
Autoconf
Creating Automatic Configuration Scripts

for version 2.63, 9 September 2008

David MacKenzie
Ben Elliston
Akim Demaille

This manual (9 September 2008) is for GNU Autoconf (version 2.63), a package for creating
scripts to configure source code packages using templates and an M4 macro package.
Copyright c© 1992, 1993, 1994, 1995, 1996, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
2006, 2007, 2008 Free Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document under
the terms of the GNU Free Documentation License, Version 1.2 or any later
version published by the Free Software Foundation; with no Invariant Sections,
with the Front-Cover texts being “A GNU Manual,” and with the Back-Cover
Texts as in (a) below. A copy of the license is included in the section entitled
“GNU Free Documentation License.”
(a) The FSF’s Back-Cover Text is: “You have the freedom to copy and modify
this GNU manual. Buying copies from the FSF supports it in developing GNU
and promoting software freedom.”

i

Table of Contents

1 Introduction . 1

2 The GNU Build System . 3
2.1 Automake . 3
2.2 Gnulib . 3
2.3 Libtool . 4
2.4 Pointers . 4

3 Making configure Scripts 5
3.1 Writing ‘configure.ac’. 6

3.1.1 A Shell Script Compiler . 6
3.1.2 The Autoconf Language . 7
3.1.3 Standard ‘configure.ac’ Layout . 8

3.2 Using autoscan to Create ‘configure.ac’ . 9
3.3 Using ifnames to List Conditionals . 10
3.4 Using autoconf to Create configure . 10
3.5 Using autoreconf to Update configure Scripts 13

4 Initialization and Output Files. 17
4.1 Initializing configure . 17
4.2 Dealing with Autoconf versions . 18
4.3 Notices in configure . 18
4.4 Finding configure Input . 19
4.5 Outputting Files . 20
4.6 Performing Configuration Actions . 20
4.7 Creating Configuration Files . 22
4.8 Substitutions in Makefiles . 23

4.8.1 Preset Output Variables . 23
4.8.2 Installation Directory Variables . 26
4.8.3 Changed Directory Variables . 29
4.8.4 Build Directories . 30
4.8.5 Automatic Remaking . 31

4.9 Configuration Header Files . 32
4.9.1 Configuration Header Templates . 33
4.9.2 Using autoheader to Create ‘config.h.in’ 34
4.9.3 Autoheader Macros . 35

4.10 Running Arbitrary Configuration Commands 36
4.11 Creating Configuration Links. 37
4.12 Configuring Other Packages in Subdirectories 37
4.13 Default Prefix . 38

ii Autoconf

5 Existing Tests . 39
5.1 Common Behavior . 39

5.1.1 Standard Symbols . 39
5.1.2 Default Includes . 39

5.2 Alternative Programs . 40
5.2.1 Particular Program Checks . 41
5.2.2 Generic Program and File Checks . 43

5.3 Files . 46
5.4 Library Files . 46
5.5 Library Functions . 47

5.5.1 Portability of C Functions . 48
5.5.2 Particular Function Checks . 50
5.5.3 Generic Function Checks . 57

5.6 Header Files . 59
5.6.1 Portability of Headers . 59
5.6.2 Particular Header Checks. 60
5.6.3 Generic Header Checks . 65

5.7 Declarations . 66
5.7.1 Particular Declaration Checks . 66
5.7.2 Generic Declaration Checks . 66

5.8 Structures . 68
5.8.1 Particular Structure Checks . 68
5.8.2 Generic Structure Checks. 68

5.9 Types . 69
5.9.1 Particular Type Checks . 69
5.9.2 Generic Type Checks . 72

5.10 Compilers and Preprocessors . 72
5.10.1 Specific Compiler Characteristics . 72
5.10.2 Generic Compiler Characteristics . 73
5.10.3 C Compiler Characteristics . 74
5.10.4 C++ Compiler Characteristics . 80
5.10.5 Objective C Compiler Characteristics 80
5.10.6 Erlang Compiler and Interpreter Characteristics. 81
5.10.7 Fortran Compiler Characteristics. 81

5.11 System Services . 86
5.12 Posix Variants . 87
5.13 Erlang Libraries . 88

6 Writing Tests . 91
6.1 Language Choice . 91
6.2 Writing Test Programs . 92

6.2.1 Guidelines for Test Programs . 93
6.2.2 Test Functions . 93
6.2.3 Generating Sources . 94

6.3 Running the Preprocessor . 96
6.4 Running the Compiler . 97
6.5 Running the Linker . 98
6.6 Checking Runtime Behavior . 98

iii

6.7 Systemology . 100
6.8 Multiple Cases . 100

7 Results of Tests . 103
7.1 Defining C Preprocessor Symbols . 103
7.2 Setting Output Variables . 104
7.3 Special Characters in Output Variables . 106
7.4 Caching Results . 107

7.4.1 Cache Variable Names . 108
7.4.2 Cache Files . 108
7.4.3 Cache Checkpointing . 109

7.5 Printing Messages . 110

8 Programming in M4 . 113
8.1 M4 Quotation . 113

8.1.1 Active Characters . 113
8.1.2 One Macro Call . 114
8.1.3 Quoting and Parameters . 115
8.1.4 Quotation and Nested Macros . 116
8.1.5 changequote is Evil . 117
8.1.6 Quadrigraphs. 118
8.1.7 Quotation Rule Of Thumb . 119

8.2 Using autom4te . 120
8.2.1 Invoking autom4te . 121
8.2.2 Customizing autom4te . 125

8.3 Programming in M4sugar . 125
8.3.1 Redefined M4 Macros . 125
8.3.2 Diagnostic messages from M4sugar . 128
8.3.3 Diversion support . 129
8.3.4 Conditional constructs . 130
8.3.5 Looping constructs . 132
8.3.6 Evaluation Macros . 134
8.3.7 String manipulation in M4 . 138
8.3.8 Arithmetic computation in M4 . 141
8.3.9 Set manipulation in M4 . 143
8.3.10 Forbidden Patterns . 146

8.4 Programming in M4sh . 147
8.5 File Descriptor Macros . 148

iv Autoconf

9 Writing Autoconf Macros 151
9.1 Macro Definitions . 151
9.2 Macro Names . 151
9.3 Reporting Messages . 153
9.4 Dependencies Between Macros . 153

9.4.1 Prerequisite Macros . 153
9.4.2 Suggested Ordering . 155
9.4.3 One-Shot Macros . 155

9.5 Obsoleting Macros . 156
9.6 Coding Style . 156

10 Portable Shell Programming 161
10.1 Shellology . 161
10.2 Here-Documents . 163
10.3 File Descriptors . 164
10.4 File System Conventions . 166
10.5 Shell Pattern Matching . 168
10.6 Shell Substitutions . 168
10.7 Assignments . 173
10.8 Parentheses in Shell Scripts . 174
10.9 Slashes in Shell Scripts . 174
10.10 Special Shell Variables . 175
10.11 Shell Functions . 179
10.12 Limitations of Shell Builtins . 180
10.13 Limitations of Usual Tools . 191

11 Portable Make Programming 205
11.1 $< in Ordinary Make Rules . 205
11.2 Failure in Make Rules . 205
11.3 Special Characters in Make Macro Names 205
11.4 Backslash-Newline-Newline in Make Macro Values 206
11.5 Backslash-Newline in Make Comments . 206
11.6 Long Lines in Makefiles . 206
11.7 make macro=value and Submakes . 206
11.8 The Make Macro MAKEFLAGS . 207
11.9 The Make Macro SHELL . 208
11.10 Comments in Make Rules . 209
11.11 The ‘obj/’ Subdirectory and Make . 209
11.12 Exit Status of make -k. 209
11.13 VPATH and Make . 210

11.13.1 VPATH and Double-colon Rules . 210
11.13.2 $< Not Supported in Explicit Rules 210
11.13.3 Automatic Rule Rewriting . 210
11.13.4 Tru64 make Creates Prerequisite Directories Magically

. 213
11.13.5 Make Target Lookup . 213

11.14 Single Suffix Rules and Separated Dependencies 216
11.15 Timestamp Resolution and Make . 217

v

12 Portable C and C++ Programming 219
12.1 Varieties of Unportability . 219
12.2 Integer Overflow . 220

12.2.1 Basics of Integer Overflow . 220
12.2.2 Examples of Code Assuming Wraparound Overflow 220
12.2.3 Optimizations That Break Wraparound Arithmetic 222
12.2.4 Practical Advice for Signed Overflow Issues 223
12.2.5 Signed Integer Division and Integer Overflow 224

12.3 Preprocessor Arithmetic . 224
12.4 Properties of Null Pointers . 224
12.5 Buffer Overruns and Subscript Errors . 224
12.6 Volatile Objects . 225
12.7 Floating Point Portability . 227
12.8 Exiting Portably . 227

13 Manual Configuration. 229
13.1 Specifying the System Type . 229
13.2 Getting the Canonical System Type . 230
13.3 Using the System Type . 231

14 Site Configuration . 233
14.1 Controlling Help Output . 233
14.2 Working With External Software . 233
14.3 Choosing Package Options . 235
14.4 Making Your Help Strings Look Pretty . 236
14.5 Controlling Checking of configure Options 237
14.6 Configuring Site Details . 238
14.7 Transforming Program Names When Installing 238

14.7.1 Transformation Options . 239
14.7.2 Transformation Examples . 239
14.7.3 Transformation Rules . 239

14.8 Setting Site Defaults . 240

15 Running configure Scripts 243
15.1 Basic Installation . 243
15.2 Compilers and Options . 244
15.3 Compiling For Multiple Architectures . 244
15.4 Installation Names . 244
15.5 Optional Features . 245
15.6 Particular systems . 245
15.7 Specifying the System Type . 245
15.8 Sharing Defaults . 246
15.9 Defining Variables . 246
15.10 configure Invocation . 246

16 config.status Invocation 249

vi Autoconf

17 Obsolete Constructs . 251
17.1 Obsolete ‘config.status’ Invocation . 251
17.2 ‘acconfig.h’ . 252
17.3 Using autoupdate to Modernize ‘configure.ac’ 252
17.4 Obsolete Macros . 253
17.5 Upgrading From Version 1 . 266

17.5.1 Changed File Names . 266
17.5.2 Changed Makefiles . 266
17.5.3 Changed Macros . 267
17.5.4 Changed Results . 267
17.5.5 Changed Macro Writing . 268

17.6 Upgrading From Version 2.13 . 268
17.6.1 Changed Quotation . 268
17.6.2 New Macros . 269
17.6.3 Hosts and Cross-Compilation . 270
17.6.4 AC_LIBOBJ vs. LIBOBJS . 272
17.6.5 AC_FOO_IFELSE vs. AC_TRY_FOO . 272

18 Generating Test Suites with Autotest 275
18.1 Using an Autotest Test Suite . 275

18.1.1 testsuite Scripts . 275
18.1.2 Autotest Logs . 277

18.2 Writing ‘testsuite.at’ . 277
18.3 Running testsuite Scripts . 279
18.4 Making testsuite Scripts . 281

19 Frequent Autoconf Questions, with answers
. 283

19.1 Distributing configure Scripts . 283
19.2 Why Require GNU M4?. 283
19.3 How Can I Bootstrap? . 283
19.4 Why Not Imake? . 284
19.5 How Do I #define Installation Directories? 285
19.6 What is ‘autom4te.cache’? . 286
19.7 Header Present But Cannot Be Compiled 286

20 History of Autoconf . 289
20.1 Genesis . 289
20.2 Exodus . 289
20.3 Leviticus . 290
20.4 Numbers . 290
20.5 Deuteronomy . 291

Appendix A GNU Free Documentation License
. 293

vii

Appendix B Indices . 301
B.1 Environment Variable Index . 301
B.2 Output Variable Index . 301
B.3 Preprocessor Symbol Index . 303
B.4 Autoconf Macro Index . 305
B.5 M4 Macro Index . 309
B.6 Autotest Macro Index . 311
B.7 Program and Function Index . 311
B.8 Concept Index . 314

viii Autoconf

Chapter 1: Introduction 1

1 Introduction

A physicist, an engineer, and a computer scientist were discussing the
nature of God. “Surely a Physicist,” said the physicist, “because
early in the Creation, God made Light; and you know, Maxwell’s

equations, the dual nature of electromagnetic waves, the relativistic
consequences. . . ” “An Engineer!,” said the engineer, “because

before making Light, God split the Chaos into Land and Water; it takes a
hell of an engineer to handle that big amount of mud, and orderly

separation of solids from liquids. . . ” The computer scientist
shouted: “And the Chaos, where do you think it was coming from, hmm?”

—Anonymous
Autoconf is a tool for producing shell scripts that automatically configure software source

code packages to adapt to many kinds of Posix-like systems. The configuration scripts
produced by Autoconf are independent of Autoconf when they are run, so their users do
not need to have Autoconf.

The configuration scripts produced by Autoconf require no manual user intervention
when run; they do not normally even need an argument specifying the system type. Instead,
they individually test for the presence of each feature that the software package they are
for might need. (Before each check, they print a one-line message stating what they are
checking for, so the user doesn’t get too bored while waiting for the script to finish.) As a
result, they deal well with systems that are hybrids or customized from the more common
Posix variants. There is no need to maintain files that list the features supported by each
release of each variant of Posix.

For each software package that Autoconf is used with, it creates a configuration script
from a template file that lists the system features that the package needs or can use. After
the shell code to recognize and respond to a system feature has been written, Autoconf
allows it to be shared by many software packages that can use (or need) that feature. If it
later turns out that the shell code needs adjustment for some reason, it needs to be changed
in only one place; all of the configuration scripts can be regenerated automatically to take
advantage of the updated code.

Those who do not understand Autoconf are condemned to reinvent it, poorly. The
primary goal of Autoconf is making the user’s life easier; making the maintainer’s life
easier is only a secondary goal. Put another way, the primary goal is not to make the
generation of ‘configure’ automatic for package maintainers (although patches along that
front are welcome, since package maintainers form the user base of Autoconf); rather, the
goal is to make ‘configure’ painless, portable, and predictable for the end user of each
autoconfiscated package. And to this degree, Autoconf is highly successful at its goal —
most complaints to the Autoconf list are about difficulties in writing Autoconf input, and
not in the behavior of the resulting ‘configure’. Even packages that don’t use Autoconf
will generally provide a ‘configure’ script, and the most common complaint about these
alternative home-grown scripts is that they fail to meet one or more of the GNU Coding
Standards that users have come to expect from Autoconf-generated ‘configure’ scripts.

The Metaconfig package is similar in purpose to Autoconf, but the scripts it produces
require manual user intervention, which is quite inconvenient when configuring large source

2 Autoconf

trees. Unlike Metaconfig scripts, Autoconf scripts can support cross-compiling, if some care
is taken in writing them.

Autoconf does not solve all problems related to making portable software packages—for
a more complete solution, it should be used in concert with other GNU build tools like
Automake and Libtool. These other tools take on jobs like the creation of a portable,
recursive makefile with all of the standard targets, linking of shared libraries, and so on.
See Chapter 2 [The GNU Build System], page 3, for more information.

Autoconf imposes some restrictions on the names of macros used with #if in C programs
(see Section B.3 [Preprocessor Symbol Index], page 303).

Autoconf requires GNU M4 version 1.4.5 or later in order to generate the scripts. It uses
features that some versions of M4, including GNU M4 1.3, do not have. Autoconf works
better with GNU M4 version 1.4.11 or later, though this is not required.

See Section 17.5 [Autoconf 1], page 266, for information about upgrading from version 1.
See Chapter 20 [History], page 289, for the story of Autoconf’s development. See Chapter 19
[FAQ], page 283, for answers to some common questions about Autoconf.

See the Autoconf web page for up-to-date information, details on the mailing lists,
pointers to a list of known bugs, etc.

Mail suggestions to the Autoconf mailing list. Past suggestions are archived.
Mail bug reports to the Autoconf Bugs mailing list. Past bug reports are archived.
If possible, first check that your bug is not already solved in current development versions,

and that it has not been reported yet. Be sure to include all the needed information and a
short ‘configure.ac’ that demonstrates the problem.

Autoconf’s development tree is accessible via git; see the Autoconf Summary for details,
or view the actual repository. Anonymous CVS access is also available, see ‘README’ for more
details. Patches relative to the current git version can be sent for review to the Autoconf
Patches mailing list, with discussion on prior patches archived; and all commits are posted
in the read-only Autoconf Commit mailing list, which is also archived.

Because of its mission, the Autoconf package itself includes only a set of often-used
macros that have already demonstrated their usefulness. Nevertheless, if you wish to share
your macros, or find existing ones, see the Autoconf Macro Archive, which is kindly run by
Peter Simons.

http://penalty z@ www.gnu.org/penalty z@ software/penalty z@ autoconf/
mailto:autoconf@gnu.org
http://penalty z@ lists.gnu.org/penalty z@ archive/penalty z@ html/penalty z@ autoconf/
mailto:bug-autoconf@gnu.org
http://penalty z@ lists.gnu.org/penalty z@ archive/penalty z@ html/penalty z@ bug-autoconf/
http://penalty z@ savannah.gnu.org/penalty z@ projects/penalty z@ autoconf/
http://penalty z@ git.sv.gnu.org/penalty z@ gitweb/penalty z@ ?p=autoconf.git
mailto:autoconf-patches@gnu.org
mailto:autoconf-patches@gnu.org
http://penalty z@ lists.gnu.org/penalty z@ archive/penalty z@ html/penalty z@ autoconf-penalty z@ patches/
mailto:autoconf-commit@gnu.org
http://penalty z@ lists.gnu.org/penalty z@ archive/penalty z@ html/penalty z@ autoconf-commit/
http://penalty z@ autoconf-archive.cryp.to/
mailto:simons@cryp.to

Chapter 2: The GNU Build System 3

2 The GNU Build System

Autoconf solves an important problem—reliable discovery of system-specific build and run-
time information—but this is only one piece of the puzzle for the development of portable
software. To this end, the GNU project has developed a suite of integrated utilities to finish
the job Autoconf started: the GNU build system, whose most important components are
Autoconf, Automake, and Libtool. In this chapter, we introduce you to those tools, point
you to sources of more information, and try to convince you to use the entire GNU build
system for your software.

2.1 Automake

The ubiquity of make means that a makefile is almost the only viable way to distribute
automatic build rules for software, but one quickly runs into its numerous limitations.
Its lack of support for automatic dependency tracking, recursive builds in subdirectories,
reliable timestamps (e.g., for network file systems), and so on, mean that developers must
painfully (and often incorrectly) reinvent the wheel for each project. Portability is non-
trivial, thanks to the quirks of make on many systems. On top of all this is the manual
labor required to implement the many standard targets that users have come to expect
(make install, make distclean, make uninstall, etc.). Since you are, of course, using
Autoconf, you also have to insert repetitive code in your ‘Makefile.in’ to recognize @CC@,
@CFLAGS@, and other substitutions provided by configure. Into this mess steps Automake.

Automake allows you to specify your build needs in a ‘Makefile.am’ file with a vastly
simpler and more powerful syntax than that of a plain makefile, and then generates a
portable ‘Makefile.in’ for use with Autoconf. For example, the ‘Makefile.am’ to build
and install a simple “Hello world” program might look like:

bin_PROGRAMS = hello
hello_SOURCES = hello.c

The resulting ‘Makefile.in’ (~400 lines) automatically supports all the standard
targets, the substitutions provided by Autoconf, automatic dependency tracking, VPATH
building, and so on. make builds the hello program, and make install installs it in
‘/usr/local/bin’ (or whatever prefix was given to configure, if not ‘/usr/local’).

The benefits of Automake increase for larger packages (especially ones with subdirecto-
ries), but even for small programs the added convenience and portability can be substantial.
And that’s not all. . .

2.2 Gnulib

GNU software has a well-deserved reputation for running on many different types of systems.
While our primary goal is to write software for the GNU system, many users and developers
have been introduced to us through the systems that they were already using.

Gnulib is a central location for common GNU code, intended to be shared among free
software packages. Its components are typically shared at the source level, rather than
being a library that gets built, installed, and linked against. The idea is to copy files from
Gnulib into your own source tree. There is no distribution tarball; developers should just

4 Autoconf

grab source modules from the repository. The source files are available online, under various
licenses, mostly GNU GPL or GNU LGPL.

Gnulib modules typically contain C source code along with Autoconf macros used to con-
figure the source code. For example, the Gnulib stdbool module implements a ‘stdbool.h’
header that nearly conforms to C99, even on old-fashioned hosts that lack ‘stdbool.h’. This
module contains a source file for the replacement header, along with an Autoconf macro
that arranges to use the replacement header on old-fashioned systems.

2.3 Libtool

Often, one wants to build not only programs, but libraries, so that other programs can
benefit from the fruits of your labor. Ideally, one would like to produce shared (dynamically
linked) libraries, which can be used by multiple programs without duplication on disk or
in memory and can be updated independently of the linked programs. Producing shared
libraries portably, however, is the stuff of nightmares—each system has its own incompatible
tools, compiler flags, and magic incantations. Fortunately, GNU provides a solution: Libtool.

Libtool handles all the requirements of building shared libraries for you, and at this time
seems to be the only way to do so with any portability. It also handles many other headaches,
such as: the interaction of Make rules with the variable suffixes of shared libraries, linking
reliably with shared libraries before they are installed by the superuser, and supplying
a consistent versioning system (so that different versions of a library can be installed or
upgraded without breaking binary compatibility). Although Libtool, like Autoconf, can be
used without Automake, it is most simply utilized in conjunction with Automake—there,
Libtool is used automatically whenever shared libraries are needed, and you need not know
its syntax.

2.4 Pointers

Developers who are used to the simplicity of make for small projects on a single system might
be daunted at the prospect of learning to use Automake and Autoconf. As your software
is distributed to more and more users, however, you otherwise quickly find yourself putting
lots of effort into reinventing the services that the GNU build tools provide, and making the
same mistakes that they once made and overcame. (Besides, since you’re already learning
Autoconf, Automake is a piece of cake.)

There are a number of places that you can go to for more information on the GNU build
tools.
− Web

The project home pages for Autoconf, Automake, Gnulib, and Libtool.
− Automake Manual

See section “Automake” in GNU Automake, for more information on Automake.
− Books

The book GNU Autoconf, Automake and Libtool1 describes the complete GNU build
environment. You can also find the entire book on-line.

1 GNU Autoconf, Automake and Libtool, by G. V. Vaughan, B. Elliston, T. Tromey, and I. L. Taylor.
SAMS (originally New Riders), 2000, ISBN 1578701902.

http://penalty z@ wwwpenalty z@ .gnupenalty z@ .org/penalty z@ software/penalty z@ autoconf/
http://penalty z@ wwwpenalty z@ .gnupenalty z@ .org/penalty z@ software/penalty z@ automake/
http://penalty z@ wwwpenalty z@ .gnupenalty z@ .org/penalty z@ software/penalty z@ gnulib/
http://penalty z@ wwwpenalty z@ .gnupenalty z@ .org/penalty z@ software/penalty z@ libtool/
http://penalty z@ sources.redhat.com/penalty z@ autobook/

Chapter 3: Making configure Scripts 5

3 Making configure Scripts

The configuration scripts that Autoconf produces are by convention called configure.
When run, configure creates several files, replacing configuration parameters in them
with appropriate values. The files that configure creates are:

− one or more ‘Makefile’ files, usually one in each subdirectory of the package (see
Section 4.8 [Makefile Substitutions], page 23);

− optionally, a C header file, the name of which is configurable, containing #define
directives (see Section 4.9 [Configuration Headers], page 32);

− a shell script called ‘config.status’ that, when run, recreates the files listed above
(see Chapter 16 [config.status Invocation], page 249);

− an optional shell script normally called ‘config.cache’ (created when using ‘configure
--config-cache’) that saves the results of running many of the tests (see Section 7.4.2
[Cache Files], page 108);

− a file called ‘config.log’ containing any messages produced by compilers, to help
debugging if configure makes a mistake.

To create a configure script with Autoconf, you need to write an Autoconf input
file ‘configure.ac’ (or ‘configure.in’) and run autoconf on it. If you write your own
feature tests to supplement those that come with Autoconf, you might also write files called
‘aclocal.m4’ and ‘acsite.m4’. If you use a C header file to contain #define directives,
you might also run autoheader, and you can distribute the generated file ‘config.h.in’
with the package.

Here is a diagram showing how the files that can be used in configuration are produced.
Programs that are executed are suffixed by ‘*’. Optional files are enclosed in square brackets
(‘[]’). autoconf and autoheader also read the installed Autoconf macro files (by reading
‘autoconf.m4’).

Files used in preparing a software package for distribution:

your source files --> [autoscan*] --> [configure.scan] --> configure.ac

configure.ac --.
| .------> autoconf* -----> configure

[aclocal.m4] --+---+
| ‘-----> [autoheader*] --> [config.h.in]

[acsite.m4] ---’

Makefile.in -------------------------------> Makefile.in

Files used in configuring a software package:

.-------------> [config.cache]
configure* ------------+-------------> config.log

|
[config.h.in] -. v .-> [config.h] -.

+--> config.status* -+ +--> make*
Makefile.in ---’ ‘-> Makefile ---’

6 Autoconf

3.1 Writing ‘configure.ac’

To produce a configure script for a software package, create a file called ‘configure.ac’
that contains invocations of the Autoconf macros that test the system features your package
needs or can use. Autoconf macros already exist to check for many features; see Chapter 5
[Existing Tests], page 39, for their descriptions. For most other features, you can use
Autoconf template macros to produce custom checks; see Chapter 6 [Writing Tests], page 91,
for information about them. For especially tricky or specialized features, ‘configure.ac’
might need to contain some hand-crafted shell commands; see Chapter 10 [Portable Shell],
page 161. The autoscan program can give you a good start in writing ‘configure.ac’ (see
Section 3.2 [autoscan Invocation], page 9, for more information).

Previous versions of Autoconf promoted the name ‘configure.in’, which is somewhat
ambiguous (the tool needed to process this file is not described by its extension), and
introduces a slight confusion with ‘config.h.in’ and so on (for which ‘.in’ means “to be
processed by configure”). Using ‘configure.ac’ is now preferred.

3.1.1 A Shell Script Compiler

Just as for any other computer language, in order to properly program ‘configure.ac’ in
Autoconf you must understand what problem the language tries to address and how it does
so.

The problem Autoconf addresses is that the world is a mess. After all, you are using
Autoconf in order to have your package compile easily on all sorts of different systems,
some of them being extremely hostile. Autoconf itself bears the price for these differences:
configure must run on all those systems, and thus configure must limit itself to their
lowest common denominator of features.

Naturally, you might then think of shell scripts; who needs autoconf? A set of properly
written shell functions is enough to make it easy to write configure scripts by hand. Sigh!
Unfortunately, shell functions do not belong to the least common denominator; therefore,
where you would like to define a function and use it ten times, you would instead need to
copy its body ten times. Even in 2007, where shells without any function support are far
and few between, there are pitfalls to avoid when making use of them.

So, what is really needed is some kind of compiler, autoconf, that takes an Autoconf
program, ‘configure.ac’, and transforms it into a portable shell script, configure.

How does autoconf perform this task?

There are two obvious possibilities: creating a brand new language or extending an
existing one. The former option is attractive: all sorts of optimizations could easily be
implemented in the compiler and many rigorous checks could be performed on the Autoconf
program (e.g., rejecting any non-portable construct). Alternatively, you can extend an
existing language, such as the sh (Bourne shell) language.

Autoconf does the latter: it is a layer on top of sh. It was therefore most convenient
to implement autoconf as a macro expander: a program that repeatedly performs macro
expansions on text input, replacing macro calls with macro bodies and producing a pure
sh script in the end. Instead of implementing a dedicated Autoconf macro expander, it is
natural to use an existing general-purpose macro language, such as M4, and implement the
extensions as a set of M4 macros.

Chapter 3: Making configure Scripts 7

3.1.2 The Autoconf Language

The Autoconf language differs from many other computer languages because it treats actual
code the same as plain text. Whereas in C, for instance, data and instructions have different
syntactic status, in Autoconf their status is rigorously the same. Therefore, we need a means
to distinguish literal strings from text to be expanded: quotation.

When calling macros that take arguments, there must not be any white space between
the macro name and the open parenthesis. Arguments should be enclosed within the M4
quote characters ‘[’ and ‘]’, and be separated by commas. Any leading blanks or newlines
in arguments are ignored, unless they are quoted. You should always quote an argument
that might contain a macro name, comma, parenthesis, or a leading blank or newline. This
rule applies recursively for every macro call, including macros called from other macros.

For instance:
AC_CHECK_HEADER([stdio.h],

[AC_DEFINE([HAVE_STDIO_H], [1],
[Define to 1 if you have <stdio.h>.])],

[AC_MSG_ERROR([Sorry, can’t do anything for you])])

is quoted properly. You may safely simplify its quotation to:
AC_CHECK_HEADER([stdio.h],

[AC_DEFINE([HAVE_STDIO_H], 1,
[Define to 1 if you have <stdio.h>.])],

[AC_MSG_ERROR([Sorry, can’t do anything for you])])

because ‘1’ cannot contain a macro call. Here, the argument of AC_MSG_ERROR must be
quoted; otherwise, its comma would be interpreted as an argument separator. Also, the
second and third arguments of ‘AC_CHECK_HEADER’ must be quoted, since they contain
macro calls. The three arguments ‘HAVE_STDIO_H’, ‘stdio.h’, and ‘Define to 1 if you
have <stdio.h>.’ do not need quoting, but if you unwisely defined a macro with a name
like ‘Define’ or ‘stdio’ then they would need quoting. Cautious Autoconf users would keep
the quotes, but many Autoconf users find such precautions annoying, and would rewrite
the example as follows:

AC_CHECK_HEADER(stdio.h,
[AC_DEFINE(HAVE_STDIO_H, 1,

[Define to 1 if you have <stdio.h>.])],
[AC_MSG_ERROR([Sorry, can’t do anything for you])])

This is safe, so long as you adopt good naming conventions and do not define macros with
names like ‘HAVE_STDIO_H’, ‘stdio’, or ‘h’. Though it is also safe here to omit the quotes
around ‘Define to 1 if you have <stdio.h>.’ this is not recommended, as message strings
are more likely to inadvertently contain commas.

