required and data.foo is
out of date, the dependency on data.c will trigger the build.

This is almost perfect, but suppose we have built data.h and data.c, and then we erase
data.h. Then, running make data.h will not rebuild data.h. The above rules just state
that data.c must be up-to-date with respect to data.foo, and this is already the case.

What we need is a rule that forces a rebuild when data.h is missing. Here it is:

data.c: data.foo

foo data.foo

data.h: data.c

@if test -f $@; then :; else \

rm -f data.c; \

$(MAKE) $(AM_MAKEFLAGS) data.c; \

fi

The above scales easily to more outputs and more inputs. One of the output is picked
up to serve as a witness of the run of the command, it depends upon all inputs, and all
other outputs depend upon it. For instance if foo should additionally read data.bar and
also produce data.w and data.x, we would write:

data.c: data.foo data.bar

foo data.foo data.bar

data.h data.w data.x: data.c

@if test -f $@; then :; else \

rm -f data.c; \

$(MAKE) $(AM_MAKEFLAGS) data.c; \

fi

There is still a minor problem with this setup. foo outputs four files, but we do not
know in which order these files are created. Suppose that data.h is created before data.c.
Then we have a weird situation. The next time make is run, data.h will appear older than
data.c, the second rule will be triggered, a shell will be started to execute the if...fi

command, but actually it will just execute the then branch, that is: nothing. In other
words, because the witness we selected is not the first file created by foo, make will start a
shell to do nothing each time it is run.

A simple riposte is to fix the timestamps when this happens.

data.c: data.foo data.bar

foo data.foo data.bar

data.h data.w data.x: data.c

@if test -f $@; then \

touch $@; \

else \

rm -f data.c; \

$(MAKE) $(AM_MAKEFLAGS) data.c; \

fi

Another solution, not incompatible with the previous one, is to use a different and
dedicated file as witness, rather than using any of foo’s outputs.

data.stamp: data.foo data.bar

Chapter 27: History of Automake 100

@rm -f data.tmp

@touch data.tmp

foo data.foo data.bar

@mv -f data.tmp $@

data.c data.h data.w data.x: data.stamp

@if test -f $@; then \

touch $@; \

else \

rm -f data.stamp; \

$(MAKE) $(AM_MAKEFLAGS) data.stamp; \

fi

data.tmp is created before foo is run, so it has a timestamp older than output files
output by foo. It is then renamed to data.stamp after foo has run, because we do not
want to update data.stamp if foo fails.

Using a dedicated witness like this is very handy when the list of output files is not
known beforehand. As an illustration, consider the following rules to compile many *.el

files into *.elc files in a single command. It does not matter how ELFILES is defined (as
long as it is not empty: empty targets are not accepted by POSIX).

ELFILES = one.el two.el three.el ...

ELCFILES = $(ELFILES:=c)

elc-stamp: $(ELFILES)

@rm -f elc-temp

@touch elc-temp

$(elisp_comp) $(ELFILES)

@mv -f elc-temp $@

$(ELCFILES): elc-stamp

@if test -f $@; then \

touch $@; \

else \

rm -f elc-stamp; \

$(MAKE) $(AM_MAKEFLAGS) elc-stamp; \

fi

For completeness it should be noted that GNU make is able to express rules with multiple
output files using pattern rules (see Section “Pattern Rule Examples” in The GNU Make
Manual). We do not discuss pattern rules here because they are not portable, but they can
be convenient in packages that assume GNU make.

27 History of Automake

This chapter presents various aspects of the history of Automake. The exhausted reader
can safely skip it; this will be more of interest to nostalgic people, or to those curious to
learn about the evolution of Automake.

Chapter 27: History of Automake 101

27.1 Timeline

1994-09-19 First CVS commit.
If we can trust the CVS repository, David J. MacKenzie (djm) started working
on Automake (or AutoMake, as it was spelt then) this Monday.

The first version of the automake script looks as follows.

#!/bin/sh

status=0

for makefile

do

if test ! -f ${makefile}.am; then

echo "automake: ${makefile}.am: No such honkin’ file"

status=1

continue

fi

exec 4> ${makefile}.in

done

From this you can already see that Automake will be about reading *.am file
and producing *.in files. You cannot see anything else, but if you also know
that David is the one who created Autoconf two years before you can guess the
rest.

Several commits follow, and by the end of the day Automake is reported to
work for GNU fileutils and GNU m4.

The modus operandi is the one that is still used today: variables assignments
in Makefile.am files trigger injections of precanned Makefile fragments into
the generated Makefile.in. The use of Makefile fragments was inspired by
the 4.4BSD make and include files, however Automake aims to be portable and
to conform to the GNU standards for Makefile variables and targets.

At this point, the most recent release of Autoconf is version 1.11, and David is
preparing to release Autoconf 2.0 in late October. As a matter of fact, he will
barely touch Automake after September.

1994-11-05 David MacKenzie’s last commit.
At this point Automake is a 200 line portable shell script, plus 332 lines of
Makefile fragments. In the README, David states his ambivalence between
“portable shell” and “more appropriate language”:

I wrote it keeping in mind the possibility of it becoming an Au-
toconf macro, so it would run at configure-time. That would slow
configuration down a bit, but allow users to modify the Makefile.am
without needing to fetch the AutoMake package. And, the Make-
file.in files wouldn’t need to be distributed. But all of AutoMake
would. So I might reimplement AutoMake in Perl, m4, or some
other more appropriate language.

Chapter 27: History of Automake 102

Automake is described as “an experimental Makefile generator”. There is no
documentation. Adventurous users are referred to the examples and patches
needed to use Automake with GNU m4 1.3, fileutils 3.9, time 1.6, and develop-
ment versions of find and indent.

These examples seem to have been lost. However at the time of writing (10
years later in September, 2004) the FSF still distributes a package that uses
this version of Automake: check out GNU termutils 2.0.

1995-11-12 Tom Tromey’s first commit.
After one year of inactivity, Tom Tromey takes over the package. Tom was
working on GNU cpio back then, and doing this just for fun, having trouble
finding a project to contribute to. So while hacking he wanted to bring the
Makefile.in up to GNU standards. This was hard, and one day he saw Au-
tomake on ftp://alpha.gnu.org/, grabbed it and tried it out.

Tom didn’t talk to djm about it until later, just to make sure he didn’t mind if
he made a release. He did a bunch of early releases to the Gnits folks.

Gnits was (and still is) totally informal, just a few GNU friends who François
Pinard knew, who were all interested in making a common infrastructure for
GNU projects, and shared a similar outlook on how to do it. So they were able
to make some progress. It came along with Autoconf and extensions thereof,
and then Automake from David and Tom (who were both gnitsians). One of
their ideas was to write a document paralleling the GNU standards, that was
more strict in some ways and more detailed. They never finished the GNITS
standards, but the ideas mostly made their way into Automake.

1995-11-23 Automake 0.20
Besides introducing automatic dependency tracking (see Section 27.2 [Depen-
dency Tracking Evolution], page 112), this version also supplies a 9-page man-
ual.

At this time aclocal and AM_INIT_AUTOMAKE did not exist, so many things
had to be done by hand. For instance here is what a configure.in (this is the
former name of the configure.ac we use today) must contain in order to use
Automake 0.20:

PACKAGE=cpio

VERSION=2.3.911

AC_DEFINE_UNQUOTED(PACKAGE, "$PACKAGE")

AC_DEFINE_UNQUOTED(VERSION, "$VERSION")

AC_SUBST(PACKAGE)

AC_SUBST(VERSION)

AC_ARG_PROGRAM

AC_PROG_INSTALL

(Today all of the above is achieved by AC_INIT and AM_INIT_AUTOMAKE.)

Here is how programs are specified in Makefile.am:

PROGRAMS = hello

hello_SOURCES = hello.c

This looks pretty much like what we do today, except the PROGRAMS variable
has no directory prefix specifying where hello should be installed: all programs

ftp://alpha.gnu.org/

Chapter 27: History of Automake 103

are installed in $(bindir). LIBPROGRAMS can be used to specify programs that
must be built but not installed (it is called noinst_PROGRAMS nowadays).

Programs can be built conditionally using AC_SUBSTitutions:

PROGRAMS = @progs@

AM_PROGRAMS = foo bar baz

(AM_PROGRAMS has since then been renamed to EXTRA_PROGRAMS.)

Similarly scripts, static libraries, and data can built and installed using the
LIBRARIES, SCRIPTS, and DATA variables. However LIBRARIES were treated a
bit specially in that Automake did automatically supply the lib and .a prefixes.
Therefore to build libcpio.a, one had to write

LIBRARIES = cpio

cpio_SOURCES = ...

Extra files to distribute must be listed in DIST_OTHER (the ancestor of EXTRA_
DIST). Also extra directories that are to be distributed should appear in DIST_

SUBDIRS, but the manual describes this as a temporary ugly hack (today extra
directories should also be listed in EXTRA_DIST, and DIST_SUBDIRS is used for
another purpose, see Section 6.2 [Conditional Subdirectories], page 25).

1995-11-26 Automake 0.21
In less time that it takes to cook a frozen pizza, Tom rewrites Automake using
Perl. At this time Perl 5 is only one year old, and Perl 4.036 is in use at many
sites. Supporting several Perl versions has been a source of problems through
the whole history of Automake.

If you never used Perl 4, imagine Perl 5 without objects, without my variables
(only dynamically scoped local variables), without function prototypes, with
function calls that needs to be prefixed with &, etc. Traces of this old style can
still be found in today’s automake.

1995-11-28 Automake 0.22
1995-11-29 Automake 0.23

Bug fixes.

1995-12-08 Automake 0.24
1995-12-10 Automake 0.25

Releases are raining. 0.24 introduces the uniform naming scheme we use
today, i.e., bin_PROGRAMS instead of PROGRAMS, noinst_LIBRARIES instead
of LIBLIBRARIES, etc. (However EXTRA_PROGRAMS does not exist yet,
AM_PROGRAMS is still in use; and TEXINFOS and MANS still have no directory
prefixes.) Adding support for prefixes like that was one of the major ideas in
automake; it has lasted pretty well.

AutoMake is renamed to Automake (Tom seems to recall it was François
Pinard’s doing).

0.25 fixes a Perl 4 portability bug.

Chapter 27: History of Automake 104

1995-12-18 Jim Meyering starts using Automake in GNU Textutils.
1995-12-31 François Pinard starts using Automake in GNU tar.
1996-01-03 Automake 0.26
1996-01-03 Automake 0.27

Of the many change and suggestions sent by François Pinard and included in
0.26, the most important is perhaps the advise that to ease customization a
user rule or variable definition should always override an Automake rule or
definition.

