Free Software, Free Society:
Selected Essays of Richard M. Stallman

Introduction by Lawrence Lessig

Edited by Joshua Gay

GNU Press
WWW.gnupress.org
Free Software Foundation
Boston, MA USA

First printing, first edition.
Copyright © 2002 Free Software Foundation, Inc.

ISBN 1-882114-98-1

Published by the Free Software Foundation
59 Temple Place

Boston, MA Tel: 1-617-542-5942

Fax: 1-617-542-2652

Email: gnu@gnu.org

Web: www.gnu.org

GNU Press is an imprint of the FSF.

Email: press@gnu.org

Web: www.gnupress.org

Please contact the GNU Press for information regarding bulk purchases for class-
room or user group use, reselling, or any other questions or comments.

Original artwork by Etienne Suvasa. Cover design by Jonathan Richard.

Permission is granted to make and distribute verbatim copies of this book provided
the copyright notice and this permission notice are preserved on all copies.
Permission is granted to copy and distribute translations of this book into another
language, from the original English, with respect to the conditions on distribution
of modified versions above, provided that it has been approved by the Free Software
Foundation.

Short Contents

EditOr’S NOtB. s v v v e vt eieienieeseeeeeenesecesesesocsssssannnns 1
A NOte on SOftWare e v e v vveeeeneneneneeeenenseeeeessosssnsnans 3
TOPIC GUIAE ¢ et v veeveerenseoeessessosessessessnssssescasonss 7
INtroduction v o v oo et et ieieeieeeeeeeeeeeeeeececenseacescnnnns 11
SECtION ONE + v e vveeneeneeenesesacssnsnsssssssssssscnsnsnsnss 15
I The GNUPIrojecteeeeeeeeeeeeeeeeeeeeseeseoseacessasnnns 17
2 The GNU Manifesto.eeeeeeeeeeeeeeeeeeeenesssscasnsnsnns 33
3 Free Software Definition e oo vevereeeeeeesseseocessnsanns 43
4 Why Software Should Not Have OWners. « e ceeeeeeeeescessns 47
S What'sinaName?..oeeeeeeeeeeeoeessessesseosessassnsans 53
6 Why “Free Software” is Better than “Open Source”...cveveveene 57
7 Releasing Free Software if You Work at a University . eooeueeen. 63
8 Selling Free Software. e e v eeveeeetieeeeeeeeeeeeeeecesennnns 65
9 Free Software Needs Free Documentation. . c.eoeeeeeeeeeenens 69
10 Free Software SONZ ¢ e veveeeeeerereeeeeseeecsesocacannsns 71
SECtiON TWO ¢t ttiteeieieneneneeeeneneseeesaescnsnsnsnnnnns 73
11 TheRighttoRead...ovieieiirieiriiiiiiiiniennnenennnans 75
12 Misinterpreting Copyright—A Series of Errors. . veeeeeeeeeenss 79
13 Science Must ‘Push’ Copyright Aside.eeeeeeeeeeseeseneeanes 89
14 Whatis Copyleft?. e eieiiiiiiieiiieieeneeneeeceacanenns 91
15 Copyleft: Pragmatic Idealism..eeeeeeeeeeseeeeocescesonsans 93
16 The Danger of Software Patents. e veeeeeeereeeeeenenenennans 97
Section Three .o veveeeeieieiiiiiiiiiieieneneeenenenncacnnns 115
17 Can You Trust Your Computer?.ceeeeeeeeeeescessescnsesss 117
18 Why Software Should Be Free...ovveveiienieneeneeennnns 121
19 Copyright and Globalization in the Age of Computer Networks. . 135
20 Free Software: Freedom and Cooperation....eeeeeeesseesses 157
21 Wordsto AVOid. s e e e i eneneneeeeeneeenenscasncnsnanans 191
Section FOUT. vttt itiieiiiieeneeeeeeeeseeseoceocessnsannes 197
GNU General Public License. e veeeeeeeeeeeeeeeeeeenenscannans 199

GNU Lesser General Public LiCensE .. eeeeeeeeeeeseeocceeaseens 207

i Free Software, Free Society: Selected Essays of Richard M. Stallman

GNU Free Documentation LICENSE « e v v et eveeeeeeceeecencecnnns 217

iii

Table of Contents

Editor’s Note.......c.oviiiiiiiiiiiiiiiiiiiiiiiiinennnss 1
A Noteon Software............coveiiiiiiiiiiiiiinnnnn. 3
TopicGuide........cooiiiiiiiiiiii it iiiiiiiieieeennnnns 7
Introduction..........cocoiiiiiiiiiiiiiiiiiiiiiiiinnnnns 11
SectionOne.......ooiiiiiiiiiiiiiiiiiiiiiinieineenness 15
1 TheGNUProject.......ccoviiiiiiiiiiiiiinnnennnnn. 17
2 The GNU Manifesto..........ccovvvvieiiieiinennn.. 33
3 Free Software Definition............................ 43
4 Why Software Should Not Have Owners............ 47
S What’sinaName?.............cociiiiiiiiiiinnn.n. 53
6 Why “Free Software” is Better than ‘“Open Source”
.. 57
7 Releasing Free Software if You Work at a University
.. 63
8 Selling Free Software..................covvivinen.. 65
9 Free Software Needs Free Documentation........... 69
10 FreeSoftwareSong...........ccoviviiiiiennnnnnnn. 71

SeCtioN TWO ..o v ittt ittt teeeennennns 73

iv Free Software, Free Society: Selected Essays of Richard M. Stallman

11 TheRighttoRead.............cccciviiiiiiinnnnnn. 75

12 Misinterpreting Copyright—A Series of Errors.... 79

13 Science Must ‘Push’ Copyright Aside.............. 89
14 Whatis Copyleft?cciiiiiiiiiiiiiiiinn.... 91
15 Copyleft: Pragmatic Idealism...................... 93
16 The Danger of Software Patents................... 97
Section Three............coiiiiiiiiiiiiiiiiiiiiinnnn. 115
17 Can You Trust Your Computer?.................. 117
18 Why Software Should Be Free.................... 121
19 Copyright and Globalization in the Age of Computer
Networks......cooiiiiiiiiiiiiii it iiiiiiieeeenn. 135
20 Free Software: Freedom and Cooperation........ 157
21 WordstoAvoid...........cciviiiiiiiiiiiinnnnnnn. 191
Section Four...........coiiiiiiiiiiiiiiiiiiiiiiinnnnn, 197
GNU General Public License.......................... 199
Preamble. 199
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND
MODIFICATION.o 200
Appendix: How to Apply These Terms to Your New Programs. 205
GNU Lesser General Public License................... 207
Preamble. 207
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND
MODIFICATION. i 209
How to Apply These Terms to Your New Libraries.................. 216
GNU Free Documentation License 217

ADDENDUM: How to Use This License for Your Documents....... 223

Editor’s Note 1

Editor’s Note

The waning days of the 20th century seemed like an Orwellian nightmare: laws
preventing publication of scientific research on software; laws preventing sharing
software; an overabundance of software patents preventing development; and end-
user license agreements that strip the user of all freedoms—including ownership,
privacy, sharing, and understanding how their software works. This collection of
essays and speeches by Richard M. Stallman addresses many of these issues. Above
all, Stallman discusses the philosophy underlying the free software movement. This
movement combats the oppression of federal laws and evil end-user license agree-
ments in hopes of spreading the idea of software freedom.

With the force of hundreds of thousands of developers working to create GNU
software and the GNU/Linux operating system, free software has secured a spot on
the servers that control the Internet, and—as it moves into the desktop computer
market—is a threat to Microsoft and other proprietary software companies.

These essays cater to a wide audience; you do not need a computer science back-
ground to understand the philosophy and ideas herein. However, there is a “Note on
Software,” to help the less technically inclined reader become familiar with some
common computer science jargon and concepts, as well as footnotes throughout.

Many of these essays have been updated and revised from their originally pub-
lished version. Each essay carries permission to redistribute verbatim copies.

The ordering of the essays is fairly arbitrary, in that there is no required order to
read the essays in, for they were written independently of each other over a period
of 18 years. The first section, “The GNU Project and Free Software,” is intended
to familiarize you with the history and philosophy of free software and the GNU
project. Furthermore, it provides a road map for developers, educators, and busi-
ness people to pragmatically incorporate free software into society, business, and
life. The second section, “Copyright, Copyleft, and Patents,” discusses the philo-
sophical and political groundings of the copyright and patent system and how it has
changed over the past couple of hundred years. Also, it discusses how the current
laws and regulations for patents and copyrights are not in the best interest of the
consumer and end user of software, music, movies, and other media. Instead, this
section discusses how laws are geared towards helping business and government
crush your freedoms. The third section, “Freedom, Society, and Software” con-
tinues the discussion of freedom and rights, and how they are being threatened by
proprietary software, copyright law, globalization, “trusted computing,” and other
socially harmful rules, regulations, and policies. One way that industry and gov-
ernment are attempting to persuade people to give up certain rights and freedoms is
by using terminology that implies that sharing information, ideas, and software is
bad; therefore, we have included an essay explaining certain words that are confus-
ing and should probably be avoided. The fourth section, “The Licenses,” contains
the GNU General Public License, the GNU Lesser General Public License, and the
GNU Free Documentation License; the cornerstones of the GNU project.

If you wish to purchase this book for yourself, for classroom use, or for dis-
tribution, please write to the Free Software Foundation (FSF) at sales@fsf.org or
visit http://order.fsf.org/. If you wish to help further the cause of software freedom,

2 Free Software, Free Society: Selected Essays of Richard M. Stallman

please considering donating to the FSF by visiting http://donate.fsf.org (or write
to donations@fsf.org for more details). You can also contact the FSF by phone at
+1-617-542-5942.

There are perhaps thousands of people who should be thanked for their contri-
butions to the GNU Project; however, their names will never fit on any single list.
Therefore, I wish to extend my thanks to all of those nameless hackers, as well
as people who have helped promote, create, and spread free software around the
world.

For helping make this book possible, I would like to thank:

Julie Sussman, P.P.A., for editing multiple copies at various stages of develop-
ment, for writing the “Topic Guide,” and for giving her insights into everything
from commas to the ordering of the chapters;

Lisa (Opus) Goldstein and Bradley M. Kuhn for their help in organizing, proof-
reading, and generally making this collection possible;

Claire H. Avitabile, Richard Buckman, Tom Chenelle, and (especially) Stephen
Compeall for their careful proofreading of the entire collection;

Karl Berry, Bob Chassell, Michael Mounteney, and M. Ramakrishnan for
their expertise in the helping to format and edit this collection in TgXinfo,
(http://www.texinfo.org);

Mats Bengtsson for his help in formatting the Free Software Song in Lilypond
(http://www.gnu.org/software/lilypond/);

Etienne Suvasa for the images that begin each section, and for all the art he has
contributed to the Free Software Foundation over the years;

and Melanie Flanagan and Jason Polan for making helpful suggestions for the ev-
eryday reader. A special thanks to Bob Tocchio, from Paul’s Transmission Repair,
for his insight on automobile transmissions.

Also, I wish to thank my mother and father, Wayne and Jo-Ann Gay, for teaching
me that one should live by the ideals that one stands for, and for introducing me,
my two brothers, and three sisters to the importance of sharing.

Lastly and most importantly, I would like to extend my gratitude to Richard M.
Stallman for the GNU philosophy, the wonderful software, and the literature that
he has shared with the world.

Joshua Gay
josh@gnu.org

Verbatim copying and distribution of this entire article is permitted in any medium, provided
this notice is preserved.

A Note on Software 3

A Note on Software

This section is intended for people who have little or no knowledge of the tech-
nical aspects of computer science. It is not necessary to read this section to under-
stand the essays and speeches presented in this book; however, it may be helpful
to those readers not familar with some of the jargon that comes with programming
and computer science.

A computer programmer writes software, or computer programs. A program
is more or less a recipe with commands to tell the computer what to do in order
to carry out certain tasks. You are more than likely familiar with many different
programs: your Web browser, your word processor, your email client, and the like.