The following example is wrong and dangerous, as it is underquoted:
AC_CHECK_HEADER(stdio.h,

AC_DEFINE(HAVE_STDIO_H, 1,
Define to 1 if you have <stdio.h>.),

AC_MSG_ERROR([Sorry, can’t do anything for you]))

In other cases, you may have to use text that also resembles a macro call. You must
quote that text even when it is not passed as a macro argument:

8 Autoconf

echo "Hard rock was here! --[AC_DC]"

which results in:
echo "Hard rock was here! --AC_DC"

When you use the same text in a macro argument, you must therefore have an extra
quotation level (since one is stripped away by the macro substitution). In general, then, it
is a good idea to use double quoting for all literal string arguments:

AC_MSG_WARN([[AC_DC stinks --Iron Maiden]])

You are now able to understand one of the constructs of Autoconf that has been contin-
ually misunderstood. . . The rule of thumb is that whenever you expect macro expansion,
expect quote expansion; i.e., expect one level of quotes to be lost. For instance:

AC_COMPILE_IFELSE([char b[10];], [], [AC_MSG_ERROR([you lose])])

is incorrect: here, the first argument of AC_COMPILE_IFELSE is ‘char b[10];’ and is ex-
panded once, which results in ‘char b10;’. (There was an idiom common in Autoconf’s
past to address this issue via the M4 changequote primitive, but do not use it!) Let’s
take a closer look: the author meant the first argument to be understood as a literal, and
therefore it must be quoted twice:

AC_COMPILE_IFELSE([[char b[10];]], [], [AC_MSG_ERROR([you lose])])

Voilà, you actually produce ‘char b[10];’ this time!
On the other hand, descriptions (e.g., the last parameter of AC_DEFINE or AS_HELP_

STRING) are not literals—they are subject to line breaking, for example—and should not
be double quoted. Even if these descriptions are short and are not actually broken, double
quoting them yields weird results.

Some macros take optional arguments, which this documentation represents as [arg] (not
to be confused with the quote characters). You may just leave them empty, or use ‘[]’ to
make the emptiness of the argument explicit, or you may simply omit the trailing commas.
The three lines below are equivalent:

AC_CHECK_HEADERS([stdio.h], [], [], [])
AC_CHECK_HEADERS([stdio.h],,,)
AC_CHECK_HEADERS([stdio.h])

It is best to put each macro call on its own line in ‘configure.ac’. Most of the macros
don’t add extra newlines; they rely on the newline after the macro call to terminate the
commands. This approach makes the generated configure script a little easier to read by
not inserting lots of blank lines. It is generally safe to set shell variables on the same line
as a macro call, because the shell allows assignments without intervening newlines.

You can include comments in ‘configure.ac’ files by starting them with the ‘#’. For
example, it is helpful to begin ‘configure.ac’ files with a line like this:

Process this file with autoconf to produce a configure script.

3.1.3 Standard ‘configure.ac’ Layout

The order in which ‘configure.ac’ calls the Autoconf macros is not important, with a few
exceptions. Every ‘configure.ac’ must contain a call to AC_INIT before the checks, and a
call to AC_OUTPUT at the end (see Section 4.5 [Output], page 20). Additionally, some macros
rely on other macros having been called first, because they check previously set values of

Chapter 3: Making configure Scripts 9

some variables to decide what to do. These macros are noted in the individual descriptions
(see Chapter 5 [Existing Tests], page 39), and they also warn you when configure is created
if they are called out of order.

To encourage consistency, here is a suggested order for calling the Autoconf macros.
Generally speaking, the things near the end of this list are those that could depend on
things earlier in it. For example, library functions could be affected by types and libraries.

Autoconf requirements
AC_INIT(package, version, bug-report-address)
information on the package
checks for programs
checks for libraries
checks for header files
checks for types
checks for structures
checks for compiler characteristics
checks for library functions
checks for system services
AC_CONFIG_FILES([file...])
AC_OUTPUT

3.2 Using autoscan to Create ‘configure.ac’

The autoscan program can help you create and/or maintain a ‘configure.ac’ file for a
software package. autoscan examines source files in the directory tree rooted at a directory
given as a command line argument, or the current directory if none is given. It searches the
source files for common portability problems and creates a file ‘configure.scan’ which is a
preliminary ‘configure.ac’ for that package, and checks a possibly existing ‘configure.ac’
for completeness.

When using autoscan to create a ‘configure.ac’, you should manually examine
‘configure.scan’ before renaming it to ‘configure.ac’; it probably needs some
adjustments. Occasionally, autoscan outputs a macro in the wrong order relative to
another macro, so that autoconf produces a warning; you need to move such macros
manually. Also, if you want the package to use a configuration header file, you must add a
call to AC_CONFIG_HEADERS (see Section 4.9 [Configuration Headers], page 32). You might
also have to change or add some #if directives to your program in order to make it work
with Autoconf (see Section 3.3 [ifnames Invocation], page 10, for information about a
program that can help with that job).

When using autoscan to maintain a ‘configure.ac’, simply consider adding its sugges-
tions. The file ‘autoscan.log’ contains detailed information on why a macro is requested.

autoscan uses several data files (installed along with Autoconf) to determine which
macros to output when it finds particular symbols in a package’s source files. These data
files all have the same format: each line consists of a symbol, one or more blanks, and
the Autoconf macro to output if that symbol is encountered. Lines starting with ‘#’ are
comments.

autoscan accepts the following options:

10 Autoconf

‘--help’
‘-h’ Print a summary of the command line options and exit.

‘--version’
‘-V’ Print the version number of Autoconf and exit.

‘--verbose’
‘-v’ Print the names of the files it examines and the potentially interesting symbols

it finds in them. This output can be voluminous.

‘--debug’
‘-d’ Don’t remove temporary files.

‘--include=dir ’
‘-I dir ’ Append dir to the include path. Multiple invocations accumulate.

‘--prepend-include=dir ’
‘-B dir ’ Prepend dir to the include path. Multiple invocations accumulate.

3.3 Using ifnames to List Conditionals

ifnames can help you write ‘configure.ac’ for a software package. It prints the identifiers
that the package already uses in C preprocessor conditionals. If a package has already been
set up to have some portability, ifnames can thus help you figure out what its configure
needs to check for. It may help fill in some gaps in a ‘configure.ac’ generated by autoscan
(see Section 3.2 [autoscan Invocation], page 9).

ifnames scans all of the C source files named on the command line (or the standard
input, if none are given) and writes to the standard output a sorted list of all the identifiers
that appear in those files in #if, #elif, #ifdef, or #ifndef directives. It prints each
identifier on a line, followed by a space-separated list of the files in which that identifier
occurs.
ifnames accepts the following options:

‘--help’
‘-h’ Print a summary of the command line options and exit.

‘--version’
‘-V’ Print the version number of Autoconf and exit.

3.4 Using autoconf to Create configure

To create configure from ‘configure.ac’, run the autoconf program with no arguments.
autoconf processes ‘configure.ac’ with the M4 macro processor, using the Autoconf
macros. If you give autoconf an argument, it reads that file instead of ‘configure.ac’
and writes the configuration script to the standard output instead of to configure. If you
give autoconf the argument ‘-’, it reads from the standard input instead of ‘configure.ac’
and writes the configuration script to the standard output.

The Autoconf macros are defined in several files. Some of the files are distributed with
Autoconf; autoconf reads them first. Then it looks for the optional file ‘acsite.m4’ in
the directory that contains the distributed Autoconf macro files, and for the optional file
‘aclocal.m4’ in the current directory. Those files can contain your site’s or the package’s

Chapter 3: Making configure Scripts 11

own Autoconf macro definitions (see Chapter 9 [Writing Autoconf Macros], page 151, for
more information). If a macro is defined in more than one of the files that autoconf reads,
the last definition it reads overrides the earlier ones.

autoconf accepts the following options:

‘--help’
‘-h’ Print a summary of the command line options and exit.

‘--version’
‘-V’ Print the version number of Autoconf and exit.

‘--verbose’
‘-v’ Report processing steps.

‘--debug’
‘-d’ Don’t remove the temporary files.

‘--force’
‘-f’ Remake ‘configure’ even if newer than its input files.

‘--include=dir ’
‘-I dir ’ Append dir to the include path. Multiple invocations accumulate.

‘--prepend-include=dir ’
‘-B dir ’ Prepend dir to the include path. Multiple invocations accumulate.

‘--output=file ’
‘-o file ’ Save output (script or trace) to file. The file ‘-’ stands for the standard output.

‘--warnings=category ’
‘-W category ’

Report the warnings related to category (which can actually be a comma
separated list). See Section 9.3 [Reporting Messages], page 153, macro AC_
DIAGNOSE, for a comprehensive list of categories. Special values include:

‘all’ report all the warnings

‘none’ report none

‘error’ treats warnings as errors

‘no-category ’
disable warnings falling into category

Warnings about ‘syntax’ are enabled by default, and the environment
variable WARNINGS, a comma separated list of categories, is honored as well.
Passing ‘-W category ’ actually behaves as if you had passed ‘--warnings
syntax,$WARNINGS,category ’. If you want to disable the defaults and
WARNINGS, but (for example) enable the warnings about obsolete constructs,
you would use ‘-W none,obsolete’.

Because autoconf uses autom4te behind the scenes, it displays a back trace
for errors, but not for warnings; if you want them, just pass ‘-W error’. See
Section 8.2.1 [autom4te Invocation], page 121, for some examples.

12 Autoconf

‘--trace=macro[:format]’
‘-t macro[:format]’

Do not create the configure script, but list the calls to macro according to
the format. Multiple ‘--trace’ arguments can be used to list several macros.
Multiple ‘--trace’ arguments for a single macro are not cumulative; instead,
you should just make format as long as needed.

The format is a regular string, with newlines if desired, and several special
escape codes. It defaults to ‘$f:$l:$n:$%’; see Section 8.2.1 [autom4te Invo-
cation], page 121, for details on the format.

‘--initialization’
‘-i’ By default, ‘--trace’ does not trace the initialization of the Autoconf macros

(typically the AC_DEFUN definitions). This results in a noticeable speedup, but
can be disabled by this option.

It is often necessary to check the content of a ‘configure.ac’ file, but parsing it yourself
is extremely fragile and error-prone. It is suggested that you rely upon ‘--trace’ to scan
‘configure.ac’. For instance, to find the list of variables that are substituted, use:

$ autoconf -t AC_SUBST

configure.ac:2:AC_SUBST:ECHO_C
configure.ac:2:AC_SUBST:ECHO_N
configure.ac:2:AC_SUBST:ECHO_T
More traces deleted

The example below highlights the difference between ‘$@’, ‘$*’, and ‘$%’.

$ cat configure.ac

AC_DEFINE(This, is, [an
[example]])
$ autoconf -t ’AC_DEFINE:@: $@
: $
%: $%’
@: [This],[is],[an
[example]]
*: This,is,an
[example]
%: This:is:an [example]

The format gives you a lot of freedom:

$ autoconf -t ’AC_SUBST:$$ac_subst{"$1"} = "$f:$l";’
$ac_subst{"ECHO_C"} = "configure.ac:2";
$ac_subst{"ECHO_N"} = "configure.ac:2";
$ac_subst{"ECHO_T"} = "configure.ac:2";
More traces deleted

A long separator can be used to improve the readability of complex structures, and to ease
their parsing (for instance when no single character is suitable as a separator):

Chapter 3: Making configure Scripts 13

$ autoconf -t ’AM_MISSING_PROG:${|:::::|}*’
ACLOCAL|:::::|aclocal|:::::|$missing_dir
AUTOCONF|:::::|autoconf|:::::|$missing_dir
AUTOMAKE|:::::|automake|:::::|$missing_dir
More traces deleted

3.5 Using autoreconf to Update configure Scripts

Installing the various components of the GNU Build System can be tedious: running
autopoint for Gettext, automake for ‘Makefile.in’ etc. in each directory. It may be
needed either because some tools such as automake have been updated on your system, or
because some of the sources such as ‘configure.ac’ have been updated, or finally, simply
in order to install the GNU Build System in a fresh tree.

autoreconf runs autoconf, autoheader, aclocal, automake, libtoolize, and
autopoint (when appropriate) repeatedly to update the GNU Build System in the
specified directories and their subdirectories (see Section 4.12 [Subdirectories], page 37).
By default, it only remakes those files that are older than their sources. The environment
variables AUTOCONF, AUTOHEADER, AUTOMAKE, ACLOCAL, AUTOPOINT, LIBTOOLIZE, M4, and
MAKE may be used to override the invocation of the respective tools.

If you install a new version of some tool, you can make autoreconf remake all of the
files by giving it the ‘--force’ option.

See Section 4.8.5 [Automatic Remaking], page 31, for Make rules to automatically rebuild
configure scripts when their source files change. That method handles the timestamps
of configuration header templates properly, but does not pass ‘--autoconf-dir=dir ’ or
‘--localdir=dir ’.

Gettext supplies the autopoint command to add translation infrastructure to a source
package. If you use autopoint, your ‘configure.ac’ should invoke both AM_GNU_GETTEXT
and AM_GNU_GETTEXT_VERSION(gettext-version). See section “Invoking the autopoint
Program” in GNU gettext utilities, for further details.

autoreconf accepts the following options:

‘--help’
‘-h’ Print a summary of the command line options and exit.

‘--version’
‘-V’ Print the version number of Autoconf and exit.

‘--verbose’
‘-V’ Print the name of each directory autoreconf examines and the commands it

runs. If given two or more times, pass ‘--verbose’ to subordinate tools that
support it.

‘--debug’
‘-d’ Don’t remove the temporary files.

‘--force’
‘-f’ Remake even ‘configure’ scripts and configuration headers that are newer than

their input files (‘configure.ac’ and, if present, ‘aclocal.m4’).

14 Autoconf

‘--install’
‘-i’ Install the missing auxiliary files in the package. By default, files are copied;

this can be changed with ‘--symlink’.
If deemed appropriate, this option triggers calls to ‘automake --add-missing’,
‘libtoolize’, ‘autopoint’, etc.

‘--no-recursive’
Do not rebuild files in subdirectories to configure (see Section 4.12 [Subdirec-
tories], page 37, macro AC_CONFIG_SUBDIRS).

‘--symlink’
‘-s’ When used with ‘--install’, install symbolic links to the missing auxiliary

files instead of copying them.

‘--make’
‘-m’ When the directories were configured, update the configuration by running

‘./config.status --recheck && ./config.status’, and then run ‘make’.

‘--include=dir ’
‘-I dir ’ Append dir to the include path. Multiple invocations accumulate. Passed on

to autoconf and autoheader internally.

‘--prepend-include=dir ’
‘-B dir ’ Prepend dir to the include path. Multiple invocations accumulate. Passed on

to autoconf and autoheader internally.

‘--warnings=category ’
‘-W category ’

Report the warnings related to category (which can actually be a comma sep-
arated list).

‘cross’ related to cross compilation issues.

‘obsolete’
report the uses of obsolete constructs.

‘portability’
portability issues

‘syntax’ dubious syntactic constructs.

‘all’ report all the warnings

‘none’ report none

‘error’ treats warnings as errors

‘no-category ’
disable warnings falling into category

Warnings about ‘syntax’ are enabled by default, and the environment
variable WARNINGS, a comma separated list of categories, is honored as well.
Passing ‘-W category ’ actually behaves as if you had passed ‘--warnings
syntax,$WARNINGS,category ’. If you want to disable the defaults and
WARNINGS, but (for example) enable the warnings about obsolete constructs,
you would use ‘-W none,obsolete’.

Chapter 3: Making configure Scripts 15

If you want autoreconf to pass flags that are not listed here on to aclocal, set ACLOCAL_
AMFLAGS in your ‘Makefile.am’. Due to a limitation in the Autoconf implementation these
flags currently must be set on a single line in ‘Makefile.am’, without any backslash-newlines.

16 Autoconf

Chapter 4: Initialization and Output Files 17

4 Initialization and Output Files

Autoconf-generated configure scripts need some information about how to initialize, such
as how to find the package’s source files and about the output files to produce. The following
sections describe the initialization and the creation of output files.

4.1 Initializing configure

Every configure script must call AC_INIT before doing anything else. The only other
required macro is AC_OUTPUT (see Section 4.5 [Output], page 20).

[Macro]AC_INIT (package, version, [bug-report], [tarname])
Process any command-line arguments and perform various initializations and verifi-
cations.

Set the name of the package and its version. These are typically used in ‘--version’
support, including that of configure. The optional argument bug-report should be
the email to which users should send bug reports. The package tarname differs from
package: the latter designates the full package name (e.g., ‘GNU Autoconf’), while
the former is meant for distribution tar ball names (e.g., ‘autoconf’). It defaults to
package with ‘GNU ’ stripped, lower-cased, and all characters other than alphanumerics
and underscores are changed to ‘-’.

It is preferable that the arguments of AC_INIT be static, i.e., there should not be any
shell computation, but they can be computed by M4.

The following M4 macros (e.g., AC_PACKAGE_NAME), output variables (e.g., PACKAGE_
NAME), and preprocessor symbols (e.g., PACKAGE_NAME), are defined by AC_INIT:

AC_PACKAGE_NAME, PACKAGE_NAME
Exactly package.

AC_PACKAGE_TARNAME, PACKAGE_TARNAME
Exactly tarname.

AC_PACKAGE_VERSION, PACKAGE_VERSION
Exactly version.

AC_PACKAGE_STRING, PACKAGE_STRING
Exactly ‘package version ’.

AC_PACKAGE_BUGREPORT, PACKAGE_BUGREPORT
Exactly bug-report.

If your configure script does its own option processing, it should inspect ‘$@’ or ‘$*’
immediately after calling AC_INIT, because other Autoconf macros liberally use the set
command to process strings, and this has the side effect of updating ‘$@’ and ‘$*’. However,
we suggest that you use standard macros like AC_ARG_ENABLE instead of attempting to
implement your own option processing. See Chapter 14 [Site Configuration], page 233.

18 Autoconf

4.2 Dealing with Autoconf versions

The following optional macros can be used to help choose the minimum version of Autoconf
that can successfully compile a given ‘configure.ac’.

[Macro]AC_PREREQ (version)
Ensure that a recent enough version of Autoconf is being used. If the version of Au-
toconf being used to create configure is earlier than version, print an error message
to the standard error output and exit with failure (exit status is 63). For example:

AC_PREREQ([2.63])

This macro is the only macro that may be used before AC_INIT, but for consistency,
you are invited not to do so.

[Macro]AC_AUTOCONF_VERSION
This macro was introduced in Autoconf 2.62. It identifies the version of Autoconf that
is currently parsing the input file, in a format suitable for m4_version_compare (see
[m4 version compare], page 142); in other words, for this release of Autoconf, its value
is ‘2.63’. One potential use of this macro is for writing conditional fallbacks based on
when a feature was added to Autoconf, rather than using AC_PREREQ to require the
newer version of Autoconf. However, remember that the Autoconf philosophy favors
feature checks over version checks.
You should not expand this macro directly; use ‘m4_defn([AC_AUTOCONF_VERSION])’
instead. This is because some users might have a beta version of Autoconf installed,
with arbitrary letters included in its version string. This means it is possible for
the version string to contain the name of a defined macro, such that expanding AC_
AUTOCONF_VERSION would trigger the expansion of that macro during rescanning, and
change the version string to be different than what you intended to check.

4.3 Notices in configure

The following macros manage version numbers for configure scripts. Using them is op-
tional.

[Macro]AC_COPYRIGHT (copyright-notice)
State that, in addition to the Free Software Foundation’s copyright on the Autoconf
macros, parts of your configure are covered by the copyright-notice.
The copyright-notice shows up in both the head of configure and in ‘configure
--version’.

[Macro]AC_REVISION (revision-info)
Copy revision stamp revision-info into the configure script, with any dollar
signs or double-quotes removed. This macro lets you put a revision stamp from
‘configure.ac’ into configure without RCS or CVS changing it when you check in
configure. That way, you can determine easily which revision of ‘configure.ac’ a
particular configure corresponds to.
For example, this line in ‘configure.ac’:

AC_REVISION([$Revision: 1.30 $])

produces this in configure:

Chapter 4: Initialization and Output Files 19

#!/bin/sh
From configure.ac Revision: 1.30

4.4 Finding configure Input

[Macro]AC_CONFIG_SRCDIR (unique-file-in-source-dir)
unique-file-in-source-dir is some file that is in the package’s source directory;
configure checks for this file’s existence to make sure that the directory that it is
told contains the source code in fact does. Occasionally people accidentally specify
the wrong directory with ‘--srcdir’; this is a safety check. See Section 15.10
[configure Invocation], page 246, for more information.

Packages that do manual configuration or use the install program might need to tell
configure where to find some other shell scripts by calling AC_CONFIG_AUX_DIR, though
the default places it looks are correct for most cases.

[Macro]AC_CONFIG_AUX_DIR (dir)
Use the auxiliary build tools (e.g., ‘install-sh’, ‘config.sub’, ‘config.guess’,
Cygnus configure, Automake and Libtool scripts, etc.) that are in directory dir.
These are auxiliary files used in configuration. dir can be either absolute or relative
to ‘srcdir ’. The default is ‘srcdir ’ or ‘srcdir/..’ or ‘srcdir/../..’, whichever is
the first that contains ‘install-sh’. The other files are not checked for, so that us-
ing AC_PROG_INSTALL does not automatically require distributing the other auxiliary
files. It checks for ‘install.sh’ also, but that name is obsolete because some make
have a rule that creates ‘install’ from it if there is no makefile.
The auxiliary directory is commonly named ‘build-aux’. If you need portability to
DOS variants, do not name the auxiliary directory ‘aux’. See Section 10.4 [File System
Conventions], page 166.

[Macro]AC_REQUIRE_AUX_FILE (file)
Declares that file is expected in the directory defined above. In Autoconf proper, this
macro does nothing: its sole purpose is to be traced by third-party tools to produce
a list of expected auxiliary files. For instance it is called by macros like AC_PROG_
INSTALL (see Section 5.2.1 [Particular Programs], page 41) or AC_CANONICAL_BUILD
(see Section 13.2 [Canonicalizing], page 230) to register the auxiliary files they need.

Similarly, packages that use aclocal should declare where local macros can be found
using AC_CONFIG_MACRO_DIR.

[Macro]AC_CONFIG_MACRO_DIR (dir)
Specify dir as the location of additional local Autoconf macros. This macro is intended
for use by future versions of commands like autoreconf that trace macro calls. It
should be called directly from ‘configure.ac’ so that tools that install macros for
aclocal can find the macros’ declarations.
Note that if you use aclocal from Automake to generate ‘aclocal.m4’, you must also
set ACLOCAL_AMFLAGS = -I dir in your top-level ‘Makefile.am’. Due to a limitation
in the Autoconf implementation of autoreconf, these include directives currently
must be set on a single line in ‘Makefile.am’, without any backslash-newlines.

20 Autoconf

4.5 Outputting Files

Every Autoconf script, e.g., ‘configure.ac’, should finish by calling AC_OUTPUT. That is
the macro that generates and runs ‘config.status’, which in turn creates the makefiles
and any other files resulting from configuration. This is the only required macro besides
AC_INIT (see Section 4.4 [Input], page 19).

[Macro]AC_OUTPUT
Generate ‘config.status’ and launch it. Call this macro once, at the end of
‘configure.ac’.
‘config.status’ performs all the configuration actions: all the output files (see Sec-
tion 4.7 [Configuration Files], page 22, macro AC_CONFIG_FILES), header files (see
Section 4.9 [Configuration Headers], page 32, macro AC_CONFIG_HEADERS), commands
(see Section 4.10 [Configuration Commands], page 36, macro AC_CONFIG_COMMANDS),
links (see Section 4.11 [Configuration Links], page 37, macro AC_CONFIG_LINKS), sub-
directories to configure (see Section 4.12 [Subdirectories], page 37, macro AC_CONFIG_
SUBDIRS) are honored.
The location of your AC_OUTPUT invocation is the exact point where configuration
actions are taken: any code afterwards is executed by configure once config.status
was run. If you want to bind actions to config.status itself (independently of
whether configure is being run), see Section 4.10 [Running Arbitrary Configuration
Commands], page 36.

Historically, the usage of AC_OUTPUT was somewhat different. See Section 17.4 [Obsolete
Macros], page 253, for a description of the arguments that AC_OUTPUT used to support.

If you run make in subdirectories, you should run it using the make variable MAKE. Most
versions of make set MAKE to the name of the make program plus any options it was given.
(But many do not include in it the values of any variables set on the command line, so those
are not passed on automatically.) Some old versions of make do not set this variable. The
following macro allows you to use it even with those versions.

[Macro]AC_PROG_MAKE_SET
If the Make command, $MAKE if set or else ‘make’, predefines $(MAKE), define output
variable SET_MAKE to be empty. Otherwise, define SET_MAKE to a macro definition
that sets $(MAKE), such as ‘MAKE=make’. Calls AC_SUBST for SET_MAKE.

If you use this macro, place a line like this in each ‘Makefile.in’ that runs MAKE on
other directories:

@SET_MAKE@

4.6 Performing Configuration Actions

‘configure’ is designed so that it appears to do everything itself, but there is actually a
hidden slave: ‘config.status’. ‘configure’ is in charge of examining your system, but it is
‘config.status’ that actually takes the proper actions based on the results of ‘configure’.
The most typical task of ‘config.status’ is to instantiate files.

This section describes the common behavior of the four standard instantiating macros:
AC_CONFIG_FILES, AC_CONFIG_HEADERS, AC_CONFIG_COMMANDS and AC_CONFIG_LINKS.
They all have this prototype:

Chapter 4: Initialization and Output Files 21

AC_CONFIG_FOOS(tag..., [commands], [init-cmds])

where the arguments are:

tag. . . A blank-or-newline-separated list of tags, which are typically the names of the
files to instantiate.
You are encouraged to use literals as tags. In particular, you should avoid

... && my_foos="$my_foos fooo"

... && my_foos="$my_foos foooo"
AC_CONFIG_FOOS([$my_foos])

and use this instead:
... && AC_CONFIG_FOOS([fooo])
... && AC_CONFIG_FOOS([foooo])

The macros AC_CONFIG_FILES and AC_CONFIG_HEADERS use special tag values:
they may have the form ‘output ’ or ‘output:inputs ’. The file output is
instantiated from its templates, inputs (defaulting to ‘output.in’).
‘AC_CONFIG_FILES([Makefile:boiler/top.mk:boiler/bot.mk)]’, for exam-
ple, asks for the creation of the file ‘Makefile’ that contains the expansion of the
output variables in the concatenation of ‘boiler/top.mk’ and ‘boiler/bot.mk’.
The special value ‘-’ might be used to denote the standard output when used
in output, or the standard input when used in the inputs. You most probably
don’t need to use this in ‘configure.ac’, but it is convenient when using the
command line interface of ‘./config.status’, see Chapter 16 [config.status
Invocation], page 249, for more details.
The inputs may be absolute or relative file names. In the latter case they are
first looked for in the build tree, and then in the source tree.

commands
Shell commands output literally into ‘config.status’, and associated with a
tag that the user can use to tell ‘config.status’ which the commands to run.
The commands are run each time a tag request is given to ‘config.status’,
typically each time the file ‘tag ’ is created.
The variables set during the execution of configure are not available here: you
first need to set them via the init-cmds. Nonetheless the following variables are
precomputed:

srcdir The name of the top source directory, assuming that the working
directory is the top build directory. This is what the configure
option ‘--srcdir’ sets.

ac_top_srcdir
The name of the top source directory, assuming that the working
directory is the current build directory.

ac_top_build_prefix
The name of the top build directory, assuming that the working
directory is the current build directory. It can be empty, or else
ends with a slash, so that you may concatenate it.

22 Autoconf

ac_srcdir
The name of the corresponding source directory, assuming that the
working directory is the current build directory.

The current directory refers to the directory (or pseudo-directory) containing
the input part of tags. For instance, running

AC_CONFIG_COMMANDS([deep/dir/out:in/in.in], [...], [...])

with ‘--srcdir=../package’ produces the following values:
Argument of --srcdir
srcdir=’../package’
Reversing deep/dir
ac_top_build_prefix=’../../’
Concatenation of $ac_top_build_prefix and srcdir
ac_top_srcdir=’../../../package’
Concatenation of $ac_top_srcdir and deep/dir
ac_srcdir=’../../../package/deep/dir’

independently of ‘in/in.in’.

init-cmds Shell commands output unquoted near the beginning of ‘config.status’, and
executed each time ‘config.status’ runs (regardless of the tag). Because they
are unquoted, for example, ‘$var’ is output as the value of var. init-cmds is
typically used by ‘configure’ to give ‘config.status’ some variables it needs
to run the commands.
You should be extremely cautious in your variable names: all the init-cmds
share the same name space and may overwrite each other in unpredictable
ways. Sorry. . .

All these macros can be called multiple times, with different tag values, of course!

4.7 Creating Configuration Files

Be sure to read the previous section, Section 4.6 [Configuration Actions], page 20.

[Macro]AC_CONFIG_FILES (file . . . , [cmds], [init-cmds])
Make AC_OUTPUT create each ‘file ’ by copying an input file (by default ‘file.in’),
substituting the output variable values. This macro is one of the instantiating macros;
see Section 4.6 [Configuration Actions], page 20. See Section 4.8 [Makefile Substitu-
tions], page 23, for more information on using output variables. See Section 7.2
[Setting Output Variables], page 104, for more information on creating them. This
macro creates the directory that the file is in if it doesn’t exist. Usually, makefiles are
created this way, but other files, such as ‘.gdbinit’, can be specified as well.
Typical calls to AC_CONFIG_FILES look like this:

AC_CONFIG_FILES([Makefile src/Makefile man/Makefile X/Imakefile])
AC_CONFIG_FILES([autoconf], [chmod +x autoconf])

You can override an input file name by appending to file a colon-separated list of
input files. Examples:

AC_CONFIG_FILES([Makefile:boiler/top.mk:boiler/bot.mk]

Chapter 4: Initialization and Output Files 23

[lib/Makefile:boiler/lib.mk])

Doing this allows you to keep your file names acceptable to DOS variants, or to
prepend and/or append boilerplate to the file.

4.8 Substitutions in Makefiles

Each subdirectory in a distribution that contains something to be compiled or installed
should come with a file ‘Makefile.in’, from which configure creates a file ‘Makefile’ in
that directory. To create ‘Makefile’, configure performs a simple variable substitution,
replacing occurrences of ‘@variable@’ in ‘Makefile.in’ with the value that configure has
determined for that variable. Variables that are substituted into output files in this way
are called output variables. They are ordinary shell variables that are set in configure. To
make configure substitute a particular variable into the output files, the macro AC_SUBST
must be called with that variable name as an argument. Any occurrences of ‘@variable@’
for other variables are left unchanged. See Section 7.2 [Setting Output Variables], page 104,
for more information on creating output variables with AC_SUBST.