Gordon Matzigkeit and Jim Meyering are two other early contributors that
have been sending fixes.

0.27 fixes yet another Perl 4 portability bug.

1996-01-13 Automake 0.28
Automake starts scanning configure.in for LIBOBJS support. This is an im-
portant step because until this version Automake did only know about the
Makefile.ams it processed. configure.in was Autoconf’s world and the link
between Autoconf and Automake had to be done by the Makefile.am au-
thor. For instance if config.h was generated by configure, it was the pack-
age maintainer’s responsibility to define the CONFIG_HEADER variable in each
Makefile.am.

Succeeding releases will rely more and more on scanning configure.in to bet-
ter automate the Autoconf integration.

0.28 also introduces the AUTOMAKE_OPTIONS variable and the --gnu and --gnits
options, the latter being stricter.

1996-02-07 Automake 0.29
Thanks to configure.in scanning, CONFIG_HEADER is gone, and rebuild rules
for configure-generated file are automatically output.

TEXINFOS and MANS converted to the uniform naming scheme.

1996-02-24 Automake 0.30
The test suite is born. It contains 9 tests. From now on test cases will be added
pretty regularly (see Section 27.3 [Releases], page 116), and this proved to be
really helpful later on.

EXTRA_PROGRAMS finally replaces AM_PROGRAMS.

All the third-party Autoconf macros, written mostly by François Pinard (and
later Jim Meyering), are distributed in Automake’s hand-written aclocal.m4

file. Package maintainers are expected to extract the necessary macros from this
file. (In previous version you had to copy and paste them from the manual...)

1996-03-11 Automake 0.31
The test suite in 0.30 was run via a long check-local rule. Upon Ulrich
Drepper’s suggestion, 0.31 makes it an Automake rule output whenever the
TESTS variable is defined.

DIST_OTHER is renamed to EXTRA_DIST, and the check_ prefix is introduced.
The syntax is now the same as today.

Chapter 27: History of Automake 105

1996-03-15 Gordon Matzigkeit starts writing libtool.
1996-04-27 Automake 0.32

-hook targets are introduced; an idea from Dieter Baron.

*.info files, which were output in the build directory are now built in the
source directory, because they are distributed. It seems these files like to move
back and forth as that will happen again in future versions.

1996-05-18 Automake 0.33
Gord Matzigkeit’s main two contributions:

• very preliminary libtool support

• the distcheck rule

Although they were very basic at this point, these are probably among the top
features for Automake today.

Jim Meyering also provides the infamous jm_MAINTAINER_MODE, since then re-
named to AM_MAINTAINER_MODE and abandoned by its author (see Section 26.2
[maintainer-mode], page 89).

1996-05-28 Automake 1.0
After only six months of heavy development, the automake script is 3134 lines
long, plus 973 lines of Makefile fragments. The package has 30 pages of docu-
mentation, and 38 test cases. aclocal.m4 contains 4 macros.

From now on and until version 1.4, new releases will occur at a rate of about
one a year. 1.1 did not exist, actually 1.1b to 1.1p have been the name of beta
releases for 1.2. This is the first time Automake uses suffix letters to designate
beta releases, an habit that lasts.

1996-10-10 Kevin Dalley packages Automake 1.0 for Debian GNU/Linux.
1996-11-26 David J. MacKenzie releases Autoconf 2.12.

Between June and October, the Autoconf development is almost staled. Roland
McGrath has been working at the beginning of the year. David comes back in
November to release 2.12, but he won’t touch Autoconf anymore after this year,
and Autoconf then really stagnates. The desolate Autoconf ChangeLog for 1997
lists only 7 commits.

1997-02-28 automake@gnu.ai.mit.edu list alive
The mailing list is announced as follows:

I’ve created the "automake" mailing list. It is

"automake@gnu.ai.mit.edu". Administrivia, as always, to

automake-request@gnu.ai.mit.edu.

The charter of this list is discussion of automake, autoconf, and

other configuration/portability tools (eg libtool). It is expected

that discussion will range from pleas for help all the way up to

patches.

This list is archived on the FSF machines. Offhand I don’t know if

you can get the archive without an account there.

mailto:automake@gnu.ai.mit.edu

Chapter 27: History of Automake 106

This list is open to anybody who wants to join. Tell all your

friends!

-- Tom Tromey

Before that people were discussing Automake privately, on the Gnits mailing
list (which is not public either), and less frequently on gnu.misc.discuss.

gnu.ai.mit.edu is now gnu.org, in case you never noticed. The archives of the
early years of the automake@gnu.org list have been lost, so today it is almost
impossible to find traces of discussions that occurred before 1999. This has
been annoying more than once, as such discussions can be useful to understand
the rationale behind a piece of uncommented code that was introduced back
then.

1997-06-22 Automake 1.2
Automake developments continues, and more and more new Autoconf macros
are required. Distributing them in aclocal.m4 and requiring people to browse
this file to extract the relevant macros becomes uncomfortable. Ideally, some
of them should be contributed to Autoconf so that they can be used directly,
however Autoconf is currently inactive. Automake 1.2 consequently introduces
aclocal (aclocal was actually started on 1996-07-28), a tool that automat-
ically constructs an aclocal.m4 file from a repository of third-party macros.
Because Autoconf has stalled, Automake also becomes a kind of repository for
such third-party macros, even macros completely unrelated to Automake (for
instance macros that fixes broken Autoconf macros).

The 1.2 release contains 20 macros, among which the AM_INIT_AUTOMAKE macro
that simplifies the creation of configure.in.

Libtool is fully supported using *_LTLIBRARIES.

The missing script is introduced by François Pinard; it is meant to be a bet-
ter solution than AM_MAINTAINER_MODE (see Section 26.2 [maintainer-mode],
page 89).

Conditionals support was implemented by Ian Lance Taylor. At the time, Tom
and Ian were working on an internal project at Cygnus. They were using ILU,
which is pretty similar to CORBA. They wanted to integrate ILU into their
build, which was all configure-based, and Ian thought that adding conditionals
to automake was simpler than doing all the work in configure (which was the
standard at the time). So this was actually funded by Cygnus.

This very useful but tricky feature will take a lot of time to stabilize. (At the
time this text is written, there are still primaries that have not been updated
to support conditional definitions in Automake 1.9.)

The automake script has almost doubled: 6089 lines of Perl, plus 1294 lines of
Makefile fragments.

1997-07-08 Gordon Matzigkeit releases Libtool 1.0.
1998-04-05 Automake 1.3

This is a small advance compared to 1.2. It add support for assembly, and
preliminary support for Java.

Chapter 27: History of Automake 107

Perl 5.004 04 is out, but fixes to support Perl 4 are still regularly submitted
whenever Automake breaks it.

1998-09-06 sourceware.cygnus.com is on-line.
Sourceware was setup by Jason Molenda to host open source projects.

1998-09-19 Automake CVS repository moved to sourceware.cygnus.com

1998-10-26 sourceware.cygnus.com announces it hosts Automake
Automake is now hosted on sourceware.cygnus.com. It has a publicly acces-
sible CVS repository. This CVS repository is a copy of the one Tom was using
on his machine, which in turn is based on a copy of the CVS repository of David
MacKenzie. This is why we still have to full source history. (Automake is still
on Sourceware today, but the host has been renamed to sources.redhat.com.)

The oldest file in the administrative directory of the CVS repository that
was created on Sourceware is dated 1998-09-19, while the announcement that
automake and autoconf had joined sourceware was made on 1998-10-26. They
were among the first projects to be hosted there.

The heedful reader will have noticed Automake was exactly 4-year-old on 1998-
09-19.

1999-01-05 Ben Elliston releases Autoconf 2.13.
1999-01-14 Automake 1.4

This release adds support for Fortran 77 and for the include statement. Also,
+= assignments are introduced, but it is still quite easy to fool Automake when
mixing this with conditionals.

These two releases, Automake 1.4 and Autoconf 2.13 makes a duo that will be
used together for years.

automake is 7228 lines, plus 1591 lines of Makefile fragment, 20 macros (some
1.3 macros were finally contributed back to Autoconf), 197 test cases, and 51
pages of documentation.

1999-03-27 The user-dep-branch is created on the CVS repository.
This implements a new dependency tracking schemed that should be able to
handle automatic dependency tracking using any compiler (not just gcc) and
any make (not just GNU make). In addition, the new scheme should be more
reliable than the old one, as dependencies are generated on the end user’s
machine. Alexandre Oliva creates depcomp for this purpose.

See Section 27.2 [Dependency Tracking Evolution], page 112, for more details
about the evolution of automatic dependency tracking in Automake.

1999-11-21 The user-dep-branch is merged into the main trunk.
This was a huge problem since we also had patches going in on the trunk. The
merge took a long time and was very painful.

2000-05-10
Since September 1999 and until 2003, Akim Demaille will be zealously revamp-
ing Autoconf.

I think the next release should be called "3.0".
Let’s face it: you’ve basically rewritten autoconf.

Chapter 27: History of Automake 108

Every weekend there are 30 new patches.
I don’t see how we could call this "2.15" with a straight face.
– Tom Tromey on autoconf@gnu.org

Actually Akim works like a submarine: he will pile up patches while he works
off-line during the weekend, and flush them in batch when he resurfaces on
Monday.

2001-01-24
On this Wednesday, Autoconf 2.49c, the last beta before Autoconf 2.50 is out,
and Akim has to find something to do during his week-end :)

2001-01-28
Akim sends a batch of 14 patches to automake@gnu.org.

Aiieeee! I was dreading the day that the Demaillator turned his
sights on automake... and now it has arrived! – Tom Tromey

It’s only the beginning: in two months he will send 192 patches. Then he would
slow down so Tom can catch up and review all this. Initially Tom actually read
all these patches, then he probably trustingly answered OK to most of them,
and finally gave up and let Akim apply whatever he wanted. There was no way
to keep up with that patch rate.

Anyway the patch below won’t apply since it predates Akim’s
sourcequake; I have yet to figure where the relevant passage has
been moved :) – Alexandre Duret-Lutz

All these patches were sent to and discussed on automake@gnu.org, so
subscribed users were literally drown in technical mails. Eventually, the
automake-patches@gnu.org mailing list was created in May.

Year after year, Automake had drifted away from its initial design: construct
Makefile.in by assembling various Makefile fragments. In 1.4, lots of
Makefile rules are being emitted at various places in the automake script
itself; this does not help ensuring a consistent treatment of these rules
(for instance making sure that user-defined rules override Automake’s own
rules). One of Akim’s goal was moving all these hard-coded rules to separate
Makefile fragments, so the logic could be centralized in a Makefile fragment
processor.