A program usually starts out as source code. This higher-level set of commands
is written in a programming language such as C or Java. After that, a tool known as
a compiler translates this to a lower-level language known as assembly language.
Another tool known as an assembler breaks the assembly code down to the final
stage of machine language—the lowest level—which the computer understands
natively.

Source Compiler Assembler Machine
—_— :) \\ —_—
Code Code

For example, consider the “hello world” program, a common first program for
people learning C, which (when compiled and executed) prints “Hello World!” on
the screen.’

int main () {
printf (’’Hello World!’’);
return 0;
}
In the Java programming language the same program would be written like this:
public class hello {
public static void main(String args([]) {

System.out.println(’’Hello World!’");

1 In other programming languages, such as Scheme, the Hello World program is usually not your
first program. In Scheme you often start with a program like this:

(define (factorial n)
(if (= n 0)
1

(+ n (factorial (- n 1)))))
This computes the factorial of a number; that is, running (factorial 5)would output 120,
which is computed by doing 5 * 4 * 3 *2 * 1 *],

4 Free Software, Free Society: Selected Essays of Richard M. Stallman

However, in machine language, a small section of it may look similar to this:
1100011110111010100101001001001010101110
0110101010011000001111001011010101111101
0100111111111110010110110000000010100100
0100100001100101011011000110110001101111
0010000001010111011011110111001001101100
0110010000100001010000100110111101101111

The above form of machine language is the most basic representation known as
binary. All data in computers is made up of a series of 0-or-1 values, but a person
would have much difficulty understanding the data. To make a simple change to the
binary, one would have to have an intimate knowledge of how a particular computer
interprets the machine language. This could be feasible for small programs like the
above examples, but any interesting program would involve an exhausting effort to
make simple changes.

As an example, imagine that we wanted to make a change to our “Hello World”
program written in C so that instead of printing “Hello World” in English it prints
it in French. The change would be simple; here is the new program:

int main() {
printf (’’Bonjour, monde!’’);
return 0;

}

It is safe to say that one can easily infer how to change the program written in the
Java programming language in the same way. However, even many programmers
would not know where to begin if they wanted to change the binary representation.
When we say “source code,” we do not mean machine language that only computers
can understand—we are speaking of higher-level languages such as C and Java. A
few other popular programming languages are C++, Perl, and Python. Some are
harder than others to understand and program in, but they are all much easier to
work with compared to the intricate machine language they get turned into after the
programs are compiled and assembled.

Another important concept is understanding what an operating system is. An
operating system is the software that handles input and output, memory allocation,
and task scheduling. Generally one considers common or useful programs such
as the Graphical User Interface (GUI) to be a part of the operating system. The
GNU/Linux operating system contains a both GNU and non-GNU software, and
a kernel called Linux. The kernel handles low-level tasks that applications depend
upon such as input/output and task scheduling. The GNU software comprises much
of the rest of the operating system, including GCC, a general-purpose compiler for
many languages; GNU Emacs, an extensible text editor with many, many features;
GNOME, the GNU desktop; GNU libc, a library that all programs other than the
kernel must use in order to communicate with the kernel; and Bash, the GNU com-
mand interpreter that reads your command lines. Many of these programs were

A Note on Software 5

pioneered by Richard Stallman early on in the GNU Project and come with any
modern GNU/Linux operating system.

It is important to understand that even if you cannot change the source code for
a given program, or directly use all these tools, it is relatively easy to find someone
who can. Therefore, by having the source code to a program you are usually given
the power to change, fix, customize, and learn about a program—this is a power
that you do not have if you are not given the source code. Source code is one of the
requirements that makes a piece of software free. The other requirements will be
found along with the philosophy and ideas behind them in this collection. Enjoy!

Richard E. Buckman
Joshua Gay

Verbatim copying and distribution of this entire article is permitted in any medium, provided
this notice is preserved.

Free Software, Free Society: Selected Essays of Richard M. Stallman

Topic Guide 7
Topic Guide

Since the essays and speeches in this book were addressed to different audiences
at different times, there is a considerable amount of overlap, with some issues being
discussed in more than one place. Because of this, and because we did not have the
opportunity to make an index for this book, it could be hard to go back to something
you read about unless its location is obvious from a chapter title.

We hope that this short guide, though sketchy and incomplete (it does not cover
all topics or all discussions of a given topic), will help you find some of the ideas
and explanations you are interested in.

—Julie Sussman, PPA.

Overview

Chapter 1 gives an overview of just about all the software-related topics in this
book. Chapter 20 is also an overview.

For the non-software topics, see Privacy and Personal Freedom, Intellectual
Property, and Copyright, below.

GNU Project

For the history of the GNU project, see Chapters 1 and 20

For a delightful explanation of the origin and pronunciation of the recursive
acronym GNU (GNU’s Not Unix, pronounced guh-NEW), see Chapter 20.

The “manifesto” that launched the GNU Project is included here as Chapter 2.

See also the Linux, GNU/Linux topic below.

Free Software Foundation

You can read about the history and function of the Free Software Foundation in
Chapters 1 and 20, and under “Funding Free Software” in Chapter 18.

Free software

We will not attempt to direct you to all discussions of free software in this book,
since every chapter except 11, 12, 13, 16, 17, and 19 deals with free software.

For a history of free software—from free software to proprietary software and
back again—see Chapter 1.

Free Software is defined, and the definition discussed, in Chapter 3. The defini-
tion is repeated in several other chapters.

For a discussion of the ambiguity of the word “free” and why we still use it to
mean “free” as in “free speech,” not as in “free beer,” see “Free as in Freedom” in
Chapter 1 and “Ambiguity” in chapter 6.

See also Source Code, Open Source, and Copyleft, below.

Free software is translated into 21 languages in Chapter 21.

This essay is from Free Software, Free Society: Selected Essays of Richard M. Stallman, 2nd ed.
(Boston: GNU Press, 2004), ISBN 1-882114-99-X, www.gnupress.org.

Verbatim copying and distribution of this entire article is permitted in any medium, provided
this notice is preserved.

8 Free Software, Free Society: Selected Essays of Richard M. Stallman

Source Code, Source

Source code is mentioned throughout the discussions of free software. If you're
not sure what that is, read “A Note on Software.”
Linux, GNU/Linux

For the origin of Linux, and the distinction between Linux (the operating-system
kernel) and GNU/Linux (a full operating system), see the short mention under
“Linux and GNU/Linux” in Chapter 1 and the full story in Chapter 20.

For reasons to say GNU/Linux when referring to that operating system rather
than abbreviating it to Linux see Chapters 5 and 20.

Privacy and Personal Freedom

For some warnings about the loss of personal freedom, privacy, and access to
written material that we have long taken for granted, see Chapters 11, 13, and 17.
All of these are geared to a general audience.

Open Source

For the difference between the Open Source movement and the Free Software
movement, see Chapter 6. This is also discussed in Chapter 1 (under “Open
Source”) and Chapter 20.

Intellectual Property

For an explanation of why the term “intellectual property” is both misleading
and a barrier to addressing so-called “intellectual property” issues, see Chapter 21
and the beginning of Chapter 16.

For particular types of “intellectual property” see the Copyright and Patents top-
ics, below.

Copyright

Note: Most of these copyright references are not about software.

For the history, purpose, implementation, and effects of copyright, as well as rec-
ommendations for copyright policy, see Chapters 12 and 19. Topics critical in our
digital age, such as e-books and the Digital Millennium Copyright Act (DMCA),
are addressed here.

For the difference between patents and copyrights, see Chapter 16.

For the use of copyright in promoting free software and free documentation, see
Copyleft, just below.

Copyleft

For an explanation of copyleft and how it uses the copyright system to promote
free software, see Chapter 1 (under “Copyleft and the GNU GPL”), Chapter 14, and
Chapter 20. See also Licenses, below.

For an argument that copyleft is practical and effective as well as idealistic, see
Chapter 15.

Chapter 9 argues for free manuals to accompany free software.

Licenses

The GNU licenses, which can be used to copyleft software or manuals, are in-
troduced in Chapter 14 and given in full in Section Four.
Patents

See Chapter 16 for the difference between patents and copyrights and for ar-
guments against patenting software and why it is different from other patentable
things. Software-patent policy in other countries is also discussed.

Topic Guide

Hacker versus Cracker
For the proper use of these terms see the beginning of Chapter 1.

10 Free Software, Free Society: Selected Essays of Richard M. Stallman

Introduction 11

Introduction

Every generation has its philosopher—a writer or an artist who captures the
imagination of a time. Sometimes these philosophers are recognized as such; often
it takes generations before the connection is made real. But recognized or not, a
time gets marked by the people who speak its ideals, whether in the whisper of a
poem, or the blast of a political movement.

Our generation has a philosopher. He is not an artist, or a professional writer.
He is a programmer. Richard Stallman began his work in the labs of MIT, as a pro-
grammer and architect building operating system software. He has built his career
on a stage of public life, as a programmer and an architect founding a movement
for freedom in a world increasingly defined by “code.”

“Code” is the technology that makes computers run. Whether inscribed in soft-
ware or burned in hardware, it is the collection of instructions, first written in
words, that directs the functionality of machines. These machines—computers—
increasingly define and control our life. They determine how phones connect, and
what runs on TV. They decide whether video can be streamed across a broadband
link to a computer. They control what a computer reports back to its manufacturer.
These machines run us. Code runs these machines.

What control should we have over this code? What understanding? What free-
dom should there be to match the control it enables? What power?

These questions have been the challenge of Stallman’s life. Through his works
and his words, he has pushed us to see the importance of keeping code “free.” Not
free in the sense that code writers don’t get paid, but free in the sense that the
control coders build be transparent to all, and that anyone have the right to take that
control, and modify it as he or she sees fit. This is “free software”; “free software”
is one answer to a world built in code.

“Free.” Stallman laments the ambiguity in his own term. There’s nothing to
lament. Puzzles force people to think, and this term “free” does this puzzling work
quite well. To modern American ears, “free software” sounds utopian, impossible.
Nothing, not even lunch, is free. How could the most important words running
the most critical machines running the world be “free.”” How could a sane society
aspire to such an ideal?

Yet the odd clink of the word “free” is a function of us, not of the term. “Free”
has different senses, only one of which refers to “price.” A much more funda-
mental sense of “free” is the “free,” Stallman says, in the term “free speech,” or
perhaps better in the term “free labor.” Not free as in costless, but free as in limited
in its control by others. Free software is control that is transparent, and open to

This introduction is from Free Software, Free Society: Selected Essays of Richard M. Stallman, 2nd ed.
(Boston: GNU Press, 2004), ISBN 1-882114-99-X, www.gnupress.org.

Verbatim copying and distribution of this entire article is permitted in any medium, provided
this notice is preserved.

12 Free Software, Free Society: Selected Essays of Richard M. Stallman

change, just as free laws, or the laws of a “free society,” are free when they make
their control knowable, and open to change. The aim of Stallman’s “free software
movement” is to make as much code as it can transparent, and subject to change,
by rendering it “free.”

The mechanism of this rendering is an extraordinarily clever device called “copy-
left” implemented through a license called GPL. Using the power of copyright law,
“free software” not only assures that it remains open, and subject to change, but
that other software that takes and uses “free software” (and that technically counts
as a “derivative work’’) must also itself be free. If you use and adapt a free software
program, and then release that adapted version to the public, the released version
must be as free as the version it was adapted from. It must, or the law of copyright
will be violated.

“Free software,” like free societies, has its enemies. Microsoft has waged a war
against the GPL, warning whoever will listen that the GPL is a “dangerous” license.
The dangers it names, however, are largely illusory. Others object to the “coercion”
in GPL’s insistence that modified versions are also free. But a condition is not
coercion. If it is not coercion for Microsoft to refuse to permit users to distribute
modified versions of its product Office without paying it (presumably) millions,
then it is not coercion when the GPL insists that modified versions of free software
be free too.

And then there are those who call Stallman’s message too extreme. But extreme
it is not. Indeed, in an obvious sense, Stallman’s work is a simple translation of
the freedoms that our tradition crafted in the world before code. “Free software”
would assure that the world governed by code is as “free” as our tradition that built
the world before code.