A software package that uses a configure script should be distributed with a file
‘Makefile.in’, but no makefile; that way, the user has to properly configure the pack-
age for the local system before compiling it.

See section “Makefile Conventions” in The GNU Coding Standards, for more information
on what to put in makefiles.

4.8.1 Preset Output Variables

Some output variables are preset by the Autoconf macros. Some of the Autoconf macros
set additional output variables, which are mentioned in the descriptions for those macros.
See Section B.2 [Output Variable Index], page 301, for a complete list of output variables.
See Section 4.8.2 [Installation Directory Variables], page 26, for the list of the preset ones
related to installation directories. Below are listed the other preset ones. They all are
precious variables (see Section 7.2 [Setting Output Variables], page 104, AC_ARG_VAR).

[Variable]CFLAGS
Debugging and optimization options for the C compiler. If it is not set in the envi-
ronment when configure runs, the default value is set when you call AC_PROG_CC (or
empty if you don’t). configure uses this variable when compiling or linking programs
to test for C features.
If a compiler option affects only the behavior of the preprocessor (e.g., ‘-D name ’), it
should be put into CPPFLAGS instead. If it affects only the linker (e.g., ‘-L direc-

tory ’), it should be put into LDFLAGS instead. If it affects only the compiler proper,
CFLAGS is the natural home for it. If an option affects multiple phases of the compiler,
though, matters get tricky. One approach to put such options directly into CC, e.g.,
CC=’gcc -m64’. Another is to put them into both CPPFLAGS and LDFLAGS, but not
into CFLAGS.

[Variable]configure_input
A comment saying that the file was generated automatically by configure and giving
the name of the input file. AC_OUTPUT adds a comment line containing this variable to
the top of every makefile it creates. For other files, you should reference this variable

24 Autoconf

in a comment at the top of each input file. For example, an input shell script should
begin like this:

#!/bin/sh
@configure_input@

The presence of that line also reminds people editing the file that it needs to be
processed by configure in order to be used.

[Variable]CPPFLAGS
Preprocessor options for the C, C++, and Objective C preprocessors and compilers.
If it is not set in the environment when configure runs, the default value is empty.
configure uses this variable when preprocessing or compiling programs to test for
C, C++, and Objective C features.
This variable’s contents should contain options like ‘-I’, ‘-D’, and ‘-U’ that affect only
the behavior of the preprocessor. Please see the explanation of CFLAGS for what you
can do if an option affects other phases of the compiler as well.
Currently, configure always links as part of a single invocation of the compiler that
also preprocesses and compiles, so it uses this variable also when linking programs.
However, it is unwise to depend on this behavior because the GNU coding standards
do not require it and many packages do not use CPPFLAGS when linking programs.
See Section 7.3 [Special Chars in Variables], page 106, for limitations that CPPFLAGS
might run into.

[Variable]CXXFLAGS
Debugging and optimization options for the C++ compiler. It acts like CFLAGS, but
for C++ instead of C.

[Variable]DEFS
‘-D’ options to pass to the C compiler. If AC_CONFIG_HEADERS is called, configure
replaces ‘@DEFS@’ with ‘-DHAVE_CONFIG_H’ instead (see Section 4.9 [Configuration
Headers], page 32). This variable is not defined while configure is performing its
tests, only when creating the output files. See Section 7.2 [Setting Output Variables],
page 104, for how to check the results of previous tests.

[Variable]ECHO_C
[Variable]ECHO_N
[Variable]ECHO_T

How does one suppress the trailing newline from echo for question-answer message
pairs? These variables provide a way:

echo $ECHO_N "And the winner is... $ECHO_C"
sleep 100000000000
echo "${ECHO_T}dead."

Some old and uncommon echo implementations offer no means to achieve this, in
which case ECHO_T is set to tab. You might not want to use it.

[Variable]ERLCFLAGS
Debugging and optimization options for the Erlang compiler. If it is not set in the
environment when configure runs, the default value is empty. configure uses this
variable when compiling programs to test for Erlang features.

Chapter 4: Initialization and Output Files 25

[Variable]FCFLAGS
Debugging and optimization options for the Fortran compiler. If it is not set in the
environment when configure runs, the default value is set when you call AC_PROG_
FC (or empty if you don’t). configure uses this variable when compiling or linking
programs to test for Fortran features.

[Variable]FFLAGS
Debugging and optimization options for the Fortran 77 compiler. If it is not set in the
environment when configure runs, the default value is set when you call AC_PROG_
F77 (or empty if you don’t). configure uses this variable when compiling or linking
programs to test for Fortran 77 features.

[Variable]LDFLAGS
Options for the linker. If it is not set in the environment when configure runs, the
default value is empty. configure uses this variable when linking programs to test
for C, C++, Objective C, and Fortran features.
This variable’s contents should contain options like ‘-s’ and ‘-L’ that affect only the
behavior of the linker. Please see the explanation of CFLAGS for what you can do if
an option also affects other phases of the compiler.
Don’t use this variable to pass library names (‘-l’) to the linker; use LIBS instead.

[Variable]LIBS
‘-l’ options to pass to the linker. The default value is empty, but some Autoconf
macros may prepend extra libraries to this variable if those libraries are found and
provide necessary functions, see Section 5.4 [Libraries], page 46. configure uses this
variable when linking programs to test for C, C++, and Fortran features.

[Variable]OBJCFLAGS
Debugging and optimization options for the Objective C compiler. It acts like CFLAGS,
but for Objective C instead of C.

[Variable]builddir
Rigorously equal to ‘.’. Added for symmetry only.

[Variable]abs_builddir
Absolute name of builddir.

[Variable]top_builddir
The relative name of the top level of the current build tree. In the top-level directory,
this is the same as builddir.

[Variable]top_build_prefix
The relative name of the top level of the current build tree with final slash if nonemtpy.
This is the same as top_builddir, except that it contains of zero of more runs of
../, so it should not be appended with a slash for concatenation. This helps for
make implementations that otherwise do not treat ‘./file’ and ‘file’ as equal in the
toplevel build directory.

[Variable]abs_top_builddir
Absolute name of top_builddir.

26 Autoconf

[Variable]srcdir
The name of the directory that contains the source code for that makefile.

[Variable]abs_srcdir
Absolute name of srcdir.

[Variable]top_srcdir
The name of the top-level source code directory for the package. In the top-level
directory, this is the same as srcdir.

[Variable]abs_top_srcdir
Absolute name of top_srcdir.

4.8.2 Installation Directory Variables

The following variables specify the directories for package installation, see section “Variables
for Installation Directories” in The GNU Coding Standards, for more information. Each
variable corresponds to an argument of configure; trailing slashes are stripped so that
expressions such as ‘${prefix}/lib’ expand with only one slash between directory names.
See the end of this section for details on when and how to use these variables.

[Variable]bindir
The directory for installing executables that users run.

[Variable]datadir
The directory for installing idiosyncratic read-only architecture-independent data.

[Variable]datarootdir
The root of the directory tree for read-only architecture-independent data files.

[Variable]docdir
The directory for installing documentation files (other than Info and man).

[Variable]dvidir
The directory for installing documentation files in DVI format.

[Variable]exec_prefix
The installation prefix for architecture-dependent files. By default it’s the same as
prefix. You should avoid installing anything directly to exec prefix. However, the
default value for directories containing architecture-dependent files should be relative
to exec prefix.

[Variable]htmldir
The directory for installing HTML documentation.

[Variable]includedir
The directory for installing C header files.

[Variable]infodir
The directory for installing documentation in Info format.

[Variable]libdir
The directory for installing object code libraries.

Chapter 4: Initialization and Output Files 27

[Variable]libexecdir
The directory for installing executables that other programs run.

[Variable]localedir
The directory for installing locale-dependent but architecture-independent data, such
as message catalogs. This directory usually has a subdirectory per locale.

[Variable]localstatedir
The directory for installing modifiable single-machine data.

[Variable]mandir
The top-level directory for installing documentation in man format.

[Variable]oldincludedir
The directory for installing C header files for non-GCC compilers.

[Variable]pdfdir
The directory for installing PDF documentation.

[Variable]prefix
The common installation prefix for all files. If exec prefix is defined to a different
value, prefix is used only for architecture-independent files.

[Variable]psdir
The directory for installing PostScript documentation.

[Variable]sbindir
The directory for installing executables that system administrators run.

[Variable]sharedstatedir
The directory for installing modifiable architecture-independent data.

[Variable]sysconfdir
The directory for installing read-only single-machine data.

Most of these variables have values that rely on prefix or exec_prefix. It is deliberate
that the directory output variables keep them unexpanded: typically ‘@datarootdir@’ is
replaced by ‘${prefix}/share’, not ‘/usr/local/share’, and ‘@datadir@’ is replaced by
‘${datarootdir}’.

This behavior is mandated by the GNU coding standards, so that when the user runs:

‘make’ she can still specify a different prefix from the one specified to configure, in
which case, if needed, the package should hard code dependencies corresponding
to the make-specified prefix.

‘make install’
she can specify a different installation location, in which case the package must
still depend on the location which was compiled in (i.e., never recompile when
‘make install’ is run). This is an extremely important feature, as many people
may decide to install all the files of a package grouped together, and then install
links from the final locations to there.

28 Autoconf

In order to support these features, it is essential that datarootdir remains being defined
as ‘${prefix}/share’ to depend upon the current value of prefix.

A corollary is that you should not use these variables except in makefiles. For instance, in-
stead of trying to evaluate datadir in ‘configure’ and hard-coding it in makefiles using e.g.,
‘AC_DEFINE_UNQUOTED([DATADIR], ["$datadir"], [Data directory.])’, you should add
‘-DDATADIR=’$(datadir)’’ to your makefile’s definition of CPPFLAGS (AM_CPPFLAGS if you
are also using Automake).

Similarly, you should not rely on AC_CONFIG_FILES to replace datadir and friends in
your shell scripts and other files; instead, let make manage their replacement. For instance
Autoconf ships templates of its shell scripts ending with ‘.in’, and uses a makefile snippet
similar to the following to build scripts like autoheader and autom4te:

edit = sed \
-e ’s|@datadir[@]|$(pkgdatadir)|g’ \
-e ’s|@prefix[@]|$(prefix)|g’

autoheader autom4te: Makefile
rm -f $@ $@.tmp
$(edit) ’$(srcdir)/$@.in’ >$@.tmp
chmod +x $@.tmp
chmod a-w $@.tmp
mv $@.tmp $@

autoheader: $(srcdir)/autoheader.in
autom4te: $(srcdir)/autom4te.in

Some details are noteworthy:

‘@datadir[@]’
The brackets prevent configure from replacing ‘@datadir@’ in the Sed expres-
sion itself. Brackets are preferable to a backslash here, since Posix says ‘\@’ is
not portable.

‘$(pkgdatadir)’
Don’t use ‘@pkgdatadir@’! Use the matching makefile variable instead.

‘/’ Don’t use ‘/’ in the Sed expressions that replace file names since most likely the
variables you use, such as ‘$(pkgdatadir)’, contain ‘/’. Use a shell metachar-
acter instead, such as ‘|’.

special characters
File names, file name components, and the value of VPATH should not contain
shell metacharacters or white space. See Section 7.3 [Special Chars in Variables],
page 106.

dependency on ‘Makefile’
Since edit uses values that depend on the configuration specific values (prefix,
etc.) and not only on VERSION and so forth, the output depends on ‘Makefile’,
not ‘configure.ac’.

‘$@’ The main rule is generic, and uses ‘$@’ extensively to avoid the need for multiple
copies of the rule.

Chapter 4: Initialization and Output Files 29

Separated dependencies and single suffix rules
You can’t use them! The above snippet cannot be (portably) rewritten as:

autoconf autoheader: Makefile
.in:

rm -f $@ $@.tmp
$(edit) $< >$@.tmp
chmod +x $@.tmp
mv $@.tmp $@

See Section 11.14 [Single Suffix Rules], page 216, for details.

‘$(srcdir)’
Be sure to specify the name of the source directory, otherwise the package won’t
support separated builds.

For the more specific installation of Erlang libraries, the following variables are defined:

[Variable]ERLANG_INSTALL_LIB_DIR
The common parent directory of Erlang library installation directories. This variable
is set by calling the AC_ERLANG_SUBST_INSTALL_LIB_DIR macro in ‘configure.ac’.

[Variable]ERLANG_INSTALL_LIB_DIR_library
The installation directory for Erlang library library. This variable is set by
calling the ‘AC_ERLANG_SUBST_INSTALL_LIB_SUBDIR(library, version ’ macro in
‘configure.ac’.

See Section 5.13 [Erlang Libraries], page 88, for details.

4.8.3 Changed Directory Variables

In Autoconf 2.60, the set of directory variables has changed, and the defaults of some vari-
ables have been adjusted (see Section 4.8.2 [Installation Directory Variables], page 26) to
changes in the GNU Coding Standards. Notably, ‘datadir’, ‘infodir’, and ‘mandir’ are
now expressed in terms of ‘datarootdir’. If you are upgrading from an earlier Autoconf
version, you may need to adjust your files to ensure that the directory variables are substi-
tuted correctly (see Section 19.5 [Defining Directories], page 285), and that a definition of
‘datarootdir’ is in place. For example, in a ‘Makefile.in’, adding

datarootdir = @datarootdir@

is usually sufficient. If you use Automake to create ‘Makefile.in’, it will add this for you.
To help with the transition, Autoconf warns about files that seem to use datarootdir

without defining it. In some cases, it then expands the value of $datarootdir in substitu-
tions of the directory variables. The following example shows such a warning:

$ cat configure.ac

AC_INIT
AC_CONFIG_FILES([Makefile])
AC_OUTPUT
$ cat Makefile.in

prefix = @prefix@
datadir = @datadir@

30 Autoconf

$ autoconf

$ configure

configure: creating ./config.status
config.status: creating Makefile
config.status: WARNING:

Makefile.in seems to ignore the --datarootdir setting
$ cat Makefile

prefix = /usr/local
datadir = ${prefix}/share

Usually one can easily change the file to accommodate both older and newer Autoconf
releases:

$ cat Makefile.in

prefix = @prefix@
datarootdir = @datarootdir@
datadir = @datadir@
$ configure

configure: creating ./config.status
config.status: creating Makefile
$ cat Makefile

prefix = /usr/local
datarootdir = ${prefix}/share
datadir = ${datarootdir}

In some cases, however, the checks may not be able to detect that a suitable initialization
of datarootdir is in place, or they may fail to detect that such an initialization is necessary
in the output file. If, after auditing your package, there are still spurious ‘configure’
warnings about datarootdir, you may add the line

AC_DEFUN([AC_DATAROOTDIR_CHECKED])

to your ‘configure.ac’ to disable the warnings. This is an exception to the usual rule that
you should not define a macro whose name begins with AC_ (see Section 9.2 [Macro Names],
page 151).

4.8.4 Build Directories

You can support compiling a software package for several architectures simultaneously from
the same copy of the source code. The object files for each architecture are kept in their
own directory.

To support doing this, make uses the VPATH variable to find the files that are in the
source directory. GNU Make can do this. Most other recent make programs can do this as
well, though they may have difficulties and it is often simpler to recommend GNU make (see
Section 11.13 [VPATH and Make], page 210). Older make programs do not support VPATH;
when using them, the source code must be in the same directory as the object files.

If you are using GNU Automake, the remaining details in this section are already covered
for you, based on the contents of your ‘Makefile.am’. But if you are using Autoconf in
isolation, then supporting VPATH requires the following in your ‘Makefile.in’:

srcdir = @srcdir@
VPATH = @srcdir@

Chapter 4: Initialization and Output Files 31

Do not set VPATH to the value of another variable, for example ‘VPATH = $(srcdir)’,
because some versions of make do not do variable substitutions on the value of VPATH.

configure substitutes the correct value for srcdir when it produces ‘Makefile’.
Do not use the make variable $<, which expands to the file name of the file in the source

directory (found with VPATH), except in implicit rules. (An implicit rule is one such as
‘.c.o’, which tells how to create a ‘.o’ file from a ‘.c’ file.) Some versions of make do not
set $< in explicit rules; they expand it to an empty value.

Instead, Make command lines should always refer to source files by prefixing them with
‘$(srcdir)/’. For example:

time.info: time.texinfo
$(MAKEINFO) ’$(srcdir)/time.texinfo’

4.8.5 Automatic Remaking

You can put rules like the following in the top-level ‘Makefile.in’ for a package to au-
tomatically update the configuration information when you change the configuration files.
This example includes all of the optional files, such as ‘aclocal.m4’ and those related to
configuration header files. Omit from the ‘Makefile.in’ rules for any of these files that
your package does not use.

The ‘$(srcdir)/’ prefix is included because of limitations in the VPATH mechanism.
The ‘stamp-’ files are necessary because the timestamps of ‘config.h.in’ and

‘config.h’ are not changed if remaking them does not change their contents. This feature
avoids unnecessary recompilation. You should include the file ‘stamp-h.in’ your package’s
distribution, so that make considers ‘config.h.in’ up to date. Don’t use touch (see
Section 10.13 [Limitations of Usual Tools], page 191); instead, use echo (using date would
cause needless differences, hence CVS conflicts, etc.).

$(srcdir)/configure: configure.ac aclocal.m4
cd ’$(srcdir)’ && autoconf

autoheader might not change config.h.in, so touch a stamp file.
$(srcdir)/config.h.in: stamp-h.in
$(srcdir)/stamp-h.in: configure.ac aclocal.m4

cd ’$(srcdir)’ && autoheader
echo timestamp > ’$(srcdir)/stamp-h.in’

config.h: stamp-h
stamp-h: config.h.in config.status

./config.status

Makefile: Makefile.in config.status
./config.status

config.status: configure
./config.status --recheck

(Be careful if you copy these lines directly into your makefile, as you need to convert the
indented lines to start with the tab character.)

32 Autoconf

In addition, you should use
AC_CONFIG_FILES([stamp-h], [echo timestamp > stamp-h])

so ‘config.status’ ensures that ‘config.h’ is considered up to date. See Section 4.5
[Output], page 20, for more information about AC_OUTPUT.

See Chapter 16 [config.status Invocation], page 249, for more examples of handling
configuration-related dependencies.

4.9 Configuration Header Files

When a package contains more than a few tests that define C preprocessor symbols, the
command lines to pass ‘-D’ options to the compiler can get quite long. This causes two
problems. One is that the make output is hard to visually scan for errors. More seriously, the
command lines can exceed the length limits of some operating systems. As an alternative to
passing ‘-D’ options to the compiler, configure scripts can create a C header file containing
‘#define’ directives. The AC_CONFIG_HEADERS macro selects this kind of output. Though
it can be called anywhere between AC_INIT and AC_OUTPUT, it is customary to call it right
after AC_INIT.

The package should ‘#include’ the configuration header file before any other header
files, to prevent inconsistencies in declarations (for example, if it redefines const).

To provide for VPATH builds, remember to pass the C compiler a ‘-I.’ option (or ‘-I..’;
whichever directory contains ‘config.h’). Even if you use ‘#include "config.h"’, the
preprocessor searches only the directory of the currently read file, i.e., the source directory,
not the build directory.

With the appropriate ‘-I’ option, you can use ‘#include <config.h>’. Actually, it’s a
good habit to use it, because in the rare case when the source directory contains another
‘config.h’, the build directory should be searched first.

[Macro]AC_CONFIG_HEADERS (header . . . , [cmds], [init-cmds])
This macro is one of the instantiating macros; see Section 4.6 [Configuration Ac-
tions], page 20. Make AC_OUTPUT create the file(s) in the blank-or-newline-separated
list header containing C preprocessor #define statements, and replace ‘@DEFS@’ in
generated files with ‘-DHAVE_CONFIG_H’ instead of the value of DEFS. The usual name
for header is ‘config.h’.
If header already exists and its contents are identical to what AC_OUTPUT would put in
it, it is left alone. Doing this allows making some changes in the configuration without
needlessly causing object files that depend on the header file to be recompiled.
Usually the input file is named ‘header.in’; however, you can override the input file
name by appending to header a colon-separated list of input files. For example, you
might need to make the input file name acceptable to DOS variants:

AC_CONFIG_HEADERS([config.h:config.hin])

[Macro]AH_HEADER
This macro is defined as the name of the first declared config header and undefined if
no config headers have been declared up to this point. A third-party macro may, for
example, require use of a config header without invoking AC CONFIG HEADERS
twice, like this:

Chapter 4: Initialization and Output Files 33

AC_CONFIG_COMMANDS_PRE(
[m4_ifndef([AH_HEADER], [AC_CONFIG_HEADERS([config.h])])])

See Section 4.6 [Configuration Actions], page 20, for more details on header.

4.9.1 Configuration Header Templates

Your distribution should contain a template file that looks as you want the final header
file to look, including comments, with #undef statements which are used as hooks. For
example, suppose your ‘configure.ac’ makes these calls:

AC_CONFIG_HEADERS([conf.h])
AC_CHECK_HEADERS([unistd.h])

Then you could have code like the following in ‘conf.h.in’. The ‘conf.h’ created by
configure defines ‘HAVE_UNISTD_H’ to 1, if and only if the system has ‘unistd.h’.

/* Define as 1 if you have unistd.h. */
#undef HAVE_UNISTD_H

The format of the template file is stricter than what the C preprocessor is required to
accept. A directive line should contain only whitespace, ‘#undef’, and ‘HAVE_UNISTD_H’.
The use of ‘#define’ instead of ‘#undef’, or of comments on the same line as ‘#undef’,
is strongly discouraged. Each hook should only be listed once. Other preprocessor lines,
such as ‘#ifdef’ or ‘#include’, are copied verbatim from the template into the generated
header.

Since it is a tedious task to keep a template header up to date, you may use autoheader
to generate it, see Section 4.9.2 [autoheader Invocation], page 34.

During the instantiation of the header, each ‘#undef’ line in the template file for each
symbol defined by ‘AC_DEFINE’ is changed to an appropriate ‘#define’. If the correspond-
ing ‘AC_DEFINE’ has not been executed during the configure run, the ‘#undef’ line is
commented out. (This is important, e.g., for ‘_POSIX_SOURCE’: on many systems, it can
be implicitly defined by the compiler, and undefining it in the header would then break
compilation of subsequent headers.)

Currently, all remaining ‘#undef’ lines in the header template are commented out,
whether or not there was a corresponding ‘AC_DEFINE’ for the macro name; but this behavior
is not guaranteed for future releases of Autoconf.

Generally speaking, since you should not use ‘#define’, and you cannot guarantee
whether a ‘#undef’ directive in the header template will be converted to a ‘#define’ or
commented out in the generated header file, the template file cannot be used for condi-
tional definition effects. Consequently, if you need to use the construct

#ifdef THIS
define THAT
#endif

you must place it outside of the template. If you absolutely need to hook it to the config
header itself, please put the directives to a separate file, and ‘#include’ that file from the
config header template. If you are using autoheader, you would probably use ‘AH_BOTTOM’
to append the ‘#include’ directive.

34 Autoconf

4.9.2 Using autoheader to Create ‘config.h.in’

The autoheader program can create a template file of C ‘#define’ statements for
configure to use. It searches for the first invocation of AC_CONFIG_HEADERS in ‘configure’
sources to determine the name of the template. (If the first call of AC_CONFIG_HEADERS
specifies more than one input file name, autoheader uses the first one.)

It is recommended that only one input file is used. If you want to append a boilerplate
code, it is preferable to use ‘AH_BOTTOM([#include <conf_post.h>])’. File ‘conf_post.h’
is not processed during the configuration then, which make things clearer. Analogically,
AH_TOP can be used to prepend a boilerplate code.

In order to do its job, autoheader needs you to document all of the symbols that you
might use. Typically this is done via an AC_DEFINE or AC_DEFINE_UNQUOTED call whose
first argument is a literal symbol and whose third argument describes the symbol (see
Section 7.1 [Defining Symbols], page 103). Alternatively, you can use AH_TEMPLATE (see
Section 4.9.3 [Autoheader Macros], page 35), or you can supply a suitable input file for
a subsequent configuration header file. Symbols defined by Autoconf’s builtin tests are
already documented properly; you need to document only those that you define yourself.

You might wonder why autoheader is needed: after all, why would configure need
to “patch” a ‘config.h.in’ to produce a ‘config.h’ instead of just creating ‘config.h’
from scratch? Well, when everything rocks, the answer is just that we are wasting our time
maintaining autoheader: generating ‘config.h’ directly is all that is needed. When things
go wrong, however, you’ll be thankful for the existence of autoheader.

The fact that the symbols are documented is important in order to check that ‘config.h’
makes sense. The fact that there is a well-defined list of symbols that should be defined
(or not) is also important for people who are porting packages to environments where
configure cannot be run: they just have to fill in the blanks.

But let’s come back to the point: the invocation of autoheader. . .
If you give autoheader an argument, it uses that file instead of ‘configure.ac’ and

writes the header file to the standard output instead of to ‘config.h.in’. If you give
autoheader an argument of ‘-’, it reads the standard input instead of ‘configure.ac’ and
writes the header file to the standard output.

autoheader accepts the following options:

‘--help’
‘-h’ Print a summary of the command line options and exit.

‘--version’
‘-V’ Print the version number of Autoconf and exit.

‘--verbose’
‘-v’ Report processing steps.

‘--debug’
‘-d’ Don’t remove the temporary files.

‘--force’
‘-f’ Remake the template file even if newer than its input files.

‘--include=dir ’
‘-I dir ’ Append dir to the include path. Multiple invocations accumulate.

Chapter 4: Initialization and Output Files 35

‘--prepend-include=dir ’
‘-B dir ’ Prepend dir to the include path. Multiple invocations accumulate.

‘--warnings=category ’
‘-W category ’

Report the warnings related to category (which can actually be a comma sep-
arated list). Current categories include:

‘obsolete’
report the uses of obsolete constructs

‘all’ report all the warnings

‘none’ report none

‘error’ treats warnings as errors

‘no-category ’
disable warnings falling into category

4.9.3 Autoheader Macros

autoheader scans ‘configure.ac’ and figures out which C preprocessor symbols it might
define. It knows how to generate templates for symbols defined by AC_CHECK_HEADERS, AC_
CHECK_FUNCS etc., but if you AC_DEFINE any additional symbol, you must define a template
for it. If there are missing templates, autoheader fails with an error message.

The template for a symbol is created by autoheader from the description argument to
an AC_DEFINE; see Section 7.1 [Defining Symbols], page 103.

For special needs, you can use the following macros.

[Macro]AH_TEMPLATE (key, description)
Tell autoheader to generate a template for key. This macro generates standard
templates just like AC_DEFINE when a description is given.
For example:

AH_TEMPLATE([CRAY_STACKSEG_END],
[Define to one of _getb67, GETB67, getb67
for Cray-2 and Cray-YMP systems. This
function is required for alloca.c support
on those systems.])

generates the following template, with the description properly justified.
/* Define to one of _getb67, GETB67, getb67 for Cray-2 and

Cray-YMP systems. This function is required for alloca.c
support on those systems. */

#undef CRAY_STACKSEG_END

[Macro]AH_VERBATIM (key, template)
Tell autoheader to include the template as-is in the header template file. This
template is associated with the key, which is used to sort all the different templates
and guarantee their uniqueness. It should be a symbol that can be defined via AC_
DEFINE.

36 Autoconf

[Macro]AH_TOP (text)
Include text at the top of the header template file.

[Macro]AH_BOTTOM (text)
Include text at the bottom of the header template file.

Please note that text gets included “verbatim” to the template file, not to the resulting
config header, so it can easily get mangled when the template is processed. There is rarely
a need for something other than

AH_BOTTOM([#include <custom.h>])

4.10 Running Arbitrary Configuration Commands

You can execute arbitrary commands before, during, and after ‘config.status’ is run.
The three following macros accumulate the commands to run when they are called mul-
tiple times. AC_CONFIG_COMMANDS replaces the obsolete macro AC_OUTPUT_COMMANDS; see
Section 17.4 [Obsolete Macros], page 253, for details.

[Macro]AC_CONFIG_COMMANDS (tag . . . , [cmds], [init-cmds])
Specify additional shell commands to run at the end of ‘config.status’, and shell
commands to initialize any variables from configure. Associate the commands with
tag. Since typically the cmds create a file, tag should naturally be the name of
that file. If needed, the directory hosting tag is created. This macro is one of the
instantiating macros; see Section 4.6 [Configuration Actions], page 20.

Here is an unrealistic example:

fubar=42
AC_CONFIG_COMMANDS([fubar],

[echo this is extra $fubar, and so on.],
[fubar=$fubar])

Here is a better one:

AC_CONFIG_COMMANDS([timestamp], [date >timestamp])

The following two macros look similar, but in fact they are not of the same breed: they
are executed directly by ‘configure’, so you cannot use ‘config.status’ to rerun them.

[Macro]AC_CONFIG_COMMANDS_PRE (cmds)
Execute the cmds right before creating ‘config.status’.

This macro presents the last opportunity to call AC_SUBST, AC_DEFINE, or AC_CONFIG_
FOOS macros.

[Macro]AC_CONFIG_COMMANDS_POST (cmds)
Execute the cmds right after creating ‘config.status’.

Chapter 4: Initialization and Output Files 37

4.11 Creating Configuration Links

You may find it convenient to create links whose destinations depend upon results of tests.
One can use AC_CONFIG_COMMANDS but the creation of relative symbolic links can be delicate
when the package is built in a directory different from the source directory.

[Macro]AC_CONFIG_LINKS (dest :source . . . , [cmds], [init-cmds])
Make AC_OUTPUT link each of the existing files source to the corresponding link name
dest. Makes a symbolic link if possible, otherwise a hard link if possible, otherwise a
copy. The dest and source names should be relative to the top level source or build
directory. This macro is one of the instantiating macros; see Section 4.6 [Configuration
Actions], page 20.

For example, this call:

AC_CONFIG_LINKS([host.h:config/$machine.h
object.h:config/$obj_format.h])

creates in the current directory ‘host.h’ as a link to ‘srcdir/config/$machine.h’,
and ‘object.h’ as a link to ‘srcdir/config/$obj_format.h’.

The tempting value ‘.’ for dest is invalid: it makes it impossible for ‘config.status’
to guess the links to establish.