Another significant contribution of Akim is the interface with the “trace” fea-
ture of Autoconf. The way to scan configure.in at this time was to read the
file and grep the various macro of interest to Automake. Doing so could break
in many unexpected ways; automake could miss some definition (for instance
AC_SUBST([$1], [$2]) where the arguments are known only when M4 is run),
or conversely it could detect some macro that was not expanded (because it is
called conditionally). In the CVS version of Autoconf, Akim had implemented
the --trace option, which provides accurate information about where macros
are actually called and with what arguments. Akim will equip Automake with
a second configure.in scanner that uses this --trace interface. Since it was
not sensible to drop the Autoconf 2.13 compatibility yet, this experimental
scanner was only used when an environment variable was set, the traditional
grep-scanner being still the default.

mailto:autoconf@gnu.org
mailto:automake@gnu.org
mailto:automake@gnu.org
mailto:automake-patches@gnu.org

Chapter 27: History of Automake 109

2001-04-25 Gary V. Vaughan releases Libtool 1.4
It has been more than two years since Automake 1.4, CVS Automake has
suffered lot’s of heavy changes and still is not ready for release. Libtool 1.4
had to be distributed with a patch against Automake 1.4.

2001-05-08 Automake 1.4-p1
2001-05-24 Automake 1.4-p2

Gary V. Vaughan, the principal Libtool maintainer, makes a “patch release” of
Automake:

The main purpose of this release is to have a stable automake which
is compatible with the latest stable libtool.

The release also contains obvious fixes for bugs in Automake 1.4, some of which
were reported almost monthly.

2001-05-21 Akim Demaille releases Autoconf 2.50
2001-06-07 Automake 1.4-p3
2001-06-10 Automake 1.4-p4
2001-07-15 Automake 1.4-p5

Gary continues his patch-release series. These also add support for some new
Autoconf 2.50 idioms. Essentially, Autoconf now advocates configure.ac over
configure.in, and it introduces a new syntax for AC_OUTPUTing files.

2001-08-23 Automake 1.5
A major and long-awaited release, that comes more than two years after 1.4.
It brings many changes, among which:

• The new dependency tracking scheme that uses depcomp. Aside from the
improvement on the dependency tracking itself (see Section 27.2 [Depen-
dency Tracking Evolution], page 112), this also streamlines the use of au-
tomake generated Makefile.ins as the Makefile.ins used during devel-
opment are now the same as those used in distributions. Before that the
Makefile.ins generated for maintainers required GNU make and GCC,
they were different from the portable Makefile generated for distribution;
this was causing some confusion.

• Support for per-target compilation flags.

• Support for reference to files in subdirectories in most Makefile.am vari-
ables.

• Introduction of the dist_, nodist_, and nobase_ prefixes.

• Perl 4 support is finally dropped.

1.5 did broke several packages that worked with 1.4. Enough so that Linux dis-
tributions could not easily install the new Automake version without breaking
many of the packages for which they had to run automake.

Some of these breakages were effectively bugs that would eventually be fixed in
the next release. However, a lot of damage was caused by some changes made
deliberately to render Automake stricter on some setup we did consider bogus.
For instance make distcheck was improved to check that make uninstall did
remove all the files make install installed, that make distclean did not omit

Chapter 27: History of Automake 110

some file, and that a VPATH build would work even if the source directory was
read-only. Similarly, Automake now rejects multiple definitions of the same
variable (because that would mix very badly with conditionals), and += assign-
ments with no previous definition. Because these changes all occurred suddenly
after 1.4 had been established for more that two years, it hurt users.

To make matter worse, meanwhile Autoconf (now at version 2.52) was facing
similar troubles, for similar reasons.

2002-03-05 Automake 1.6
This release introduced versioned installation (see Chapter 24 [API versioning],
page 86). This was mainly pushed by Havoc Pennington, taking the GNOME
source tree as motive: due to incompatibilities between the autotools it’s im-
possible for the GNOME packages to switch to Autoconf 2.53 and Automake
1.5 all at once, so they are currently stuck with Autoconf 2.13 and Automake
1.4.

The idea was to call this version automake-1.6, call all its bug-fix versions iden-
tically, and switch to automake-1.7 for the next release that adds new features
or changes some rules. This scheme implies maintaining a bug-fix branch in ad-
dition to the development trunk, which means more work from the maintainer,
but providing regular bug-fix releases proved to be really worthwhile.

Like 1.5, 1.6 also introduced a bunch of incompatibilities, meant or not. Perhaps
the more annoying was the dependence on the newly released Autoconf 2.53.
Autoconf seemed to have stabilized enough since its explosive 2.50 release, and
included changes required to fix some bugs in Automake. In order to upgrade
to Automake 1.6, people now had to upgrade Autoconf too; for some packages
it was no picnic.

While versioned installation helped people to upgrade, it also unfortunately
allowed people not to upgrade. At the time of writing, some Linux distributions
are shipping packages for Automake 1.4, 1.5, 1.6, 1.7, 1.8, and 1.9. Most of these
still install 1.4 by default. Some distribution also call 1.4 the “stable” version,
and present “1.9” as the development version; this does not really makes sense
since 1.9 is way more solid than 1.4. All this does not help the newcomer.

2002-04-11 Automake 1.6.1
1.6, and the upcoming 1.4-p6 release were the last release by Tom. This one and
those following will be handled by Alexandre Duret-Lutz. Tom is still around,
and will be there until about 1.7, but his interest into Automake is drifting
away towards projects like gcj.

Alexandre has been using Automake since 2000, and started to contribute
mostly on Akim’s incitement (Akim and Alexandre have been working in the
same room from 1999 to 2002). In 2001 and 2002 he had a lot of free time to
enjoy hacking Automake.

2002-06-14 Automake 1.6.2
2002-07-28 Automake 1.6.3
2002-07-28 Automake 1.4-p6

Two releases on the same day. 1.6.3 is a bug-fix release.

Chapter 27: History of Automake 111

Tom Tromey backported the versioned installation mechanism on the 1.4
branch, so that Automake 1.6.x and Automake 1.4-p6 could be installed side
by side. Another request from the GNOME folks.

2002-09-25 Automake 1.7
This release switches to the new configure.ac scanner Akim was experiment-
ing in 1.5.

2002-10-16 Automake 1.7.1
2002-12-06 Automake 1.7.2
2003-02-20 Automake 1.7.3
2003-04-23 Automake 1.7.4
2003-05-18 Automake 1.7.5
2003-07-10 Automake 1.7.6
2003-09-07 Automake 1.7.7
2003-10-07 Automake 1.7.8

Many bug-fix releases. 1.7 lasted because the development version (upcoming
1.8) was suffering some major internal revamping.

2003-10-26 Automake on screen
Episode 49, ‘Repercussions’, in the third season of the ‘Alias’ TV show is first
aired.

Marshall, one of the character, is working on a computer virus that he has
to modify before it gets into the wrong hands or something like that. The
screenshots you see do not show any program code, they show a Makefile.in

generated by automake...

2003-11-09 Automake 1.7.9
2003-12-10 Automake 1.8

The most striking update is probably that of aclocal.

aclocal now uses m4_include in the produced aclocal.m4 when the included
macros are already distributed with the package (an idiom used in many pack-
ages), which reduces code duplication. Many people liked that, but in fact this
change was really introduced to fix a bug in rebuild rules: Makefile.in must
be rebuilt whenever a dependency of configure changes, but all the m4 files
included in aclocal.m4 where unknown from automake. Now automake can
just trace the m4_includes to discover the dependencies.

aclocal also starts using the --trace Autoconf option in order to discover used
macros more accurately. This will turn out to be very tricky (later releases will
improve this) as people had devised many ways to cope with the limitation of
previous aclocal versions, notably using handwritten m4_includes: aclocal

must make sure not to redefine a rule which is already included by such state-
ment.

Automake also has seen its guts rewritten. Although this rewriting took a lot
of efforts, it is only apparent to the users in that some constructions previously
disallowed by the implementation now work nicely. Conditionals, Locations,
Variable and Rule definitions, Options: these items on which Automake works
have been rewritten as separate Perl modules, and documented.

Chapter 27: History of Automake 112

2004-01-11 Automake 1.8.1
2004-01-12 Automake 1.8.2
2004-03-07 Automake 1.8.3
2004-04-25 Automake 1.8.4
2004-05-16 Automake 1.8.5
2004-07-28 Automake 1.9

This release tries to simplify the compilation rules it outputs to reduce the size
of the Makefile. The complaint initially come from the libgcj developers. Their
Makefile.in generated with Automake 1.4 and custom build rules (1.4 did not
support compiled Java) is 250KB. The one generated by 1.8 was over 9MB! 1.9
gets it down to 1.2MB.

Aside from this it contains mainly minor changes and bug-fixes.

2004-08-11 Automake 1.9.1
2004-09-19 Automake 1.9.2

Automake has ten years. This chapter of the manual was initially written for
this occasion.

27.2 Dependency Tracking in Automake

Over the years Automake has deployed three different dependency tracking methods. Each
method, including the current one, has had flaws of various sorts. Here we lay out the
different dependency tracking methods, their flaws, and their fixes. We conclude with rec-
ommendations for tool writers, and by indicating future directions for dependency tracking
work in Automake.

27.2.1 First Take

Description

Our first attempt at automatic dependency tracking was based on the method recommended
by GNU make. (see Section “Generating Prerequisites Automatically” in The GNU make
Manual)

This version worked by precomputing dependencies ahead of time. For each source file,
it had a special .P file which held the dependencies. There was a rule to generate a .P file
by invoking the compiler appropriately. All such .P files were included by the Makefile,
thus implicitly becoming dependencies of Makefile.

Bugs

This approach had several critical bugs.

• The code to generate the .P file relied on gcc. (A limitation, not technically a bug.)

• The dependency tracking mechanism itself relied on GNU make. (A limitation, not
technically a bug.)

• Because each .P file was a dependency of Makefile, this meant that dependency track-
ing was done eagerly by make. For instance, make clean would cause all the dependency
files to be updated, and then immediately removed. This eagerness also caused prob-
lems with some configurations; if a certain source file could not be compiled on a given
architecture for some reason, dependency tracking would fail, aborting the entire build.

Chapter 27: History of Automake 113

• As dependency tracking was done as a pre-pass, compile times were doubled–the com-
piler had to be run twice per source file.

• make dist re-ran automake to generate a Makefile which did not have automatic
dependency tracking (and which was thus portable to any version of make). In order to
do this portably, Automake had to scan the dependency files and remove any reference
which was to a source file not in the distribution. This process was error-prone. Also,
if make dist was run in an environment where some object file had a dependency on a
source file which was only conditionally created, Automake would generate a Makefile

which referred to a file which might not appear in the end user’s build. A special,
hacky mechanism was required to work around this.