For example: A “free society” is regulated by law. But there are limits that any
free society places on this regulation through law: No society that kept its laws
secret could ever be called free. No government that hid its regulations from the
regulated could ever stand in our tradition. Law controls. But it does so justly only
when visibly. And law is visible only when its terms are knowable and controllable
by those it regulates, or by the agents of those it regulates (lawyers, legislatures).

This condition on law extends beyond the work of a legislature. Think about the
practice of law in American courts. Lawyers are hired by their clients to advance
their clients’ interests. Sometimes that interest is advanced through litigation. In the
course of this litigation, lawyers write briefs. These briefs in turn affect opinions
written by judges. These opinions decide who wins a particular case, or whether a
certain law can stand consistently with a constitution.

All the material in this process is free in the sense that Stallman means. Legal
briefs are open and free for others to use. The arguments are transparent (which
is different from saying they are good) and the reasoning can be taken without the
permission of the original lawyers. The opinions they produce can be quoted in
later briefs. They can be copied and integrated into another brief or opinion. The
“source code” for American law is by design, and by principle, open and free for
anyone to take. And take lawyers do—for it is a measure of a great brief that it
achieves its creativity through the reuse of what happened before. The source is
free; creativity and an economy is built upon it.

Introduction 13

This economy of free code (and here I mean free legal code) doesn’t starve
lawyers. Law firms have enough incentive to produce great briefs even though the
stuff they build can be taken and copied by anyone else. The lawyer is a craftsman;
his or her product is public. Yet the crafting is not charity. Lawyers get paid; the
public doesn’t demand such work without price. Instead this economy flourishes,
with later work added to the earlier.

We could imagine a legal practice that was different—briefs and arguments that
were kept secret; rulings that announced a result but not the reasoning. Laws that
were kept by the police but published to no one else. Regulation that operated
without explaining its rule.

We could imagine this society, but we could not imagine calling it “free.”
Whether or not the incentives in such a society would be better or more efficiently
allocated, such a society could not be known as free. The ideals of freedom, of
life within a free society, demand more than efficient application. Instead, open-
ness and transparency are the constraints within which a legal system gets built, not
options to be added if convenient to the leaders. Life governed by software code
should be no less.

Code writing is not litigation. It is better, richer, more productive. But the law
is an obvious instance of how creativity and incentives do not depend upon perfect
control over the products created. Like jazz, or novels, or architecture, the law gets
built upon the work that went before. This adding and changing is what creativity
always is. And a free society is one that assures that its most important resources
remain free in just this sense.

For the first time, this book collects the writing and lectures of Richard Stallman
in a manner that will make their subtlety and power clear. The essays span a wide
range, from copyright to the history of the free software movement. They include
many arguments not well known, and among these, an especially insightful account
of the changed circumstances that render copyright in the digital world suspect.
They will serve as a resource for those who seek to understand the thought of this
most powerful man—powerful in his ideas, his passion, and his integrity, even if
powerless in every other way. They will inspire others who would take these ideas,
and build upon them.

I don’t know Stallman well. I know him well enough to know he is a hard man
to like. He is driven, often impatient. His anger can flare at friend as easily as foe.
He is uncompromising and persistent; patient in both.

Yet when our world finally comes to understand the power and danger of code—
when it finally sees that code, like laws, or like government, must be transparent to
be free—then we will look back at this uncompromising and persistent programmer
and recognize the vision he has fought to make real: the vision of a world where
freedom and knowledge survives the compiler. And we will come to see that no
man, through his deeds or words, has done as much to make possible the freedom
that this next society could have.

We have not earned that freedom yet. We may well fail in securing it. But
whether we succeed or fail, in these essays is a picture of what that freedom could
be. And in the life that produced these words and works, there is inspiration for
anyone who would, like Stallman, fight to create this freedom.

14 Free Software, Free Society: Selected Essays of Richard M. Stallman

Lawrence Lessig
Professor of Law, Stanford Law School.

Section One

Section One

The GNU Project
and Free Software

15

16 Free Software, Free Society: Selected Essays of Richard M. Stallman

Chapter 1: The GNU Project 17

1 The GNU Project

The First Software-Sharing Community

When I started working at the MIT Artificial Intelligence Lab in 1971, I became
part of a software-sharing community that had existed for many years. Sharing of
software was not limited to our particular community; it is as old as computers, just
as sharing of recipes is as old as cooking. But we did it more than most.

The Al Lab used a timesharing operating system called ITS (the Incompatible
Timesharing System) that the lab’s staff hackers had designed and written in as-
sembler language for the Digital PDP-10, one of the large computers of the era. As
a member of this community, an Al lab staff system hacker, my job was to improve
this system.

We did not call our software “free software,” because that term did not yet exist;
but that is what it was. Whenever people from another university or a company
wanted to port and use a program, we gladly let them. If you saw someone using
an unfamiliar and interesting program, you could always ask to see the source code,
so that you could read it, change it, or cannibalize parts of it to make a new program.

The use of “hacker” to mean “security breaker” is a confusion on the part of the
mass media. We hackers refuse to recognize that meaning, and continue using the
word to mean, “Someone who loves to program and enjoys being clever about it.”!

The Collapse of the Community

The situation changed drastically in the early 1980s, with the collapse of the Al
Lab hacker community followed by the discontinuation of the PDP-10 computer.

In 1981, the spin-off company Symbolics hired away nearly all of the hackers
from the Al Lab, and the depopulated community was unable to maintain itself.
(The book Hackers, by Steven Levy, describes these events, as well as giving a

1 It is hard to write a simple definition of something as varied as hacking, but I think what most

“hacks” have in common is playfulness, cleverness, and exploration. Thus, hacking means explor-
ing the limits of what is possible, in a spirit of playful cleverness. Activities that display playful
cleverness have “hack value.” You can help correct the misunderstanding simply by making a
distinction between security breaking and hacking—by using the term “cracking” for security
breaking. The people who do it are “crackers.” Some of them may also be hackers, just as some
of them may be chess players or golfers; most of them are not (“On Hacking,” RMS; 2002).

Originally published in Open Sources: Voices from the Open Source Revolution; (O’Reilly, 1999).
This essay is part of Free Software, Free Society: Selected Essays of Richard M. Stallman, 2nd ed.
(Boston: GNU Press, 2004), ISBN 1-882114-99-X, www.gnupress.org.

Verbatim copying and distribution of this entire article is permitted in any medium, provided
this notice is preserved.

18 Free Software, Free Society: Selected Essays of Richard M. Stallman

clear picture of this community in its prime.) When the Al Lab bought a new PDP-
10 in 1982, its administrators decided to use Digital’s non-free timesharing system
instead of ITS on the new machine.

Not long afterwards, Digital discontinued the PDP-10 series. Its architecture,
elegant and powerful in the 60s, could not extend naturally to the larger address
spaces that were becoming feasible in the 80s. This meant that nearly all of the
programs composing ITS were obsolete. That put the last nail in the coffin of ITS;
15 years of work went up in smoke.

The modern computers of the era, such as the VAX or the 68020, had their own
operating systems, but none of them were free software: you had to sign a nondis-
closure agreement even to get an executable copy.

This meant that the first step in using a computer was to promise not to help your
neighbor. A cooperating community was forbidden. The rule made by the owners
of proprietary software was, “If you share with your neighbor, you are a pirate. If
you want any changes, beg us to make them.”

The idea that the proprietary-software social system—the system that says you
are not allowed to share or change software—is antisocial, that it is unethical, that
it is simply wrong, may come as a surprise to some readers. But what else could
we say about a system based on dividing the public and keeping users helpless?
Readers who find the idea surprising may have taken this proprietary-software so-
cial system as given, or judged it on the terms suggested by proprietarysoftware
businesses. Software publishers have worked long and hard to convince people that
there is only one way to look at the issue.

When software publishers talk about “enforcing” their “rights” or “stopping
piracy,” what they actually “say” is secondary. The real message of these state-
ments is in the unstated assumptions they take for granted; the public is supposed
to accept them uncritically. So let’s examine them.

One assumption is that software companies have an unquestionable natural right
to own software and thus have power over all its users. (If this were a natural
right, then no matter how much harm it does to the public, we could not object.)
Interestingly, the U.S. Constitution and legal tradition reject this view; copyright is
not a natural right, but an artificial government-imposed monopoly that limits the
users’ natural right to copy.

Another unstated assumption is that the only important thing about software is
what jobs it allows you to do—that we computer users should not care what kind
of society we are allowed to have.

A third assumption is that we would have no usable software (or would never
have a program to do this or that particular job) if we did not offer a company
power over the users of the program. This assumption may have seemed plausible
before the free software movement demonstrated that we can make plenty of useful
software without putting chains on it.

If we decline to accept these assumptions, and judge these issues based on or-
dinary common-sense morality while placing the users first, we arrive at very dif-
ferent conclusions. Computer users should be free to modify programs to fit their
needs, and free to share software, because helping other people is the basis of soci-
ety.

Chapter 1: The GNU Project 19

A Stark Moral Choice

With my community gone, to continue as before was impossible. Instead, I faced
a stark moral choice.

The easy choice was to join the proprietary software world, signing nondisclo-
sure agreements and promising not to help my fellow hacker. Most likely I would
also be developing software that was released under nondisclosure agreements, thus
adding to the pressure on other people to betray their fellows too.

I could have made money this way, and perhaps amused myself writing code.
But I knew that at the end of my career, I would look back on years of building
walls to divide people, and feel I had spent my life making the world a worse place.

I had already experienced being on the receiving end of a nondisclosure agree-
ment, when someone refused to give me and the MIT Al Lab the source code for the
control program for our printer. (The lack of certain features in this program made
use of the printer extremely frustrating.) So I could not tell myself that nondisclo-
sure agreements were innocent. I was very angry when he refused to share with us;
I could not turn around and do the same thing to everyone else.

Another choice, straightforward but unpleasant, was to leave the computer field.
That way my skills would not be misused, but they would still be wasted. I would
not be culpable for dividing and restricting computer users, but it would happen
nonetheless.

So I looked for a way that a programmer could do something for the good. I
asked myself, was there a program or programs that I could write, so as to make a
community possible once again?

The answer was clear: what was needed first was an operating system. That is
the crucial software for starting to use a computer. With an operating system, you
can do many things; without one, you cannot run the computer at all. With a free
operating system, we could again have a community of cooperating hackers—and
invite anyone to join. And anyone would be able to use a computer without starting
out by conspiring to deprive his or her friends.

As an operating system developer, I had the right skills for this job. So even
though I could not take success for granted, I realized that I was elected to do
the job. I chose to make the system compatible with Unix so that it would be
portable, and so that Unix users could easily switch to it. The name GNU was
chosen following a hacker tradition, as a recursive acronym for “GNU’s Not Unix.”

An operating system does not mean just a kernel, barely enough to run other
programs. In the 1970s, every operating system worthy of the name included com-
mand processors, assemblers, compilers, interpreters, debuggers, text editors, mail-
ers, and much more. ITS had them, Multics had them, VMS had them, and Unix
had them. The GNU operating system would include them too.

Later I heard these words, attributed to Hillel:

“If I am not for myself, who will be for me? If I am only for myself, what
am [? If not now, when?”

The decision to start the GNU project was based on a similar spirit.

As an atheist, [don’t follow any religious leaders, but I sometimes find I admire
something one of them has said.

20 Free Software, Free Society: Selected Essays of Richard M. Stallman

Free as in Freedom

The term “free software” is sometimes misunderstood—it has nothing to do with
price. It is about freedom. Here, therefore, is the definition of free software: a
program is free software, for you, a particular user, if:

* You have the freedom to run the program, for any purpose.

* You have the freedom to modify the program to suit your needs. (To make this
freedom effective in practice, you must have access to the source code, since
making changes in a program without having the source code is exceedingly
difficult.)

* You have the freedom to redistribute copies, either gratis or for a fee.

* You have the freedom to distribute modified versions of the program, so that
the community can benefit from your improvements.

Since “free” refers to freedom, not to price, there is no contradiction between
selling copies and free software. In fact, the freedom to sell copies is crucial:
collections of free software sold on CD-ROMs are important for the community,
and selling them is an important way to raise funds for free software development.
Therefore, a program that people are not free to include on these collections is not
free software.