One can then run:

./config.status host.h object.h

to create the links.

4.12 Configuring Other Packages in Subdirectories

In most situations, calling AC_OUTPUT is sufficient to produce makefiles in subdirectories.
However, configure scripts that control more than one independent package can use AC_
CONFIG_SUBDIRS to run configure scripts for other packages in subdirectories.

[Macro]AC_CONFIG_SUBDIRS (dir . . .)
Make AC_OUTPUT run configure in each subdirectory dir in the given blank-or-
newline-separated list. Each dir should be a literal, i.e., please do not use:

if test "$package_foo_enabled" = yes; then
$my_subdirs="$my_subdirs foo"

fi
AC_CONFIG_SUBDIRS([$my_subdirs])

because this prevents ‘./configure --help=recursive’ from displaying the options
of the package foo. Instead, you should write:

if test "$package_foo_enabled" = yes; then
AC_CONFIG_SUBDIRS([foo])

fi

If a given dir is not found, an error is reported: if the subdirectory is optional, write:

if test -d "$srcdir/foo"; then
AC_CONFIG_SUBDIRS([foo])

fi

38 Autoconf

If a given dir contains configure.gnu, it is run instead of configure. This is for
packages that might use a non-Autoconf script Configure, which can’t be called
through a wrapper configure since it would be the same file on case-insensitive file
systems. Likewise, if a dir contains ‘configure.in’ but no configure, the Cygnus
configure script found by AC_CONFIG_AUX_DIR is used.
The subdirectory configure scripts are given the same command line options that
were given to this configure script, with minor changes if needed, which include:
− adjusting a relative name for the cache file;
− adjusting a relative name for the source directory;
− propagating the current value of $prefix, including if it was defaulted, and if

the default values of the top level and of the subdirectory ‘configure’ differ.

This macro also sets the output variable subdirs to the list of directories ‘dir ...’.
Make rules can use this variable to determine which subdirectories to recurse into.
This macro may be called multiple times.

4.13 Default Prefix

By default, configure sets the prefix for files it installs to ‘/usr/local’. The user of
configure can select a different prefix using the ‘--prefix’ and ‘--exec-prefix’ options.
There are two ways to change the default: when creating configure, and when running it.

Some software packages might want to install in a directory other than ‘/usr/local’ by
default. To accomplish that, use the AC_PREFIX_DEFAULT macro.

[Macro]AC_PREFIX_DEFAULT (prefix)
Set the default installation prefix to prefix instead of ‘/usr/local’.

It may be convenient for users to have configure guess the installation prefix from the
location of a related program that they have already installed. If you wish to do that, you
can call AC_PREFIX_PROGRAM.

[Macro]AC_PREFIX_PROGRAM (program)
If the user did not specify an installation prefix (using the ‘--prefix’ option), guess
a value for it by looking for program in PATH, the way the shell does. If program is
found, set the prefix to the parent of the directory containing program, else default
the prefix as described above (‘/usr/local’ or AC_PREFIX_DEFAULT). For example,
if program is gcc and the PATH contains ‘/usr/local/gnu/bin/gcc’, set the prefix
to ‘/usr/local/gnu’.

Chapter 5: Existing Tests 39

5 Existing Tests

These macros test for particular system features that packages might need or want to use. If
you need to test for a kind of feature that none of these macros check for, you can probably
do it by calling primitive test macros with appropriate arguments (see Chapter 6 [Writing
Tests], page 91).

These tests print messages telling the user which feature they’re checking for, and what
they find. They cache their results for future configure runs (see Section 7.4 [Caching
Results], page 107).

Some of these macros set output variables. See Section 4.8 [Makefile Substitutions],
page 23, for how to get their values. The phrase “define name” is used below as a shorthand
to mean “define the C preprocessor symbol name to the value 1”. See Section 7.1 [Defining
Symbols], page 103, for how to get those symbol definitions into your program.

5.1 Common Behavior

Much effort has been expended to make Autoconf easy to learn. The most obvious way to
reach this goal is simply to enforce standard interfaces and behaviors, avoiding exceptions
as much as possible. Because of history and inertia, unfortunately, there are still too many
exceptions in Autoconf; nevertheless, this section describes some of the common rules.

5.1.1 Standard Symbols

All the generic macros that AC_DEFINE a symbol as a result of their test transform their
argument values to a standard alphabet. First, argument is converted to upper case and any
asterisks (‘*’) are each converted to ‘P’. Any remaining characters that are not alphanumeric
are converted to underscores.

For instance,
AC_CHECK_TYPES([struct $Expensive*])

defines the symbol ‘HAVE_STRUCT__EXPENSIVEP’ if the check succeeds.

5.1.2 Default Includes

Several tests depend upon a set of header files. Since these headers are not universally
available, tests actually have to provide a set of protected includes, such as:

#ifdef TIME_WITH_SYS_TIME
include <sys/time.h>
include <time.h>
#else
ifdef HAVE_SYS_TIME_H
include <sys/time.h>
else
include <time.h>
endif
#endif

Unless you know exactly what you are doing, you should avoid using unconditional includes,
and check the existence of the headers you include beforehand (see Section 5.6 [Header Files],
page 59).

40 Autoconf

Most generic macros use the following macro to provide the default set of includes:

[Macro]AC_INCLUDES_DEFAULT ([include-directives])
Expand to include-directives if defined, otherwise to:

#include <stdio.h>
#ifdef HAVE_SYS_TYPES_H
include <sys/types.h>
#endif
#ifdef HAVE_SYS_STAT_H
include <sys/stat.h>
#endif
#ifdef STDC_HEADERS
include <stdlib.h>
include <stddef.h>
#else
ifdef HAVE_STDLIB_H
include <stdlib.h>
endif
#endif
#ifdef HAVE_STRING_H
if !defined STDC_HEADERS && defined HAVE_MEMORY_H
include <memory.h>
endif
include <string.h>
#endif
#ifdef HAVE_STRINGS_H
include <strings.h>
#endif
#ifdef HAVE_INTTYPES_H
include <inttypes.h>
#endif
#ifdef HAVE_STDINT_H
include <stdint.h>
#endif
#ifdef HAVE_UNISTD_H
include <unistd.h>
#endif

If the default includes are used, then check for the presence of these headers and their
compatibility, i.e., you don’t need to run AC_HEADER_STDC, nor check for ‘stdlib.h’
etc.

These headers are checked for in the same order as they are included. For instance,
on some systems ‘string.h’ and ‘strings.h’ both exist, but conflict. Then HAVE_
STRING_H is defined, not HAVE_STRINGS_H.

Chapter 5: Existing Tests 41

5.2 Alternative Programs

These macros check for the presence or behavior of particular programs. They are used to
choose between several alternative programs and to decide what to do once one has been
chosen. If there is no macro specifically defined to check for a program you need, and you
don’t need to check for any special properties of it, then you can use one of the general
program-check macros.

5.2.1 Particular Program Checks

These macros check for particular programs—whether they exist, and in some cases whether
they support certain features.

[Macro]AC_PROG_AWK
Check for gawk, mawk, nawk, and awk, in that order, and set output variable AWK to
the first one that is found. It tries gawk first because that is reported to be the best
implementation.

[Macro]AC_PROG_GREP
Look for the best available grep or ggrep that accepts the longest input lines possible,
and that supports multiple ‘-e’ options. Set the output variable GREP to whatever is
chosen. See Section 10.13 [Limitations of Usual Tools], page 191, for more information
about portability problems with the grep command family.

[Macro]AC_PROG_EGREP
Check whether $GREP -E works, or else look for the best available egrep or gegrep
that accepts the longest input lines possible. Set the output variable EGREP to what-
ever is chosen.

[Macro]AC_PROG_FGREP
Check whether $GREP -F works, or else look for the best available fgrep or gfgrep
that accepts the longest input lines possible. Set the output variable FGREP to what-
ever is chosen.

[Macro]AC_PROG_INSTALL
Set output variable INSTALL to the name of a BSD-compatible install program, if
one is found in the current PATH. Otherwise, set INSTALL to ‘dir/install-sh -c’,
checking the directories specified to AC_CONFIG_AUX_DIR (or its default directories)
to determine dir (see Section 4.5 [Output], page 20). Also set the variables INSTALL_
PROGRAM and INSTALL_SCRIPT to ‘${INSTALL}’ and INSTALL_DATA to ‘${INSTALL}
-m 644’.
‘@INSTALL@’ is special, as its value may vary for different configuration files.
This macro screens out various instances of install known not to work. It prefers
to find a C program rather than a shell script, for speed. Instead of ‘install-sh’,
it can also use ‘install.sh’, but that name is obsolete because some make programs
have a rule that creates ‘install’ from it if there is no makefile. Further, this macro
requires install to be able to install multiple files into a target directory in a single
invocation.
Autoconf comes with a copy of ‘install-sh’ that you can use. If you use AC_PROG_
INSTALL, you must include either ‘install-sh’ or ‘install.sh’ in your distribution;

42 Autoconf

otherwise configure produces an error message saying it can’t find them—even if
the system you’re on has a good install program. This check is a safety measure to
prevent you from accidentally leaving that file out, which would prevent your package
from installing on systems that don’t have a BSD-compatible install program.

If you need to use your own installation program because it has features not found
in standard install programs, there is no reason to use AC_PROG_INSTALL; just put
the file name of your program into your ‘Makefile.in’ files.

[Macro]AC_PROG_MKDIR_P
Set output variable MKDIR_P to a program that ensures that for each argument, a
directory named by this argument exists, creating it and its parent directories if
needed, and without race conditions when two instances of the program attempt to
make the same directory at nearly the same time.

This macro uses the ‘mkdir -p’ command if possible. Otherwise, it falls back on invok-
ing install-sh with the ‘-d’ option, so your package should contain ‘install-sh’ as
described under AC_PROG_INSTALL. An ‘install-sh’ file that predates Autoconf 2.60
or Automake 1.10 is vulnerable to race conditions, so if you want to support parallel
installs from different packages into the same directory you need to make sure you
have an up-to-date ‘install-sh’. In particular, be careful about using ‘autoreconf
-if’ if your Automake predates Automake 1.10.

This macro is related to the AS_MKDIR_P macro (see Section 8.4 [Programming in
M4sh], page 147), but it sets an output variable intended for use in other files, whereas
AS_MKDIR_P is intended for use in scripts like configure. Also, AS_MKDIR_P does not
accept options, but MKDIR_P supports the ‘-m’ option, e.g., a makefile might invoke
$(MKDIR_P) -m 0 dir to create an inaccessible directory, and conversely a makefile
should use $(MKDIR_P) -- $(FOO) if FOO might yield a value that begins with ‘-’.
Finally, AS_MKDIR_P does not check for race condition vulnerability, whereas AC_
PROG_MKDIR_P does.

‘@MKDIR_P@’ is special, as its value may vary for different configuration files.

[Macro]AC_PROG_LEX
If flex is found, set output variable LEX to ‘flex’ and LEXLIB to ‘-lfl’, if that library
is in a standard place. Otherwise set LEX to ‘lex’ and LEXLIB to ‘-ll’.

Define YYTEXT_POINTER if yytext defaults to ‘char *’ instead of to ‘char []’. Also set
output variable LEX_OUTPUT_ROOT to the base of the file name that the lexer generates;
usually ‘lex.yy’, but sometimes something else. These results vary according to
whether lex or flex is being used.

You are encouraged to use Flex in your sources, since it is both more pleasant to use
than plain Lex and the C source it produces is portable. In order to ensure portability,
however, you must either provide a function yywrap or, if you don’t use it (e.g., your
scanner has no ‘#include’-like feature), simply include a ‘%noyywrap’ statement in
the scanner’s source. Once this done, the scanner is portable (unless you felt free to
use nonportable constructs) and does not depend on any library. In this case, and in
this case only, it is suggested that you use this Autoconf snippet:

AC_PROG_LEX

Chapter 5: Existing Tests 43

if test "$LEX" != flex; then
LEX="$SHELL $missing_dir/missing flex"
AC_SUBST([LEX_OUTPUT_ROOT], [lex.yy])
AC_SUBST([LEXLIB], [’’])

fi

The shell script missing can be found in the Automake distribution.
To ensure backward compatibility, Automake’s AM_PROG_LEX invokes (indirectly) this
macro twice, which causes an annoying but benign “AC_PROG_LEX invoked multiple
times” warning. Future versions of Automake will fix this issue; meanwhile, just
ignore this message.
As part of running the test, this macro may delete any file in the configuration
directory named ‘lex.yy.c’ or ‘lexyy.c’.

[Macro]AC_PROG_LN_S
If ‘ln -s’ works on the current file system (the operating system and file system
support symbolic links), set the output variable LN_S to ‘ln -s’; otherwise, if ‘ln’
works, set LN_S to ‘ln’, and otherwise set it to ‘cp -p’.
If you make a link in a directory other than the current directory, its meaning depends
on whether ‘ln’ or ‘ln -s’ is used. To safely create links using ‘$(LN_S)’, either find
out which form is used and adjust the arguments, or always invoke ln in the directory
where the link is to be created.
In other words, it does not work to do:

$(LN_S) foo /x/bar

Instead, do:
(cd /x && $(LN_S) foo bar)

[Macro]AC_PROG_RANLIB
Set output variable RANLIB to ‘ranlib’ if ranlib is found, and otherwise to ‘:’ (do
nothing).

[Macro]AC_PROG_SED
Set output variable SED to a Sed implementation that conforms to Posix and does
not have arbitrary length limits. Report an error if no acceptable Sed is found. See
Section 10.13 [Limitations of Usual Tools], page 191, for more information about
portability problems with Sed.

[Macro]AC_PROG_YACC
If bison is found, set output variable YACC to ‘bison -y’. Otherwise, if byacc is
found, set YACC to ‘byacc’. Otherwise set YACC to ‘yacc’.

5.2.2 Generic Program and File Checks

These macros are used to find programs not covered by the “particular” test macros. If you
need to check the behavior of a program as well as find out whether it is present, you have
to write your own test for it (see Chapter 6 [Writing Tests], page 91). By default, these
macros use the environment variable PATH. If you need to check for a program that might
not be in the user’s PATH, you can pass a modified path to use instead, like this:

44 Autoconf

AC_PATH_PROG([INETD], [inetd], [/usr/libexec/inetd],
[$PATH$PATH_SEPARATOR/usr/libexec$PATH_SEPARATOR]dnl

[/usr/sbin$PATH_SEPARATOR/usr/etc$PATH_SEPARATOR/etc])

You are strongly encouraged to declare the variable passed to AC_CHECK_PROG etc. as
precious, See Section 7.2 [Setting Output Variables], page 104, AC_ARG_VAR, for more details.

[Macro]AC_CHECK_PROG (variable, prog-to-check-for, value-if-found,
[value-if-not-found], [path = ‘$PATH’], [reject])

Check whether program prog-to-check-for exists in path. If it is found, set variable
to value-if-found, otherwise to value-if-not-found, if given. Always pass over reject
(an absolute file name) even if it is the first found in the search path; in that case, set
variable using the absolute file name of the prog-to-check-for found that is not reject.
If variable was already set, do nothing. Calls AC_SUBST for variable.

[Macro]AC_CHECK_PROGS (variable, progs-to-check-for,
[value-if-not-found], [path = ‘$PATH’])

Check for each program in the blank-separated list progs-to-check-for existing in the
path. If one is found, set variable to the name of that program. Otherwise, continue
checking the next program in the list. If none of the programs in the list are found,
set variable to value-if-not-found; if value-if-not-found is not specified, the value of
variable is not changed. Calls AC_SUBST for variable.

[Macro]AC_CHECK_TARGET_TOOL (variable, prog-to-check-for,
[value-if-not-found], [path = ‘$PATH’])

Like AC_CHECK_PROG, but first looks for prog-to-check-for with a prefix of the target
type as determined by AC_CANONICAL_TARGET, followed by a dash (see Section 13.2
[Canonicalizing], page 230). If the tool cannot be found with a prefix, and if the build
and target types are equal, then it is also searched for without a prefix.

As noted in Section 13.1 [Specifying the system type], page 229, the target is rarely
specified, because most of the time it is the same as the host: it is the type of system
for which any compiler tool in the package produces code. What this macro looks for
is, for example, a tool (assembler, linker, etc.) that the compiler driver (gcc for the
GNU C Compiler) uses to produce objects, archives or executables.

[Macro]AC_CHECK_TOOL (variable, prog-to-check-for,
[value-if-not-found], [path = ‘$PATH’])

Like AC_CHECK_PROG, but first looks for prog-to-check-for with a prefix of the host
type as specified by ‘--host’, followed by a dash. For example, if the user runs
‘configure --build=x86_64-gnu --host=i386-gnu’, then this call:

AC_CHECK_TOOL([RANLIB], [ranlib], [:])

sets RANLIB to ‘i386-gnu-ranlib’ if that program exists in path, or otherwise to
‘ranlib’ if that program exists in path, or to ‘:’ if neither program exists.

When cross-compiling, this macro will issue a warning if no program prefixed with
the host type could be found. For more information, see Section 13.1 [Specifying the
system type], page 229.

Chapter 5: Existing Tests 45

[Macro]AC_CHECK_TARGET_TOOLS (variable, progs-to-check-for,
[value-if-not-found], [path = ‘$PATH’])

Like AC_CHECK_TARGET_TOOL, each of the tools in the list progs-to-check-for are
checked with a prefix of the target type as determined by AC_CANONICAL_TARGET,
followed by a dash (see Section 13.2 [Canonicalizing], page 230). If none of the tools
can be found with a prefix, and if the build and target types are equal, then the
first one without a prefix is used. If a tool is found, set variable to the name of
that program. If none of the tools in the list are found, set variable to value-if-not-
found; if value-if-not-found is not specified, the value of variable is not changed. Calls
AC_SUBST for variable.

[Macro]AC_CHECK_TOOLS (variable, progs-to-check-for,
[value-if-not-found], [path = ‘$PATH’])

Like AC_CHECK_TOOL, each of the tools in the list progs-to-check-for are checked with
a prefix of the host type as determined by AC_CANONICAL_HOST, followed by a dash
(see Section 13.2 [Canonicalizing], page 230). If none of the tools can be found with
a prefix, then the first one without a prefix is used. If a tool is found, set variable to
the name of that program. If none of the tools in the list are found, set variable to
value-if-not-found; if value-if-not-found is not specified, the value of variable is not
changed. Calls AC_SUBST for variable.
When cross-compiling, this macro will issue a warning if no program prefixed with
the host type could be found. For more information, see Section 13.1 [Specifying the
system type], page 229.

[Macro]AC_PATH_PROG (variable, prog-to-check-for,
[value-if-not-found], [path = ‘$PATH’])

Like AC_CHECK_PROG, but set variable to the absolute name of prog-to-check-for if
found.

[Macro]AC_PATH_PROGS (variable, progs-to-check-for,
[value-if-not-found], [path = ‘$PATH’])

Like AC_CHECK_PROGS, but if any of progs-to-check-for are found, set variable to the
absolute name of the program found.

[Macro]AC_PATH_PROGS_FEATURE_CHECK (variable, progs-to-check-for,
feature-test, [action-if-not-found], [path = ‘$PATH’])

This macro was introduced in Autoconf 2.62. If variable is not empty, then set
the cache variable $ac_cv_path_variable to its value. Otherwise, check for each
program in the blank-separated list progs-to-check-for existing in path. For each
program found, execute feature-test with $ac_path_variable set to the absolute
name of the candidate program. If no invocation of feature-test sets the shell variable
$ac_cv_path_variable , then action-if-not-found is executed. feature-test will be
run even when ac_cv_path_variable is set, to provide the ability to choose a better
candidate found later in path; to accept the current setting and bypass all futher
checks, feature-test can execute ac_path_variable_found=:.
Note that this macro has some subtle differences from AC_CHECK_PROGS. It is de-
signed to be run inside AC_CACHE_VAL, therefore, it should have no side effects. In

46 Autoconf

particular, variable is not set to the final value of ac_cv_path_variable , nor is AC_
SUBST automatically run. Also, on failure, any action can be performed, whereas
AC_CHECK_PROGS only performs variable=value-if-not-found .

Here is an example, similar to what Autoconf uses in its own configure script. It will
search for an implementation of m4 that supports the indir builtin, even if it goes by
the name gm4 or is not the first implementation on PATH.

AC_CACHE_CHECK([for m4 that supports indir], [ac_cv_path_M4],
[AC_PATH_PROGS_FEATURE_CHECK([M4], [m4 gm4],
[[m4out=‘echo ’changequote([,])indir([divnum])’ | $ac_path_M4‘
test "x$m4out" = x0 \
&& ac_cv_path_M4=$ac_path_M4 ac_path_M4_found=:]],

[AC_MSG_ERROR([could not find m4 that supports indir])])])
AC_SUBST([M4], [$ac_cv_path_M4])

[Macro]AC_PATH_TARGET_TOOL (variable, prog-to-check-for,
[value-if-not-found], [path = ‘$PATH’])

Like AC_CHECK_TARGET_TOOL, but set variable to the absolute name of the program
if it is found.

[Macro]AC_PATH_TOOL (variable, prog-to-check-for,
[value-if-not-found], [path = ‘$PATH’])

Like AC_CHECK_TOOL, but set variable to the absolute name of the program if it is
found.

When cross-compiling, this macro will issue a warning if no program prefixed with
the host type could be found. For more information, see Section 13.1 [Specifying the
system type], page 229.

5.3 Files

You might also need to check for the existence of files. Before using these macros, ask
yourself whether a runtime test might not be a better solution. Be aware that, like most
Autoconf macros, they test a feature of the host machine, and therefore, they die when
cross-compiling.

[Macro]AC_CHECK_FILE (file, [action-if-found], [action-if-not-found])
Check whether file file exists on the native system. If it is found, execute action-if-
found, otherwise do action-if-not-found, if given.

[Macro]AC_CHECK_FILES (files, [action-if-found], [action-if-not-found])
Executes AC_CHECK_FILE once for each file listed in files. Additionally, defines
‘HAVE_file ’ (see Section 5.1.1 [Standard Symbols], page 39) for each file found.

5.4 Library Files

The following macros check for the presence of certain C, C++, or Fortran library archive
files.

Chapter 5: Existing Tests 47

[Macro]AC_CHECK_LIB (library, function, [action-if-found],
[action-if-not-found], [other-libraries])

Test whether the library library is available by trying to link a test program that
calls function function with the library. function should be a function provided by
the library. Use the base name of the library; e.g., to check for ‘-lmp’, use ‘mp’ as the
library argument.

action-if-found is a list of shell commands to run if the link with the library succeeds;
action-if-not-found is a list of shell commands to run if the link fails. If action-if-
found is not specified, the default action prepends ‘-llibrary ’ to LIBS and defines
‘HAVE_LIBlibrary ’ (in all capitals). This macro is intended to support building
LIBS in a right-to-left (least-dependent to most-dependent) fashion such that library
dependencies are satisfied as a natural side effect of consecutive tests. Linkers are
sensitive to library ordering so the order in which LIBS is generated is important to
reliable detection of libraries.

If linking with library results in unresolved symbols that would be resolved by linking
with additional libraries, give those libraries as the other-libraries argument, separated
by spaces: e.g., ‘-lXt -lX11’. Otherwise, this macro fails to detect that library is
present, because linking the test program always fails with unresolved symbols. The
other-libraries argument should be limited to cases where it is desirable to test for
one library in the presence of another that is not already in LIBS.

AC_CHECK_LIB requires some care in usage, and should be avoided in some common
cases. Many standard functions like gethostbyname appear in the standard C library
on some hosts, and in special libraries like nsl on other hosts. On some hosts the
special libraries contain variant implementations that you may not want to use. These
days it is normally better to use AC_SEARCH_LIBS([gethostbyname], [nsl]) instead
of AC_CHECK_LIB([nsl], [gethostbyname]).

[Macro]AC_SEARCH_LIBS (function, search-libs, [action-if-found],
[action-if-not-found], [other-libraries])

Search for a library defining function if it’s not already available. This equates to call-
ing ‘AC_LINK_IFELSE([AC_LANG_CALL([], [function])])’ first with no libraries,
then for each library listed in search-libs.

Add ‘-llibrary ’ to LIBS for the first library found to contain function, and run
action-if-found. If the function is not found, run action-if-not-found.

If linking with library results in unresolved symbols that would be resolved by linking
with additional libraries, give those libraries as the other-libraries argument, separated
by spaces: e.g., ‘-lXt -lX11’. Otherwise, this macro fails to detect that function is
present, because linking the test program always fails with unresolved symbols.

5.5 Library Functions

The following macros check for particular C library functions. If there is no macro specifi-
cally defined to check for a function you need, and you don’t need to check for any special
properties of it, then you can use one of the general function-check macros.

48 Autoconf

5.5.1 Portability of C Functions

Most usual functions can either be missing, or be buggy, or be limited on some architectures.
This section tries to make an inventory of these portability issues. By definition, this list
always requires additions. Please help us keeping it as complete as possible.

exit On ancient hosts, exit returned int. This is because exit predates void, and
there was a long tradition of it returning int.

On current hosts, the problem more likely is that exit is not declared, due to
C++ problems of some sort or another. For this reason we suggest that test
programs not invoke exit, but return from main instead.

free The C standard says a call free (NULL) does nothing, but some old systems
don’t support this (e.g., NextStep).

isinf
isnan The C99 standard says that isinf and isnan are macros. On some systems

just macros are available (e.g., HP-UX and Solaris 10), on some systems both
macros and functions (e.g., glibc 2.3.2), and on some systems only functions
(e.g., IRIX 6 and Solaris 9). In some cases these functions are declared in
nonstandard headers like <sunmath.h> and defined in non-default libraries like
‘-lm’ or ‘-lsunmath’.

The C99 isinf and isnan macros work correctly with long double arguments,
but pre-C99 systems that use functions typically assume double arguments. On
such a system, isinf incorrectly returns true for a finite long double argument
that is outside the range of double.

To work around this porting mess, you can use code like the following.
#include <math.h>

#ifndef isnan

define isnan(x) \

(sizeof (x) == sizeof (long double) ? isnan_ld (x) \

: sizeof (x) == sizeof (double) ? isnan_d (x) \

: isnan_f (x))

static inline int isnan_f (float x) { return x != x; }

static inline int isnan_d (double x) { return x != x; }

static inline int isnan_ld (long double x) { return x != x; }

#endif

#ifndef isinf

define isinf(x) \

(sizeof (x) == sizeof (long double) ? isinf_ld (x) \

: sizeof (x) == sizeof (double) ? isinf_d (x) \

: isinf_f (x))

static inline int isinf_f (float x) { return isnan (x - x); }

static inline int isinf_d (double x) { return isnan (x - x); }

static inline int isinf_ld (long double x) { return isnan (x - x); }

#endif

Use AC_C_INLINE (see Section 5.10.3 [C Compiler], page 74) so that this code
works on compilers that lack the inline keyword. Some optimizing compilers
mishandle these definitions, but systems with that bug typically have missing
or broken isnan functions anyway, so it’s probably not worth worrying about.

Chapter 5: Existing Tests 49

malloc The C standard says a call malloc (0) is implementation dependent. It can
return either NULL or a new non-null pointer. The latter is more common (e.g.,
the GNU C Library) but is by no means universal. AC_FUNC_MALLOC can be
used to insist on non-NULL (see Section 5.5.2 [Particular Functions], page 50).

putenv Posix prefers setenv to putenv; among other things, putenv is not required of
all Posix implementations, but setenv is.
Posix specifies that putenv puts the given string directly in environ, but some
systems make a copy of it instead (e.g., glibc 2.0, or BSD). And when a copy is
made, unsetenv might not free it, causing a memory leak (e.g., FreeBSD 4).
On some systems putenv ("FOO") removes ‘FOO’ from the environment, but
this is not standard usage and it dumps core on some systems (e.g., AIX).
On MinGW, a call putenv ("FOO=") removes ‘FOO’ from the environment,
rather than inserting it with an empty value.

realloc The C standard says a call realloc (NULL, size) is equivalent to malloc
(size), but some old systems don’t support this (e.g., NextStep).

signal handler
Normally signal takes a handler function with a return type of void, but some
old systems required int instead. Any actual int value returned is not used;
this is only a difference in the function prototype demanded.
All systems we know of in current use return void. The int was to support
K&R C, where of course void is not available. The obsolete macro AC_TYPE_
SIGNAL (see [AC TYPE SIGNAL], page 264) can be used to establish the cor-
rect type in all cases.
In most cases, it is more robust to use sigaction when it is available, rather
than signal.

snprintf The C99 standard says that if the output array isn’t big enough and if no other
errors occur, snprintf and vsnprintf truncate the output and return the
number of bytes that ought to have been produced. Some older systems return
the truncated length (e.g., GNU C Library 2.0.x or irix 6.5), some a negative
value (e.g., earlier GNU C Library versions), and some the buffer length without
truncation (e.g., 32-bit Solaris 7). Also, some buggy older systems ignore the
length and overrun the buffer (e.g., 64-bit Solaris 7).

sprintf The C standard says sprintf and vsprintf return the number of bytes written.
On some ancient systems (SunOS 4 for instance) they return the buffer pointer
instead, but these no longer need to be worried about.

sscanf On various old systems, e.g., HP-UX 9, sscanf requires that its input string
be writable (though it doesn’t actually change it). This can be a problem
when using gcc since it normally puts constant strings in read-only memory
(see section “Incompatibilities” in Using and Porting the GNU Compiler Col-
lection). Apparently in some cases even having format strings read-only can be
a problem.

strerror_r
Posix specifies that strerror_r returns an int, but many systems (e.g., GNU C
Library version 2.2.4) provide a different version returning a char *. AC_FUNC_

50 Autoconf

STRERROR_R can detect which is in use (see Section 5.5.2 [Particular Functions],
page 50).

strnlen AIX 4.3 provides a broken version which produces the following results:
strnlen ("foobar", 0) = 0
strnlen ("foobar", 1) = 3
strnlen ("foobar", 2) = 2
strnlen ("foobar", 3) = 1
strnlen ("foobar", 4) = 0
strnlen ("foobar", 5) = 6
strnlen ("foobar", 6) = 6
strnlen ("foobar", 7) = 6
strnlen ("foobar", 8) = 6
strnlen ("foobar", 9) = 6

sysconf _SC_PAGESIZE is standard, but some older systems (e.g., HP-UX 9) have _SC_
PAGE_SIZE instead. This can be tested with #ifdef.

unlink The Posix spec says that unlink causes the given file to be removed only after
there are no more open file handles for it. Some non-Posix hosts have trouble
with this requirement, though, and some DOS variants even corrupt the file
system.

unsetenv On MinGW, unsetenv is not available, but a variable ‘FOO’ can be removed
with a call putenv ("FOO="), as described under putenv above.

va_copy The C99 standard provides va_copy for copying va_list variables. It may be
available in older environments too, though possibly as __va_copy (e.g., gcc in
strict pre-C99 mode). These can be tested with #ifdef. A fallback to memcpy
(&dst, &src, sizeof (va_list)) gives maximum portability.

va_list va_list is not necessarily just a pointer. It can be a struct (e.g., gcc on
Alpha), which means NULL is not portable. Or it can be an array (e.g., gcc in
some PowerPC configurations), which means as a function parameter it can be
effectively call-by-reference and library routines might modify the value back
in the caller (e.g., vsnprintf in the GNU C Library 2.1).