Historical Note

The code generated by Automake is often inspired by the Makefile style of a particular
author. In the case of the first implementation of dependency tracking, I believe the impetus
and inspiration was Jim Meyering. (I could be mistaken. If you know otherwise feel free to
correct me.)

27.2.2 Dependencies As Side Effects

Description

The next refinement of Automake’s automatic dependency tracking scheme was to imple-
ment dependencies as side effects of the compilation. This was aimed at solving the most
commonly reported problems with the first approach. In particular we were most concerned
with eliminating the weird rebuilding effect associated with make clean.

In this approach, the .P files were included using the -include command, which let us
create these files lazily. This avoided the make clean problem.

We only computed dependencies when a file was actually compiled. This avoided the
performance penalty associated with scanning each file twice. It also let us avoid the
other problems associated with the first, eager, implementation. For instance, dependencies
would never be generated for a source file which was not compilable on a given architecture
(because it in fact would never be compiled).

Bugs

• This approach also relied on the existence of gcc and GNU make. (A limitation, not
technically a bug.)

• Dependency tracking was still done by the developer, so the problems from the first
implementation relating to massaging of dependencies by make dist were still in effect.

• This implementation suffered from the “deleted header file” problem. Suppose a lazily-
created .P file includes a dependency on a given header file, like this:

maude.o: maude.c something.h

Now suppose that the developer removes something.h and updates maude.c so that
this include is no longer needed. If he runs make, he will get an error because there is
no way to create something.h.

We fixed this problem in a later release by further massaging the output of gcc to
include a dummy dependency for each header file.

Chapter 27: History of Automake 114

27.2.3 Dependencies for the User

Description

The bugs associated with make dist, over time, became a real problem. Packages using
Automake were being built on a large number of platforms, and were becoming increasingly
complex. Broken dependencies were distributed in “portable” Makefile.ins, leading to
user complaints. Also, the requirement for gcc and GNU make was a constant source
of bug reports. The next implementation of dependency tracking aimed to remove these
problems.

We realized that the only truly reliable way to automatically track dependencies was
to do it when the package itself was built. This meant discovering a method portable
to any version of make and any compiler. Also, we wanted to preserve what we saw as
the best point of the second implementation: dependency computation as a side effect of
compilation.

In the end we found that most modern make implementations support some form of
include directive. Also, we wrote a wrapper script which let us abstract away differences
between dependency tracking methods for compilers. For instance, some compilers cannot
generate dependencies as a side effect of compilation. In this case we simply have the
script run the compiler twice. Currently our wrapper script (depcomp) knows about twelve
different compilers (including a "compiler" which simply invokes makedepend and then the
real compiler, which is assumed to be a standard Unix-like C compiler with no way to do
dependency tracking).

Bugs

• Running a wrapper script for each compilation slows down the build.

• Many users don’t really care about precise dependencies.

• This implementation, like every other automatic dependency tracking scheme in com-
mon use today (indeed, every one we’ve ever heard of), suffers from the “duplicated
new header” bug.

This bug occurs because dependency tracking tools, such as the compiler, only generate
dependencies on the successful opening of a file, and not on every probe.

Suppose for instance that the compiler searches three directories for a given header, and
that the header is found in the third directory. If the programmer erroneously adds a
header file with the same name to the first directory, then a clean rebuild from scratch
could fail (suppose the new header file is buggy), whereas an incremental rebuild will
succeed.

What has happened here is that people have a misunderstanding of what a dependency
is. Tool writers think a dependency encodes information about which files were read
by the compiler. However, a dependency must actually encode information about what
the compiler tried to do.

This problem is not serious in practice. Programmers typically do not use the same
name for a header file twice in a given project. (At least, not in C or C++. This
problem may be more troublesome in Java.) This problem is easy to fix, by modifying
dependency generators to record every probe, instead of every successful open.

Chapter 27: History of Automake 115

• Since automake generates dependencies as a side effect of compilation, there is a boot-
strapping problem when header files are generated by running a program. The problem
is that, the first time the build is done, there is no way by default to know that the
headers are required, so make might try to run a compilation for which the headers
have not yet been built.

This was also a problem in the previous dependency tracking implementation.

The current fix is to use BUILT_SOURCES to list built headers (see Section 8.4 [Sources],
page 56). This causes them to be built before any other other build rules are run. This
is unsatisfactory as a general solution, however in practice it seems sufficient for most
actual programs.

This code is used since Automake 1.5.

In GCC 3.0, we managed to convince the maintainers to add special command-line
options to help Automake more efficiently do its job. We hoped this would let us avoid the
use of a wrapper script when Automake’s automatic dependency tracking was used with
gcc.

Unfortunately, this code doesn’t quite do what we want. In particular, it removes the
dependency file if the compilation fails; we’d prefer that it instead only touch the file in any
way if the compilation succeeds.

Nevertheless, since Automake 1.7, when a recent gcc is detected at configure time, we
inline the dependency-generation code and do not use the depcomp wrapper script. This
makes compilations faster for those using this compiler (probably our primary user base).
The counterpart is that because we have to encode two compilation rules in Makefile (with
or without depcomp), the produced Makefiles are larger.

27.2.4 Techniques for Computing Dependencies

There are actually several ways for a build tool like Automake to cause tools to generate
dependencies.

makedepend

This was a commonly-used method in the past. The idea is to run a special
program over the source and have it generate dependency information. Tra-
ditional implementations of makedepend ere not completely precise; ordinarily
they were conservative and discovered too many dependencies.

The tool An obvious way to generate dependencies is to simply write the tool so that it
can generate the information needed by the build tool. This is also the most
portable method. Many compilers have an option to generate dependencies.
Unfortunately, not all tools provide such an option.

The file system
It is possible to write a special file system that tracks opens, reads, writes, etc,
and then feed this information back to the build tool. clearmake does this.
This is a very powerful technique, as it doesn’t require cooperation from the
tool. Unfortunately it is also very difficult to implement and also not practical
in the general case.

Chapter 27: History of Automake 116

LD_PRELOAD

Rather than use the file system, one could write a special library to intercept
open and other syscalls. This technique is also quite powerful, but unfortunately
it is not portable enough for use in automake.

27.2.5 Recommendations for Tool Writers

We think that every compilation tool ought to be able to generate dependencies as a side
effect of compilation. Furthermore, at least while make-based tools are nearly universally
in use (at least in the free software community), the tool itself should generate dummy
dependencies for header files, to avoid the deleted header file bug. Finally, the tool should
generate a dependency for each probe, instead of each successful file open, in order to avoid
the duplicated new header bug.

27.2.6 Future Directions for Automake’s Dependency Tracking

Currently, only languages and compilers understood by Automake can have dependency
tracking enabled. We would like to see if it is practical (and worthwhile) to let this support
be extended by the user to languages unknown to Automake.

27.3 Release Statistics

The following table (inspired by perlhist(1)) quantifies the evolution of Automake using
these metrics:

Date, Rel The date and version of the release.

am The number of lines of the automake script.

acl The number of lines of the aclocal script.

pm The number of lines of the Perl supporting modules.

*.am The number of lines of the Makefile fragments. The number in parenthesis is
the number of files.

m4 The number of lines (and files) of Autoconf macros.

doc The number of pages of the documentation (the Postscript version).

t The number of test cases in the test suite.

Date Rel am acl pm *.am m4 doc t
1994-09-19 CVS 141 299 (24)
1994-11-05 CVS 208 332 (28)
1995-11-23 0.20 533 458 (35) 9
1995-11-26 0.21 613 480 (36) 11
1995-11-28 0.22 1116 539 (38) 12
1995-11-29 0.23 1240 541 (38) 12
1995-12-08 0.24 1462 504 (33) 14
1995-12-10 0.25 1513 511 (37) 15
1996-01-03 0.26 1706 438 (36) 16
1996-01-03 0.27 1706 438 (36) 16

Chapter 27: History of Automake 117

1996-01-13 0.28 1964 934 (33) 16
1996-02-07 0.29 2299 936 (33) 17
1996-02-24 0.30 2544 919 (32) 85 (1) 20 9
1996-03-11 0.31 2877 919 (32) 85 (1) 29 17
1996-04-27 0.32 3058 921 (31) 85 (1) 30 26
1996-05-18 0.33 3110 926 (31) 105 (1) 30 35
1996-05-28 1.0 3134 973 (32) 105 (1) 30 38
1997-06-22 1.2 6089 385 1294 (36) 592 (23) 37 126
1998-04-05 1.3 6415 422 1470 (39) 741 (26) 39 156
1999-01-14 1.4 7240 426 1591 (40) 734 (23) 51 197
2001-05-08 1.4-p1 7251 426 1591 (40) 734 (23) 51 197
2001-05-24 1.4-p2 7268 439 1591 (40) 734 (23) 49 197
2001-06-07 1.4-p3 7312 439 1591 (40) 734 (23) 49 197
2001-06-10 1.4-p4 7321 439 1591 (40) 734 (23) 49 198
2001-07-15 1.4-p5 7228 426 1596 (40) 734 (23) 51 198
2001-08-23 1.5 8016 475 600 2654 (39) 1166 (32) 63 327
2002-03-05 1.6 8465 475 1136 2732 (39) 1603 (31) 66 365
2002-04-11 1.6.1 8544 475 1136 2741 (39) 1603 (31) 66 372
2002-06-14 1.6.2 8575 475 1136 2800 (39) 1609 (31) 67 386
2002-07-28 1.6.3 8600 475 1153 2809 (39) 1609 (31) 67 391
2002-07-28 1.4-p6 7332 455 1596 (40) 735 (24) 49 197
2002-09-25 1.7 9189 471 1790 2965 (39) 1606 (33) 73 430
2002-10-16 1.7.1 9229 475 1790 2977 (39) 1606 (33) 73 437
2002-12-06 1.7.2 9334 475 1790 2988 (39) 1606 (33) 77 445
2003-02-20 1.7.3 9389 475 1790 3023 (39) 1651 (34) 84 448
2003-04-23 1.7.4 9429 475 1790 3031 (39) 1644 (34) 85 458
2003-05-18 1.7.5 9429 475 1790 3033 (39) 1645 (34) 85 459
2003-07-10 1.7.6 9442 475 1790 3033 (39) 1660 (34) 85 461
2003-09-07 1.7.7 9443 475 1790 3041 (39) 1660 (34) 90 467
2003-10-07 1.7.8 9444 475 1790 3041 (39) 1660 (34) 90 468
2003-11-09 1.7.9 9444 475 1790 3048 (39) 1660 (34) 90 468
2003-12-10 1.8 7171 585 7730 3236 (39) 1666 (36) 104 521
2004-01-11 1.8.1 7217 663 7726 3287 (39) 1686 (36) 104 525
2004-01-12 1.8.2 7217 663 7726 3288 (39) 1686 (36) 104 526
2004-03-07 1.8.3 7214 686 7735 3303 (39) 1695 (36) 111 530
2004-04-25 1.8.4 7214 686 7736 3310 (39) 1701 (36) 112 531
2004-05-16 1.8.5 7240 686 7736 3299 (39) 1701 (36) 112 533
2004-07-28 1.9 7508 715 7794 3352 (40) 1812 (37) 115 551
2004-08-11 1.9.1 7512 715 7794 3354 (40) 1812 (37) 115 552
2004-09-19 1.9.2 7512 715 7794 3354 (40) 1812 (37) 132 554

Appendix A: Copying This Manual 118

Appendix A Copying This Manual

A.1 GNU Free Documentation License

Version 1.2, November 2002

Copyright c© 2000,2001,2002 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and
useful document free in the sense of freedom: to assure everyone the effective freedom
to copy and redistribute it, with or without modifying it, either commercially or non-
commercially. Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible for modifications
made by others.