Because of the ambiguity of “free,” people have long looked for alternatives, but
no one has found a suitable alternative. The English Language has more words and
nuances than any other, but it lacks a simple, unambiguous word that means “free,”
as in freedom—"unfettered” being the word that comes closest in meaning. Such
alternatives as “liberated,” “freedom,” and “open” have either the wrong meaning
or some other disadvantage.

GNU Software and the GNU System

Developing a whole system is a very large project. To bring it into reach, I de-
cided to adapt and use existing pieces of free software wherever that was possible.
For example, I decided at the very beginning to use TeX as the principal text for-
matter; a few years later, I decided to use the X Window System rather than writing
another window system for GNU.

Because of this decision, the GNU system is not the same as the collection of all
GNU software. The GNU system includes programs that are not GNU software,
programs that were developed by other people and projects for their own purposes,
but that we can use because they are free software.

Commencing the Project

In January 1984 I quit my job at MIT and began writing GNU software. Leaving
MIT was necessary so that MIT would not be able to interfere with distributing
GNU as free software. If I had remained on the staff, MIT could have claimed to
own the work, and could have imposed their own distribution terms, or even turned
the work into a proprietary software package. I had no intention of doing a large

Chapter 1: The GNU Project 21

amount of work only to see it become useless for its intended purpose: creating a
new software-sharing community.

However, Professor Winston, then the head of the MIT Al Lab, kindly invited
me to keep using the lab’s facilities.

The First Steps

Shortly before beginning the GNU project, I heard about the Free University
Compiler Kit, also known as VUCK. (The Dutch word for “free” is written with
a V.) This was a compiler designed to handle multiple languages, including C and
Pascal, and to support multiple target machines. I wrote to its author asking if GNU
could use it.

He responded derisively, stating that the university was free but the compiler
was not. I therefore decided that my first program for the GNU project would be a
multi-language, multi-platform compiler.

Hoping to avoid the need to write the whole compiler myself, I obtained the
source code for the Pastel compiler, which was a multi-platform compiler devel-
oped at Lawrence Livermore Lab. It supported, and was written in, an extended
version of Pascal, designed to be a system-programming language. I added a C
front end, and began porting it to the Motorola 68000 computer. But I had to give
that up when I discovered that the compiler needed many megabytes of stack space,
and the available 68000 Unix system would only allow 64k.

I then realized that the Pastel compiler functioned by parsing the entire input file
into a syntax tree, converting the whole syntax tree into a chain of “instructions,”
and then generating the whole output file, without ever freeing any storage. At this
point, I concluded I would have to write a new compiler from scratch. That new
compiler is now known as GCC; none of the Pastel compiler is used in it, but I
managed to adapt and use the C front end that I had written. But that was some
years later; first, I worked on GNU Emacs.

GNU Emacs

I began work on GNU Emacs in September 1984, and in early 1985 it was be-
ginning to be usable. This enabled me to begin using Unix systems to do editing;
having no interest in learning to use vi or ed, I had done my editing on other kinds
of machines until then.

At this point, people began wanting to use GNU Emacs, which raised the ques-
tion of how to distribute it. Of course, I put it on the anonymous ftp server on the
MIT computer that I used. (This computer, prep.ai.mit.edu, thus became the prin-
cipal GNU ftp distribution site; when it was decommissioned a few years later, we
transferred the name to our new ftp server.) But at that time, many of the interested
people were not on the Internet and could not get a copy by ftp. So the question
was, what would I say to them?

I could have said, “Find a friend who is on the net and who will make a copy for
you.” Or I could have done what I did with the original PDP-10 Emacs: tell them,
“Mail me a tape and a SASE, and I will mail it back with Emacs on it.” But I had no

22 Free Software, Free Society: Selected Essays of Richard M. Stallman

job and I was looking for ways to make money from free software. So I announced
that T would mail a tape to whoever wanted one, for a fee of $150. In this way,
I started a free software distribution business, the precursor of the companies that
today distribute entire Linux-based GNU systems.

Is a program free for every user?

If a program is free software when it leaves the hands of its author, this does not
necessarily mean it will be free software for everyone who has a copy of it. For ex-
ample, public domain software (software that is not copyrighted) is free software;
but anyone can make a proprietary modified version of it. Likewise, many free pro-
grams are copyrighted but distributed under simple permissive licenses that allow
proprietary modified versions.

The paradigmatic example of this problem is the X Window System. Developed
at MIT, and released as free software with a permissive license, it was soon adopted
by various computer companies. They added X to their proprietary Unix systems,
in binary form only, and covered by the same nondisclosure agreement. These
copies of X were no more free software than Unix was.

The developers of the X Window System did not consider this a problem—they
expected and intended this to happen. Their goal was not freedom, just “success,”
defined as “having many users.” They did not care whether these users had freedom,
only that they should be numerous.

This lead to a paradoxical situation where two different ways of counting the
amount of freedom gave different answers to the question, “Is this program free?”
If you judged based on the freedom provided by the distribution terms of the MIT
release, you would say that X was free software. But if you measured the freedom
of the average user of X, you would have to say it was proprietary software. Most
X users were running the proprietary versions that came with Unix systems, not the
free version.

Copyleft and the GNU GPL

The goal of GNU was to give users freedom, not just to be popular. So we needed
to use distribution terms that would prevent GNU software from being turned into
proprietary software. The method we use is called copyleft.

Copyleft uses copyright law, but flips it over to serve the opposite of its usual
purpose: instead of a means of privatizing software, it becomes a means of keeping
software free.

The central idea of copyleft is that we give everyone permission to run the pro-
gram, copy the program, modify the program, and distribute modified versions—
but not permission to add restrictions of their own. Thus, the crucial freedoms that
define “free software” are guaranteed to everyone who has a copy; they become
inalienable rights.

For an effective copyleft, modified versions must also be free. This ensures that
work based on ours becomes available to our community if it is published. When
programmers who have jobs as programmers volunteer to improve GNU software,

Chapter 1: The GNU Project 23

it is copyleft that prevents their employers from saying, “You can’t share those
changes, because we are going to use them to make our proprietary version of the
program.”

The requirement that changes must be free is essential if we want to ensure free-
dom for every user of the program. The companies that privatized the X Window
System usually made some changes to port it to their systems and hardware. These
changes were small compared with the great extent of X, but they were not trivial.
If making changes were an excuse to deny the users freedom, it would be easy for
anyone to take advantage of the excuse.

A related issue concerns combining a free program with non-free code. Such a
combination would inevitably be non-free; whichever freedoms are lacking for the
non-free part would be lacking for the whole as well. To permit such combinations
would open a hole big enough to sink a ship. Therefore, a crucial requirement
for copyleft is to plug this hole: anything added to or combined with a copylefted
program must be such that the larger combined version is also free and copylefted.

The specific implementation of copyleft that we use for most GNU software is
the GNU General Public License, or GNU GPL for short. We have other kinds of
copyleft that are used in specific circumstances. GNU manuals are copylefted also,
but use a much simpler kind of copyleft, because the complexity of the GNU GPL
is not necessary for manuals.

In 1984 or 1985, Don Hopkins (a very imaginative fellow) mailed me a let-
ter. On the envelope he had written several amusing sayings, including this one:
“Copyleft—all rights reversed.” I used the word “copyleft” to name the distribu-
tion concept I was developing at the time.

The Free Software Foundation

As interest in using Emacs was growing, other people became involved in the
GNU project, and we decided that it was time to seek funding once again. So in
1985 we created the Free Software Foundation, a tax-exempt charity for free soft-
ware development. The FSF also took over the Emacs tape distribution business;
later it extended this by adding other free software (both GNU and non-GNU) to
the tape, and by selling free manuals as well.

The FSF accepts donations, but most of its income has always come from sales—
of copies of free software, and of other related services. Today it sells CD-ROMs
of source code, CD-ROMs with binaries, nicely printed manuals (all with freedom
to redistribute and modify), and Deluxe Distributions (where we build the whole
collection of software for your choice of platform).

Free Software Foundation employees have written and maintained a number of
GNU software packages. Two notable ones are the C library and the shell. The
GNU C library is what every program running on a GNU/Linux system uses to
communicate with Linux. It was developed by a member of the Free Software
Foundation staff, Roland McGrath. The shell used on most GNU/Linux systems is
BASH, the Bourne Again Shell, which was developed by FSF employee Brian Fox.

24 Free Software, Free Society: Selected Essays of Richard M. Stallman

We funded development of these programs because the GNU project was not
just about tools or a development environment. Our goal was a complete operating
system, and these programs were needed for that goal.

“Bourne again Shell” is a joke on the name “Bourne Shell,” which was the usual
shell on Unix.

Free Software Support

The free software philosophy rejects a specific widespread business practice, but
it is not against business. When businesses respect the users’ freedom, we wish
them success.

Selling copies of Emacs demonstrates one kind of free software business. When
the FSF took over that business, I needed another way to make a living. I found
it in selling services relating to the free software I had developed. This included
teaching, for subjects such as how to program GNU Emacs and how to customize
GCC, and software development, mostly porting GCC to new platforms.

Today each of these kinds of free software business is practiced by a number of
corporations. Some distribute free software collections on CD-ROM; others sell
support at various levels ranging from answering user questions, to fixing bugs, to
adding major new features. We are even beginning to see free software companies
based on launching new free software products.

Watch out, though—a number of companies that associate themselves with the
term “open source” actually base their business on non-free software that works
with free software. These are not free software companies, they are proprietary
software companies whose products tempt users away from freedom. They call
these “value added,” which reflects the values they would like us to adopt: conve-
nience above freedom. If we value freedom more, we should call them “freedom
subtracted” products.

Technical goals

The principal goal of GNU was to be free software. Even if GNU had no tech-
nical advantage over Unix, it would have a social advantage, allowing users to
cooperate, and an ethical advantage, respecting the user’s freedom.

But it was natural to apply the known standards of good practice to the work—for
example, dynamically allocating data structures to avoid arbitrary fixed size limits,
and handling all the possible 8-bit codes wherever that made sense.

In addition, we rejected the Unix focus on small memory size, by deciding not
to support 16-bit machines (it was clear that 32-bit machines would be the norm by
the time the GNU system was finished), and to make no effort to reduce memory
usage unless it exceeded a megabyte. In programs for which handling very large
files was not crucial, we encouraged programmers to read an entire input file into
core, then scan its contents without having to worry about I/O.

These decisions enabled many GNU programs to surpass their Unix counterparts
in reliability and speed.

Chapter 1: The GNU Project 25

Donated Computers

As the GNU project’s reputation grew, people began offering to donate machines
running Unix to the project. These were very useful, because the easiest way to
develop components of GNU was to do it on a Unix system, and replace the com-
ponents of that system one by one. But they raised an ethical issue: whether it was
right for us to have a copy of Unix at all.

Unix was (and is) proprietary software, and the GNU project’s philosophy said
that we should not use proprietary software. But, applying the same reasoning that
leads to the conclusion that violence in self defense is justified, I concluded that it
was legitimate to use a proprietary package when that was crucial for developing a
free replacement that would help others stop using the proprietary package.

But, even if this was a justifiable evil, it was still an evil. Today we no longer have
any copies of Unix, because we have replaced them with free operating systems. If
we could not replace a machine’s operating system with a free one, we replaced the
machine instead.

The GNU Task List

As the GNU project proceeded, and increasing numbers of system components
were found or developed, eventually it became useful to make a list of the remaining
gaps. We used it to recruit developers to write the missing pieces. This list became
known as the GNU task list. In addition to missing Unix components, we listed
various other useful software and documentation projects that, we thought, a truly
complete system ought to have.

Today, hardly any Unix components are left in the GNU task list—those jobs
have been done, aside from a few inessential ones. But the list is full of projects
that some might call “applications.” Any program that appeals to more than a
narrow class of users would be a useful thing to add to an operating system.

Even games are included in the task list—and have been since the beginning.
Unix included games, so naturally GNU should too. But compatibility was not an
issue for games, so we did not follow the list of games that Unix had. Instead, we
listed a spectrum of different kinds of games that users might like.