Signed >> Normally the C >> right shift of a signed type replicates the high bit, giving a
so-called “arithmetic” shift. But care should be taken since Standard C doesn’t
require that behavior. On those few processors without a native arithmetic
shift (for instance Cray vector systems) zero bits may be shifted in, the same
as a shift of an unsigned type.

Integer / C divides signed integers by truncating their quotient toward zero, yielding the
same result as Fortran. However, before C99 the standard allowed C imple-
mentations to take the floor or ceiling of the quotient in some cases. Hardly
any implementations took advantage of this freedom, though, and it’s probably
not worth worrying about this issue nowadays.

5.5.2 Particular Function Checks

These macros check for particular C functions—whether they exist, and in some cases how
they respond when given certain arguments.

Chapter 5: Existing Tests 51

[Macro]AC_FUNC_ALLOCA
Check how to get alloca. Tries to get a builtin version by checking for ‘alloca.h’
or the predefined C preprocessor macros __GNUC__ and _AIX. If this macro finds
‘alloca.h’, it defines HAVE_ALLOCA_H.

If those attempts fail, it looks for the function in the standard C library. If any
of those methods succeed, it defines HAVE_ALLOCA. Otherwise, it sets the output
variable ALLOCA to ‘${LIBOBJDIR}alloca.o’ and defines C_ALLOCA (so programs can
periodically call ‘alloca (0)’ to garbage collect). This variable is separate from
LIBOBJS so multiple programs can share the value of ALLOCA without needing to
create an actual library, in case only some of them use the code in LIBOBJS. The
‘${LIBOBJDIR}’ prefix serves the same purpose as in LIBOBJS (see Section 17.6.4
[AC LIBOBJ vs LIBOBJS], page 272).

This macro does not try to get alloca from the System V R3 ‘libPW’ or the System
V R4 ‘libucb’ because those libraries contain some incompatible functions that cause
trouble. Some versions do not even contain alloca or contain a buggy version. If
you still want to use their alloca, use ar to extract ‘alloca.o’ from them instead of
compiling ‘alloca.c’.

Source files that use alloca should start with a piece of code like the following, to
declare it properly.

#ifdef HAVE_ALLOCA_H
include <alloca.h>
#elif defined __GNUC__
define alloca __builtin_alloca
#elif defined _AIX
define alloca __alloca
#elif defined _MSC_VER
include <malloc.h>
define alloca _alloca
#else
include <stddef.h>
ifdef __cplusplus
extern "C"
endif
void *alloca (size_t);
#endif

[Macro]AC_FUNC_CHOWN
If the chown function is available and works (in particular, it should accept ‘-1’ for
uid and gid), define HAVE_CHOWN.

[Macro]AC_FUNC_CLOSEDIR_VOID
If the closedir function does not return a meaningful value, define CLOSEDIR_VOID.
Otherwise, callers ought to check its return value for an error indicator.

Currently this test is implemented by running a test program. When cross compiling
the pessimistic assumption that closedir does not return a meaningful value is made.

52 Autoconf

This macro is obsolescent, as closedir returns a meaningful value on current systems.
New programs need not use this macro.

[Macro]AC_FUNC_ERROR_AT_LINE
If the error_at_line function is not found, require an AC_LIBOBJ replacement of
‘error’.

[Macro]AC_FUNC_FNMATCH
If the fnmatch function conforms to Posix, define HAVE_FNMATCH. Detect common
implementation bugs, for example, the bugs in Solaris 2.4.

Unlike the other specific AC_FUNC macros, AC_FUNC_FNMATCH does not replace a bro-
ken/missing fnmatch. This is for historical reasons. See AC_REPLACE_FNMATCH below.

This macro is obsolescent. New programs should use Gnulib’s fnmatch-posix mod-
ule. See Section 2.2 [Gnulib], page 3.

[Macro]AC_FUNC_FNMATCH_GNU
Behave like AC_REPLACE_FNMATCH (replace) but also test whether fnmatch supports
GNU extensions. Detect common implementation bugs, for example, the bugs in the
GNU C Library 2.1.

This macro is obsolescent. New programs should use Gnulib’s fnmatch-gnu module.
See Section 2.2 [Gnulib], page 3.

[Macro]AC_FUNC_FORK
This macro checks for the fork and vfork functions. If a working fork is found,
define HAVE_WORKING_FORK. This macro checks whether fork is just a stub by trying
to run it.

If ‘vfork.h’ is found, define HAVE_VFORK_H. If a working vfork is found, define HAVE_
WORKING_VFORK. Otherwise, define vfork to be fork for backward compatibility
with previous versions of autoconf. This macro checks for several known errors in
implementations of vfork and considers the system to not have a working vfork if
it detects any of them. It is not considered to be an implementation error if a child’s
invocation of signal modifies the parent’s signal handler, since child processes rarely
change their signal handlers.

Since this macro defines vfork only for backward compatibility with previous versions
of autoconf you’re encouraged to define it yourself in new code:

#ifndef HAVE_WORKING_VFORK
define vfork fork
#endif

[Macro]AC_FUNC_FSEEKO
If the fseeko function is available, define HAVE_FSEEKO. Define _LARGEFILE_SOURCE if
necessary to make the prototype visible on some systems (e.g., glibc 2.2). Otherwise
linkage problems may occur when compiling with AC_SYS_LARGEFILE on largefile-
sensitive systems where off_t does not default to a 64bit entity. All systems with
fseeko also supply ftello.

Chapter 5: Existing Tests 53

[Macro]AC_FUNC_GETGROUPS
If the getgroups function is available and works (unlike on Ultrix 4.3, where
‘getgroups (0, 0)’ always fails), define HAVE_GETGROUPS. Set GETGROUPS_LIBS to
any libraries needed to get that function. This macro runs AC_TYPE_GETGROUPS.

[Macro]AC_FUNC_GETLOADAVG
Check how to get the system load averages. To perform its tests properly, this macro
needs the file ‘getloadavg.c’; therefore, be sure to set the AC_LIBOBJ replacement di-
rectory properly (see Section 5.5.3 [Generic Functions], page 57, AC_CONFIG_LIBOBJ_
DIR).
If the system has the getloadavg function, define HAVE_GETLOADAVG, and set
GETLOADAVG_LIBS to any libraries necessary to get that function. Also add
GETLOADAVG_LIBS to LIBS. Otherwise, require an AC_LIBOBJ replacement for
‘getloadavg’ with source code in ‘dir/getloadavg.c’, and possibly define several
other C preprocessor macros and output variables:
1. Define C_GETLOADAVG.
2. Define SVR4, DGUX, UMAX, or UMAX4_3 if on those systems.
3. If ‘nlist.h’ is found, define HAVE_NLIST_H.
4. If ‘struct nlist’ has an ‘n_un.n_name’ member, define HAVE_STRUCT_NLIST_N_

UN_N_NAME. The obsolete symbol NLIST_NAME_UNION is still defined, but do not
depend upon it.

5. Programs may need to be installed set-group-ID (or set-user-ID) for getloadavg
to work. In this case, define GETLOADAVG_PRIVILEGED, set the output variable
NEED_SETGID to ‘true’ (and otherwise to ‘false’), and set KMEM_GROUP to the
name of the group that should own the installed program.

The AC_FUNC_GETLOADAVG macro is obsolescent. New programs should use Gnulib’s
getloadavg module. See Section 2.2 [Gnulib], page 3.

[Macro]AC_FUNC_GETMNTENT
Check for getmntent in the standard C library, and then in the ‘sun’, ‘seq’, and ‘gen’
libraries, for unicos, irix 4, ptx, and UnixWare, respectively. Then, if getmntent
is available, define HAVE_GETMNTENT.

[Macro]AC_FUNC_GETPGRP
Define GETPGRP_VOID if it is an error to pass 0 to getpgrp; this is the Posix behavior.
On older BSD systems, you must pass 0 to getpgrp, as it takes an argument and
behaves like Posix’s getpgid.

#ifdef GETPGRP_VOID
pid = getpgrp ();

#else
pid = getpgrp (0);

#endif

This macro does not check whether getpgrp exists at all; if you need to work in that
situation, first call AC_CHECK_FUNC for getpgrp.
This macro is obsolescent, as current systems have a getpgrp whose signature con-
forms to Posix. New programs need not use this macro.

54 Autoconf

[Macro]AC_FUNC_LSTAT_FOLLOWS_SLASHED_SYMLINK
If ‘link’ is a symbolic link, then lstat should treat ‘link/’ the same as ‘link/.’.
However, many older lstat implementations incorrectly ignore trailing slashes.
It is safe to assume that if lstat incorrectly ignores trailing slashes, then other
symbolic-link-aware functions like unlink also incorrectly ignore trailing slashes.
If lstat behaves properly, define LSTAT_FOLLOWS_SLASHED_SYMLINK, otherwise re-
quire an AC_LIBOBJ replacement of lstat.

[Macro]AC_FUNC_MALLOC
If the malloc function is compatible with the GNU C library malloc (i.e., ‘malloc (0)’
returns a valid pointer), define HAVE_MALLOC to 1. Otherwise define HAVE_MALLOC to
0, ask for an AC_LIBOBJ replacement for ‘malloc’, and define malloc to rpl_malloc
so that the native malloc is not used in the main project.
Typically, the replacement file ‘malloc.c’ should look like (note the ‘#undef malloc’):
#include <config.h>
#undef malloc

#include <sys/types.h>

void *malloc ();

/* Allocate an N-byte block of memory from the heap.
If N is zero, allocate a 1-byte block. */

void *
rpl_malloc (size_t n)
{
if (n == 0)
n = 1;

return malloc (n);
}

[Macro]AC_FUNC_MEMCMP
If the memcmp function is not available, or does not work on 8-bit data (like the one on
SunOS 4.1.3), or fails when comparing 16 bytes or more and with at least one buffer
not starting on a 4-byte boundary (such as the one on NeXT x86 OpenStep), require
an AC_LIBOBJ replacement for ‘memcmp’.
This macro is obsolescent, as current systems have a working memcmp. New programs
need not use this macro.

[Macro]AC_FUNC_MBRTOWC
Define HAVE_MBRTOWC to 1 if the function mbrtowc and the type mbstate_t are prop-
erly declared.

[Macro]AC_FUNC_MKTIME
If the mktime function is not available, or does not work correctly, require an AC_
LIBOBJ replacement for ‘mktime’. For the purposes of this test, mktime should con-
form to the Posix standard and should be the inverse of localtime.

Chapter 5: Existing Tests 55

[Macro]AC_FUNC_MMAP
If the mmap function exists and works correctly, define HAVE_MMAP. This checks only
private fixed mapping of already-mapped memory.

[Macro]AC_FUNC_OBSTACK
If the obstacks are found, define HAVE_OBSTACK, else require an AC_LIBOBJ replace-
ment for ‘obstack’.

[Macro]AC_FUNC_REALLOC
If the realloc function is compatible with the GNU C library realloc (i.e., ‘realloc
(NULL, 0)’ returns a valid pointer), define HAVE_REALLOC to 1. Otherwise define
HAVE_REALLOC to 0, ask for an AC_LIBOBJ replacement for ‘realloc’, and define
realloc to rpl_realloc so that the native realloc is not used in the main project.
See AC_FUNC_MALLOC for details.

[Macro]AC_FUNC_SELECT_ARGTYPES
Determines the correct type to be passed for each of the select function’s arguments,
and defines those types in SELECT_TYPE_ARG1, SELECT_TYPE_ARG234, and SELECT_
TYPE_ARG5 respectively. SELECT_TYPE_ARG1 defaults to ‘int’, SELECT_TYPE_ARG234
defaults to ‘int *’, and SELECT_TYPE_ARG5 defaults to ‘struct timeval *’.

This macro is obsolescent, as current systems have a select whose signature conforms
to Posix. New programs need not use this macro.

[Macro]AC_FUNC_SETPGRP
If setpgrp takes no argument (the Posix version), define SETPGRP_VOID. Otherwise,
it is the BSD version, which takes two process IDs as arguments. This macro does
not check whether setpgrp exists at all; if you need to work in that situation, first
call AC_CHECK_FUNC for setpgrp.

This macro is obsolescent, as current systems have a setpgrp whose signature con-
forms to Posix. New programs need not use this macro.

[Macro]AC_FUNC_STAT
[Macro]AC_FUNC_LSTAT

Determine whether stat or lstat have the bug that it succeeds when given the zero-
length file name as argument. The stat and lstat from SunOS 4.1.4 and the Hurd
(as of 1998-11-01) do this.

If it does, then define HAVE_STAT_EMPTY_STRING_BUG (or HAVE_LSTAT_EMPTY_
STRING_BUG) and ask for an AC_LIBOBJ replacement of it.

These macros are obsolescent, as no current systems have the bug. New programs
need not use these macros.

[Macro]AC_FUNC_STRCOLL
If the strcoll function exists and works correctly, define HAVE_STRCOLL. This does
a bit more than ‘AC_CHECK_FUNCS(strcoll)’, because some systems have incorrect
definitions of strcoll that should not be used.

56 Autoconf

[Macro]AC_FUNC_STRERROR_R
If strerror_r is available, define HAVE_STRERROR_R, and if it is declared, define
HAVE_DECL_STRERROR_R. If it returns a char * message, define STRERROR_R_CHAR_P;
otherwise it returns an int error number. The Thread-Safe Functions option of Posix
requires strerror_r to return int, but many systems (including, for example, version
2.2.4 of the GNU C Library) return a char * value that is not necessarily equal to the
buffer argument.

[Macro]AC_FUNC_STRFTIME
Check for strftime in the ‘intl’ library, for SCO Unix. Then, if strftime is avail-
able, define HAVE_STRFTIME.
This macro is obsolescent, as no current systems require the ‘intl’ library for
strftime. New programs need not use this macro.

[Macro]AC_FUNC_STRTOD
If the strtod function does not exist or doesn’t work correctly, ask for an AC_LIBOBJ
replacement of ‘strtod’. In this case, because ‘strtod.c’ is likely to need ‘pow’, set
the output variable POW_LIB to the extra library needed.

[Macro]AC_FUNC_STRTOLD
If the strtold function exists and conforms to C99, define HAVE_STRTOLD.

[Macro]AC_FUNC_STRNLEN
If the strnlen function is not available, or is buggy (like the one from AIX 4.3),
require an AC_LIBOBJ replacement for it.

[Macro]AC_FUNC_UTIME_NULL
If ‘utime (file, NULL)’ sets file’s timestamp to the present, define HAVE_UTIME_
NULL.
This macro is obsolescent, as all current systems have a utime that behaves this way.
New programs need not use this macro.

[Macro]AC_FUNC_VPRINTF
If vprintf is found, define HAVE_VPRINTF. Otherwise, if _doprnt is found, define
HAVE_DOPRNT. (If vprintf is available, you may assume that vfprintf and vsprintf
are also available.)
This macro is obsolescent, as all current systems have vprintf. New programs need
not use this macro.

[Macro]AC_REPLACE_FNMATCH
If the fnmatch function does not conform to Posix (see AC_FUNC_FNMATCH), ask for
its AC_LIBOBJ replacement.
The files ‘fnmatch.c’, ‘fnmatch_loop.c’, and ‘fnmatch_.h’ in the AC_LIBOBJ replace-
ment directory are assumed to contain a copy of the source code of GNU fnmatch.
If necessary, this source code is compiled as an AC_LIBOBJ replacement, and the
‘fnmatch_.h’ file is linked to ‘fnmatch.h’ so that it can be included in place of the
system <fnmatch.h>.

Chapter 5: Existing Tests 57

This macro is obsolescent, as it assumes the use of particular source files. New
programs should use Gnulib’s fnmatch-posix module, which provides this macro
along with the source files. See Section 2.2 [Gnulib], page 3.

5.5.3 Generic Function Checks

These macros are used to find functions not covered by the “particular” test macros. If the
functions might be in libraries other than the default C library, first call AC_CHECK_LIB for
those libraries. If you need to check the behavior of a function as well as find out whether
it is present, you have to write your own test for it (see Chapter 6 [Writing Tests], page 91).

[Macro]AC_CHECK_FUNC (function, [action-if-found],
[action-if-not-found])

If C function function is available, run shell commands action-if-found, otherwise
action-if-not-found. If you just want to define a symbol if the function is available,
consider using AC_CHECK_FUNCS instead. This macro checks for functions with C link-
age even when AC_LANG(C++) has been called, since C is more standardized than C++.
(see Section 6.1 [Language Choice], page 91, for more information about selecting the
language for checks.)

[Macro]AC_CHECK_FUNCS (function . . . , [action-if-found],
[action-if-not-found])

For each function enumerated in the blank-or-newline-separated argument list, define
HAVE_function (in all capitals) if it is available. If action-if-found is given, it is
additional shell code to execute when one of the functions is found. You can give it
a value of ‘break’ to break out of the loop on the first match. If action-if-not-found
is given, it is executed when one of the functions is not found.

[Macro]AC_CHECK_FUNCS_ONCE (function . . .)
For each function enumerated in the blank-or-newline-separated argument list, define
HAVE_function (in all capitals) if it is available. This is a once-only variant of AC_
CHECK_FUNCS. It generates the checking code at most once, so that configure is
smaller and faster; but the checks cannot be conditionalized and are always done
once, early during the configure run.

Autoconf follows a philosophy that was formed over the years by those who have strug-
gled for portability: isolate the portability issues in specific files, and then program as if
you were in a Posix environment. Some functions may be missing or unfixable, and your
package must be ready to replace them.

Suitable replacements for many such problem functions are available from Gnulib (see
Section 2.2 [Gnulib], page 3).

[Macro]AC_LIBOBJ (function)
Specify that ‘function.c’ must be included in the executables to replace a missing
or broken implementation of function.
Technically, it adds ‘function.$ac_objext’ to the output variable LIBOBJS if it is
not already in, and calls AC_LIBSOURCE for ‘function.c’. You should not directly
change LIBOBJS, since this is not traceable.

58 Autoconf

[Macro]AC_LIBSOURCE (file)
Specify that file might be needed to compile the project. If you need to know what
files might be needed by a ‘configure.ac’, you should trace AC_LIBSOURCE. file must
be a literal.

This macro is called automatically from AC_LIBOBJ, but you must call it explicitly
if you pass a shell variable to AC_LIBOBJ. In that case, since shell variables cannot
be traced statically, you must pass to AC_LIBSOURCE any possible files that the shell
variable might cause AC_LIBOBJ to need. For example, if you want to pass a variable
$foo_or_bar to AC_LIBOBJ that holds either "foo" or "bar", you should do:

AC_LIBSOURCE([foo.c])
AC_LIBSOURCE([bar.c])
AC_LIBOBJ([$foo_or_bar])

There is usually a way to avoid this, however, and you are encouraged to simply call
AC_LIBOBJ with literal arguments.

Note that this macro replaces the obsolete AC_LIBOBJ_DECL, with slightly different
semantics: the old macro took the function name, e.g., foo, as its argument rather
than the file name.

[Macro]AC_LIBSOURCES (files)
Like AC_LIBSOURCE, but accepts one or more files in a comma-separated M4 list.
Thus, the above example might be rewritten:

AC_LIBSOURCES([foo.c, bar.c])
AC_LIBOBJ([$foo_or_bar])

[Macro]AC_CONFIG_LIBOBJ_DIR (directory)
Specify that AC_LIBOBJ replacement files are to be found in directory, a name rel-
ative to the top level of the source tree. The replacement directory defaults to
‘.’, the top level directory, and the most typical value is ‘lib’, corresponding to
‘AC_CONFIG_LIBOBJ_DIR([lib])’.

configure might need to know the replacement directory for the following reasons:
(i) some checks use the replacement files, (ii) some macros bypass broken system
headers by installing links to the replacement headers (iii) when used in conjunction
with Automake, within each makefile, directory is used as a relative path from $(top_
srcdir) to each object named in LIBOBJS and LTLIBOBJS, etc.

It is common to merely check for the existence of a function, and ask for its AC_LIBOBJ
replacement if missing. The following macro is a convenient shorthand.

[Macro]AC_REPLACE_FUNCS (function . . .)
Like AC_CHECK_FUNCS, but uses ‘AC_LIBOBJ(function)’ as action-if-not-found.
You can declare your replacement function by enclosing the prototype in ‘#ifndef
HAVE_function ’. If the system has the function, it probably declares it in a header
file you should be including, so you shouldn’t redeclare it lest your declaration
conflict.

Chapter 5: Existing Tests 59

5.6 Header Files

The following macros check for the presence of certain C header files. If there is no macro
specifically defined to check for a header file you need, and you don’t need to check for any
special properties of it, then you can use one of the general header-file check macros.

5.6.1 Portability of Headers

This section tries to collect knowledge about common headers, and the problems they cause.
By definition, this list always requires additions. Please help us keeping it as complete as
possible.

‘limits.h’
C99 says that ‘limits.h’ defines LLONG_MIN, LLONG_MAX, and ULLONG_MAX, but
many almost-C99 environments (e.g., default GCC 4.0.2 + glibc 2.4) do not
define them.

‘inttypes.h’ vs. ‘stdint.h’
The C99 standard says that ‘inttypes.h’ includes ‘stdint.h’, so there’s no
need to include ‘stdint.h’ separately in a standard environment. Some im-
plementations have ‘inttypes.h’ but not ‘stdint.h’ (e.g., Solaris 7), but we
don’t know of any implementation that has ‘stdint.h’ but not ‘inttypes.h’.

‘linux/irda.h’
It requires ‘linux/types.h’ and ‘sys/socket.h’.

‘linux/random.h’
It requires ‘linux/types.h’.

‘net/if.h’
On Darwin, this file requires that ‘sys/socket.h’ be included beforehand. One
should run:

AC_CHECK_HEADERS([sys/socket.h])
AC_CHECK_HEADERS([net/if.h], [], [],
[#include <stdio.h>
#ifdef STDC_HEADERS
include <stdlib.h>
include <stddef.h>
#else
ifdef HAVE_STDLIB_H
include <stdlib.h>
endif
#endif
#ifdef HAVE_SYS_SOCKET_H
include <sys/socket.h>
#endif
])

‘netinet/if_ether.h’
On Darwin, this file requires that ‘stdio.h’ and ‘sys/socket.h’ be included
beforehand. One should run:

60 Autoconf

AC_CHECK_HEADERS([sys/socket.h])
AC_CHECK_HEADERS([netinet/if_ether.h], [], [],
[#include <stdio.h>
#ifdef STDC_HEADERS
include <stdlib.h>
include <stddef.h>
#else
ifdef HAVE_STDLIB_H
include <stdlib.h>
endif
#endif
#ifdef HAVE_SYS_SOCKET_H
include <sys/socket.h>
#endif
])

‘stdint.h’
See above, item ‘inttypes.h’ vs. ‘stdint.h’.

‘stdlib.h’
On many systems (e.g., Darwin), ‘stdio.h’ is a prerequisite.

‘sys/mount.h’
On FreeBSD 4.8 on ia32 and using gcc version 2.95.4, ‘sys/params.h’ is a
prerequisite.

‘sys/ptem.h’
On Solaris 8, ‘sys/stream.h’ is a prerequisite.

‘sys/socket.h’
On Darwin, ‘stdlib.h’ is a prerequisite.

‘sys/ucred.h’
On Tru64 5.1, ‘sys/types.h’ is a prerequisite.

‘X11/extensions/scrnsaver.h’
Using XFree86, this header requires ‘X11/Xlib.h’, which is probably so required
that you might not even consider looking for it.

AC_CHECK_HEADERS([X11/extensions/scrnsaver.h], [], [],
[[#include <X11/Xlib.h>
]])

5.6.2 Particular Header Checks

These macros check for particular system header files—whether they exist, and in some
cases whether they declare certain symbols.

[Macro]AC_HEADER_ASSERT
Check whether to enable assertions in the style of ‘assert.h’. Assertions are en-
abled by default, but the user can override this by invoking configure with the
‘--disable-assert’ option.

Chapter 5: Existing Tests 61

[Macro]AC_HEADER_DIRENT
Check for the following header files. For the first one that is found and defines ‘DIR’,
define the listed C preprocessor macro:
‘dirent.h’ HAVE_DIRENT_H
‘sys/ndir.h’ HAVE_SYS_NDIR_H
‘sys/dir.h’ HAVE_SYS_DIR_H
‘ndir.h’ HAVE_NDIR_H

The directory-library declarations in your source code should look something like the
following:

#include <sys/types.h>
#ifdef HAVE_DIRENT_H
include <dirent.h>
define NAMLEN(dirent) strlen ((dirent)->d_name)
#else
define dirent direct
define NAMLEN(dirent) ((dirent)->d_namlen)
ifdef HAVE_SYS_NDIR_H
include <sys/ndir.h>
endif
ifdef HAVE_SYS_DIR_H
include <sys/dir.h>
endif
ifdef HAVE_NDIR_H
include <ndir.h>
endif
#endif

Using the above declarations, the program would declare variables to be of type
struct dirent, not struct direct, and would access the length of a directory entry
name by passing a pointer to a struct dirent to the NAMLEN macro.
This macro also checks for the SCO Xenix ‘dir’ and ‘x’ libraries.
This macro is obsolescent, as all current systems with directory libraries have
<dirent.h>. New programs need not use this macro.
Also see AC_STRUCT_DIRENT_D_INO and AC_STRUCT_DIRENT_D_TYPE (see Section 5.8.1
[Particular Structures], page 68).

[Macro]AC_HEADER_MAJOR
If ‘sys/types.h’ does not define major, minor, and makedev, but ‘sys/mkdev.h’
does, define MAJOR_IN_MKDEV; otherwise, if ‘sys/sysmacros.h’ does, define MAJOR_
IN_SYSMACROS.

[Macro]AC_HEADER_RESOLV
Checks for header ‘resolv.h’, checking for prerequisites first. To properly use
‘resolv.h’, your code should contain something like the following:
#ifdef HAVE_SYS_TYPES_H
include <sys/types.h>

62 Autoconf

#endif
#ifdef HAVE_NETINET_IN_H
include <netinet/in.h> /* inet_ functions / structs */
#endif
#ifdef HAVE_ARPA_NAMESER_H
include <arpa/nameser.h> /* DNS HEADER struct */
#endif
#ifdef HAVE_NETDB_H
include <netdb.h>
#endif
#include <resolv.h>

[Macro]AC_HEADER_STAT
If the macros S_ISDIR, S_ISREG, etc. defined in ‘sys/stat.h’ do not work properly
(returning false positives), define STAT_MACROS_BROKEN. This is the case on Tektronix
UTekV, Amdahl UTS and Motorola System V/88.
This macro is obsolescent, as no current systems have the bug. New programs need
not use this macro.

[Macro]AC_HEADER_STDBOOL
If ‘stdbool.h’ exists and conforms to C99, define HAVE_STDBOOL_H to 1; if the type
_Bool is defined, define HAVE__BOOL to 1. To fulfill the C99 requirements, your
‘system.h’ could contain the following code:
#ifdef HAVE_STDBOOL_H
include <stdbool.h>
#else
ifndef HAVE__BOOL
ifdef __cplusplus
typedef bool _Bool;
else
define _Bool signed char
endif
endif
define bool _Bool
define false 0
define true 1
define __bool_true_false_are_defined 1
#endif

Alternatively you can use the ‘stdbool’ package of Gnulib (see Section 2.2 [Gnulib],
page 3); it packages the above code into a replacement header and contains a few
other bells and whistles.

[Macro]AC_HEADER_STDC
Define STDC_HEADERS if the system has C header files conforming to ANSI C89 (ISO
C90). Specifically, this macro checks for ‘stdlib.h’, ‘stdarg.h’, ‘string.h’, and
‘float.h’; if the system has those, it probably has the rest of the C89 header files.

Chapter 5: Existing Tests 63

This macro also checks whether ‘string.h’ declares memchr (and thus presumably the
other mem functions), whether ‘stdlib.h’ declare free (and thus presumably malloc
and other related functions), and whether the ‘ctype.h’ macros work on characters
with the high bit set, as the C standard requires.

If you use this macro, your code can refer to STDC_HEADERS to determine whether the
system has conforming header files (and probably C library functions).

This macro is obsolescent, as current systems have conforming header files. New
programs need not use this macro.

Nowadays ‘string.h’ is part of the C standard and declares functions like strcpy,
and ‘strings.h’ is standardized by Posix and declares BSD functions like bcopy; but
historically, string functions were a major sticking point in this area. If you still want
to worry about portability to ancient systems without standard headers, there is so
much variation that it is probably easier to declare the functions you use than to figure
out exactly what the system header files declare. Some ancient systems contained a
mix of functions from the C standard and from BSD; some were mostly standard
but lacked ‘memmove’; some defined the BSD functions as macros in ‘string.h’ or
‘strings.h’; some had only the BSD functions but ‘string.h’; some declared the
memory functions in ‘memory.h’, some in ‘string.h’; etc. It is probably sufficient to
check for one string function and one memory function; if the library had the standard
versions of those then it probably had most of the others. If you put the following in
‘configure.ac’:

This example is obsolescent.
Nowadays you can omit these macro calls.
AC_HEADER_STDC
AC_CHECK_FUNCS([strchr memcpy])

then, in your code, you can use declarations like this:

/* This example is obsolescent.
Nowadays you can just #include <string.h>. */

#ifdef STDC_HEADERS
include <string.h>
#else
ifndef HAVE_STRCHR
define strchr index
define strrchr rindex
endif
char *strchr (), *strrchr ();
ifndef HAVE_MEMCPY
define memcpy(d, s, n) bcopy ((s), (d), (n))
define memmove(d, s, n) bcopy ((s), (d), (n))
endif
#endif

If you use a function like memchr, memset, strtok, or strspn, which have no BSD
equivalent, then macros don’t suffice to port to ancient hosts; you must provide an im-
plementation of each function. An easy way to incorporate your implementations only

64 Autoconf

when needed (since the ones in system C libraries may be hand optimized) is to, taking
memchr for example, put it in ‘memchr.c’ and use ‘AC_REPLACE_FUNCS([memchr])’.