This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a
notice placed by the copyright holder saying it can be distributed under the terms
of this License. Such a notice grants a world-wide, royalty-free license, unlimited in
duration, to use that work under the conditions stated herein. The “Document”,
below, refers to any such manual or work. Any member of the public is a licensee, and
is addressed as “you”. You accept the license if you copy, modify or distribute the work
in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into
another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that
could fall directly within that overall subject. (Thus, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding
them.

Appendix A: Copying This Manual 119

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released
under this License. If a section does not fit the above definition of Secondary then it is
not allowed to be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may
be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, that is suitable for
revising the document straightforwardly with generic text editors or (for images com-
posed of pixels) generic paint programs or (for drawings) some widely available drawing
editor, and that is suitable for input to text formatters or for automatic translation to
a variety of formats suitable for input to text formatters. A copy made in an otherwise
Transparent file format whose markup, or absence of markup, has been arranged to
thwart or discourage subsequent modification by readers is not Transparent. An image
format is not Transparent if used for any substantial amount of text. A copy that is
not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ascii without
markup, Texinfo input format, LaTEX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML, PostScript or PDF designed
for human modification. Examples of transparent image formats include PNG, XCF

and JPG. Opaque formats include proprietary formats that can be read and edited
only by proprietary word processors, SGML or XML for which the DTD and/or
processing tools are not generally available, and the machine-generated HTML,
PostScript or PDF produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such
as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve
the Title” of such a section when you modify the Document means that it remains a
section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to
be included by reference in this License, but only as regards disclaiming warranties:
any other implication that these Warranty Disclaimers may have is void and has no
effect on the meaning of this License.

2. VERBATIM COPYING

Appendix A: Copying This Manual 120

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and
that you add no other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for copies.
If you distribute a large enough number of copies you must also follow the conditions
in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of
the Document, numbering more than 100, and the Document’s license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify you as the publisher
of these copies. The front cover must present the full title with all words of the title
equally prominent and visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verbatim copying in other
respects.

If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a computer-network location from which
the general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material. If
you use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will
remain thus accessible at the stated location until at least one year after the last time
you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of
it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any,

Appendix A: Copying This Manual 121

be listed in the History section of the Document). You may use the same title as
a previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has fewer
than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item
stating at least the title, year, new authors, and publisher of the Modified Version
as given on the Title Page. If there is no section Entitled “History” in the Docu-
ment, create one stating the title, year, authors, and publisher of the Document
as given on its Title Page, then add an item describing the Modified Version as
stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
“History” section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included
in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in
title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their

Appendix A: Copying This Manual 122

titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties—for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but
you may replace the old one, on explicit permission from the previous publisher that
added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections Entitled “History” in the vari-
ous original documents, forming one section Entitled “History”; likewise combine any
sections Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You
must delete all sections Entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.

You may extract a single document from such a collection, and distribute it individu-
ally under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.

Appendix A: Copying This Manual 123

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called
an “aggregate” if the copyright resulting from the compilation is not used to limit the
legal rights of the compilation’s users beyond what the individual works permit. When
the Document is included an aggregate, this License does not apply to the other works
in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they
must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original versions
of these Invariant Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warrany Disclaimers, provided that you
also include the original English version of this License and the original versions of
those notices and disclaimers. In case of a disagreement between the translation and
the original version of this License or a notice or disclaimer, the original version will
prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “His-
tory”, the requirement (section 4) to Preserve its Title (section 1) will typically require
changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided for under this License. Any other attempt to copy, modify, sublicense or
distribute the Document is void, and will automatically terminate your rights under
this License. However, parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such parties remain in full
compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of
this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation.

http://www.gnu.org/copyleft/

Appendix A: Copying This Manual 124

A.1.1 ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify this document

under the terms of the GNU Free Documentation License, Version 1.2

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.

A copy of the license is included in the section entitled ‘‘GNU

Free Documentation License’’.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with...Texts.” line with this:

with the Invariant Sections being list their titles, with

the Front-Cover Texts being list, and with the Back-Cover Texts

being list.

If you have Invariant Sections without Cover Texts, or some other combination of the
three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.

Appendix B: Indices 125

Appendix B Indices

B.1 Macro Index

_AM_DEPENDENCIES . 21

A
AC_CANONICAL_BUILD . 13
AC_CANONICAL_HOST . 13
AC_CANONICAL_TARGET . 13
AC_CONFIG_AUX_DIR . 13, 28
AC_CONFIG_FILES . 12
AC_CONFIG_HEADERS . 13
AC_CONFIG_LIBOBJ_DIR . 43
AC_CONFIG_LINKS . 13
AC_CONFIG_SUBDIRS . 28
AC_DEFUN . 21
AC_F77_LIBRARY_LDFLAGS . 14
AC_INIT . 19
AC_LIBOBJ . 13, 37, 43
AC_LIBSOURCE . 13, 43
AC_LIBSOURCES . 13
AC_OUTPUT . 12
AC_PREREQ . 21
AC_PROG_CC_C_O . 20
AC_PROG_CXX . 14
AC_PROG_F77 . 14
AC_PROG_FC . 14
AC_PROG_LEX . 14, 20
AC_PROG_LIBTOOL . 14

AC_PROG_RANLIB . 14
AC_PROG_YACC . 14
AC_SUBST . 14
AM_C_PROTOTYPES . 14, 18, 53
AM_CONDITIONAL . 79
AM_CONFIG_HEADER . 18
AM_DEP_TRACK . 21
AM_ENABLE_MULTILIB . 18
AM_GNU_GETTEXT . 15
AM_HEADER_TIOCGWINSZ_NEEDS_SYS_IOCTL 19
AM_INIT_AUTOMAKE . 12, 19
AM_MAINTAINER_MODE 15, 72, 90
AM_MAKE_INCLUDE . 21
AM_OUTPUT_DEPENDENCY_COMMANDS 21
AM_PATH_LISPDIR . 19
AM_PROG_AS . 20
AM_PROG_CC_C_O . 20
AM_PROG_GCJ . 20
AM_PROG_INSTALL_STRIP . 21
AM_PROG_LEX . 20
AM_SANITY_CHECK . 21
AM_SET_DEPDIR . 21
AM_SYS_POSIX_TERMIOS . 20
AM_WITH_DMALLOC . 20
AM_WITH_REGEX . 20

M
m4_include . 15, 68

B.2 Variable Index

_DATA . 56
_HEADERS . 55
_LIBRARIES . 33
_LISP . 60
_LTLIBRARIES . 34
_MANS . 65
_PROGRAMS . 3, 29
_PYTHON . 62
_SCRIPTS . 55
_SOURCES . 30, 42
_TEXINFOS . 63, 64

A
ACLOCAL_AMFLAGS . 22, 72
ALLOCA . 37, 43
AM_CCASFLAGS . 47
AM_CFLAGS . 45
AM_CPPFLAGS . 44
AM_CXXFLAGS . 47
AM_ETAGSFLAGS . 77
AM_FCFLAGS . 52
AM_FFLAGS . 48
AM_GCJFLAGS . 52
AM_INSTALLCHECK_STD_OPTIONS_EXEMPT 75
AM_JAVACFLAGS . 61
AM_LDFLAGS . 30, 45
AM_LFLAGS . 46
AM_MAKEFLAGS . 24
AM_MAKEINFOFLAGS . 64
AM_MAKEINFOHTMLFLAGS . 64

Appendix B: Indices 126

AM_RFLAGS . 48
AM_RUNTESTFLAGS . 72
AM_YFLAGS . 45
ANSI2KNR . 18
AUTOCONF . 9
AUTOM4TE . 16
AUTOMAKE_OPTIONS 19, 53, 54, 74

B
bin_PROGRAMS . 29
bin_SCRIPTS . 55
build_triplet . 13
BUILT_SOURCES . 56

C
CC . 44
CCAS . 20, 47
CCASFLAGS . 20, 47
CFLAGS . 44
check_ . 4
check_LTLIBRARIES . 35
check_PROGRAMS . 29, 42
check_SCRIPTS . 55
CLASSPATH_ENV . 61
CLEANFILES . 67
COMPILE . 45
CONFIG_STATUS_DEPENDENCIES 73
CONFIGURE_DEPENDENCIES . 73
CPPFLAGS . 44
CXX . 47
CXXCOMPILE . 47
CXXFLAGS . 47
CXXLINK . 47

D
data_DATA . 56
DATA . 4, 56
DEFS . 44
DEJATOOL . 72
DESTDIR . 67
dist_ . 27, 69
dist_lisp_LISP . 60
dist_noinst_LISP . 60
DIST_SUBDIRS . 26, 68
DISTCHECK_CONFIGURE_FLAGS 70
distcleancheck_listfiles 70, 93
DISTCLEANFILES . 67, 70
distdir . 69, 83
distuninstallcheck_listfiles 70
DVIPS . 65

E
EMACS . 19
ETAGS_ARGS . 77
ETAGSFLAGS . 77
EXPECT . 72
EXTRA_DIST . 68
EXTRA_maude_SOURCES . 39
EXTRA_PROGRAMS . 32

F
F77 . 48
F77COMPILE . 48
FC . 52
FCCOMPILE . 52
FCFLAGS . 52
FCLINK . 52
FFLAGS . 48
FLIBS . 50
FLINK . 48

G
GCJ . 20
GCJFLAGS . 20, 52
GTAGS_ARGS . 78
GZIP_ENV . 68

H
HEADERS . 4
host_triplet . 13

I
include_HEADERS . 55
INCLUDES . 8, 44
info_TEXINFOS . 63

J
JAVA . 4
JAVAC . 61
JAVACFLAGS . 61
JAVAROOT . 61

Appendix B: Indices 127

L
LDADD . 30
LDFLAGS . 44
LFLAGS . 46
lib_LIBRARIES . 33
lib_LTLIBRARIES . 34
libexec_PROGRAMS . 29
libexec_SCRIPTS . 55
LIBOBJS . 13, 37, 43
LIBRARIES . 4
LIBS . 44
LINK . 45
lisp_LISP . 60
lispdir . 19
LISP . 4
localstate_DATA . 56
LTALLOCA . 37, 43
LTLIBOBJS . 37, 43