The GNU Library GPL

The GNU C library uses a special kind of copyleft called the GNU Library Gen-
eral Public License, which gives permission to link proprietary software with the
library. Why make this exception?

It is not a matter of principle; there is no principle that says proprietary software
products are entitled to include our code. (Why contribute to a project predicated
on refusing to share with us?) Using the LGPL for the C library, or for any library,
is a matter of strategy.

The C library does a generic job; every proprietary system or compiler comes
with a C library. Therefore, to make our C library available only to free software

26 Free Software, Free Society: Selected Essays of Richard M. Stallman

would not have given free software any advantage—it would only have discouraged
use of our library.

One system is an exception to this: on the GNU system (and this includes
GNU/Linux), the GNU C library is the only C library. So the distribution terms
of the GNU C library determine whether it is possible to compile a proprietary
program for the GNU system. There is no ethical reason to allow proprietary appli-
cations on the GNU system, but strategically it seems that disallowing them would
do more to discourage use of the GNU system than to encourage development of
free applications.

That is why using the Library GPL is a good strategy for the C library. For
other libraries, the strategic decision needs to be considered on a case-by-case ba-
sis. When a library does a special job that can help write certain kinds of programs,
then releasing it under the GPL, limiting it to free programs only, is a way of help-
ing other free software developers, giving them an advantage against proprietary
software.

Consider GNU Readline,? a library that was developed to provide command-
line editing for BASH. Readline is released under the ordinary GNU GPL, not the
Library GPL. This probably does reduce the amount Readline is used, but that is no
loss for us. Meanwhile, at least one useful application has been made free software
specifically so it could use Readline, and that is a real gain for the community.

Proprietary software developers have the advantages money provides; free soft-
ware developers need to make advantages for each other. I hope some day we will
have a large collection of GPL-covered libraries that have no parallel available to
proprietary software, providing useful modules to serve as building blocks in new
free software, and adding up to a major advantage for further free software devel-
opment.

Scratching an itch?

Eric Raymond says that “Every good work of software starts by scratching a
developer’s personal itch.” Maybe that happens sometimes, but many essential
pieces of GNU software were developed in order to have a complete free operating
system. They come from a vision and a plan, not from impulse.

For example, we developed the GNU C library because a Unix-like system needs
a C library, the Bourne Again Shell (BASH) because a Unix-like system needs a
shell, and GNU tar because a Unix-like system needs a tar program. The same is
true for my own programs—the GNU C compiler, GNU Emacs, GDB and GNU
Make.

Some GNU programs were developed to cope with specific threats to our free-
dom. Thus, we developed gzip to replace the Compress program, which had been
lost to the community because of the LZW? patents. We found people to develop
LessTif, and more recently started GNOME and Harmony, to address the problems

2 The GNU Readline library provides a set of functions for use by applications that allow users to
edit command lines as they are typed in.
3 The Lempel-Ziv-Welch algorithm is used for compressing data.

Chapter 1: The GNU Project 27

caused by certain proprietary libraries (see “Non-Free Libraries” below). We are
developing the GNU Privacy Guard to replace popular non-free encryption soft-
ware, because users should not have to choose between privacy and freedom.

Of course, the people writing these programs became interested in the work, and
many features were added to them by various people for the sake of their own needs
and interests. But that is not why the programs exist.

Unexpected developments

At the beginning of the GNU project, I imagined that we would develop the
whole GNU system, then release it as a whole. That is not how it happened.

Since each component of the GNU system was implemented on a Unix system,
each component could run on Unix systems, long before a complete GNU system
existed. Some of these programs became popular, and users began extending them
and porting them—to the various incompatible versions of Unix, and sometimes to
other systems as well.

The process made these programs much more powerful, and attracted both funds
and contributors to the GNU project. But it probably also delayed completion of a
minimal working system by several years, as GNU developers’ time was put into
maintaining these ports and adding features to the existing components, rather than
moving on to write one missing component after another.

The GNU Hurd

By 1990, the GNU system was almost complete; the only major missing com-
ponent was the kernel. We had decided to implement our kernel as a collection
of server processes running on top of Mach. Mach is a microkernel developed at
Carnegie Mellon University and then at the University of Utah; the GNU Hurd is
a collection of servers (or “herd of gnus”) that run on top of Mach, and do the var-
ious jobs of the Unix kernel. The start of development was delayed as we waited
for Mach to be released as free software, as had been promised.

One reason for choosing this design was to avoid what seemed to be the hardest
part of the job: debugging a kernel program without a source-level debugger to
do it with. This part of the job had been done already, in Mach, and we expected
to debug the Hurd servers as user programs, with GDB. But it took a long time
to make that possible, and the multi-threaded servers that send messages to each
other have turned out to be very hard to debug. Making the Hurd work solidly has
stretched on for many years.

Alix

The GNU kernel was not originally supposed to be called the Hurd. Its original
name was Alix—named after the woman who was my sweetheart at the time. She,
a Unix system administrator, had pointed out how her name would fit a common
naming pattern for Unix system versions; as a joke, she told her friends, “Someone

28 Free Software, Free Society: Selected Essays of Richard M. Stallman

should name a kernel after me.” I said nothing, but decided to surprise her with a
kernel named Alix.

It did not stay that way. Michael Bushnell (now Thomas), the main developer
of the kernel, preferred the name Hurd, and redefined Alix to refer to a certain part
of the kernel—the part that would trap system calls and handle them by sending
messages to Hurd servers.

Ultimately, Alix and I broke up, and she changed her name; independently, the
Hurd design was changed so that the C library would send messages directly to
servers, and this made the Alix component disappear from the design.

But before these things happened, a friend of hers came across the name Alix in
the Hurd source code, and mentioned the name to her. So the name did its job.

Linux and GNU/Linux

The GNU Hurd is not ready for production use. Fortunately, another kernel is
available. In 1991, Linus Torvalds developed a Unix-compatible kernel and called
it Linux. Around 1992, combining Linux with the not-quite-complete GNU system
resulted in a complete free operating system. (Combining them was a substantial
job in itself, of course.) It is due to Linux that we can actually run a version of the
GNU system today.

We call this system version GNU/Linux, to express its composition as a combi-
nation of the GNU system with Linux as the kernel.

Challenges in Our Future

We have proved our ability to develop a broad spectrum of free software. This
does not mean we are invincible and unstoppable. Several challenges make the
future of free software uncertain; meeting them will require steadfast effort and
endurance, sometimes lasting for years. It will require the kind of determination
that people display when they value their freedom and will not let anyone take it
away.

The following four sections discuss these challenges.

Secret Hardware

Hardware manufactures increasingly tend to keep hardware specifications secret.
This makes it difficult to write free drivers so that Linux and XFree86* can support
new hardware. We have complete free systems today, but we will not have them
tomorrow if we cannot support tomorrow’s computers.

There are two ways to cope with this problem. Programmers can do reverse
engineering to figure out how to support the hardware. The rest of us can choose
the hardware that is supported by free software; as our numbers increase, secrecy
of specifications will become a self-defeating policy.

4 XFree86 is a program that provides a desktop environment that interfaces with your display hard-
ware (mouse, keyboard, etc). It runs on many different platforms.

Chapter 1: The GNU Project 29

Reverse engineering is a big job; will we have programmers with sufficient de-
termination to undertake it? Yes—if we have built up a strong feeling that free
software is a matter of principle, and non-free drivers are intolerable. And will
large numbers of us spend extra money, or even a little extra time, so we can use
free drivers? Yes, if the determination to have freedom is widespread.

Non-Free Libraries

A non-free library that runs on free operating systems acts as a trap for free
software developers. The library’s attractive features are the bait; if you use the
library, you fall into the trap, because your program cannot usefully be part of a free
operating system. (Strictly speaking, we could include your program, but it won’t
run with the library missing.) Even worse, if a program that uses the proprietary
library becomes popular, it can lure other unsuspecting programmers into the trap.

The first instance of this problem was the Motif® toolkit, back in the 80s. Al-
though there were as yet no free operating systems, it was clear what problem
Motif would cause for them later on. The GNU Project responded in two ways:
by asking individual free software projects to support the free X toolkit widgets as
well as Motif, and by asking for someone to write a free replacement for Motif.
The job took many years; LessTif, developed by the Hungry Programmers, became
powerful enough to support most Motif applications only in 1997.

Between 1996 and 1998, another non-free Graphical User Interface (GUI) toolkit
library, called Qt, was used in a substantial collection of free software, the desktop
KDE.

Free GNU/Linux systems were unable to use KDE, because we could not use
the library. However, some commercial distributors of GNU/Linux systems who
were not strict about sticking with free software added KDE to their systems—
producing a system with more capabilities, but less freedom. The KDE group was
actively encouraging more programmers to use Qt, and millions of new “Linux
users” had never been exposed to the idea that there was a problem in this. The
situation appeared grim.

The free software community responded to the problem in two ways: GNOME
and Harmony.

GNOME, the GNU Network Object Model Environment, is GNU’s desktop
project. Started in 1997 by Miguel de Icaza, and developed with the support of
Red Hat Software, GNOME set out to provide similar desktop facilities, but using
free software exclusively. It has technical advantages as well, such as supporting
a variety of languages, not just C++. But its main purpose was freedom: not to
require the use of any non-free software.

Harmony is a compatible replacement library, designed to make it possible to
run KDE software without using Qt.

In November 1998, the developers of Qt announced a change of license which,
when carried out, should make Qt free software. There is no way to be sure, but I
think that this was partly due to the community’s firm response to the problem that

® Motifis a graphical interface and window manager that runs on top of X Windows.

30 Free Software, Free Society: Selected Essays of Richard M. Stallman

Qt posed when it was non-free. (The new license is inconvenient and inequitable,
so it remains desirable to avoid using Qt.)%

How will we respond to the next tempting non-free library? Will the whole
community understand the need to stay out of the trap? Or will many of us give
up freedom for convenience, and produce a major problem? Our future depends on
our philosophy.

Software Patents

The worst threat we face comes from software patents, which can put algorithms
and features off limits to free software for up to twenty years. The LZW compres-
sion algorithm patents were applied for in 1983, and we still cannot release free
software to produce proper compressed GIFs. In 1998, a free program to produce
MP3 compressed audio was removed from distribution under threat of a patent suit.

There are ways to cope with patents: we can search for evidence that a patent is
invalid, and we can look for alternative ways to do a job. But each of these methods
works only sometimes; when both fail, a patent may force all free software to lack
some feature that users want. What will we do when this happens?

Those of us who value free software for freedom’s sake will stay with free soft-
ware anyway. We will manage to get work done without the patented features. But
those who value free software because they expect it to be techically superior are
likely to call it a failure when a patent holds it back. Thus, while it is useful to talk
about the practical effectiveness of the “cathedral” model of development,” and the
reliability and power of some free software, we must not stop there. We must talk
about freedom and principle.

Free Documentation

The biggest deficiency in our free operating systems is not in the software—it is
the lack of good free manuals that we can include in our systems. Documentation is
an essential part of any software package; when an important free software package
does not come with a good free manual, that is a major gap. We have many such
gaps today.

Free documentation, like free software, is a matter of freedom, not price. The
criterion for a free manual is pretty much the same as for free software: it is a
matter of giving all users certain freedoms. Redistribution (including commercial
sale) must be permitted, on-line and on paper, so that the manual can accompany
every copy of the program.

Permission for modification is crucial too. As a general rule, I don’t believe that
it is essential for people to have permission to modify all sorts of articles and books.
For example, I don’t think you or I are obliged to give permission to modify articles
like this one, which describe our actions and our views.

6 In September 2000, Qt was rereleased under the GNU GPL, which essentially solved this problem.
1 probably meant to write “of the ‘bazaar’ model,” since that was the alternative that was new and
initially controversial.

Chapter 1: The GNU Project 31

But there is a particular reason why the freedom to modify is crucial for docu-
mentation for free software. When people exercise their right to modify the soft-
ware, and add or change its features, if they are conscientious they will change the
manual too—so they can provide accurate and usable documentation with the mod-
ified program. A manual that does not allow programmers to be conscientious and
finish the job does not fill our community’s needs.