[Macro]AC_HEADER_SYS_WAIT
If ‘sys/wait.h’ exists and is compatible with Posix, define HAVE_SYS_WAIT_H. In-
compatibility can occur if ‘sys/wait.h’ does not exist, or if it uses the old BSD union
wait instead of int to store a status value. If ‘sys/wait.h’ is not Posix compatible,
then instead of including it, define the Posix macros with their usual interpretations.
Here is an example:

#include <sys/types.h>
#ifdef HAVE_SYS_WAIT_H
include <sys/wait.h>
#endif
#ifndef WEXITSTATUS
define WEXITSTATUS(stat_val) ((unsigned int) (stat_val) >> 8)
#endif
#ifndef WIFEXITED
define WIFEXITED(stat_val) (((stat_val) & 255) == 0)
#endif

This macro is obsolescent, as current systems are compatible with Posix. New pro-
grams need not use this macro.

_POSIX_VERSION is defined when ‘unistd.h’ is included on Posix systems. If there is no
‘unistd.h’, it is definitely not a Posix system. However, some non-Posix systems do have
‘unistd.h’.

The way to check whether the system supports Posix is:

#ifdef HAVE_UNISTD_H
include <sys/types.h>
include <unistd.h>
#endif

#ifdef _POSIX_VERSION
/* Code for Posix systems. */
#endif

[Macro]AC_HEADER_TIME
If a program may include both ‘time.h’ and ‘sys/time.h’, define TIME_WITH_SYS_
TIME. On some ancient systems, ‘sys/time.h’ included ‘time.h’, but ‘time.h’ was
not protected against multiple inclusion, so programs could not explicitly include both
files. This macro is useful in programs that use, for example, struct timeval as well
as struct tm. It is best used in conjunction with HAVE_SYS_TIME_H, which can be
checked for using AC_CHECK_HEADERS([sys/time.h]).

Chapter 5: Existing Tests 65

#ifdef TIME_WITH_SYS_TIME
include <sys/time.h>
include <time.h>
#else
ifdef HAVE_SYS_TIME_H
include <sys/time.h>
else
include <time.h>
endif
#endif

This macro is obsolescent, as current systems can include both files when they exist.
New programs need not use this macro.

[Macro]AC_HEADER_TIOCGWINSZ
If the use of TIOCGWINSZ requires ‘<sys/ioctl.h>’, then define GWINSZ_IN_SYS_
IOCTL. Otherwise TIOCGWINSZ can be found in ‘<termios.h>’.
Use:

#ifdef HAVE_TERMIOS_H
include <termios.h>
#endif

#ifdef GWINSZ_IN_SYS_IOCTL
include <sys/ioctl.h>
#endif

5.6.3 Generic Header Checks

These macros are used to find system header files not covered by the “particular” test
macros. If you need to check the contents of a header as well as find out whether it is
present, you have to write your own test for it (see Chapter 6 [Writing Tests], page 91).

[Macro]AC_CHECK_HEADER (header-file, [action-if-found],
[action-if-not-found], [includes = ‘AC_INCLUDES_DEFAULT’])

If the system header file header-file is compilable, execute shell commands action-if-
found, otherwise execute action-if-not-found. If you just want to define a symbol if
the header file is available, consider using AC_CHECK_HEADERS instead.
includes is a series of include directives, defaulting to AC_INCLUDES_DEFAULT (see
Section 5.1.2 [Default Includes], page 39), which are used prior to the header under
test.
For compatibility issues with older versions of Autoconf, please read below.

[Macro]AC_CHECK_HEADERS (header-file . . . , [action-if-found],
[action-if-not-found], [includes = ‘AC_INCLUDES_DEFAULT’])

For each given system header file header-file in the blank-separated argument list
that exists, define HAVE_header-file (in all capitals). If action-if-found is given, it
is additional shell code to execute when one of the header files is found. You can give
it a value of ‘break’ to break out of the loop on the first match. If action-if-not-found
is given, it is executed when one of the header files is not found.

66 Autoconf

includes is a series of include directives, defaulting to AC_INCLUDES_DEFAULT (see
Section 5.1.2 [Default Includes], page 39), which are used prior to the headers under
test.
For compatibility issues with older versions of Autoconf, please read below.

Previous versions of Autoconf merely checked whether the header was accepted by the
preprocessor. This was changed because the old test was inappropriate for typical uses.
Headers are typically used to compile, not merely to preprocess, and the old behavior
sometimes accepted headers that clashed at compile-time. If you need to check whether a
header is preprocessable, you can use AC_PREPROC_IFELSE (see Section 6.3 [Running the
Preprocessor], page 96).

This scheme, which improves the robustness of the test, also requires that you make
sure that headers that must be included before the header-file be part of the includes, (see
Section 5.1.2 [Default Includes], page 39). If looking for ‘bar.h’, which requires that ‘foo.h’
be included before if it exists, we suggest the following scheme:
AC_CHECK_HEADERS([foo.h])
AC_CHECK_HEADERS([bar.h], [], [],
[#ifdef HAVE_FOO_H
include <foo.h>
endif
])

The following variant generates smaller, faster configure files if you do not need the
full power of AC_CHECK_HEADERS.

[Macro]AC_CHECK_HEADERS_ONCE (header-file . . .)
For each given system header file header-file in the blank-separated argument list
that exists, define HAVE_header-file (in all capitals). This is a once-only variant of
AC_CHECK_HEADERS. It generates the checking code at most once, so that configure
is smaller and faster; but the checks cannot be conditionalized and are always done
once, early during the configure run.

5.7 Declarations

The following macros check for the declaration of variables and functions. If there is no
macro specifically defined to check for a symbol you need, then you can use the general
macros (see Section 5.7.2 [Generic Declarations], page 66) or, for more complex tests, you
may use AC_COMPILE_IFELSE (see Section 6.4 [Running the Compiler], page 97).

5.7.1 Particular Declaration Checks

There are no specific macros for declarations.

5.7.2 Generic Declaration Checks

These macros are used to find declarations not covered by the “particular” test macros.

[Macro]AC_CHECK_DECL (symbol, [action-if-found], [action-if-not-found],
[includes = ‘AC_INCLUDES_DEFAULT’])

If symbol (a function, variable, or constant) is not declared in includes and a declara-
tion is needed, run the shell commands action-if-not-found, otherwise action-if-found.

Chapter 5: Existing Tests 67

includes is a series of include directives, defaulting to AC_INCLUDES_DEFAULT (see Sec-
tion 5.1.2 [Default Includes], page 39), which are used prior to the declaration under
test.

This macro actually tests whether symbol is defined as a macro or can be used as an
r-value, not whether it is really declared, because it is much safer to avoid introducing
extra declarations when they are not needed.

[Macro]AC_CHECK_DECLS (symbols, [action-if-found],
[action-if-not-found], [includes = ‘AC_INCLUDES_DEFAULT’])

For each of the symbols (comma-separated list), define HAVE_DECL_symbol (in all
capitals) to ‘1’ if symbol is declared, otherwise to ‘0’. If action-if-not-found is given,
it is additional shell code to execute when one of the function declarations is needed,
otherwise action-if-found is executed.

includes is a series of include directives, defaulting to AC_INCLUDES_DEFAULT (see
Section 5.1.2 [Default Includes], page 39), which are used prior to the declarations
under test.

This macro uses an M4 list as first argument:

AC_CHECK_DECLS([strdup])
AC_CHECK_DECLS([strlen])
AC_CHECK_DECLS([malloc, realloc, calloc, free])
AC_CHECK_DECLS([j0], [], [], [[#include <math.h>]])

Unlike the other ‘AC_CHECK_*S’ macros, when a symbol is not declared, HAVE_DECL_
symbol is defined to ‘0’ instead of leaving HAVE_DECL_symbol undeclared. When you
are sure that the check was performed, use HAVE_DECL_symbol in #if:

#if !HAVE_DECL_SYMBOL
extern char *symbol;
#endif

If the test may have not been performed, however, because it is safer not to declare
a symbol than to use a declaration that conflicts with the system’s one, you should
use:

#if defined HAVE_DECL_MALLOC && !HAVE_DECL_MALLOC
void *malloc (size_t *s);
#endif

You fall into the second category only in extreme situations: either your files may be
used without being configured, or they are used during the configuration. In most
cases the traditional approach is enough.

[Macro]AC_CHECK_DECLS_ONCE (symbols)
For each of the symbols (comma-separated list), define HAVE_DECL_symbol (in all
capitals) to ‘1’ if symbol is declared in the default include files, otherwise to ‘0’. This is
a once-only variant of AC_CHECK_DECLS. It generates the checking code at most once,
so that configure is smaller and faster; but the checks cannot be conditionalized and
are always done once, early during the configure run.

68 Autoconf

5.8 Structures

The following macros check for the presence of certain members in C structures. If there is
no macro specifically defined to check for a member you need, then you can use the general
structure-member macros (see Section 5.8.2 [Generic Structures], page 68) or, for more
complex tests, you may use AC_COMPILE_IFELSE (see Section 6.4 [Running the Compiler],
page 97).

5.8.1 Particular Structure Checks

The following macros check for certain structures or structure members.

[Macro]AC_STRUCT_DIRENT_D_INO
Perform all the actions of AC_HEADER_DIRENT (see Section 5.6.2 [Particular Headers],
page 60). Then, if struct dirent contains a d_ino member, define HAVE_STRUCT_
DIRENT_D_INO.

HAVE_STRUCT_DIRENT_D_INO indicates only the presence of d_ino, not whether its
contents are always reliable. Traditionally, a zero d_ino indicated a deleted directory
entry, though current systems hide this detail from the user and never return zero
d_ino values. Many current systems report an incorrect d_ino for a directory entry
that is a mount point.

[Macro]AC_STRUCT_DIRENT_D_TYPE
Perform all the actions of AC_HEADER_DIRENT (see Section 5.6.2 [Particular Headers],
page 60). Then, if struct dirent contains a d_type member, define HAVE_STRUCT_
DIRENT_D_TYPE.

[Macro]AC_STRUCT_ST_BLOCKS
If struct stat contains an st_blocks member, define HAVE_STRUCT_STAT_ST_
BLOCKS. Otherwise, require an AC_LIBOBJ replacement of ‘fileblocks’. The former
name, HAVE_ST_BLOCKS is to be avoided, as its support will cease in the future.

[Macro]AC_STRUCT_TM
If ‘time.h’ does not define struct tm, define TM_IN_SYS_TIME, which means that
including ‘sys/time.h’ had better define struct tm.

This macro is obsolescent, as ‘time.h’ defines struct tm in current systems. New
programs need not use this macro.

[Macro]AC_STRUCT_TIMEZONE
Figure out how to get the current timezone. If struct tm has a tm_zone member,
define HAVE_STRUCT_TM_TM_ZONE (and the obsoleted HAVE_TM_ZONE). Otherwise, if
the external array tzname is found, define HAVE_TZNAME; if it is declared, define HAVE_
DECL_TZNAME.

5.8.2 Generic Structure Checks

These macros are used to find structure members not covered by the “particular” test
macros.

Chapter 5: Existing Tests 69

[Macro]AC_CHECK_MEMBER (aggregate.member, [action-if-found],
[action-if-not-found], [includes = ‘AC_INCLUDES_DEFAULT’])

Check whether member is a member of the aggregate aggregate. If no includes are
specified, the default includes are used (see Section 5.1.2 [Default Includes], page 39).

AC_CHECK_MEMBER([struct passwd.pw_gecos], [],
[AC_MSG_ERROR([We need ‘passwd.pw_gecos’!])],
[[#include <pwd.h>]])

You can use this macro for submembers:

AC_CHECK_MEMBER(struct top.middle.bot)

[Macro]AC_CHECK_MEMBERS (members, [action-if-found],
[action-if-not-found], [includes = ‘AC_INCLUDES_DEFAULT’])

Check for the existence of each ‘aggregate.member ’ of members using the previous
macro. When member belongs to aggregate, define HAVE_aggregate_member (in all
capitals, with spaces and dots replaced by underscores). If action-if-found is given,
it is executed for each of the found members. If action-if-not-found is given, it is
executed for each of the members that could not be found.

includes is a series of include directives, defaulting to AC_INCLUDES_DEFAULT (see
Section 5.1.2 [Default Includes], page 39), which are used prior to the members under
test.

This macro uses M4 lists:

AC_CHECK_MEMBERS([struct stat.st_rdev, struct stat.st_blksize])

5.9 Types

The following macros check for C types, either builtin or typedefs. If there is no macro
specifically defined to check for a type you need, and you don’t need to check for any
special properties of it, then you can use a general type-check macro.

5.9.1 Particular Type Checks

These macros check for particular C types in ‘sys/types.h’, ‘stdlib.h’, ‘stdint.h’,
‘inttypes.h’ and others, if they exist.

The Gnulib stdint module is an alternate way to define many of these symbols; it
is useful if you prefer your code to assume a C99-or-better environment. See Section 2.2
[Gnulib], page 3.

[Macro]AC_TYPE_GETGROUPS
Define GETGROUPS_T to be whichever of gid_t or int is the base type of the array
argument to getgroups.

[Macro]AC_TYPE_INT8_T
If ‘stdint.h’ or ‘inttypes.h’ does not define the type int8_t, define int8_t to
a signed integer type that is exactly 8 bits wide and that uses two’s complement
representation, if such a type exists. If you are worried about porting to hosts that
lack such a type, you can use the results of this macro in C89-or-later code as follows:

70 Autoconf

#if HAVE_STDINT_H
include <stdint.h>
#endif
#if defined INT8_MAX || defined int8_t
code using int8_t

#else
complicated alternative using >8-bit ’signed char’

#endif

[Macro]AC_TYPE_INT16_T
This is like AC_TYPE_INT8_T, except for 16-bit integers.

[Macro]AC_TYPE_INT32_T
This is like AC_TYPE_INT8_T, except for 32-bit integers.

[Macro]AC_TYPE_INT64_T
This is like AC_TYPE_INT8_T, except for 64-bit integers.

[Macro]AC_TYPE_INTMAX_T
If ‘stdint.h’ or ‘inttypes.h’ defines the type intmax_t, define HAVE_INTMAX_T.
Otherwise, define intmax_t to the widest signed integer type.

[Macro]AC_TYPE_INTPTR_T
If ‘stdint.h’ or ‘inttypes.h’ defines the type intptr_t, define HAVE_INTPTR_T.
Otherwise, define intptr_t to a signed integer type wide enough to hold a pointer,
if such a type exists.

[Macro]AC_TYPE_LONG_DOUBLE
If the C compiler supports a working long double type, define HAVE_LONG_DOUBLE.
The long double type might have the same range and precision as double.
This macro is obsolescent, as current C compilers support long double. New pro-
grams need not use this macro.

[Macro]AC_TYPE_LONG_DOUBLE_WIDER
If the C compiler supports a working long double type with more range or precision
than the double type, define HAVE_LONG_DOUBLE_WIDER.

[Macro]AC_TYPE_LONG_LONG_INT
If the C compiler supports a working long long int type, define HAVE_LONG_LONG_
INT. However, this test does not test long long int values in preprocessor #if
expressions, because too many compilers mishandle such expressions. See Section 12.3
[Preprocessor Arithmetic], page 224.

[Macro]AC_TYPE_MBSTATE_T
Define HAVE_MBSTATE_T if <wchar.h> declares the mbstate_t type. Also, define
mbstate_t to be a type if <wchar.h> does not declare it.

[Macro]AC_TYPE_MODE_T
Define mode_t to a suitable type, if standard headers do not define it.

Chapter 5: Existing Tests 71

[Macro]AC_TYPE_OFF_T
Define off_t to a suitable type, if standard headers do not define it.

[Macro]AC_TYPE_PID_T
Define pid_t to a suitable type, if standard headers do not define it.

[Macro]AC_TYPE_SIZE_T
Define size_t to a suitable type, if standard headers do not define it.

[Macro]AC_TYPE_SSIZE_T
Define ssize_t to a suitable type, if standard headers do not define it.

[Macro]AC_TYPE_UID_T
Define uid_t and gid_t to suitable types, if standard headers do not define them.

[Macro]AC_TYPE_UINT8_T
If ‘stdint.h’ or ‘inttypes.h’ does not define the type uint8_t, define uint8_t to
an unsigned integer type that is exactly 8 bits wide, if such a type exists. This is like
AC_TYPE_INT8_T, except for unsigned integers.

[Macro]AC_TYPE_UINT16_T
This is like AC_TYPE_UINT8_T, except for 16-bit integers.

[Macro]AC_TYPE_UINT32_T
This is like AC_TYPE_UINT8_T, except for 32-bit integers.

[Macro]AC_TYPE_UINT64_T
This is like AC_TYPE_UINT8_T, except for 64-bit integers.

[Macro]AC_TYPE_UINTMAX_T
If ‘stdint.h’ or ‘inttypes.h’ defines the type uintmax_t, define HAVE_UINTMAX_T.
Otherwise, define uintmax_t to the widest unsigned integer type.

[Macro]AC_TYPE_UINTPTR_T
If ‘stdint.h’ or ‘inttypes.h’ defines the type uintptr_t, define HAVE_UINTPTR_
T. Otherwise, define uintptr_t to an unsigned integer type wide enough to hold a
pointer, if such a type exists.

[Macro]AC_TYPE_UNSIGNED_LONG_LONG_INT
If the C compiler supports a working unsigned long long int type, define HAVE_
UNSIGNED_LONG_LONG_INT. However, this test does not test unsigned long long
int values in preprocessor #if expressions, because too many compilers mishandle
such expressions. See Section 12.3 [Preprocessor Arithmetic], page 224.

72 Autoconf

5.9.2 Generic Type Checks

These macros are used to check for types not covered by the “particular” test macros.

[Macro]AC_CHECK_TYPE (type, [action-if-found], [action-if-not-found],
[includes = ‘AC_INCLUDES_DEFAULT’])

Check whether type is defined. It may be a compiler builtin type or defined by the
includes. includes is a series of include directives, defaulting to AC_INCLUDES_DEFAULT
(see Section 5.1.2 [Default Includes], page 39), which are used prior to the type under
test.

In C, type must be a type-name, so that the expression ‘sizeof (type)’ is valid
(but ‘sizeof ((type))’ is not). The same test is applied when compiling for C++,
which means that in C++ type should be a type-id and should not be an anonymous
‘struct’ or ‘union’.

[Macro]AC_CHECK_TYPES (types, [action-if-found], [action-if-not-found],
[includes = ‘AC_INCLUDES_DEFAULT’])

For each type of the types that is defined, define HAVE_type (in all capitals). Each
type must follow the rules of AC_CHECK_TYPE. If no includes are specified, the default
includes are used (see Section 5.1.2 [Default Includes], page 39). If action-if-found
is given, it is additional shell code to execute when one of the types is found. If
action-if-not-found is given, it is executed when one of the types is not found.

This macro uses M4 lists:

AC_CHECK_TYPES([ptrdiff_t])
AC_CHECK_TYPES([unsigned long long int, uintmax_t])
AC_CHECK_TYPES([float_t], [], [], [[#include <math.h>]])

Autoconf, up to 2.13, used to provide to another version of AC_CHECK_TYPE, broken by
design. In order to keep backward compatibility, a simple heuristic, quite safe but not
totally, is implemented. In case of doubt, read the documentation of the former AC_CHECK_
TYPE, see Section 17.4 [Obsolete Macros], page 253.

5.10 Compilers and Preprocessors

All the tests for compilers (AC_PROG_CC, AC_PROG_CXX, AC_PROG_F77) define the output
variable EXEEXT based on the output of the compiler, typically to the empty string if Posix
and ‘.exe’ if a DOS variant.

They also define the output variable OBJEXT based on the output of the compiler, after
‘.c’ files have been excluded, typically to ‘o’ if Posix, ‘obj’ if a DOS variant.

If the compiler being used does not produce executables, the tests fail. If the executables
can’t be run, and cross-compilation is not enabled, they fail too. See Chapter 13 [Manual
Configuration], page 229, for more on support for cross compiling.

5.10.1 Specific Compiler Characteristics

Some compilers exhibit different behaviors.

Chapter 5: Existing Tests 73

Static/Dynamic Expressions
Autoconf relies on a trick to extract one bit of information from the C compiler:
using negative array sizes. For instance the following excerpt of a C source
demonstrates how to test whether ‘int’ objects are 4 bytes wide:

static int test_array[sizeof (int) == 4 ? 1 : -1];

To our knowledge, there is a single compiler that does not support this trick: the
HP C compilers (the real ones, not only the “bundled”) on HP-UX 11.00. They
incorrectly reject the above program with the diagnostic “Variable-length arrays
cannot have static storage.” This bug comes from HP compilers’ mishandling of
sizeof (int), not from the ? 1 : -1, and Autoconf works around this problem
by casting sizeof (int) to long int before comparing it.

5.10.2 Generic Compiler Characteristics

[Macro]AC_CHECK_SIZEOF (type-or-expr, [unused], [includes =
‘AC_INCLUDES_DEFAULT’])

Define SIZEOF_type-or-expr (see Section 5.1.1 [Standard Symbols], page 39) to be
the size in bytes of type-or-expr, which may be either a type or an expression returning
a value that has a size. If the expression ‘sizeof (type-or-expr)’ is invalid, the
result is 0. includes is a series of include directives, defaulting to AC_INCLUDES_
DEFAULT (see Section 5.1.2 [Default Includes], page 39), which are used prior to the
expression under test.
This macro now works even when cross-compiling. The unused argument was used
when cross-compiling.
For example, the call

AC_CHECK_SIZEOF([int *])

defines SIZEOF_INT_P to be 8 on DEC Alpha AXP systems.

[Macro]AC_CHECK_ALIGNOF (type, [includes = ‘AC_INCLUDES_DEFAULT’])
Define ALIGNOF_type (see Section 5.1.1 [Standard Symbols], page 39) to be the align-
ment in bytes of type. ‘type y;’ must be valid as a structure member declaration. If
‘type’ is unknown, the result is 0. If no includes are specified, the default includes
are used (see Section 5.1.2 [Default Includes], page 39).

[Macro]AC_COMPUTE_INT (var, expression, [includes =
‘AC_INCLUDES_DEFAULT’], [action-if-fails])

Store into the shell variable var the value of the integer expression. The value should
fit in an initializer in a C variable of type signed long. To support cross compilation
(in which case, the macro only works on hosts that use twos-complement arithmetic),
it should be possible to evaluate the expression at compile-time. If no includes are
specified, the default includes are used (see Section 5.1.2 [Default Includes], page 39).
Execute action-if-fails if the value cannot be determined correctly.

[Macro]AC_LANG_WERROR
Normally Autoconf ignores warnings generated by the compiler, linker, and prepro-
cessor. If this macro is used, warnings count as fatal errors for the current language.
This macro is useful when the results of configuration are used where warnings are

74 Autoconf

unacceptable; for instance, if parts of a program are built with the GCC ‘-Werror’ op-
tion. If the whole program is built using ‘-Werror’ it is often simpler to put ‘-Werror’
in the compiler flags (CFLAGS, etc.).

[Macro]AC_OPENMP
OpenMP (http://www.openmp.org/) specifies extensions of C, C++, and Fortran
that simplify optimization of shared memory parallelism, which is a common problem
on multicore CPUs.
If the current language is C, the macro AC_OPENMP sets the variable OPENMP_CFLAGS to
the C compiler flags needed for supporting OpenMP. OPENMP_CFLAGS is set to empty
if the compiler already supports OpenMP, if it has no way to activate OpenMP
support, or if the user rejects OpenMP support by invoking ‘configure’ with the
‘--disable-openmp’ option.
OPENMP_CFLAGS needs to be used when compiling programs, when preprocessing pro-
gram source, and when linking programs. Therefore you need to add $(OPENMP_
CFLAGS) to the CFLAGS of C programs that use OpenMP. If you preprocess OpenMP-
specific C code, you also need to add $(OPENMP_CFLAGS) to CPPFLAGS. The presence
of OpenMP support is revealed at compile time by the preprocessor macro _OPENMP.
Linking a program with OPENMP_CFLAGS typically adds one more shared library to the
program’s dependencies, so its use is recommended only on programs that actually
require OpenMP.
If the current language is C++, AC_OPENMP sets the variable OPENMP_CXXFLAGS, suit-
ably for the C++ compiler. The same remarks hold as for C.
If the current language is Fortran 77 or Fortran, AC_OPENMP sets the variable OPENMP_
FFLAGS or OPENMP_FCFLAGS, respectively. Similar remarks as for C hold, except that
CPPFLAGS is not used for Fortran, and no preprocessor macro signals OpenMP sup-
port.

5.10.3 C Compiler Characteristics

The following macros provide ways to find and exercise a C Compiler. There are a few
constructs that ought to be avoided, but do not deserve being checked for, since they can
easily be worked around.

Don’t use lines containing solitary backslashes
They tickle a bug in the HP-UX C compiler (checked on HP-UX 10.20, 11.00,
and 11i). When given the following source:

#ifdef __STDC__
/\
* A comment with backslash-newlines in it. %{ %} *\
\
/
char str[] = "\\
" A string with backslash-newlines in it %{ %} \\
"";
char apostrophe = ’\\
\

http://penalty z@ www.openmp.org/

Chapter 5: Existing Tests 75

’\
’;
#endif

the compiler incorrectly fails with the diagnostics “Non-terminating comment
at end of file” and “Missing ‘#endif’ at end of file.” Removing the lines with
solitary backslashes solves the problem.

Don’t compile several files at once if output matters to you
Some compilers, such as HP’s, report names of files being compiled when given
more than one file operand. For instance:

$ cc a.c b.c

a.c:
b.c:

This can cause problems if you observe the output of the compiler to detect fail-
ures. Invoking ‘cc -c a.c && cc -c b.c && cc -o c a.o b.o’ solves the issue.

Don’t rely on #error failing
The irix C compiler does not fail when #error is preprocessed; it simply emits a
diagnostic and continues, exiting successfully. So, instead of an error directive
like #error "Unsupported word size" it is more portable to use an invalid
directive like #Unsupported word size in Autoconf tests. In ordinary source
code, #error is OK, since installers with inadequate compilers like irix can
simply examine these compilers’ diagnostic output.

Don’t rely on correct #line support
On Solaris, c89 (at least Sun C 5.3 through 5.8) diagnoses #line directives
whose line numbers are greater than 32767. Nothing in Posix makes this invalid.
That is why Autoconf stopped issuing #line directives.

[Macro]AC_PROG_CC ([compiler-search-list])
Determine a C compiler to use. If CC is not already set in the environment, check for
gcc and cc, then for other C compilers. Set output variable CC to the name of the
compiler found.
This macro may, however, be invoked with an optional first argument which, if spec-
ified, must be a blank-separated list of C compilers to search for. This just gives
the user an opportunity to specify an alternative search list for the C compiler. For
example, if you didn’t like the default order, then you could invoke AC_PROG_CC like
this:

AC_PROG_CC([gcc cl cc])

If the C compiler does not handle function prototypes correctly by default, try to add
an option to output variable CC to make it so. This macro tries various options that
select standard-conformance modes on various systems.
After calling this macro you can check whether the C compiler has been set to accept
ANSI C89 (ISO C90); if not, the shell variable ac_cv_prog_cc_c89 is set to ‘no’. See
also AC_C_PROTOTYPES below.
If using the GNU C compiler, set shell variable GCC to ‘yes’. If output variable CFLAGS
was not already set, set it to ‘-g -O2’ for the GNU C compiler (‘-O2’ on systems where
GCC does not accept ‘-g’), or ‘-g’ for other compilers.

76 Autoconf

[Macro]AC_PROG_CC_C_O
If the C compiler does not accept the ‘-c’ and ‘-o’ options simultaneously, define
NO_MINUS_C_MINUS_O. This macro actually tests both the compiler found by AC_
PROG_CC, and, if different, the first cc in the path. The test fails if one fails. This
macro was created for GNU Make to choose the default C compilation rule.

[Macro]AC_PROG_CPP
Set output variable CPP to a command that runs the C preprocessor. If ‘$CC -E’
doesn’t work, ‘/lib/cpp’ is used. It is only portable to run CPP on files with a ‘.c’
extension.
Some preprocessors don’t indicate missing include files by the error status. For such
preprocessors an internal variable is set that causes other macros to check the standard
error from the preprocessor and consider the test failed if any warnings have been
reported. For most preprocessors, though, warnings do not cause include-file tests to
fail unless AC_PROG_CPP_WERROR is also specified.

[Macro]AC_PROG_CPP_WERROR
This acts like AC_PROG_CPP, except it treats warnings from the preprocessor as errors
even if the preprocessor exit status indicates success. This is useful for avoiding
headers that generate mandatory warnings, such as deprecation notices.

The following macros check for C compiler or machine architecture features. To check
for characteristics not listed here, use AC_COMPILE_IFELSE (see Section 6.4 [Running the
Compiler], page 97) or AC_RUN_IFELSE (see Section 6.6 [Runtime], page 98).

[Macro]AC_PROG_CC_STDC
If the C compiler cannot compile ISO Standard C (currently C99), try to add an
option to output variable CC to make it work. If the compiler does not support C99,
fall back to supporting ANSI C89 (ISO C90).
After calling this macro you can check whether the C compiler has been set to accept
Standard C; if not, the shell variable ac_cv_prog_cc_stdc is set to ‘no’.

[Macro]AC_PROG_CC_C89
If the C compiler is not in ANSI C89 (ISO C90) mode by default, try to add an option
to output variable CC to make it so. This macro tries various options that select ANSI
C89 on some system or another. It considers the compiler to be in ANSI C89 mode if
it handles function prototypes correctly.
After calling this macro you can check whether the C compiler has been set to accept
ANSI C89; if not, the shell variable ac_cv_prog_cc_c89 is set to ‘no’.
This macro is called automatically by AC_PROG_CC.

[Macro]AC_PROG_CC_C99
If the C compiler is not in C99 mode by default, try to add an option to output
variable CC to make it so. This macro tries various options that select C99 on some
system or another. It considers the compiler to be in C99 mode if it handles _Bool,
// comments, flexible array members, inline, signed and unsigned long long int,
mixed code and declarations, named initialization of structs, restrict, va_copy,
varargs macros, variable declarations in for loops, and variable length arrays.