M
MAINTAINERCLEANFILES . 67
MAKE . 24
MAKEINFO . 64
MAKEINFOFLAGS . 64
MAKEINFOHTML . 64
man_MANS . 65
MANS . 4
maude_AR . 40
maude_CCASFLAGS . 41
maude_CFLAGS . 41
maude_CPPFLAGS . 41
maude_CXXFLAGS . 41
maude_DEPENDENCIES . 30, 40
maude_FFLAGS . 41
maude_GCJFLAGS . 41
maude_LDADD . 30, 40
maude_LDFLAGS . 30, 40
maude_LFLAGS . 41
maude_LIBADD . 33, 40
maude_LINK . 41
maude_OBJCFLAGS . 41
maude_RFLAGS . 41
maude_SHORTNAME . 41
maude_SOURCES . 39
maude_YFLAGS . 41
MOSTLYCLEANFILES . 67

N
nobase_ . 27
nodist_ . 27, 69
noinst_ . 4
noinst_HEADERS . 55, 56
noinst_LIBRARIES . 33
noinst_LISP . 60
noinst_LTLIBRARIES . 35
noinst_PROGRAMS . 29
noinst_SCRIPTS . 55

O
oldinclude_HEADERS . 55

P
PACKAGE . 68
pkgdata_DATA . 56
pkgdata_SCRIPTS . 55
pkgdatadir . 3
pkginclude_HEADERS . 55
pkgincludedir . 3
pkglib_LIBRARIES . 33
pkglib_LTLIBRARIES . 34
pkglib_PROGRAMS . 29
pkglibdir . 3
pkgpyexecdir . 63
pkgpythondir . 63
PROGRAMS . 3, 4
pyexecdir . 63
pythondir . 63
PYTHON . 4, 62
PYTHON_EXEC_PREFIX . 62
PYTHON_PLATFORM . 63
PYTHON_PREFIX . 62
PYTHON_VERSION . 62

R
RFLAGS . 48
RUNTEST . 72
RUNTESTDEFAULTFLAGS . 72
RUNTESTFLAGS . 72

S
sbin_PROGRAMS . 29
sbin_SCRIPTS . 55
SCRIPTS . 4, 55
sharedstate_DATA . 56
SOURCES . 30, 42
SUBDIRS . 24, 68
SUFFIXES . 78
sysconf_DATA . 56

Appendix B: Indices 128

T
TAGS_DEPENDENCIES . 77

target_triplet . 13

TESTS . 72

TESTS_ENVIRONMENT . 72

TEXI2DVI . 65

TEXI2PDF . 65

TEXINFO_TEX . 65

TEXINFOS . 4, 64

top_distdir . 69, 83

U
U . 18

V
VERSION . 68

W
WARNINGS . 12
WITH_DMALLOC . 20
WITH_REGEX . 20

X
XFAIL_TESTS . 72

Y
YACC . 14
YFLAGS . 45

B.3 General Index

#
(special Automake comment) 2

+
+= . 1

–
--acdir . 16
--add-missing . 10
--copy . 10
--cygnus . 10
--enable-debug, example . 79
--enable-maintainer-mode . 15
--force . 16
--force-missing . 10
--foreign . 10
--gnits . 10
--gnits, complete description 80
--gnu . 10
--gnu, complete description . 80
--gnu, required files . 80
--help . 10, 16
--help check . 75
--include-deps . 11
--libdir . 10
--no-force . 11
--output . 16
--output-dir . 11
--print-ac-dir . 16
--verbose . 11, 16
--version . 11, 16
--version check . 75
--warnings . 11
--with-dmalloc . 20

--with-regex . 20
-a . 10
-c . 10
-f . 10
-hook targets . 82
-i . 11
-I . 16
-local targets . 82
-module, libtool . 37
-o . 11
-v . 11
-W . 11

.

.la suffix, defined . 33

_DATA primary, defined . 56
_DEPENDENCIES, defined . 30
_HEADERS primary, defined . 55
_JAVA primary, defined . 61
_LDFLAGS, defined . 30
_LDFLAGS, libtool . 37
_LIBADD, libtool . 37
_LIBRARIES primary, defined 33
_LISP primary, defined . 60
_LTLIBRARIES primary, defined 34
_MANS primary, defined . 65
_PROGRAMS primary variable . 3
_PYTHON primary, defined . 62
_SCRIPTS primary, defined . 55
_SOURCES and header files . 30
_SOURCES primary, defined . 30
_SOURCES, default . 42

Appendix B: Indices 129

_SOURCES, empty . 42
_TEXINFOS primary, defined . 63

A
AC_SUBST and SUBDIRS . 26
acinclude.m4, defined . 6
aclocal program, introduction 6
aclocal search path . 16
aclocal’s scheduled death . 23
aclocal, extending . 21
aclocal, Invoking . 15
aclocal, Options . 16
aclocal.m4, preexisting . 6
Adding new SUFFIXES . 78
all . 82
all-local . 82
ALLOCA, and Libtool . 37
ALLOCA, example . 43
ALLOCA, special handling . 43
AM_CCASFLAGS and CCASFLAGS 94
AM_CFLAGS and CFLAGS . 94
AM_CONDITIONAL and SUBDIRS 25
AM_CPPFLAGS and CPPFLAGS . 94
AM_CXXFLAGS and CXXFLAGS . 94
AM_FCFLAGS and FCFLAGS . 94
AM_FFLAGS and FFLAGS . 94
AM_GCJFLAGS and GCJFLAGS . 94
AM_INIT_AUTOMAKE, example use 6
AM_LDFLAGS and LDFLAGS . 94
AM_LFLAGS and LFLAGS . 94
AM_MAINTAINER_MODE, purpose 90
AM_OBJCFLAGS and OBJCFLAGS 94
AM_RFLAGS and RFLAGS . 94
AM_YFLAGS and YFLAGS . 94
ansi2knr . 53, 74
ansi2knr and LIBOBJS . 53
ansi2knr and LTLIBOBJS . 53
Append operator . 1
autogen.sh and autoreconf 38
Automake constraints . 1
automake options . 10
Automake requirements . 1, 12
automake, invoking . 9
Automake, recursive operation 2
Automatic dependency tracking 53
Automatic linker selection . 51
autoreconf and libtoolize 38
Auxiliary programs . 5
Avoiding path stripping . 27

B
bootstrap.sh and autoreconf 38
Bugs, reporting . 1
BUILT_SOURCES, defined . 56

C
C++ support . 47
canonicalizing Automake variables 4
CCASFLAGS and AM_CCASFLAGS 94
CFLAGS and AM_CFLAGS . 94
cfortran . 49
check . 71, 82
check-local . 82
check-news . 74
check_ primary prefix, definition 4
check_PROGRAMS example . 42
clean . 82
clean-local . 67, 82
Comment, special to Automake 2
Compile Flag Variables . 94
Complete example . 6
Conditional example, --enable-debug 79
conditional libtool libraries . 34
Conditional programs . 32
Conditional subdirectories . 25
Conditional SUBDIRS . 25
Conditionals . 79
config.guess . 10
configure.ac, from GNU Hello 7
configure.ac, scanning . 12
conflicting definitions . 81
Constraints of Automake . 1
convenience libraries, libtool 35
copying semantics . 81
cpio example . 3
CPPFLAGS and AM_CPPFLAGS . 94
cvs-dist . 1
cvs-dist, non-standard example 1
CVS and generated files . 88
CVS and third-party files . 89
CVS and timestamps . 88
CXXFLAGS and AM_CXXFLAGS . 94
cygnus . 74
cygnus strictness . 81

D
DATA primary, defined . 56
de-ANSI-fication, defined . 53
default _SOURCES . 42
default source, Libtool modules example 42
definitions, conflicts . 81
dejagnu . 72, 74
depcomp . 53
dependencies and distributed files 92
Dependency tracking . 53
Dependency tracking, disabling 54
dirlist . 17
Disabling dependency tracking 54
dist . 68
dist-bzip2 . 71, 74
dist-gzip . 71
dist-hook . 69, 82

Appendix B: Indices 130

dist-shar . 71, 74
dist-tarZ . 71, 74
dist-zip . 71, 74
dist_ and nobase_ . 27
DIST_SUBDIRS, explained . 25
distcheck . 70
distcheck-hook . 70
distclean . 82, 92
distclean, diagnostic . 92
distclean-local . 67, 82
distcleancheck . 70, 92
distdir . 83
dmalloc, support for . 20
dvi . 82
dvi-local . 82
DVI output using Texinfo . 63

E
E-mail, bug reports . 1
EDITION Texinfo flag . 63
else . 79
empty _SOURCES . 42
endif . 79
Example conditional --enable-debug 79
Example of recursive operation 2
Example of shared libraries . 34
Example, EXTRA_PROGRAMS . 3
Example, false and true . 8
Example, GNU Hello . 6
Example, handling Texinfo files 7
Example, mixed language . 50
Example, regression test . 8
Executable extension . 54
Exit status 77, special interpretation 71
Expected test failure . 72
Extending aclocal . 21
Extending list of installation directories 3
Extension, executable . 54
Extra files distributed with Automake 10
EXTRA_, prepending . 3
EXTRA_prog_SOURCES, defined 31
EXTRA_PROGRAMS, defined . 3, 32

F
false Example . 8
FCFLAGS and AM_FCFLAGS . 94
FDL, GNU Free Documentation License 118
FFLAGS and AM_FFLAGS . 94
filename-length-max=99 . 74
Files distributed with Automake 10
First line of Makefile.am . 2
Flag Variables, Ordering . 94
Flag variables, ordering . 93
FLIBS, defined . 50
foreign . 74
foreign strictness . 2

Fortran 77 support . 48
Fortran 77, mixing with C and C++ 49
Fortran 77, Preprocessing . 48
Fortran 9x support . 51

G
GCJFLAGS and AM_GCJFLAGS . 94
generated files and CVS . 88
generated files, distributed . 87
Gettext support . 61
gnits . 74
gnits strictness . 2
gnu . 74
gnu strictness . 2
GNU Gettext support . 61
GNU Hello, configure.ac . 7
GNU Hello, example . 6
GNU make extensions . 1
GNU Makefile standards . 1
GNUmakefile including Makefile 84