Some kinds of limits on how modifications are done pose no problem. For exam-
ple, requirements to preserve the original author’s copyright notice, the distribution
terms, or the list of authors, are ok. It is also no problem to require modified ver-
sions to include notice that they were modified, even to have entire sections that
may not be deleted or changed, as long as these sections deal with nontechnical
topics. These kinds of restrictions are not a problem because they don’t stop the
conscientious programmer from adapting the manual to fit the modified program.
In other words, they don’t block the free software community from making full use
of the manual.

However, it must be possible to modify all the “technical” content of the manual,
and then distribute the result in all the usual media, through all the usual channels;
otherwise, the restrictions do obstruct the community, the manual is not free, and
we need another manual.

Will free software developers have the awareness and determination to produce
a full spectrum of free manuals? Once again, our future depends on philosophy.

We Must Talk About Freedom

Estimates today are that there are ten million users of GNU/Linux systems such
as Debian GNU/Linux and Red Hat Linux. Free software has developed such prac-
tical advantages that users are flocking to it for purely practical reasons.

The good consequences of this are evident: more interest in developing free
software, more customers for free software businesses, and more ability to encour-
age companies to develop commercial free software instead of proprietary software
products.

But interest in the software is growing faster than awareness of the philosophy it
is based on, and this leads to trouble. Our ability to meet the challenges and threats
described above depends on the will to stand firm for freedom. To make sure our
community has this will, we need to spread the idea to the new users as they come
into the community.

But we are failing to do so: the efforts to attract new users into our community
are far outstripping the efforts to teach them the civics of our community. We need
to do both, and we need to keep the two efforts in balance.

“Open Source”

Teaching new users about freedom became more difficult in 1998, when a part of
the community decided to stop using the term “free software” and say “open source
software” instead.

32 Free Software, Free Society: Selected Essays of Richard M. Stallman

Some who favored this term aimed to avoid the confusion of “free” with
“gratis”—a valid goal. Others, however, aimed to set aside the spirit of princi-
ple that had motivated the free software movement and the GNU project, and to
appeal instead to executives and business users, many of whom hold an ideology
that places profit above freedom, above community, above principle. Thus, the
rhetoric of “open source” focuses on the potential to make high-quality, powerful
software, but shuns the ideas of freedom, community, and principle.

The “Linux” magazines are a clear example of this—they are filled with adver-
tisements for proprietary software that works with GNU/Linux. When the next
Motif or Qt appears, will these magazines warn programmers to stay away from it,
or will they run ads for it?

The support of business can contribute to the community in many ways; all else
being equal, it is useful. But winning their support by speaking even less about
freedom and principle can be disastrous; it makes the previous imbalance between
outreach and civics education even worse.

“Free software” and “open source” describe the same category of software, more
or less, but say different things about the software, and about values. The GNU
Project continues to use the term “free software,” to express the idea that freedom,
not just technology, is important.

Try!

Yoda’s philosophy (“There is no ‘try”’) sounds neat, but it doesn’t work for me.
I have done most of my work while anxious about whether I could do the job, and
unsure that it would be enough to achieve the goal if I did. But I tried anyway, be-
cause there was no one but me between the enemy and my city. Surprising myself,
I have sometimes succeeded.

Sometimes I failed; some of my cities have fallen. Then I found another threat-
ened city, and got ready for another battle. Over time, I’ve learned to look for
threats and put myself between them and my city, calling on other hackers to come
and join me.

Nowadays, often I'm not the only one. It is a relief and a joy when I see a
regiment of hackers digging in to hold the line, and I realize, this city may survive—
for now. But the dangers are greater each year, and now Microsoft has explicitly
targeted our community. We can’t take the future of freedom for granted. Don’t
take it for granted! If you want to keep your freedom, you must be prepared to
defend it.

Chapter 2: The GNU Manifesto 33

2 The GNU Manifesto

The GNU Manifesto was written at the beginning of the GNU Project, to ask
for participation and support. For the first few years, it was updated in minor
ways to account for developments, but now it seems best to leave it unchanged as
most people have seen it. Since that time, we have learned about certain common
misunderstandings that different wording could help avoid, and footnotes have been
added over the years to explain these misunderstandings.

What’s GNU? Gnu’s Not Unix!

GNU, which stands for Gnu’s Not Unix, is the name for the complete Unix-
compatible software system which I am writing so that I can give it away free to
everyone who can use it."! Several other volunteers are helping me. Contributions
of time, money, programs and equipment are greatly needed.

So far we have an Emacs text editor with Lisp for writing editor commands,
a source-level debugger, a yacc-compatible parser generator, a linker, and around
35 utilities. A shell (command interpreter) is nearly completed. A new portable
optimizing C compiler has compiled itself and may be released this year. An initial
kernel exists but many more features are needed to emulate Unix. When the kernel
and compiler are finished, it will be possible to distribute a GNU system suitable for
program development. We will use TEX as our text formatter, but an nroff is being
worked on. We will use the free, portable X window system as well. After this we
will add a portable Common Lisp, an Empire game, a spreadsheet, and hundreds of
other things, plus on-line documentation. We hope to supply, eventually, everything
useful that normally comes with a Unix system, and more.

GNU will be able to run Unix programs, but will not be identical to Unix. We
will make all improvements that are convenient, based on our experience with
other operating systems. In particular, we plan to have longer file names, file ver-

L The wording here was careless. The intention was that nobody would have to pay for permission
to use the GNU system. But the words do not make this clear, and people often interpret them
as saying that copies of GNU should always be distributed at little or no charge. That was never
the intent; later on, the manifesto mentions the possibility of companies providing the service of
distribution for a profit. Subsequently I have learned to distinguish carefully between “free” in the
sense of freedom and “free” in the sense of price. Free software is software that users have the
freedom to distribute and change. Some users may obtain copies at no charge, while others pay
to obtain copies—and if the funds help support improving the software, so much the better. The
important thing is that everyone who has a copy has the freedom to cooperate with others in using
1t.

Originally written in 1984, this essay is part of Free Software, Free Society: Selected Essays of Richard
M. Stallman, 2nd ed. (Boston: GNU Press, 2004), ISBN 1-882114-99-X, www.gnupress.org.

Verbatim copying and distribution of this entire article is permitted in any medium, provided
this notice is preserved.

34 Free Software, Free Society: Selected Essays of Richard M. Stallman

sion numbers, a crashproof file system, file name completion perhaps, terminal-
independent display support, and perhaps eventually a Lisp-based window sys-
tem through which several Lisp programs and ordinary Unix programs can share a
screen. Both C and Lisp will be available as system programming languages. We
will try to support UUCP, MIT Chaosnet, and Internet protocols for communication.

GNU is aimed initially at machines in the 68000/16000 class with virtual mem-
ory, because they are the easiest machines to make it run on. The extra effort to
make it run on smaller machines will be left to someone who wants to use it on
them.

To avoid horrible confusion, please pronounce the ‘G’ in the word ‘GNU’ when
it is the name of this project.

Why I Must Write GNU

I consider that the golden rule requires that if I like a program I must share it
with other people who like it. Software sellers want to divide the users and conquer
them, making each user agree not to share with others. I refuse to break solidarity
with other users in this way. I cannot in good conscience sign a nondisclosure
agreement or a software license agreement. For years I worked within the Artificial
Intelligence Lab to resist such tendencies and other inhospitalities, but eventually
they had gone too far: I could not remain in an institution where such things are
done for me against my will.

So that I can continue to use computers without dishonor, I have decided to put
together a sufficient body of free software so that I will be able to get along without
any software that is not free. I have resigned from the Al lab to deny MIT any legal
excuse to prevent me from giving GNU away.

Why GNU Will Be Compatible with Unix

Unix is not my ideal system, but it is not too bad. The essential features of Unix
seem to be good ones, and I think I can fill in what Unix lacks without spoiling
them. And a system compatible with Unix would be convenient for many other
people to adopt.

How GNU Will Be Available

GNU is not in the public domain. Everyone will be permitted to modify and
redistribute GNU, but no distributor will be allowed to restrict its further redistribu-
tion. That is to say, proprietary modifications will not be allowed. I want to make
sure that all versions of GNU remain free.

Why Many Other Programmers Want to Help

I have found many other programmers who are excited about GNU and want to
help.

Chapter 2: The GNU Manifesto 35

Many programmers are unhappy about the commercialization of system soft-
ware. It may enable them to make more money, but it requires them to feel in
conflict with other programmers in general rather than feel as comrades. The fun-
damental act of friendship among programmers is the sharing of programs; market-
ing arrangements now typically used essentially forbid programmers to treat others
as friends. The purchaser of software must choose between friendship and obeying
the law. Naturally, many decide that friendship is more important. But those who
believe in law often do not feel at ease with either choice. They become cynical
and think that programming is just a way of making money.

By working on and using GNU rather than proprietary programs, we can be
hospitable to everyone and obey the law. In addition, GNU serves as an example to
inspire and a banner to rally others to join us in sharing. This can give us a feeling
of harmony which is impossible if we use software that is not free. For about half
the programmers I talk to, this is an important happiness that money cannot replace.

How You Can Contribute

I am asking computer manufacturers for donations of machines and money. I'm
asking individuals for donations of programs and work.

One consequence you can expect if you donate machines is that GNU will run
on them at an early date. The machines should be complete, ready to use systems,
approved for use in a residential area, and not in need of sophisticated cooling or
power.

I have found very many programmers eager to contribute part-time work for
GNU. For most projects, such part-time distributed work would be very hard to
coordinate; the independently-written parts would not work together. But for the
particular task of replacing Unix, this problem is absent. A complete Unix system
contains hundreds of utility programs, each of which is documented separately.
Most interface specifications are fixed by Unix compatibility. If each contributor
can write a compatible replacement for a single Unix utility, and make it work
properly in place of the original on a Unix system, then these utilities will work
right when put together. Even allowing for Murphy? to create a few unexpected
problems, assembling these components will be a feasible task. (The kernel will
require closer communication and will be worked on by a small, tight group.)

If I get donations of money, I may be able to hire a few people full or part time.
The salary won’t be high by programmers’ standards, but I'm looking for people
for whom building community spirit is as important as making money. I view this
as a way of enabling dedicated people to devote their full energies to working on
GNU by sparing them the need to make a living in another way.

2 This is a reference to “Murphy’s Law,” a humorous law that states, if anything can possibly go
wrong, it will go wrong.

36 Free Software, Free Society: Selected Essays of Richard M. Stallman

Why All Computer Users Will Benefit

Once GNU is written, everyone will be able to obtain good system software free,
just like air.?

This means much more than just saving everyone the price of a Unix license.
It means that much wasteful duplication of system programming effort will be
avoided. This effort can go instead into advancing the state of the art.

Complete system sources will be available to everyone. As a result, a user who
needs changes in the system will always be free to make them himself, or hire any
available programmer or company to make them for him. Users will no longer be
at the mercy of one programmer or company which owns the sources and is in sole
position to make changes.

Schools will be able to provide a much more educational environment by en-
couraging all students to study and improve the system code. Harvard’s computer
lab used to have the policy that no program could be installed on the system if its
sources were not on public display, and upheld it by actually refusing to install
certain programs. I was very much inspired by this.

Finally, the overhead of considering who owns the system software and what one
is or is not entitled to do with it will be lifted.

Arrangements to make people pay for using a program, including licensing of
copies, always incur a tremendous cost to society through the cumbersome mech-
anisms necessary to figure out how much (that is, which programs) a person must
pay for. And only a police state can force everyone to obey them. Consider a space
station where air must be manufactured at great cost: charging each breather per
liter of air may be fair, but wearing the metered gas mask all day and all night is
intolerable even if everyone can afford to pay the air bill. And the TV cameras ev-
erywhere to see if you ever take the mask off are outrageous. It’s better to support
the air plant with a head tax and chuck the masks.

Copying all or parts of a program is as natural to a programmer as breathing, and
as productive. It ought to be as free.

Some easily rebutted objections to GNU’s goals:

“Nobody will use it if it is free, because that means they can’t rely on any
support.”

“You have to charge for the program to pay for providing the support.”