Chapter 5: Existing Tests 77

After calling this macro you can check whether the C compiler has been set to accept
C99; if not, the shell variable ac_cv_prog_cc_c99 is set to ‘no’.

[Macro]AC_C_BACKSLASH_A
Define ‘HAVE_C_BACKSLASH_A’ to 1 if the C compiler understands ‘\a’.

This macro is obsolescent, as current C compilers understand ‘\a’. New programs
need not use this macro.

[Macro]AC_C_BIGENDIAN ([action-if-true], [action-if-false],
[action-if-unknown], [action-if-universal])

If words are stored with the most significant byte first (like Motorola and SPARC
CPUs), execute action-if-true. If words are stored with the least significant byte first
(like Intel and VAX CPUs), execute action-if-false.

This macro runs a test-case if endianness cannot be determined from the system
header files. When cross-compiling, the test-case is not run but grep’ed for some
magic values. action-if-unknown is executed if the latter case fails to determine the
byte sex of the host system.

In some cases a single run of a compiler can generate code for multiple architectures.
This can happen, for example, when generating Mac OS X universal binary files,
which work on both PowerPC and Intel architectures. In this case, the different
variants might be for different architectures whose endiannesses differ. If configure
detects this, it executes action-if-universal instead of action-if-unknown.

The default for action-if-true is to define ‘WORDS_BIGENDIAN’. The default for action-
if-false is to do nothing. The default for action-if-unknown is to abort configure
and tell the installer how to bypass this test. And finally, the default for action-if-
universal is to ensure that ‘WORDS_BIGENDIAN’ is defined if and only if a universal build
is detected and the current code is big-endian; this default works only if autoheader
is used (see Section 4.9.2 [autoheader Invocation], page 34).

If you use this macro without specifying action-if-universal, you should also use AC_
CONFIG_HEADERS; otherwise ‘WORDS_BIGENDIAN’ may be set incorrectly for Mac OS X
universal binary files.

[Macro]AC_C_CONST
If the C compiler does not fully support the const keyword, define const to be empty.
Some C compilers that do not define __STDC__ do support const; some compilers that
define __STDC__ do not completely support const. Programs can simply use const
as if every C compiler supported it; for those that don’t, the makefile or configuration
header file defines it as empty.

Occasionally installers use a C++ compiler to compile C code, typically because they
lack a C compiler. This causes problems with const, because C and C++ treat const
differently. For example:

const int foo;

is valid in C but not in C++. These differences unfortunately cannot be papered over
by defining const to be empty.

78 Autoconf

If autoconf detects this situation, it leaves const alone, as this generally yields
better results in practice. However, using a C++ compiler to compile C code is not
recommended or supported, and installers who run into trouble in this area should
get a C compiler like GCC to compile their C code.
This macro is obsolescent, as current C compilers support const. New programs need
not use this macro.

[Macro]AC_C_RESTRICT
If the C compiler recognizes a variant spelling for the restrict keyword (__restrict,
__restrict__, or _Restrict), then define restrict to that; this is more likely to do
the right thing with compilers that support language variants where plain restrict
is not a keyword. Otherwise, if the C compiler recognizes the restrict keyword,
don’t do anything. Otherwise, define restrict to be empty. Thus, programs may
simply use restrict as if every C compiler supported it; for those that do not, the
makefile or configuration header defines it away.
Although support in C++ for the restrict keyword is not required, several C++
compilers do accept the keyword. This macro works for them, too.

[Macro]AC_C_VOLATILE
If the C compiler does not understand the keyword volatile, define volatile to be
empty. Programs can simply use volatile as if every C compiler supported it; for
those that do not, the makefile or configuration header defines it as empty.
If the correctness of your program depends on the semantics of volatile, simply
defining it to be empty does, in a sense, break your code. However, given that
the compiler does not support volatile, you are at its mercy anyway. At least
your program compiles, when it wouldn’t before. See Section 12.6 [Volatile Objects],
page 225, for more about volatile.
In general, the volatile keyword is a standard C feature, so you might expect that
volatile is available only when __STDC__ is defined. However, Ultrix 4.3’s native
compiler does support volatile, but does not define __STDC__.
This macro is obsolescent, as current C compilers support volatile. New programs
need not use this macro.

[Macro]AC_C_INLINE
If the C compiler supports the keyword inline, do nothing. Otherwise define inline
to __inline__ or __inline if it accepts one of those, otherwise define inline to be
empty.

[Macro]AC_C_CHAR_UNSIGNED
If the C type char is unsigned, define __CHAR_UNSIGNED__, unless the C compiler
predefines it.
These days, using this macro is not necessary. The same information can be deter-
mined by this portable alternative, thus avoiding the use of preprocessor macros in
the namespace reserved for the implementation.

#include <limits.h>
#if CHAR_MIN == 0

Chapter 5: Existing Tests 79

define CHAR_UNSIGNED 1
#endif

[Macro]AC_C_STRINGIZE
If the C preprocessor supports the stringizing operator, define HAVE_STRINGIZE. The
stringizing operator is ‘#’ and is found in macros such as this:

#define x(y) #y

This macro is obsolescent, as current C compilers support the stringizing operator.
New programs need not use this macro.

[Macro]AC_C_FLEXIBLE_ARRAY_MEMBER
If the C compiler supports flexible array members, define FLEXIBLE_ARRAY_MEMBER
to nothing; otherwise define it to 1. That way, a declaration like this:

struct s
{
size_t n_vals;
double val[FLEXIBLE_ARRAY_MEMBER];

};

will let applications use the “struct hack” even with compilers that do not support
flexible array members. To allocate and use such an object, you can use code like
this:

size_t i;
size_t n = compute_value_count ();
struct s *p =

malloc (offsetof (struct s, val)
+ n * sizeof (double));

p->n_vals = n;
for (i = 0; i < n; i++)
p->val[i] = compute_value (i);

[Macro]AC_C_VARARRAYS
If the C compiler supports variable-length arrays, define HAVE_C_VARARRAYS. A
variable-length array is an array of automatic storage duration whose length is deter-
mined at run time, when the array is declared.

[Macro]AC_C_TYPEOF
If the C compiler supports GCC’s typeof syntax either directly or through a different
spelling of the keyword (e.g., __typeof__), define HAVE_TYPEOF. If the support is
available only through a different spelling, define typeof to that spelling.

[Macro]AC_C_PROTOTYPES
If function prototypes are understood by the compiler (as determined by AC_PROG_
CC), define PROTOTYPES and __PROTOTYPES. Defining __PROTOTYPES is for the benefit
of header files that cannot use macros that infringe on user name space.

This macro is obsolescent, as current C compilers support prototypes. New programs
need not use this macro.

80 Autoconf

[Macro]AC_PROG_GCC_TRADITIONAL
Add ‘-traditional’ to output variable CC if using the GNU C compiler and ioctl
does not work properly without ‘-traditional’. That usually happens when the
fixed header files have not been installed on an old system.
This macro is obsolescent, since current versions of the GNU C compiler fix the header
files automatically when installed.

5.10.4 C++ Compiler Characteristics

[Macro]AC_PROG_CXX ([compiler-search-list])
Determine a C++ compiler to use. Check whether the environment variable CXX or
CCC (in that order) is set; if so, then set output variable CXX to its value.
Otherwise, if the macro is invoked without an argument, then search for a C++ com-
piler under the likely names (first g++ and c++ then other names). If none of those
checks succeed, then as a last resort set CXX to g++.
This macro may, however, be invoked with an optional first argument which, if spec-
ified, must be a blank-separated list of C++ compilers to search for. This just gives
the user an opportunity to specify an alternative search list for the C++ compiler. For
example, if you didn’t like the default order, then you could invoke AC_PROG_CXX like
this:

AC_PROG_CXX([gcc cl KCC CC cxx cc++ xlC aCC c++ g++])

If using the GNU C++ compiler, set shell variable GXX to ‘yes’. If output variable
CXXFLAGS was not already set, set it to ‘-g -O2’ for the GNU C++ compiler (‘-O2’ on
systems where G++ does not accept ‘-g’), or ‘-g’ for other compilers.

[Macro]AC_PROG_CXXCPP
Set output variable CXXCPP to a command that runs the C++ preprocessor. If ‘$CXX
-E’ doesn’t work, ‘/lib/cpp’ is used. It is portable to run CXXCPP only on files with
a ‘.c’, ‘.C’, ‘.cc’, or ‘.cpp’ extension.
Some preprocessors don’t indicate missing include files by the error status. For such
preprocessors an internal variable is set that causes other macros to check the standard
error from the preprocessor and consider the test failed if any warnings have been
reported. However, it is not known whether such broken preprocessors exist for C++.

[Macro]AC_PROG_CXX_C_O
Test whether the C++ compiler accepts the options ‘-c’ and ‘-o’ simultaneously, and
define CXX_NO_MINUS_C_MINUS_O, if it does not.

5.10.5 Objective C Compiler Characteristics

[Macro]AC_PROG_OBJC ([compiler-search-list])
Determine an Objective C compiler to use. If OBJC is not already set in the environ-
ment, check for Objective C compilers. Set output variable OBJC to the name of the
compiler found.
This macro may, however, be invoked with an optional first argument which, if spec-
ified, must be a blank-separated list of Objective C compilers to search for. This just
gives the user an opportunity to specify an alternative search list for the Objective

Chapter 5: Existing Tests 81

C compiler. For example, if you didn’t like the default order, then you could invoke
AC_PROG_OBJC like this:

AC_PROG_OBJC([gcc objcc objc])

If using the GNU Objective C compiler, set shell variable GOBJC to ‘yes’. If output
variable OBJCFLAGS was not already set, set it to ‘-g -O2’ for the GNU Objective C
compiler (‘-O2’ on systems where gcc does not accept ‘-g’), or ‘-g’ for other compilers.

[Macro]AC_PROG_OBJCPP
Set output variable OBJCPP to a command that runs the Objective C preprocessor. If
‘$OBJC -E’ doesn’t work, ‘/lib/cpp’ is used.

5.10.6 Erlang Compiler and Interpreter Characteristics

Autoconf defines the following macros for determining paths to the essential Erlang/OTP
programs:

[Macro]AC_ERLANG_PATH_ERLC ([value-if-not-found], [path = ‘$PATH’])
Determine an Erlang compiler to use. If ERLC is not already set in the environment,
check for erlc. Set output variable ERLC to the complete path of the compiler com-
mand found. In addition, if ERLCFLAGS is not set in the environment, set it to an
empty value.

The two optional arguments have the same meaning as the two last arguments of
macro AC_PROG_PATH for looking for the erlc program. For example, to look for
erlc only in the ‘/usr/lib/erlang/bin’ directory:

AC_ERLANG_PATH_ERLC([not found], [/usr/lib/erlang/bin])

[Macro]AC_ERLANG_NEED_ERLC ([path = ‘$PATH’])
A simplified variant of the AC_ERLANG_PATH_ERLC macro, that prints an error message
and exits the configure script if the erlc program is not found.

[Macro]AC_ERLANG_PATH_ERL ([value-if-not-found], [path = ‘$PATH’])
Determine an Erlang interpreter to use. If ERL is not already set in the environ-
ment, check for erl. Set output variable ERL to the complete path of the interpreter
command found.

The two optional arguments have the same meaning as the two last arguments of
macro AC_PROG_PATH for looking for the erl program. For example, to look for erl
only in the ‘/usr/lib/erlang/bin’ directory:

AC_ERLANG_PATH_ERL([not found], [/usr/lib/erlang/bin])

[Macro]AC_ERLANG_NEED_ERL ([path = ‘$PATH’])
A simplified variant of the AC_ERLANG_PATH_ERL macro, that prints an error message
and exits the configure script if the erl program is not found.

5.10.7 Fortran Compiler Characteristics

The Autoconf Fortran support is divided into two categories: legacy Fortran 77 macros
(F77), and modern Fortran macros (FC). The former are intended for traditional Fortran
77 code, and have output variables like F77, FFLAGS, and FLIBS. The latter are for newer

82 Autoconf

programs that can (or must) compile under the newer Fortran standards, and have output
variables like FC, FCFLAGS, and FCLIBS.

Except for two new macros AC_FC_SRCEXT and AC_FC_FREEFORM (see below), the FC and
F77 macros behave almost identically, and so they are documented together in this section.

[Macro]AC_PROG_F77 ([compiler-search-list])
Determine a Fortran 77 compiler to use. If F77 is not already set in the environment,
then check for g77 and f77, and then some other names. Set the output variable F77
to the name of the compiler found.

This macro may, however, be invoked with an optional first argument which, if spec-
ified, must be a blank-separated list of Fortran 77 compilers to search for. This just
gives the user an opportunity to specify an alternative search list for the Fortran 77
compiler. For example, if you didn’t like the default order, then you could invoke
AC_PROG_F77 like this:

AC_PROG_F77([fl32 f77 fort77 xlf g77 f90 xlf90])

If using g77 (the GNU Fortran 77 compiler), then set the shell variable G77 to ‘yes’.
If the output variable FFLAGS was not already set in the environment, then set it to
‘-g -02’ for g77 (or ‘-O2’ where g77 does not accept ‘-g’). Otherwise, set FFLAGS to
‘-g’ for all other Fortran 77 compilers.

[Macro]AC_PROG_FC ([compiler-search-list], [dialect])
Determine a Fortran compiler to use. If FC is not already set in the environment,
then dialect is a hint to indicate what Fortran dialect to search for; the default is
to search for the newest available dialect. Set the output variable FC to the name of
the compiler found.

By default, newer dialects are preferred over older dialects, but if dialect is specified
then older dialects are preferred starting with the specified dialect. dialect can
currently be one of Fortran 77, Fortran 90, or Fortran 95. However, this is only a
hint of which compiler name to prefer (e.g., f90 or f95), and no attempt is made
to guarantee that a particular language standard is actually supported. Thus, it is
preferable that you avoid the dialect option, and use AC PROG FC only for code
compatible with the latest Fortran standard.

This macro may, alternatively, be invoked with an optional first argument which, if
specified, must be a blank-separated list of Fortran compilers to search for, just as in
AC_PROG_F77.

If the output variable FCFLAGS was not already set in the environment, then set it
to ‘-g -02’ for GNU g77 (or ‘-O2’ where g77 does not accept ‘-g’). Otherwise, set
FCFLAGS to ‘-g’ for all other Fortran compilers.

[Macro]AC_PROG_F77_C_O
[Macro]AC_PROG_FC_C_O

Test whether the Fortran compiler accepts the options ‘-c’ and ‘-o’ simultaneously,
and define F77_NO_MINUS_C_MINUS_O or FC_NO_MINUS_C_MINUS_O, respectively, if it
does not.

Chapter 5: Existing Tests 83

The following macros check for Fortran compiler characteristics. To check for char-
acteristics not listed here, use AC_COMPILE_IFELSE (see Section 6.4 [Running the Com-
piler], page 97) or AC_RUN_IFELSE (see Section 6.6 [Runtime], page 98), making sure to
first set the current language to Fortran 77 or Fortran via AC_LANG([Fortran 77]) or AC_
LANG(Fortran) (see Section 6.1 [Language Choice], page 91).

[Macro]AC_F77_LIBRARY_LDFLAGS
[Macro]AC_FC_LIBRARY_LDFLAGS

Determine the linker flags (e.g., ‘-L’ and ‘-l’) for the Fortran intrinsic and runtime
libraries that are required to successfully link a Fortran program or shared library.
The output variable FLIBS or FCLIBS is set to these flags (which should be included
after LIBS when linking).
This macro is intended to be used in those situations when it is necessary to mix,
e.g., C++ and Fortran source code in a single program or shared library (see section
“Mixing Fortran 77 With C and C++” in GNU Automake).
For example, if object files from a C++ and Fortran compiler must be linked together,
then the C++ compiler/linker must be used for linking (since special C++-ish things
need to happen at link time like calling global constructors, instantiating templates,
enabling exception support, etc.).
However, the Fortran intrinsic and runtime libraries must be linked in as well, but the
C++ compiler/linker doesn’t know by default how to add these Fortran 77 libraries.
Hence, this macro was created to determine these Fortran libraries.
The macros AC_F77_DUMMY_MAIN and AC_FC_DUMMY_MAIN or AC_F77_MAIN and AC_
FC_MAIN are probably also necessary to link C/C++ with Fortran; see below.

[Macro]AC_F77_DUMMY_MAIN ([action-if-found], [action-if-not-found])
[Macro]AC_FC_DUMMY_MAIN ([action-if-found], [action-if-not-found])

With many compilers, the Fortran libraries detected by AC_F77_LIBRARY_LDFLAGS or
AC_FC_LIBRARY_LDFLAGS provide their own main entry function that initializes things
like Fortran I/O, and which then calls a user-provided entry function named (say)
MAIN__ to run the user’s program. The AC_F77_DUMMY_MAIN and AC_FC_DUMMY_MAIN
or AC_F77_MAIN and AC_FC_MAIN macros figure out how to deal with this interaction.
When using Fortran for purely numerical functions (no I/O, etc.) often one prefers
to provide one’s own main and skip the Fortran library initializations. In this case,
however, one may still need to provide a dummy MAIN__ routine in order to prevent
linking errors on some systems. AC_F77_DUMMY_MAIN or AC_FC_DUMMY_MAIN detects
whether any such routine is required for linking, and what its name is; the shell vari-
able F77_DUMMY_MAIN or FC_DUMMY_MAIN holds this name, unknown when no solution
was found, and none when no such dummy main is needed.
By default, action-if-found defines F77_DUMMY_MAIN or FC_DUMMY_MAIN to the name
of this routine (e.g., MAIN__) if it is required. action-if-not-found defaults to exiting
with an error.
In order to link with Fortran routines, the user’s C/C++ program should then include
the following code to define the dummy main if it is needed:

#ifdef F77_DUMMY_MAIN
ifdef __cplusplus

84 Autoconf

extern "C"
endif

int F77_DUMMY_MAIN() { return 1; }
#endif

(Replace F77 with FC for Fortran instead of Fortran 77.)

Note that this macro is called automatically from AC_F77_WRAPPERS or AC_FC_
WRAPPERS; there is generally no need to call it explicitly unless one wants to change
the default actions.

[Macro]AC_F77_MAIN
[Macro]AC_FC_MAIN

As discussed above, many Fortran libraries allow you to provide an entry point called
(say) MAIN__ instead of the usual main, which is then called by a main function in
the Fortran libraries that initializes things like Fortran I/O. The AC_F77_MAIN and
AC_FC_MAIN macros detect whether it is possible to utilize such an alternate main
function, and defines F77_MAIN and FC_MAIN to the name of the function. (If no
alternate main function name is found, F77_MAIN and FC_MAIN are simply defined to
main.)

Thus, when calling Fortran routines from C that perform things like I/O, one should
use this macro and declare the "main" function like so:

#ifdef __cplusplus
extern "C"

#endif
int F77_MAIN(int argc, char *argv[]);

(Again, replace F77 with FC for Fortran instead of Fortran 77.)

[Macro]AC_F77_WRAPPERS
[Macro]AC_FC_WRAPPERS

Defines C macros F77_FUNC (name, NAME), FC_FUNC (name, NAME), F77_FUNC_
(name, NAME), and FC_FUNC_(name, NAME) to properly mangle the names of C/C++
identifiers, and identifiers with underscores, respectively, so that they match the
name-mangling scheme used by the Fortran compiler.

Fortran is case-insensitive, and in order to achieve this the Fortran compiler converts
all identifiers into a canonical case and format. To call a Fortran subroutine from C or
to write a C function that is callable from Fortran, the C program must explicitly use
identifiers in the format expected by the Fortran compiler. In order to do this, one
simply wraps all C identifiers in one of the macros provided by AC_F77_WRAPPERS or
AC_FC_WRAPPERS. For example, suppose you have the following Fortran 77 subroutine:

subroutine foobar (x, y)
double precision x, y
y = 3.14159 * x
return
end

You would then declare its prototype in C or C++ as:

#define FOOBAR_F77 F77_FUNC (foobar, FOOBAR)

Chapter 5: Existing Tests 85

#ifdef __cplusplus
extern "C" /* prevent C++ name mangling */
#endif
void FOOBAR_F77(double *x, double *y);

Note that we pass both the lowercase and uppercase versions of the function name to
F77_FUNC so that it can select the right one. Note also that all parameters to Fortran
77 routines are passed as pointers (see section “Mixing Fortran 77 With C and C++”
in GNU Automake).
(Replace F77 with FC for Fortran instead of Fortran 77.)
Although Autoconf tries to be intelligent about detecting the name-mangling scheme
of the Fortran compiler, there may be Fortran compilers that it doesn’t support yet.
In this case, the above code generates a compile-time error, but some other behavior
(e.g., disabling Fortran-related features) can be induced by checking whether F77_
FUNC or FC_FUNC is defined.
Now, to call that routine from a C program, we would do something like:

{
double x = 2.7183, y;
FOOBAR_F77 (&x, &y);

}

If the Fortran identifier contains an underscore (e.g., foo_bar), you should use F77_
FUNC_ or FC_FUNC_ instead of F77_FUNC or FC_FUNC (with the same arguments).
This is because some Fortran compilers mangle names differently if they contain an
underscore.

[Macro]AC_F77_FUNC (name, [shellvar])
[Macro]AC_FC_FUNC (name, [shellvar])

Given an identifier name, set the shell variable shellvar to hold the mangled version
name according to the rules of the Fortran linker (see also AC_F77_WRAPPERS or AC_
FC_WRAPPERS). shellvar is optional; if it is not supplied, the shell variable is simply
name. The purpose of this macro is to give the caller a way to access the name-
mangling information other than through the C preprocessor as above, for example,
to call Fortran routines from some language other than C/C++.

[Macro]AC_FC_SRCEXT (ext, [action-if-success], [action-if-failure])
By default, the FC macros perform their tests using a ‘.f’ extension for source-code
files. Some compilers, however, only enable newer language features for appropriately
named files, e.g., Fortran 90 features only for ‘.f90’ files. On the other hand, some
other compilers expect all source files to end in ‘.f’ and require special flags to support
other file name extensions. The AC_FC_SRCEXT macro deals with both of these issues.
The AC_FC_SRCEXT tries to get the FC compiler to accept files ending with the exten-
sion .ext (i.e., ext does not contain the dot). If any special compiler flags are needed
for this, it stores them in the output variable FCFLAGS_ext. This extension and these
flags are then used for all subsequent FC tests (until AC_FC_SRCEXT is called again).
For example, you would use AC_FC_SRCEXT(f90) to employ the ‘.f90’ extension in
future tests, and it would set a FCFLAGS_f90 output variable with any extra flags
that are needed to compile such files.

86 Autoconf

The FCFLAGS_ext can not be simply absorbed into FCFLAGS, for two reasons based
on the limitations of some compilers. First, only one FCFLAGS_ext can be used at a
time, so files with different extensions must be compiled separately. Second, FCFLAGS_
ext must appear immediately before the source-code file name when compiling. So,
continuing the example above, you might compile a ‘foo.f90’ file in your makefile
with the command:

foo.o: foo.f90
$(FC) -c $(FCFLAGS) $(FCFLAGS_f90) ’$(srcdir)/foo.f90’

If AC_FC_SRCEXT succeeds in compiling files with the ext extension, it calls action-
if-success (defaults to nothing). If it fails, and cannot find a way to make the FC
compiler accept such files, it calls action-if-failure (defaults to exiting with an error
message).

[Macro]AC_FC_FREEFORM ([action-if-success], [action-if-failure])
The AC_FC_FREEFORM tries to ensure that the Fortran compiler ($FC) allows free-
format source code (as opposed to the older fixed-format style from Fortran 77). If
necessary, it may add some additional flags to FCFLAGS.

This macro is most important if you are using the default ‘.f’ extension, since many
compilers interpret this extension as indicating fixed-format source unless an ad-
ditional flag is supplied. If you specify a different extension with AC_FC_SRCEXT,
such as ‘.f90’ or ‘.f95’, then AC_FC_FREEFORM ordinarily succeeds without modify-
ing FCFLAGS.

If AC_FC_FREEFORM succeeds in compiling free-form source, it calls action-if-success
(defaults to nothing). If it fails, it calls action-if-failure (defaults to exiting with an
error message).

5.11 System Services

The following macros check for operating system services or capabilities.

[Macro]AC_PATH_X
Try to locate the X Window System include files and libraries. If the user gave
the command line options ‘--x-includes=dir ’ and ‘--x-libraries=dir ’, use those
directories.

If either or both were not given, get the missing values by running xmkmf (or an
executable pointed to by the XMKMF environment variable) on a trivial ‘Imakefile’
and examining the makefile that it produces. Setting XMKMF to ‘false’ disables this
method.

If this method fails to find the X Window System, configure looks for the files in
several directories where they often reside. If either method is successful, set the
shell variables x_includes and x_libraries to their locations, unless they are in
directories the compiler searches by default.

If both methods fail, or the user gave the command line option ‘--without-x’, set
the shell variable no_x to ‘yes’; otherwise set it to the empty string.

Chapter 5: Existing Tests 87

[Macro]AC_PATH_XTRA
An enhanced version of AC_PATH_X. It adds the C compiler flags that X needs to
output variable X_CFLAGS, and the X linker flags to X_LIBS. Define X_DISPLAY_
MISSING if X is not available.
This macro also checks for special libraries that some systems need in order to compile
X programs. It adds any that the system needs to output variable X_EXTRA_LIBS.
And it checks for special X11R6 libraries that need to be linked with before ‘-lX11’,
and adds any found to the output variable X_PRE_LIBS.

[Macro]AC_SYS_INTERPRETER
Check whether the system supports starting scripts with a line of the form ‘#!/bin/sh’
to select the interpreter to use for the script. After running this macro, shell code in
‘configure.ac’ can check the shell variable interpval; it is set to ‘yes’ if the system
supports ‘#!’, ‘no’ if not.

[Macro]AC_SYS_LARGEFILE
Arrange for 64-bit file offsets, known as large-file support. On some hosts, one must
use special compiler options to build programs that can access large files. Append
any such options to the output variable CC. Define _FILE_OFFSET_BITS and _LARGE_
FILES if necessary.
Large-file support can be disabled by configuring with the ‘--disable-largefile’
option.
If you use this macro, check that your program works even when off_t is wider than
long int, since this is common when large-file support is enabled. For example, it is
not correct to print an arbitrary off_t value X with printf ("%ld", (long int) X).
The LFS introduced the fseeko and ftello functions to replace their C counterparts
fseek and ftell that do not use off_t. Take care to use AC_FUNC_FSEEKO to make
their prototypes available when using them and large-file support is enabled.

[Macro]AC_SYS_LONG_FILE_NAMES
If the system supports file names longer than 14 characters, define HAVE_LONG_FILE_
NAMES.

[Macro]AC_SYS_POSIX_TERMIOS
Check to see if the Posix termios headers and functions are available on the system. If
so, set the shell variable ac_cv_sys_posix_termios to ‘yes’. If not, set the variable
to ‘no’.

5.12 Posix Variants

The following macro makes it possible to use features of Posix that are extensions to C, as
well as platform extensions not defined by Posix.

[Macro]AC_USE_SYSTEM_EXTENSIONS
This macro was introduced in Autoconf 2.60. If possible, enable extensions to C
or Posix on hosts that normally disable the extensions, typically due to standards-
conformance namespace issues. This should be called before any macros that run the
C compiler. The following preprocessor macros are defined where appropriate:

http://penalty z@ www.unix-systemspenalty z@ .org/penalty z@ version2/penalty z@ whatsnew/penalty z@ lfs20mar.html

88 Autoconf

_GNU_SOURCE
Enable extensions on GNU/Linux.

__EXTENSIONS__
Enable general extensions on Solaris.

_POSIX_PTHREAD_SEMANTICS
Enable threading extensions on Solaris.

_TANDEM_SOURCE
Enable extensions for the HP NonStop platform.

_ALL_SOURCE
Enable extensions for AIX 3, and for Interix.

_POSIX_SOURCE
Enable Posix functions for Minix.

_POSIX_1_SOURCE
Enable additional Posix functions for Minix.

_MINIX Identify Minix platform. This particular preprocessor macro is obsoles-
cent, and may be removed in a future release of Autoconf.

5.13 Erlang Libraries

The following macros check for an installation of Erlang/OTP, and for the presence of
certain Erlang libraries. All those macros require the configuration of an Erlang interpreter
and an Erlang compiler (see Section 5.10.6 [Erlang Compiler and Interpreter], page 81).

[Macro]AC_ERLANG_SUBST_ROOT_DIR
Set the output variable ERLANG_ROOT_DIR to the path to the base directory in which
Erlang/OTP is installed (as returned by Erlang’s code:root_dir/0 function). The
result of this test is cached if caching is enabled when running configure.

[Macro]AC_ERLANG_SUBST_LIB_DIR
Set the output variable ERLANG_LIB_DIR to the path of the library directory of Er-
lang/OTP (as returned by Erlang’s code:lib_dir/0 function), which subdirectories
each contain an installed Erlang/OTP library. The result of this test is cached if
caching is enabled when running configure.

[Macro]AC_ERLANG_CHECK_LIB (library, [action-if-found],
[action-if-not-found])

Test whether the Erlang/OTP library library is installed by calling Erlang’s
code:lib_dir/1 function. The result of this test is cached if caching is enabled
when running configure. action-if-found is a list of shell commands to run
if the library is installed; action-if-not-found is a list of shell commands to
run if it is not. Additionally, if the library is installed, the output variable
‘ERLANG_LIB_DIR_library ’ is set to the path to the library installation directory,
and the output variable ‘ERLANG_LIB_VER_library ’ is set to the version number that
is part of the subdirectory name, if it is in the standard form (library-version).
If the directory name does not have a version part, ‘ERLANG_LIB_VER_library ’ is

Chapter 5: Existing Tests 89

set to the empty string. If the library is not installed, ‘ERLANG_LIB_DIR_library ’
and ‘ERLANG_LIB_VER_library ’ are set to "not found". For example, to check if
library stdlib is installed:

AC_ERLANG_CHECK_LIB([stdlib],
[echo "stdlib version \"$ERLANG_LIB_VER_stdlib\""
echo "is installed in \"$ERLANG_LIB_DIR_stdlib\""],
[AC_MSG_ERROR([stdlib was not found!])])