H
Header files in _SOURCES . 30
HEADERS primary, defined . 55
HEADERS, installation directories 55
Hello example . 6
Hello, configure.ac . 7
hook targets . 82
HP-UX 10, lex problems . 20
html . 82
html-local . 82
HTML installation, example . 3
HTML output using Texinfo 63

I
id . 77
if . 79
include . 68, 78
include, distribution . 68
INCLUDES, example usage . 8
Including Makefile fragment 78
info . 75, 82
info-local . 82
install . 66, 82
Install hook . 67
Install, two parts of . 66
install-data . 66
install-data-hook . 82
install-data-local . 67, 82
install-exec . 66, 82
install-exec-hook . 82
install-exec-local . 67, 82
install-info . 64, 75
install-info target . 64
install-man . 65, 75

Appendix B: Indices 131

install-man target . 65
install-strip . 67
Installation directories, extending list 3
Installation support . 66
installcheck . 82
installcheck-local . 82
installdirs . 67, 82
installdirs-local . 82
Installing headers . 55
Installing scripts . 55
installing versioned binaries . 82
Interfacing with third-party packages 83
Invoking aclocal . 15
Invoking automake . 9

J
Java support . 52
JAVA primary, defined . 61
JAVA restrictions . 61

L
LDFLAGS and AM_LDFLAGS . 94
lex problems with HP-UX 10 20
lex, multiple lexers . 46
LFLAGS and AM_LFLAGS . 94
libltdl, introduction . 34
LIBOBJS and ansi2knr . 53
LIBOBJS, and Libtool . 37
LIBOBJS, example . 43
LIBOBJS, special handling . 43
LIBRARIES primary, defined . 33
libtool convenience libraries . 35
libtool libraries, conditional . 34
libtool library, definition . 33
libtool modules . 37
Libtool modules, default source example 42
libtool, introduction . 33
libtoolize and autoreconf 38
libtoolize, no longer run by automake 38
Linking Fortran 77 with C and C++ 49
LISP primary, defined . 60
LN_S example . 82
local targets . 82
LTALLOCA, special handling . 37
LTLIBOBJS and ansi2knr . 53
LTLIBOBJS, special handling . 37
LTLIBRARIES primary, defined 34
ltmain.sh not found . 38

M
m4_include, distribution . 68
Macro search path . 16
Macros Automake recognizes 13
maintainer-clean-local . 67
make check . 71
make clean support . 67
make dist . 68
make distcheck . 70
make distclean, diagnostic . 92
make distcleancheck . 70
make distuninstallcheck . 70
make install support . 66
make installcheck, testing --help

and --version . 75
Make rules, overriding . 2
Make targets, overriding . 2
Makefile fragment, including 78
Makefile.am, first line . 2
MANS primary, defined . 65
many outputs, rules with . 97
mdate-sh . 63
missing, purpose . 89
Mixed language example . 50
Mixing Fortran 77 with C and C++ 49
Mixing Fortran 77 with C and/or C++ 49
modules, libtool . 37
mostlyclean . 82
mostlyclean-local . 67, 82
Multiple configure.ac files . 9
Multiple lex lexers . 46
multiple outputs, rules with . 97
Multiple yacc parsers . 46

N
Nesting packages . 28
no-define . 19, 74
no-dependencies . 54, 74
no-dist . 75
no-dist-gzip . 75
no-exeext . 75
no-installinfo . 64, 75
no-installman . 65, 75
no-texinfo.tex . 64, 75
nobase_ and dist_ or nodist_ 27
nobase_ prefix . 27
nodist_ and nobase_ . 27
noinst_ primary prefix, definition 4
noinstall-info option . 64
noinstall-man option . 65
Non-GNU packages . 2
Non-standard targets . 1
nostdinc . 75

Appendix B: Indices 132

O
OBJCFLAGS and AM_OBJCFLAGS 94
Objects in subdirectory . 39
Option, --warnings=category 77
Option, -Wcategory . 77
Option, ansi2knr . 74
Option, check-news . 74
Option, cygnus . 74
Option, dejagnu . 74
Option, dist-bzip2 . 74
Option, dist-shar . 74
Option, dist-tarZ . 74
Option, dist-zip . 74
Option, filename-length-max=99 74
Option, foreign . 74
Option, gnits . 74
Option, gnu . 74
Option, no-define . 74
Option, no-dependencies . 74
Option, no-dist . 75
Option, no-dist-gzip . 75
Option, no-exeext . 75
Option, no-installinfo . 75
Option, no-installman . 75
Option, no-texinfo.tex . 75
Option, noinstall-info . 64
Option, noinstall-man . 65
Option, nostdinc . 75
Option, readme-alpha . 75
Option, tar-pax . 76
Option, tar-ustar . 76
Option, tar-v7 . 76
Option, version . 77
Option, warnings . 77
Options, aclocal . 16
Options, automake . 10
Options, std-options . 75
Options, subdir-objects . 76
Ordering flag variables . 93
Overriding make rules . 2
Overriding make targets . 2
Overriding make variables . 2
overriding rules . 82
overriding semantics . 82

P
PACKAGE, directory . 3
PACKAGE, prevent definition . 19
Path stripping, avoiding . 27
pax format . 76
pdf . 82
pdf-local . 82
PDF output using Texinfo . 63
Per-object flags, emulated . 96
per-target compilation flags, defined 41
pkgdatadir, defined . 3
pkgincludedir, defined . 3

pkglibdir, defined . 3
POSIX termios headers . 20
Preprocessing Fortran 77 . 48
Primary variable, DATA . 56
Primary variable, defined . 3
Primary variable, HEADERS . 55
Primary variable, JAVA . 61
Primary variable, LIBRARIES 33
Primary variable, LISP . 60
Primary variable, LTLIBRARIES 34
Primary variable, MANS . 65
Primary variable, PROGRAMS . 3
Primary variable, PYTHON . 62
Primary variable, SCRIPTS . 55
Primary variable, SOURCES . 30
Primary variable, TEXINFOS . 63
prog_LDADD, defined . 30
Programs, auxiliary . 5
Programs, conditional . 32
PROGRAMS primary variable . 3
PROGRAMS, bindir . 29
Proxy Makefile for third-party packages 85
ps . 82
ps-local . 82
PS output using Texinfo . 63
PYTHON primary, defined . 62

R
Ratfor programs . 48
readme-alpha . 75
README-alpha . 80
rebuild rules . 72, 87
Recognized macros by Automake 13
Recursive operation of Automake 2
recursive targets and third-party Makefiles 83
regex package . 20
Regression test example . 8
Reporting bugs . 1
Requirements of Automake . 12
Requirements, Automake . 1
Restrictions for JAVA . 61
RFLAGS and AM_RFLAGS . 94
rules with multiple outputs . 97
rules, conflicting . 81
rules, overriding . 82
rx package . 20

Appendix B: Indices 133

S
Scanning configure.ac . 12
SCRIPTS primary, defined . 55
SCRIPTS, installation directories 55
Selecting the linker automatically 51
Shared libraries, support for . 33
site.exp . 72
SOURCES primary, defined . 30
Special Automake comment . 2
std-options . 75
Strictness, command line . 10
Strictness, defined . 2
Strictness, foreign . 2
Strictness, gnits . 2
Strictness, gnu . 2
subdir-objects . 76
Subdirectories, building conditionally 25
Subdirectories, configured conditionally 26
Subdirectories, not distributed 27
Subdirectory, objects in . 39
SUBDIRS and AC_SUBST . 26
SUBDIRS and AM_CONDITIONAL 25
SUBDIRS, conditional . 25
SUBDIRS, explained . 24
Subpackages . 28
suffix .la, defined . 33
suffix .lo, defined . 33
SUFFIXES, adding . 78
Support for C++ . 47
Support for Fortran 77 . 48
Support for Fortran 9x . 51
Support for GNU Gettext . 61
Support for Java . 52

T
tags . 77
TAGS support . 77
tar formats . 76
tar-pax . 76
tar-ustar . 76
tar-v7 . 76
Target, install-info . 64
Target, install-man . 65
termios POSIX headers . 20
Test suites . 71
Tests, expected failure . 72
Texinfo file handling example . 7
Texinfo flag, EDITION . 63

Texinfo flag, UPDATED . 63
Texinfo flag, UPDATED-MONTH . 63
Texinfo flag, VERSION . 63
texinfo.tex . 64
TEXINFOS primary, defined . 63
third-party files and CVS . 89
Third-party packages, interfacing with 83
timestamps and CVS . 88
true Example . 8

U
underquoted AC_DEFUN . 21
Uniform naming scheme . 3
uninstall . 67, 82
uninstall-hook . 82
uninstall-local . 82
UPDATED Texinfo flag . 63
UPDATED-MONTH Texinfo flag . 63
user variables . 4
ustar format . 76

V
v7 tar format . 76
variables, conflicting . 81
Variables, overriding . 2
variables, reserved for the user 4
version.m4, example . 73
version.sh, example . 73
VERSION Texinfo flag . 63
VERSION, prevent definition . 19
versioned binaries, installing 82

W
wildcards . 91
Windows . 54

Y
yacc, multiple parsers . 46
YFLAGS and AM_YFLAGS . 94
ylwrap . 46

Z
zardoz example . 6

i

Table of Contents

1 Introduction . 1

2 General ideas . 1
2.1 General Operation . 1
2.2 Strictness . 2
2.3 The Uniform Naming Scheme . 3
2.4 How derived variables are named . 4
2.5 Variables reserved for the user . 4
2.6 Programs automake might require . 5

3 Some example packages . 6
3.1 A simple example, start to finish . 6
3.2 A classic program . 6
3.3 Building true and false . 8

4 Creating a Makefile.in . 9

5 Scanning configure.ac . 12
5.1 Configuration requirements . 12
5.2 Other things Automake recognizes . 13
5.3 Auto-generating aclocal.m4 . 15
5.4 aclocal options . 16
5.5 Macro search path . 16

5.5.1 Modifying the macro search path: --acdir 17
5.5.2 Modifying the macro search path: -I dir 17
5.5.3 Modifying the macro search path: dirlist 17

5.6 Autoconf macros supplied with Automake . 18
5.6.1 Public macros . 18
5.6.2 Private macros . 20

5.7 Writing your own aclocal macros . 21
5.8 Handling Local Macros . 22
5.9 The Future of aclocal . 23

6 Directories . 24
6.1 Recursing subdirectories . 24
6.2 Conditional Subdirectories . 25

6.2.1 SUBDIRS vs. DIST_SUBDIRS . 25
6.2.2 Conditional subdirectories with AM_CONDITIONAL 25
6.2.3 Conditional Subdirectories with AC_SUBST 26
6.2.4 Non-configured Subdirectories . 26