If people would rather pay for GNU plus service than get GNU free without
service, a company to provide just service to people who have obtained GNU free
ought to be profitable.

We must distinguish between support in the form of real programming work and
mere hand-holding. The former is something one cannot rely on from a software
vendor. If your problem is not shared by enough people, the vendor will tell you to
get lost.

3 This is another place I failed to distinguish carefully between the two different meanings of “free.”
The statement as it stands is not false—you can get copies of GNU software at no charge, from
your friends or over the Internet. But it does suggest the wrong idea.

Chapter 2: The GNU Manifesto 37

If your business needs to be able to rely on support, the only way is to have all
the necessary sources and tools. Then you can hire any available person to fix your
problem; you are not at the mercy of any individual. With Unix, the price of sources
puts this out of consideration for most businesses. With GNU this will be easy. It is
still possible for there to be no available competent person, but this problem cannot
be blamed on distribution arrangements. GNU does not eliminate all the world’s
problems, only some of them.

Meanwhile, the users who know nothing about computers need hand-holding:
doing things for them which they could easily do themselves but don’t know how.

Such services could be provided by companies that sell just hand-holding and
repair service. If it is true that users would rather spend money and get a product
with service, they will also be willing to buy the service having got the product
for free. The service companies will compete in quality and price; users will not
be tied to any particular one. Meanwhile, those of us who don’t need the service
should be able to use the program without paying for the service.

”You cannot reach many people without advertising, and you must charge for
the program to support that.”

”It’s no use advertising a program people can get free.”

There are various forms of free or very cheap publicity that can be used to inform
numbers of computer users about something like GNU. But it may be true that one
can reach more microcomputer users with advertising. If this is really so, a business
which advertises the service of copying and mailing GNU for a fee ought to be
successful enough to pay for its advertising and more. This way, only the users
who benefit from the advertising pay for it.

On the other hand, if many people get GNU from their friends, and such com-
panies don’t succeed, this will show that advertising was not really necessary to
spread GNU. Why is it that free market advocates don’t want to let the free market
decide this*?

“My company needs a proprietary operating system to get a competitive edge.”

GNU will remove operating system software from the realm of competition. You
will not be able to get an edge in this area, but neither will your competitors be able
to get an edge over you. You and they will compete in other areas, while benefiting
mutually in this one. If your business is selling an operating system, you will
not like GNU, but that’s tough on you. If your business is something else, GNU
can save you from being pushed into the expensive business of selling operating
systems.

4 The Free Software Foundation raises most of its funds from a distribution service, although it is a
charity rather than a company. If no one chooses to obtain copies by ordering them from the FSF,
it will be unable to do its work. But this does not mean that proprietary restrictions are justified
to force every user to pay. If a small fraction of all the users order copies from the FSF, that is
sufficient to keep the FSF afloat. So we ask users to choose to support us in this way. Have you
done your part?

38 Free Software, Free Society: Selected Essays of Richard M. Stallman

I would like to see GNU development supported by gifts from many manufac-
turers and users, reducing the cost to each.”

“Don’t programmers deserve a reward for their creativity?”’

If anything deserves a reward, it is social contribution. Creativity can be a social
contribution, but only in so far as society is free to use the results. If programmers
deserve to be rewarded for creating innovative programs, by the same token they
deserve to be punished if they restrict the use of these programs.

“Shouldn’t a programmer be able to ask for a reward for his creativity?”

There is nothing wrong with wanting pay for work, or seeking to maximize one’s
income, as long as one does not use means that are destructive. But the means
customary in the field of software today are based on destruction.

Extracting money from users of a program by restricting their use of it is de-
structive because the restrictions reduce the amount and the ways that the program
can be used. This reduces the amount of wealth that humanity derives from the
program. When there is a deliberate choice to restrict, the harmful consequences
are deliberate destruction.

The reason a good citizen does not use such destructive means to become wealth-
ier is that, if everyone did so, we would all become poorer from the mutual de-
structiveness. This is Kantian ethics; or, the Golden Rule. Since I do not like the
consequences that result if everyone hoards information, I am required to consider
it wrong for one to do so. Specifically, the desire to be rewarded for one’s creativity
does not justify depriving the world in general of all or part of that creativity.

“Won’t programmers starve?”

I could answer that nobody is forced to be a programmer. Most of us cannot
manage to get any money for standing on the street and making faces. But we are
not, as a result, condemned to spend our lives standing on the street making faces,
and starving. We do something else.

But that is the wrong answer because it accepts the questioner’s implicit assump-
tion: that without ownership of software, programmers cannot possibly be paid a
cent. Supposedly it is all or nothing.

The real reason programmers will not starve is that it will still be possible for
them to get paid for programming; just not paid as much as now.

Restricting copying is not the only basis for business in software. It is the most
common basis because it brings in the most money. If it were prohibited, or re-
jected by the customer, software business would move to other bases of organiza-
tion which are now used less often. There are always numerous ways to organize
any kind of business.

Probably programming will not be as lucrative on the new basis as it is now. But
that is not an argument against the change. It is not considered an injustice that
sales clerks make the salaries that they now do. If programmers made the same,
that would not be an injustice either. (In practice they would still make considerably
more than that.)

5 A group of computer companies recently pooled funds to support maintenance of the GNU C
Compiler.

Chapter 2: The GNU Manifesto 39

“Don’t people have a right to control how their creativity is used?”

“Control over the use of one’s ideas” really constitutes control over other peo-
ple’s lives; and it is usually used to make their lives more difficult.

People who have studied the issue of intellectual property rights carefully (such
as lawyers) say that there is no intrinsic right to intellectual property. The kinds of
supposed intellectual property rights that the government recognizes were created
by specific acts of legislation for specific purposes.

For example, the patent system was established to encourage inventors to dis-
close the details of their inventions. Its purpose was to help society rather than to
help inventors. At the time, the life span of 17 years for a patent was short com-
pared with the rate of advance of the state of the art. Since patents are an issue
only among manufacturers, for whom the cost and effort of a license agreement are
small compared with setting up production, the patents often do not do much harm.
They do not obstruct most individuals who use patented products.

The idea of copyright did not exist in ancient times, when authors frequently
copied other authors at length in works of non-fiction. This practice was useful,
and is the only way many authors’ works have survived even in part. The copyright
system was created expressly for the purpose of encouraging authorship. In the do-
main for which it was invented—books, which could be copied economically only
on a printing press—it did little harm, and did not obstruct most of the individuals
who read the books.

All intellectual property rights are just licenses granted by society because it was
thought, rightly or wrongly, that society as a whole would benefit by granting them.
But in any particular situation, we have to ask: are we really better off granting such
license? What kind of act are we licensing a person to do?

The case of programs today is very different from that of books a hundred years
ago. The fact that the easiest way to copy a program is from one neighbor to
another, the fact that a program has both source code and object code which are
distinct, and the fact that a program is used rather than read and enjoyed, combine
to create a situation in which a person who enforces a copyright is harming society
as a whole both materially and spiritually; in which a person should not do so
regardless of whether the law enables him to.

“Competition makes things get done better.”

The paradigm of competition is a race: by rewarding the winner, we encourage
everyone to run faster. When capitalism really works this way, it does a good job;
but its defenders are wrong in assuming it always works this way. If the runners
forget why the reward is offered and become intent on winning, no matter how, they
may find other strategies—such as, attacking other runners. If the runners get into
a fist fight, they will all finish late.

Proprietary and secret software is the moral equivalent of runners in a fist fight.
Sad to say, the only referee we’ve got does not seem to object to fights; he just
regulates them (“For every ten yards you run, you can fire one shot”). He really
ought to break them up, and penalize runners for even trying to fight.

“Won’t everyone stop programming without a monetary incentive?”

40 Free Software, Free Society: Selected Essays of Richard M. Stallman

Actually, many people will program with absolutely no monetary incentive. Pro-
gramming has an irresistible fascination for some people, usually the people who
are best at it. There is no shortage of professional musicians who keep at it even
though they have no hope of making a living that way.

But really this question, though commonly asked, is not appropriate to the sit-
uation. Pay for programmers will not disappear, only become less. So the right
question is, will anyone program with a reduced monetary incentive? My experi-
ence shows that they will.

For more than ten years, many of the world’s best programmers worked at the
Artificial Intelligence Lab for far less money than they could have had anywhere
else. They got many kinds of non-monetary rewards: fame and appreciation, for
example. And creativity is also fun, a reward in itself.

Then most of them left when offered a chance to do the same interesting work
for a lot of money.

What the facts show is that people will program for reasons other than riches;
but if given a chance to make a lot of money as well, they will come to expect and
demand it. Low-paying organizations do poorly in competition with high-paying
ones, but they do not have to do badly if the high-paying ones are banned.

“We need the programmers desperately. If they demand that we stop helping
our neighbors, we have to obey.”

You’re never so desperate that you have to obey this sort of demand. Remember:
millions for defense, but not a cent for tribute!

“Programmers need to make a living somehow.”

In the short run, this is true. However, there are plenty of ways that program-
mers could make a living without selling the right to use a program. This way is
customary now because it brings programmers and businessmen the most money,
not because it is the only way to make a living. It is easy to find other ways if you
want to find them.

Here are a number of examples:

* A manufacturer introducing a new computer will pay for the porting of oper-
ating systems onto the new hardware.

* The sale of teaching, hand-holding and maintenance services could also em-
ploy programmers.

* People with new ideas could distribute programs as freeware, asking for dona-
tions from satisfied users, or selling hand-holding services. I have met people
who are already working this way successfully.

* Users with related needs can form users’ groups, and pay dues. A group would
contract with programming companies to write programs that the group’s
members would like to use.

All sorts of development can be funded with a Software Tax:

* Suppose everyone who buys a computer has to pay x percent of the price as a
software tax. The government gives this to an agency like the NSF to spend
on software development.

Chapter 2: The GNU Manifesto 41

* But if the computer buyer makes a donation to software development himself,
he can take a credit against the tax. He can donate to the project of his own
choosing—often, chosen because he hopes to use the results when it is done.
He can take a credit for any amount of donation up to the total tax he had to
pay.

* The total tax rate could be decided by a vote of the payers of the tax, weighted
according to the amount they will be taxed on.

The consequences:
* The computer-using community supports software development.
* This community decides what level of support is needed.

» Users who care which projects their share is spent on can choose this for them-
selves.

In the long run, making programs free is a step toward the post-scarcity world,
where nobody will have to work very hard just to make a living. People will be free
to devote themselves to activities that are fun, such as programming, after spending
the necessary ten hours a week on required tasks such as legislation, family coun-
seling, robot repair, and asteroid prospecting. There will be no need to be able to
make a living from programming.

We have already greatly reduced the amount of work that the whole society must
do for its actual productivity, but only a little of this has translated itself into leisure
for workers because much nonproductive activity is required to accompany pro-
ductive activity. The main causes of this are bureaucracy and isometric struggles
against competition. Free software will greatly reduce these drains in the area of
software production. We must do this, in order for technical gains in productivity
to translate into less work for us.

42 Free Software, Free Society: Selected Essays of Richard M. Stallman

Chapter 3: Free Software Definition 43

3 Free Software Definition

We maintain this free software definition to show clearly what must be true about
a particular software program for it to be considered free software.

“Free software” is a matter of liberty, not price. To understand the concept, you
should think of “free” as in “free speech,” not as in “free beer.”

Free software is a matter of the users’ freedom to run, copy, distribute, study,
change, and improve the software. More precisely, it refers to four kinds of free-
dom, for the users of the software:

e Freedom 0: The freedom to run the program, for any purpose.

* Freedom 1: The freedom to study how the program works, and adapt it to your
needs. (Access to the source code is a precondition for this.)

* Freedom 2: The freedom to redistribute copies so you can help your neighbor.

* Freedom 3: The freedom to improve the program, and release your improve-
ments to the public, so that the whole community benefits. (Access to the
source code is a precondition for this.)

A program is free software if users have all of these freedoms. Thus, you should
be free to redistribute copies, either with or without modifications, either gratis or
charging a fee for distribution, to anyone anywhere. Being free to do these things
means (among other things) that you do not have to ask or pay for permission.

You should also have the freedom to make modifications and use them privately
in your own work or play, without even mentioning that they exist. If you do publish
your changes, you should not be required to notify anyone in particular, or in any
particular way.

The freedom to use a program means the freedom for any kind of person or
organization to use it on any kind of computer system, for any kind of overall job,
and without being required to communicate subsequently with the developer or any
other specific entity.

The freedom to redistribute copies must include binary or executable forms of
the program, as well as source code, for both modified and unmodified versions.
(Distributing programs in runnable form is necessary for conveniently installable
free operating systems.) It is OK if there is no way to produce a binary or executable
form, but people must have the freedom to redistribute such forms should they find
a way to make them.

In order for freedoms 1 and 3 (the freedom to make changes and the freedom to
publish improved versions) to be meaningful, one must have access to the source
code of the program. Therefore, accessibility of source code is a necessary condi-
tion for free software.

Originally written in 1996, this essay is part of Free Software, Free Society: Selected Essays of Richard,
M. Stallman 2nd ed. (Boston: GNU Press, 2004), ISBN 1-882114-99-X, www.gnupress.org.

Verbatim copying and distribution of this entire article is permitted in any medium, provided
this notice is preserved.

44 Free Software, Free Society: Selected Essays of Richard M. Stallman

In order for these freedoms to be real, they must be irrevocable as long as you do
nothing wrong; if the developer of the software has the power to revoke the license,
without your doing anything to give cause, the software is not free.

However, certain kinds of rules about the manner of distributing free software
are acceptable, when they don’t conflict with the central freedoms. For example,
copyleft (very simply stated) is the rule that when redistributing the program, you
cannot add restrictions to deny other people the central freedoms. This rule does
not conflict with the central freedoms; rather it protects them.

Thus, you may have paid money to get copies of free software, or you may have
obtained copies at no charge. But regardless of how you got your copies, you
always have the freedom to copy and change the software, even to sell copies.

“Free software” does not mean “non-commercial.” A free program must be avail-
able for commercial use, commercial development, and commercial distribution.
Commercial development of free software is no longer unusual; such free commer-
cial software is very important.

Rules about how to package a modified version are acceptable, if they do not
effectively block your freedom to release modified versions. Rules that “if you
make the program available in this way, you must make it available in that way also”
can be acceptable too, on the same condition. (Note that such a rule still leaves you
the choice of whether to publish the program or not.) It is also acceptable for the
license to require that, if you have distributed a modified version and a previous
developer asks for a copy of it, you must send one.

In the GNU project, we use “copyleft” to protect these freedoms legally for ev-
eryone. But non-copylefted free software also exists. We believe there are impor-
tant reasons why it is better to use copyleft, but if your program is non-copylefted
free software, we can still use it.

Sometimes government export control regulations and trade sanctions can con-
strain your freedom to distribute copies of programs internationally. Software de-
velopers do not have the power to eliminate or override these restrictions, but what
they can and must do is refuse to impose them as conditions of use of the pro-
gram. In this way, the restrictions will not affect activities and people outside the
jurisdictions of these governments.

When talking about free software, it is best to avoid using terms like “give away”
or “for free,” because those terms imply that the issue is about price, not freedom.
Some common terms such as “piracy” embody opinions we hope you won’t en-
dorse. See “Words to Avoid” in this book for a discussion of these terms. We also
have a list of translations of “free software” into various languages.

Finally, note that criteria such as those stated in this free software definition re-
quire careful thought for their interpretation. To decide whether a specific software
license qualifies as a free software license, we judge it based on these criteria to
determine whether it fits their spirit as well as the precise words. If a license in-
cludes unconscionable restrictions, we reject it, even if we did not anticipate the
issue in these criteria. Sometimes a license requirement raises an issue that calls
for extensive thought, including discussions with a lawyer, before we can decide if
the requirement is acceptable. When we reach a conclusion about a new issue, we

Chapter 3: Free Software Definition 45

often update these criteria to make it easier to see why certain licenses do or don’t
qualify.

If you are interested in whether a specific license qualifies as a free software
license, see our list of licenses, http://www.gnu.org/licenses/license-list.html. If
the license you are concerned with is not listed there, you can ask us about it by
sending us email at licensing@gnu.org.

46 Free Software, Free Society: Selected Essays of Richard M. Stallman

Chapter 4: Why Software Should Not Have Owners 47

4 Why Software Should Not Have Owners

Digital information technology contributes to the world by making it easier to
copy and modify information. Computers promise to make this easier for all of us.

Not everyone wants it to be easier. The system of copyright gives software pro-
grams “owners,” most of whom aim to withhold software’s potential benefit from
the rest of the public. They would like to be the only ones who can copy and modify
the software that we use.

The copyright system grew up with printing—a technology for mass production
copying. Copyright fit in well with this technology because it restricted only the
mass producers of copies. It did not take freedom away from readers of books. An
ordinary reader, who did not own a printing press, could copy books only with pen
and ink, and few readers were sued for that.

Digital technology is more flexible than the printing press: when information
has digital form, you can easily copy it to share it with others. This very flexibility
makes a bad fit with a system like copyright. That’s the reason for the increasingly
nasty and draconian measures now used to enforce software copyright. Consider
these four practices of the Software Publishers Association (SPA):

* Massive propaganda saying it is wrong to disobey the owners to help your
friend.

* Solicitation for stool pigeons to inform on their coworkers and colleagues.

» Raids (with police help) on offices and schools, in which people are told they
must prove they are innocent of illegal copying.

* Prosecution (by the U.S. government, at the SPA’s request) of people such
as MIT’s David LaMacchia,! not for copying software (he is not accused of
copying any), but merely for leaving copying facilities unguarded and failing
to censor their use.

All four practices resemble those used in the former Soviet Union, where every
copying machine had a guard to prevent forbidden copying, and where individuals
had to copy information secretly and pass it from hand to hand as samizdat. There
is of course a difference: the motive for information control in the Soviet Union
was political; in the U.S. the motive is profit. But it is the actions that affect us, not
the motive. Any attempt to block the sharing of information, no matter why, leads
to the same methods and the same harshness.

Owners make several kinds of arguments for giving them the power to control
how we use information:

1 On January 27th, 1995, David LaMacchia’s case was dismissed and has not yet been appealed.

Originally written in 1994, this essay is part of Free Software, Free Society: Selected Essays of Richard,
M. Stallman 2nd ed. (Boston: GNU Press, 2004), ISBN 1-882114-99-X, www.gnupress.org.

Verbatim copying and distribution of this entire article is permitted in any medium, provided
this notice is preserved.

48 Free Software, Free Society: Selected Essays of Richard M. Stallman

Name Calling

Owners use smear words such as “piracy” and “theft,” as well as expert termi-
nology such as “intellectual property” and “damage,” to suggest a certain line of
thinking to the public—a simplistic analogy between programs and physical ob-
jects.

Our ideas and intuitions about property for material objects are about whether
it is right to take an object away from someone else. They don’t directly apply to
making a copy of something. But the owners ask us to apply them anyway.

Exaggeration

Owners say that they suffer “harm” or “economic loss” when users copy pro-
grams themselves. But the copying has no direct effect on the owner, and it harms
no one. The owner can lose only if the person who made the copy would otherwise
have paid for one from the owner.

A little thought shows that most such people would not have bought copies. Yet
the owners compute their “losses” as if each and every one would have bought a
copy. That is exaggeration—to put it kindly.

The Law

Owners often describe the current state of the law, and the harsh penalties they
can threaten us with. Implicit in this approach is the suggestion that today’s law
reflects an unquestionable view of morality—yet at the same time, we are urged to
regard these penalties as facts of nature that can’t be blamed on anyone.

This line of persuasion isn’t designed to stand up to critical thinking; it’s intended
to reinforce a habitual mental pathway.

It’s elementary that laws don’t decide right and wrong. Every American should
know that, forty years ago, it was against the law in many states for a black person
to sit in the front of a bus; but only racists would say sitting there was wrong.

Natural Rights

Authors often claim a special connection with programs they have written, and
go on to assert that, as a result, their desires and interests concerning the program
simply outweigh those of anyone else—or even those of the whole rest of the world.
(Typically companies, not authors, hold the copyrights on software, but we are
expected to ignore this discrepancy.)

To those who propose this as an ethical axiom—the author is more important
than you—I can only say that I, a notable software author myself, call it bunk.

But people in general are only likely to feel any sympathy with the natural rights
claims for two reasons.

One reason is an over-stretched analogy with material objects. When I cook
spaghetti, I do object if someone else eats it, because then I cannot eat it. His action
hurts me exactly as much as it benefits him; only one of us can eat the spaghetti,

Chapter 4: Why Software Should Not Have Owners 49

so the question is, which? The smallest distinction between us is enough to tip the
ethical balance.

But whether you run or change a program I wrote affects you directly and me
only indirectly. Whether you give a copy to your friend affects you and your friend
much more than it affects me. I shouldn’t have the power to tell you not to do these
things. No one should.

The second reason is that people have been told that natural rights for authors is
the accepted and unquestioned tradition of our society.

As a matter of history, the opposite is true. The idea of natural rights of authors
was proposed and decisively rejected when the U.S. Constitution was drawn up.
That’s why the Constitution only permits a system of copyright and does not require
one; that’s why it says that copyright must be temporary. It also states that the
purpose of copyright is to promote progress—not to reward authors. Copyright
does reward authors somewhat, and publishers more, but that is intended as a means
of modifying their behavior.

The real established tradition of our society is that copyright cuts into the natural
rights of the public—and that this can only be justified for the public’s sake.

Economics

The final argument made for having owners of software is that this leads to pro-
duction of more software.

Unlike the others, this argument at least takes a legitimate approach to the sub-
ject. It is based on a valid goal—satisfying the users of software. And it is em-
pirically clear that people will produce more of something if they are well paid for
doing so.

But the economic argument has a flaw: it is based on the assumption that the
difference is only a matter of how much money we have to pay. It assumes that
“production of software” is what we want, whether the software has owners or not.

People readily accept this assumption because it accords with our experiences
with material objects. Consider a sandwich, for instance. You might well be able
to get an equivalent sandwich either free or for a price. If so, the amount you pay
is the only difference. Whether or not you have to buy it, the sandwich has the
same taste, the same nutritional value, and in either case you can only eat it once.
Whether you get the sandwich from an owner or not cannot directly affect anything
but the amount of money you have afterwards.

This is true for any kind of material object—whether or not it has an owner does
not directly affect what it is, or what you can do with it if you acquire it.

But if a program has an owner, this very much affects what it is, and what you
can do with a copy if you buy one. The difference is not just a matter of money. The
system of owners of software encourages software owners to produce something—
but not what society really needs. And it causes intangible ethical pollution that
affects us all.

What does society need? It needs information that is truly available to its
citizens—for example, programs that people can read, fix, adapt, and improve, not

50 Free Software, Free Society: Selected Essays of Richard M. Stallman

just operate. But what software owners typically deliver is a black box that we can’t
study or change.

Society also needs freedom. When a program has an owner, the users lose free-
dom to control part of their own lives.

And above all society needs to encourage the spirit of voluntary cooperation in
its citizens. When software owners tell us that helping our neighbors in a natural
way is “piracy,” they pollute our society’s civic spirit.

This is why we say that free software is a matter of freedom, not price.

The economic argument for owners is erroneous, but the economic issue is real.
Some people write useful software for the pleasure of writing it or for admiration
and love; but if we want more software than those people write, we need to raise
funds.

For ten years now, free software developers have tried various methods of finding
funds, with some success. There’s no need to make anyone rich; the median U.S.
family income, around $35k, proves to be enough incentive for many jobs that are
less satisfying than programming.

For years, until a fellowship made it unnecessary, I made a living from custom
enhancements of the free software I had written. Each enhancement was added to
the standard released version and thus eventually became available to the general
public. Clients paid me so that I would work on the enhancements they wanted,
rather than on the features I would otherwise have considered highest priority.

The Free Software Foundation (FSF), a tax-exempt charity for free software de-
velopment, raises funds by selling GNU CD-ROMs, T-shirts, manuals, and deluxe
distributions