6.3 An Alternative Approach to Subdirectories . 27
6.4 Nesting Packages . 28

ii

7 Building Programs and Libraries 29
7.1 Building a program . 29

7.1.1 Defining program sources . 29
7.1.2 Linking the program . 30
7.1.3 Conditional compilation of sources . 31

7.1.3.1 Conditional compilation using _LDADD substitutions . . 31
7.1.3.2 Conditional compilation using Automake conditionals . . 31

7.1.4 Conditional compilation of programs . 32
7.1.4.1 Conditional programs using configure substitutions . . 32
7.1.4.2 Conditional programs using Automake conditionals . . . 32

7.2 Building a library . 33
7.3 Building a Shared Library . 33

7.3.1 The Libtool Concept . 33
7.3.2 Building Libtool Libraries . 34
7.3.3 Building Libtool Libraries Conditionally 34
7.3.4 Libtool Libraries with Conditional Sources 35
7.3.5 Libtool Convenience Libraries . 35
7.3.6 Libtool Modules . 37
7.3.7 LIBADD and LDFLAGS . 37
7.3.8 LTLIBOBJS and LTALLOCA . 37
7.3.9 Common Issues Related to Libtool’s Use 38

7.3.9.1 required file ‘./ltmain.sh’ not found 38
7.3.9.2 Objects created with both libtool and without . . . 38

7.4 Program and Library Variables . 39
7.5 Default _SOURCES . 42
7.6 Special handling for LIBOBJS and ALLOCA 43
7.7 Variables used when building a program . 44
7.8 Yacc and Lex support . 45
7.9 C++ Support . 47
7.10 Assembly Support . 47
7.11 Fortran 77 Support . 48

7.11.1 Preprocessing Fortran 77 . 48
7.11.2 Compiling Fortran 77 Files . 48
7.11.3 Mixing Fortran 77 With C and C++ . 49

7.11.3.1 How the Linker is Chosen . 51
7.12 Fortran 9x Support . 51

7.12.1 Compiling Fortran 9x Files . 52
7.13 Java Support . 52
7.14 Support for Other Languages . 52
7.15 Automatic de-ANSI-fication . 53
7.16 Automatic dependency tracking . 53
7.17 Support for executable extensions . 54

8 Other Derived Objects . 55
8.1 Executable Scripts . 55
8.2 Header files . 55
8.3 Architecture-independent data files . 56
8.4 Built sources . 56

iii

8.4.1 Built sources example . 57
First try . 57
Using BUILT_SOURCES . 58
Recording dependencies manually . 58
Build bindir.h from configure . 59
Build bindir.c, not bindir.h. 59
Which is best? . 60

9 Other GNU Tools . 60
9.1 Emacs Lisp . 60
9.2 Gettext . 61
9.3 Libtool . 61
9.4 Java . 61
9.5 Python . 62

10 Building documentation . 63
10.1 Texinfo . 63
10.2 Man pages . 65

11 What Gets Installed . 66
11.1 Basics of installation . 66
11.2 The two parts of install . 66
11.3 Extending installation . 67
11.4 Staged installs . 67
11.5 Rules for the user . 67

12 What Gets Cleaned . 67

13 What Goes in a Distribution 68
13.1 Basics of distribution . 68
13.2 Fine-grained distribution control . 69
13.3 The dist hook . 69
13.4 Checking the distribution . 70
13.5 The types of distributions . 71

14 Support for test suites . 71
14.1 Simple Tests . 71
14.2 DejaGnu Tests . 72
14.3 Install Tests . 72

15 Rebuilding Makefiles . 72

16 Changing Automake’s Behavior 74

iv

17 Miscellaneous Rules . 77
17.1 Interfacing to etags . 77
17.2 Handling new file extensions . 78
17.3 Support for Multilibs . 78

18 Include . 78

19 Conditionals . 79

20 The effect of --gnu and --gnits 80

21 The effect of --cygnus . 81

22 When Automake Isn’t Enough 81
22.1 Extending Automake Rules . 81
22.2 Third-Party Makefiles . 83

23 Distributing Makefile.ins . 85

24 Automake API versioning . 86

25 Upgrading a Package to a Newer
Automake Version . 87

26 Frequently Asked Questions about Automake . . 87
26.1 CVS and generated files . 87

26.1.1 Background: distributed generated files 87
26.1.2 Background: CVS and timestamps . 88
26.1.3 Living with CVS in Autoconfiscated projects 88
26.1.4 Third-party files . 89

26.2 missing and AM_MAINTAINER_MODE . 89
26.2.1 missing . 89
26.2.2 AM_MAINTAINER_MODE . 90

26.3 Why doesn’t Automake support wildcards? 91
26.4 Files left in build directory after distclean . 92
26.5 Flag Variables Ordering . 93

26.5.1 Compile Flag Variables . 94
26.5.2 Other Variables . 95

26.6 Why are object files sometimes renamed? . 96
26.7 Per-Object Flags Emulation . 96
26.8 Handling Tools that Produce Many Outputs 97

v

27 History of Automake . 100
27.1 Timeline . 101
27.2 Dependency Tracking in Automake . 112

27.2.1 First Take . 112
Description . 112
Bugs . 112
Historical Note . 113

27.2.2 Dependencies As Side Effects . 113
Description . 113
Bugs . 113

27.2.3 Dependencies for the User . 114
Description . 114
Bugs . 114

27.2.4 Techniques for Computing Dependencies 115
27.2.5 Recommendations for Tool Writers . 116
27.2.6 Future Directions for Automake’s Dependency Tracking . . 116

27.3 Release Statistics . 116

Appendix A Copying This Manual 118
A.1 GNU Free Documentation License . 118

A.1.1 ADDENDUM: How to use this License for your documents . . 124

Appendix B Indices . 125
B.1 Macro Index . 125
B.2 Variable Index . 125
B.3 General Index . 128

	1 Introduction
	2 General ideas
	General Operation
	Strictness
	The Uniform Naming Scheme
	How derived variables are named
	Variables reserved for the user
	Programs automake might require

	3 Some example packages
	A simple example, start to finish
	A classic program
	Building true and false

	4 Creating a Makefile.in
	5 Scanning configure.ac
	Configuration requirements
	Other things Automake recognizes
	Auto-generating aclocal.m4
	aclocal options
	Macro search path
	Modifying the macro search path: --acdir
	Modifying the macro search path: -I dir
	Modifying the macro search path: dirlist

	Autoconf macros supplied with Automake
	Public macros
	Private macros

	Writing your own aclocal macros
	Handling Local Macros
	The Future of aclocal

	6 Directories
	Recursing subdirectories
	Conditional Subdirectories
	SUBDIRS vs. DIST_SUBDIRS
	Conditional subdirectories with AM_CONDITIONAL
	Conditional Subdirectories with AC_SUBST
	Non-configured Subdirectories

	An Alternative Approach to Subdirectories
	Nesting Packages

	7 Building Programs and Libraries
	Building a program
	Defining program sources
	Linking the program
	Conditional compilation of sources
	Conditional compilation using _LDADD substitutions
	Conditional compilation using Automake conditionals

	Conditional compilation of programs
	Conditional programs using configure substitutions
	Conditional programs using Automake conditionals

	Building a library
	Building a Shared Library
	The Libtool Concept
	Building Libtool Libraries
	Building Libtool Libraries Conditionally
	Libtool Libraries with Conditional Sources
	Libtool Convenience Libraries
	Libtool Modules
	_LIBADD and _LDFLAGS
	LTLIBOBJS and LTALLOCA
	Common Issues Related to Libtool's Use
	required file `./ltmain.sh' not found
	Objects created with both libtool and without

	Program and Library Variables
	Default _SOURCES
	Special handling for LIBOBJS and ALLOCA
	Variables used when building a program
	Yacc and Lex support
	C++ Support
	Assembly Support
	Fortran 77 Support
	Preprocessing Fortran 77
	Compiling Fortran 77 Files
	Mixing Fortran 77 With C and C++
	How the Linker is Chosen

	Fortran 9x Support
	Compiling Fortran 9x Files

	Java Support
	Support for Other Languages
	Automatic de-ANSI-fication
	Automatic dependency tracking
	Support for executable extensions

	8 Other Derived Objects
	Executable Scripts
	Header files
	Architecture-independent data files
	Built sources
	Built sources example
	First try
	Using BUILT_SOURCES
	Recording dependencies manually
	Build bindir.h from configure
	Build bindir.c, not bindir.h.
	Which is best?

	9 Other GNU Tools
	Emacs Lisp
	Gettext
	Libtool
	Java
	Python

	10 Building documentation
	Texinfo
	Man pages

	11 What Gets Installed
	Basics of installation
	The two parts of install
	Extending installation
	Staged installs
	Rules for the user

	12 What Gets Cleaned
	13 What Goes in a Distribution
	Basics of distribution
	Fine-grained distribution control
	The dist hook
	Checking the distribution
	The types of distributions

	14 Support for test suites
	Simple Tests
	DejaGnu Tests
	Install Tests

	15 Rebuilding Makefiles
	16 Changing Automake's Behavior
	17 Miscellaneous Rules
	Interfacing to etags
	Handling new file extensions
	Support for Multilibs

	18 Include
	19 Conditionals
	20 The effect of --gnu and --gnits
	21 The effect of --cygnus
	22 When Automake Isn't Enough
	Extending Automake Rules
	Third-Party Makefiles

	23 Distributing Makefile.ins
	24 Automake API versioning
	25 Upgrading a Package to a Newer Automake Version
	26 Frequently Asked Questions about Automake
	CVS and generated files
	Background: distributed generated files
	Background: CVS and timestamps
	Living with CVS in Autoconfiscated projects
	Third-party files

	missing and AM_MAINTAINER_MODE
	missing
	AM_MAINTAINER_MODE

	Why doesn't Automake support wildcards?
	Files left in build directory after distclean
	Flag Variables Ordering
	Compile Flag Variables
	Other Variables

	Why are object files sometimes renamed?
	Per-Object Flags Emulation
	Handling Tools that Produce Many Outputs

	27 History of Automake
	Timeline
	Dependency Tracking in Automake
	First Take
	Description
	Bugs
	Historical Note

	Dependencies As Side Effects
	Description
	Bugs

	Dependencies for the User
	Description
	Bugs

	Techniques for Computing Dependencies
	Recommendations for Tool Writers
	Future Directions for Automake's Dependency Tracking

	Release Statistics

	A Copying This Manual
	GNU Free Documentation License
	ADDENDUM: How to use this License for your documents

	B Indices
	Macro Index
	Variable Index
	General Index