In addition to the above macros, which test installed Erlang libraries, the following
macros determine the paths to the directories into which newly built Erlang libraries are to
be installed:

[Macro]AC_ERLANG_SUBST_INSTALL_LIB_DIR
Set the ERLANG_INSTALL_LIB_DIR output variable to the directory into which every
built Erlang library should be installed in a separate subdirectory. If this variable is
not set in the environment when configure runs, its default value is $ERLANG_LIB_
DIR, which value is set by the AC_ERLANG_SUBST_LIB_DIR macro.

[Macro]AC_ERLANG_SUBST_INSTALL_LIB_SUBDIR (library, version)
Set the ‘ERLANG_INSTALL_LIB_DIR_library ’ output variable to the directory into
which the built Erlang library library version version should be installed. If this
variable is not set in the environment when configure runs, its default value is
‘$ERLANG_INSTALL_LIB_DIR/library-version ’, the value of the ERLANG_INSTALL_
LIB_DIR variable being set by the AC_ERLANG_SUBST_INSTALL_LIB_DIR macro.

90 Autoconf

Chapter 6: Writing Tests 91

6 Writing Tests

If the existing feature tests don’t do something you need, you have to write new ones. These
macros are the building blocks. They provide ways for other macros to check whether various
kinds of features are available and report the results.

This chapter contains some suggestions and some of the reasons why the existing tests
are written the way they are. You can also learn a lot about how to write Autoconf tests
by looking at the existing ones. If something goes wrong in one or more of the Autoconf
tests, this information can help you understand the assumptions behind them, which might
help you figure out how to best solve the problem.

These macros check the output of the compiler system of the current language (see
Section 6.1 [Language Choice], page 91). They do not cache the results of their tests for
future use (see Section 7.4 [Caching Results], page 107), because they don’t know enough
about the information they are checking for to generate a cache variable name. They also
do not print any messages, for the same reason. The checks for particular kinds of features
call these macros and do cache their results and print messages about what they’re checking
for.

When you write a feature test that could be applicable to more than one software
package, the best thing to do is encapsulate it in a new macro. See Chapter 9 [Writing
Autoconf Macros], page 151, for how to do that.

6.1 Language Choice

Autoconf-generated configure scripts check for the C compiler and its features by default.
Packages that use other programming languages (maybe more than one, e.g., C and C++)
need to test features of the compilers for the respective languages. The following macros
determine which programming language is used in the subsequent tests in ‘configure.ac’.

[Macro]AC_LANG (language)
Do compilation tests using the compiler, preprocessor, and file extensions for the
specified language.

Supported languages are:

‘C’ Do compilation tests using CC and CPP and use extension ‘.c’ for test
programs. Use compilation flags: CPPFLAGS with CPP, and both CPPFLAGS
and CFLAGS with CC.

‘C++’ Do compilation tests using CXX and CXXCPP and use extension ‘.C’ for
test programs. Use compilation flags: CPPFLAGS with CXXCPP, and both
CPPFLAGS and CXXFLAGS with CXX.

‘Fortran 77’
Do compilation tests using F77 and use extension ‘.f’ for test programs.
Use compilation flags: FFLAGS.

‘Fortran’ Do compilation tests using FC and use extension ‘.f’ (or whatever has
been set by AC_FC_SRCEXT) for test programs. Use compilation flags:
FCFLAGS.

92 Autoconf

‘Erlang’ Compile and execute tests using ERLC and ERL and use extension ‘.erl’
for test Erlang modules. Use compilation flags: ERLCFLAGS.

‘Objective C’
Do compilation tests using OBJC and OBJCPP and use extension ‘.m’ for
test programs. Use compilation flags: CPPFLAGS with OBJCPP, and both
CPPFLAGS and OBJCFLAGS with OBJC.

[Macro]AC_LANG_PUSH (language)
Remember the current language (as set by AC_LANG) on a stack, and then select the
language. Use this macro and AC_LANG_POP in macros that need to temporarily switch
to a particular language.

[Macro]AC_LANG_POP ([language])
Select the language that is saved on the top of the stack, as set by AC_LANG_PUSH,
and remove it from the stack.
If given, language specifies the language we just quit. It is a good idea to specify it
when it’s known (which should be the case. . .), since Autoconf detects inconsistencies.

AC_LANG_PUSH([Fortran 77])
Perform some tests on Fortran 77.
...
AC_LANG_POP([Fortran 77])

[Macro]AC_LANG_ASSERT (language)
Check statically that the current language is language. You should use this in your
language specific macros to avoid that they be called with an inappropriate language.
This macro runs only at autoconf time, and incurs no cost at configure time. Sadly
enough and because Autoconf is a two layer language1, the macros AC_LANG_PUSH
and AC_LANG_POP cannot be “optimizing”, therefore as much as possible you ought to
avoid using them to wrap your code, rather, require from the user to run the macro
with a correct current language, and check it with AC_LANG_ASSERT. And anyway,
that may help the user understand she is running a Fortran macro while expecting a
result about her Fortran 77 compiler. . .

[Macro]AC_REQUIRE_CPP
Ensure that whichever preprocessor would currently be used for tests has been found.
Calls AC_REQUIRE (see Section 9.4.1 [Prerequisite Macros], page 153) with an argu-
ment of either AC_PROG_CPP or AC_PROG_CXXCPP, depending on which language is
current.

6.2 Writing Test Programs

Autoconf tests follow a common scheme: feed some program with some input, and most of
the time, feed a compiler with some source file. This section is dedicated to these source
samples.

1 Because M4 is not aware of Sh code, especially conditionals, some optimizations that look nice statically
may produce incorrect results at runtime.

Chapter 6: Writing Tests 93

6.2.1 Guidelines for Test Programs

The most important rule to follow when writing testing samples is:
Look for realism.

This motto means that testing samples must be written with the same strictness as real
programs are written. In particular, you should avoid “shortcuts” and simplifications.

Don’t just play with the preprocessor if you want to prepare a compilation. For instance,
using cpp to check whether a header is functional might let your configure accept a header
which causes some compiler error. Do not hesitate to check a header with other headers
included before, especially required headers.

Make sure the symbols you use are properly defined, i.e., refrain for simply declaring a
function yourself instead of including the proper header.

Test programs should not write to standard output. They should exit with status 0 if the
test succeeds, and with status 1 otherwise, so that success can be distinguished easily from
a core dump or other failure; segmentation violations and other failures produce a nonzero
exit status. Unless you arrange for exit to be declared, test programs should return, not
exit, from main, because on many systems exit is not declared by default.

Test programs can use #if or #ifdef to check the values of preprocessor macros defined
by tests that have already run. For example, if you call AC_HEADER_STDBOOL, then later on
in ‘configure.ac’ you can have a test program that includes ‘stdbool.h’ conditionally:

#ifdef HAVE_STDBOOL_H
include <stdbool.h>
#endif

Both #if HAVE_STDBOOL_H and #ifdef HAVE_STDBOOL_H will work with any standard C
compiler. Some developers prefer #if because it is easier to read, while others prefer #ifdef
because it avoids diagnostics with picky compilers like GCC with the ‘-Wundef’ option.

If a test program needs to use or create a data file, give it a name that starts with
‘conftest’, such as ‘conftest.data’. The configure script cleans up by running ‘rm -f
-r conftest*’ after running test programs and if the script is interrupted.

6.2.2 Test Functions

These days it’s safe to assume support for function prototypes (introduced in C89).

Functions that test programs declare should also be conditionalized for C++, which
requires ‘extern "C"’ prototypes. Make sure to not include any header files containing
clashing prototypes.

#ifdef __cplusplus
extern "C"
#endif
void *valloc (size_t);

If a test program calls a function with invalid parameters (just to see whether it exists),
organize the program to ensure that it never invokes that function. You can do this by
calling it in another function that is never invoked. You can’t do it by putting it after a
call to exit, because GCC version 2 knows that exit never returns and optimizes out any
code that follows it in the same block.

94 Autoconf

If you include any header files, be sure to call the functions relevant to them with the
correct number of arguments, even if they are just 0, to avoid compilation errors due to
prototypes. GCC version 2 has internal prototypes for several functions that it automatically
inlines; for example, memcpy. To avoid errors when checking for them, either pass them the
correct number of arguments or redeclare them with a different return type (such as char).

6.2.3 Generating Sources

Autoconf provides a set of macros that can be used to generate test source files. They
are written to be language generic, i.e., they actually depend on the current language (see
Section 6.1 [Language Choice], page 91) to “format” the output properly.

[Macro]AC_LANG_CONFTEST (source)
Save the source text in the current test source file: ‘conftest.extension ’ where the
extension depends on the current language.
Note that the source is evaluated exactly once, like regular Autoconf macro argu-
ments, and therefore (i) you may pass a macro invocation, (ii) if not, be sure to
double quote if needed.

[Macro]AC_LANG_SOURCE (source)
Expands into the source, with the definition of all the AC_DEFINE performed so far.

For instance executing (observe the double quotation!):
AC_INIT([Hello], [1.0], [bug-hello@example.org])
AC_DEFINE([HELLO_WORLD], ["Hello, World\n"],
[Greetings string.])

AC_LANG(C)
AC_LANG_CONFTEST(

[AC_LANG_SOURCE([[const char hw[] = "Hello, World\n";]])])
gcc -E -dD -o - conftest.c

results in:
...
1 "conftest.c"

#define PACKAGE_NAME "Hello"
#define PACKAGE_TARNAME "hello"
#define PACKAGE_VERSION "1.0"
#define PACKAGE_STRING "Hello 1.0"
#define PACKAGE_BUGREPORT "bug-hello@example.org"
#define HELLO_WORLD "Hello, World\n"

const char hw[] = "Hello, World\n";

When the test language is Fortran or Erlang, the AC_DEFINE definitions are not auto-
matically translated into constants in the source code by this macro.

[Macro]AC_LANG_PROGRAM (prologue, body)
Expands into a source file which consists of the prologue, and then body as body of
the main function (e.g., main in C). Since it uses AC_LANG_SOURCE, the features of
the latter are available.

Chapter 6: Writing Tests 95

For instance:
AC_INIT([Hello], [1.0], [bug-hello@example.org])
AC_DEFINE([HELLO_WORLD], ["Hello, World\n"],
[Greetings string.])

AC_LANG_CONFTEST(
[AC_LANG_PROGRAM([[const char hw[] = "Hello, World\n";]],

[[fputs (hw, stdout);]])])
gcc -E -dD -o - conftest.c

results in:
...
1 "conftest.c"

#define PACKAGE_NAME "Hello"
#define PACKAGE_TARNAME "hello"
#define PACKAGE_VERSION "1.0"
#define PACKAGE_STRING "Hello 1.0"
#define PACKAGE_BUGREPORT "bug-hello@example.org"
#define HELLO_WORLD "Hello, World\n"

const char hw[] = "Hello, World\n";
int
main ()
{
fputs (hw, stdout);
;
return 0;

}

In Erlang tests, the created source file is that of an Erlang module called conftest
(‘conftest.erl’). This module defines and exports at least one start/0 function, which
is called to perform the test. The prologue is optional code that is inserted between the
module header and the start/0 function definition. body is the body of the start/0
function without the final period (see Section 6.6 [Runtime], page 98, about constraints on
this function’s behavior).

For instance:
AC_INIT([Hello], [1.0], [bug-hello@example.org])
AC_LANG(Erlang)
AC_LANG_CONFTEST(
[AC_LANG_PROGRAM([[-define(HELLO_WORLD, "Hello, world!").]],

[[io:format("~s~n", [?HELLO_WORLD])]])])
cat conftest.erl

results in:
-module(conftest).
-export([start/0]).
-define(HELLO_WORLD, "Hello, world!").
start() ->

96 Autoconf

io:format("~s~n", [?HELLO_WORLD])
.

[Macro]AC_LANG_CALL (prologue, function)
Expands into a source file which consists of the prologue, and then a call to the
function as body of the main function (e.g., main in C). Since it uses AC_LANG_
PROGRAM, the feature of the latter are available.
This function will probably be replaced in the future by a version which would enable
specifying the arguments. The use of this macro is not encouraged, as it violates
strongly the typing system.
This macro cannot be used for Erlang tests.

[Macro]AC_LANG_FUNC_LINK_TRY (function)
Expands into a source file which uses the function in the body of the main func-
tion (e.g., main in C). Since it uses AC_LANG_PROGRAM, the features of the latter are
available.
As AC_LANG_CALL, this macro is documented only for completeness. It is considered
to be severely broken, and in the future will be removed in favor of actual function
calls (with properly typed arguments).
This macro cannot be used for Erlang tests.

6.3 Running the Preprocessor

Sometimes one might need to run the preprocessor on some source file. Usually it is a
bad idea, as you typically need to compile your project, not merely run the preprocessor
on it; therefore you certainly want to run the compiler, not the preprocessor. Resist the
temptation of following the easiest path.

Nevertheless, if you need to run the preprocessor, then use AC_PREPROC_IFELSE.
The macros described in this section cannot be used for tests in Erlang or Fortran, since

those languages require no preprocessor.

[Macro]AC_PREPROC_IFELSE (input, [action-if-true], [action-if-false])
Run the preprocessor of the current language (see Section 6.1 [Language Choice],
page 91) on the input, run the shell commands action-if-true on success, action-if-
false otherwise. The input can be made by AC_LANG_PROGRAM and friends.
This macro uses CPPFLAGS, but not CFLAGS, because ‘-g’, ‘-O’, etc. are not valid
options to many C preprocessors.
It is customary to report unexpected failures with AC_MSG_FAILURE.

For instance:
AC_INIT([Hello], [1.0], [bug-hello@example.org])
AC_DEFINE([HELLO_WORLD], ["Hello, World\n"],
[Greetings string.])

AC_PREPROC_IFELSE(
[AC_LANG_PROGRAM([[const char hw[] = "Hello, World\n";]],

[[fputs (hw, stdout);]])],
[AC_MSG_RESULT([OK])],

Chapter 6: Writing Tests 97

[AC_MSG_FAILURE([unexpected preprocessor failure])])

results in:
checking for gcc... gcc
checking for C compiler default output file name... a.out
checking whether the C compiler works... yes
checking whether we are cross compiling... no
checking for suffix of executables...
checking for suffix of object files... o
checking whether we are using the GNU C compiler... yes
checking whether gcc accepts -g... yes
checking for gcc option to accept ISO C89... none needed
checking how to run the C preprocessor... gcc -E
OK

The macro AC_TRY_CPP (see Section 17.4 [Obsolete Macros], page 253) used to play the
role of AC_PREPROC_IFELSE, but double quotes its argument, making it impossible to use it
to elaborate sources. You are encouraged to get rid of your old use of the macro AC_TRY_CPP
in favor of AC_PREPROC_IFELSE, but, in the first place, are you sure you need to run the
preprocessor and not the compiler?

[Macro]AC_EGREP_HEADER (pattern, header-file, action-if-found,
[action-if-not-found])

If the output of running the preprocessor on the system header file header-file matches
the extended regular expression pattern, execute shell commands action-if-found, oth-
erwise execute action-if-not-found.

[Macro]AC_EGREP_CPP (pattern, program, [action-if-found],
[action-if-not-found])

program is the text of a C or C++ program, on which shell variable, back quote, and
backslash substitutions are performed. If the output of running the preprocessor on
program matches the extended regular expression pattern, execute shell commands
action-if-found, otherwise execute action-if-not-found.

6.4 Running the Compiler

To check for a syntax feature of the current language’s (see Section 6.1 [Language Choice],
page 91) compiler, such as whether it recognizes a certain keyword, or simply to try some
library feature, use AC_COMPILE_IFELSE to try to compile a small program that uses that
feature.

[Macro]AC_COMPILE_IFELSE (input, [action-if-true], [action-if-false])
Run the compiler and compilation flags of the current language (see Section 6.1 [Lan-
guage Choice], page 91) on the input, run the shell commands action-if-true on suc-
cess, action-if-false otherwise. The input can be made by AC_LANG_PROGRAM and
friends.
It is customary to report unexpected failures with AC_MSG_FAILURE. This macro does
not try to link; use AC_LINK_IFELSE if you need to do that (see Section 6.5 [Running
the Linker], page 98).

98 Autoconf

For tests in Erlang, the input must be the source code of a module named conftest. AC_
COMPILE_IFELSE generates a ‘conftest.beam’ file that can be interpreted by the Erlang
virtual machine (ERL). It is recommended to use AC_LANG_PROGRAM to specify the test
program, to ensure that the Erlang module has the right name.

6.5 Running the Linker

To check for a library, a function, or a global variable, Autoconf configure scripts try to
compile and link a small program that uses it. This is unlike Metaconfig, which by default
uses nm or ar on the C library to try to figure out which functions are available. Trying
to link with the function is usually a more reliable approach because it avoids dealing with
the variations in the options and output formats of nm and ar and in the location of the
standard libraries. It also allows configuring for cross-compilation or checking a function’s
runtime behavior if needed. On the other hand, it can be slower than scanning the libraries
once, but accuracy is more important than speed.

AC_LINK_IFELSE is used to compile test programs to test for functions and global vari-
ables. It is also used by AC_CHECK_LIB to check for libraries (see Section 5.4 [Libraries],
page 46), by adding the library being checked for to LIBS temporarily and trying to link a
small program.

[Macro]AC_LINK_IFELSE (input, [action-if-true], [action-if-false])
Run the compiler (and compilation flags) and the linker of the current language
(see Section 6.1 [Language Choice], page 91) on the input, run the shell commands
action-if-true on success, action-if-false otherwise. The input can be made by AC_
LANG_PROGRAM and friends.
LDFLAGS and LIBS are used for linking, in addition to the current compilation flags.
It is customary to report unexpected failures with AC_MSG_FAILURE. This macro
does not try to execute the program; use AC_RUN_IFELSE if you need to do that (see
Section 6.6 [Runtime], page 98).

The AC_LINK_IFELSE macro cannot be used for Erlang tests, since Erlang programs are
interpreted and do not require linking.

6.6 Checking Runtime Behavior

Sometimes you need to find out how a system performs at runtime, such as whether a given
function has a certain capability or bug. If you can, make such checks when your program
runs instead of when it is configured. You can check for things like the machine’s endianness
when your program initializes itself.

If you really need to test for a runtime behavior while configuring, you can write a test
program to determine the result, and compile and run it using AC_RUN_IFELSE. Avoid run-
ning test programs if possible, because this prevents people from configuring your package
for cross-compiling.

[Macro]AC_RUN_IFELSE (input, [action-if-true], [action-if-false],
[action-if-cross-compiling])

If program compiles and links successfully and returns an exit status of 0 when exe-
cuted, run shell commands action-if-true. Otherwise, run shell commands action-if-
false.

Chapter 6: Writing Tests 99

The input can be made by AC_LANG_PROGRAM and friends. LDFLAGS and LIBS are
used for linking, in addition to the compilation flags of the current language (see
Section 6.1 [Language Choice], page 91).
If the compiler being used does not produce executables that run on the system
where configure is being run, then the test program is not run. If the optional
shell commands action-if-cross-compiling are given, they are run instead. Otherwise,
configure prints an error message and exits.
In the action-if-false section, the failing exit status is available in the shell variable
‘$?’. This exit status might be that of a failed compilation, or it might be that of a
failed program execution.
It is customary to report unexpected failures with AC_MSG_FAILURE.

Try to provide a pessimistic default value to use when cross-compiling makes runtime
tests impossible. You do this by passing the optional last argument to AC_RUN_IFELSE.
autoconf prints a warning message when creating configure each time it encounters a
call to AC_RUN_IFELSE with no action-if-cross-compiling argument given. You may ignore
the warning, though users cannot configure your package for cross-compiling. A few of the
macros distributed with Autoconf produce this warning message.

To configure for cross-compiling you can also choose a value for those parameters based
on the canonical system name (see Chapter 13 [Manual Configuration], page 229). Alter-
natively, set up a test results cache file with the correct values for the host system (see
Section 7.4 [Caching Results], page 107).

To provide a default for calls of AC_RUN_IFELSE that are embedded in other macros,
including a few of the ones that come with Autoconf, you can test whether the shell variable
cross_compiling is set to ‘yes’, and then use an alternate method to get the results instead
of calling the macros.

It is also permissible to temporarily assign to cross_compiling in order to force tests
to behave as though they are in a cross-compilation environment, particularly since this
provides a way to test your action-if-cross-compiling even when you are not using a cross-
compiler.

We temporarily set cross-compile mode to force AC_COMPUTE_INT
to use the slow link-only method
save_cross_compiling=$cross_compiling
cross_compiling=yes
AC_COMPUTE_INT([...])
cross_compiling=$save_cross_compiling

A C or C++ runtime test should be portable. See Chapter 12 [Portable C and C++],
page 219.

Erlang tests must exit themselves the Erlang VM by calling the halt/1 function: the
given status code is used to determine the success of the test (status is 0) or its failure
(status is different than 0), as explained above. It must be noted that data output through
the standard output (e.g., using io:format/2) may be truncated when halting the VM.
Therefore, if a test must output configuration information, it is recommended to create and
to output data into the temporary file named ‘conftest.out’, using the functions of module
file. The conftest.out file is automatically deleted by the AC_RUN_IFELSE macro. For
instance, a simplified implementation of Autoconf’s AC_ERLANG_SUBST_LIB_DIR macro is:

100 Autoconf

AC_INIT([LibdirTest], [1.0], [bug-libdirtest@example.org])
AC_ERLANG_NEED_ERL
AC_LANG(Erlang)
AC_RUN_IFELSE(
[AC_LANG_PROGRAM([], [dnl
file:write_file("conftest.out", code:lib_dir()),
halt(0)])],

[echo "code:lib_dir() returned: ‘cat conftest.out‘"],
[AC_MSG_FAILURE([test Erlang program execution failed])])

6.7 Systemology

This section aims at presenting some systems and pointers to documentation. It may help
you addressing particular problems reported by users.

Posix-conforming systems are derived from the Unix operating system.

The Rosetta Stone for Unix contains a table correlating the features of various Posix-
conforming systems. Unix History is a simplified diagram of how many Unix systems were
derived from each other.

The Heirloom Project provides some variants of traditional implementations of Unix
utilities.

Darwin Darwin is also known as Mac OS X. Beware that the file system can be case-
preserving, but case insensitive. This can cause nasty problems, since for in-
stance the installation attempt for a package having an ‘INSTALL’ file can result
in ‘make install’ report that nothing was to be done!

That’s all dependent on whether the file system is a UFS (case sensitive) or
HFS+ (case preserving). By default Apple wants you to install the OS on
HFS+. Unfortunately, there are some pieces of software which really need to be
built on UFS. We may want to rebuild Darwin to have both UFS and HFS+
available (and put the /local/build tree on the UFS).

QNX 4.25 QNX is a realtime operating system running on Intel architecture meant to
be scalable from the small embedded systems to the hundred processor super-
computer. It claims to be Posix certified. More information is available on the
QNX home page.

Tru64 Documentation of several versions of Tru64 is available in different formats.

Unix version 7
Officially this was called the “Seventh Edition” of “the unix time-sharing sys-
tem” but we use the more-common name “Unix version 7”. Documentation is
available in the Unix Seventh Edition Manual. Previous versions of Unix are
called “Unix version 6”, etc., but they were not as widely used.

6.8 Multiple Cases

Some operations are accomplished in several possible ways, depending on the OS variant.
Checking for them essentially requires a “case statement”. Autoconf does not directly

http://penalty z@ www.opengroup.org/penalty z@ susv3
http://penalty z@ www.bell-labs.com/penalty z@ history/penalty z@ unix/
http://penalty z@ bhami.com/penalty z@ rosetta.html
http://penalty z@ www.levenez.com/penalty z@ unix/
http://penalty z@ heirloom.sourceforge.net/
http://penalty z@ www.qnx.com/
http://penalty z@ h30097.www3.hp.com/penalty z@ docs/
http://penalty z@ plan9.bell-labs.com/penalty z@ 7thEdMan/

Chapter 6: Writing Tests 101

provide one; however, it is easy to simulate by using a shell variable to keep track of
whether a way to perform the operation has been found yet.

Here is an example that uses the shell variable fstype to keep track of whether the
remaining cases need to be checked.

AC_MSG_CHECKING([how to get file system type])
fstype=no
The order of these tests is important.
AC_COMPILE_IFELSE([AC_LANG_PROGRAM([[#include <sys/statvfs.h>
#include <sys/fstyp.h>]])],

[AC_DEFINE([FSTYPE_STATVFS], [1],
[Define if statvfs exists.])

fstype=SVR4])
if test $fstype = no; then
AC_COMPILE_IFELSE([AC_LANG_PROGRAM([[#include <sys/statfs.h>

#include <sys/fstyp.h>]])],
[AC_DEFINE([FSTYPE_USG_STATFS], [1],

[Define if USG statfs.])
fstype=SVR3])

fi
if test $fstype = no; then
AC_COMPILE_IFELSE([AC_LANG_PROGRAM([[#include <sys/statfs.h>

#include <sys/vmount.h>]])]),
[AC_DEFINE([FSTYPE_AIX_STATFS], [1],

[Define if AIX statfs.])
fstype=AIX])

fi
(more cases omitted here)
AC_MSG_RESULT([$fstype])

102 Autoconf

Chapter 7: Results of Tests 103

7 Results of Tests

Once configure has determined whether a feature exists, what can it do to record that
information? There are four sorts of things it can do: define a C preprocessor symbol, set
a variable in the output files, save the result in a cache file for future configure runs, and
print a message letting the user know the result of the test.

7.1 Defining C Preprocessor Symbols

A common action to take in response to a feature test is to define a C preprocessor symbol in-
dicating the results of the test. That is done by calling AC_DEFINE or AC_DEFINE_UNQUOTED.

By default, AC_OUTPUT places the symbols defined by these macros into the output
variable DEFS, which contains an option ‘-Dsymbol=value ’ for each symbol defined. Unlike
in Autoconf version 1, there is no variable DEFS defined while configure is running. To
check whether Autoconf macros have already defined a certain C preprocessor symbol, test
the value of the appropriate cache variable, as in this example:

AC_CHECK_FUNC([vprintf], [AC_DEFINE([HAVE_VPRINTF], [1],
[Define if vprintf exists.])])

if test "$ac_cv_func_vprintf" != yes; then
AC_CHECK_FUNC([_doprnt], [AC_DEFINE([HAVE_DOPRNT], [1],

[Define if _doprnt exists.])])
fi

If AC_CONFIG_HEADERS has been called, then instead of creating DEFS, AC_OUTPUT creates
a header file by substituting the correct values into #define statements in a template file.
See Section 4.9 [Configuration Headers], page 32, for more information about this kind of
output.

[Macro]AC_DEFINE (variable, value, [description])
[Macro]AC_DEFINE (variable)

Define variable to value (verbatim), by defining a C preprocessor macro for variable.
variable should be a C identifier, optionally suffixed by a parenthesized argument
list to define a C preprocessor macro with arguments. The macro argument list, if
present, should be a comma-separated list of C identifiers, possibly terminated by
an ellipsis ‘...’ if C99 syntax is employed. variable should not contain comments,
white space, trigraphs, backslash-newlines, universal character names, or non-ASCII
characters.

value may contain backslash-escaped newlines, which will be preserved if you use AC_
CONFIG_HEADERS but flattened if passed via @DEFS@ (with no effect on the compilation,
since the preprocessor sees only one line in the first place). value should not contain
raw newlines. If you are not using AC_CONFIG_HEADERS, value should not contain any
‘#’ characters, as make tends to eat them. To use a shell variable, use AC_DEFINE_
UNQUOTED instead.

description is only useful if you are using AC_CONFIG_HEADERS. In this case, descrip-
tion is put into the generated ‘config.h.in’ as the comment before the macro define.
The following example defines the C preprocessor variable EQUATION to be the string
constant ‘"$a > $b"’:

104 Autoconf

AC_DEFINE([EQUATION], ["$a > $b"],
[Equation string.])

If neither value nor description are given, then value defaults to 1 instead of to the
empty string. This is for backwards compatibility with older versions of Autoconf,
but this usage is obsolescent and may be withdrawn in future versions of Autoconf.
If the variable is a literal string, it is passed to m4_pattern_allow (see Section 8.3.10
[Forbidden Patterns], page 146).
If multiple AC_DEFINE statements are executed for the same variable name (not count-
ing any parenthesized argument list), the last one wins.

[Macro]AC_DEFINE_UNQUOTED (variable, value, [description])
[Macro]AC_DEFINE_UNQUOTED (variable)

Like AC_DEFINE, but three shell expansions are performed—once—on variable and
value: variable expansion (‘$’), command substitution (‘‘’), and backslash escaping
(‘\’). Single and double quote characters in the value have no special meaning. Use
this macro instead of AC_DEFINE when variable or value is a shell variable. Examples:

AC_DEFINE_UNQUOTED([config_machfile], ["$machfile"],
[Configuration machine file.])

AC_DEFINE_UNQUOTED([GETGROUPS_T], [$ac_cv_type_getgroups],
[getgroups return type.])

AC_DEFINE_UNQUOTED([$ac_tr_hdr], [1],
[Translated header name.])

Due to a syntactical bizarreness of the Bourne shell, do not use semicolons to separate
AC_DEFINE or AC_DEFINE_UNQUOTED calls from other macro calls or shell code; that can
cause syntax errors in the resulting configure script. Use either blanks or newlines. That
is, do this:

AC_CHECK_HEADER([elf.h],
[AC_DEFINE([SVR4], [1], [System V Release 4]) LIBS="-lelf $LIBS"])

or this:
AC_CHECK_HEADER([elf.h],
[AC_DEFINE([SVR4], [1], [System V Release 4])
LIBS="-lelf $LIBS"])

instead of this:
AC_CHECK_HEADER([elf.h],
[AC_DEFINE([SVR4], [1], [System V Release 4]); LIBS="-lelf $LIBS"])

7.2 Setting Output Variables

Another way to record the results of tests is to set output variables, which are shell variables
whose values are substituted into files that configure outputs. The two macros below
create new output variables. See Section 4.8.1 [Preset Output Variables], page 23, for a list
of output variables that are always available.

[Macro]AC_SUBST (variable, [value])
Create an output variable from a shell variable. Make AC_OUTPUT substitute the
variable variable into output files (typically one or more makefiles). This means that

Chapter 7: Results of Tests 105

AC_OUTPUT replaces instances of ‘@variable@’ in input files with the value that the
shell variable variable has when AC_OUTPUT is called. The value can contain any
non-NUL character, including newline. Variable occurrences should not overlap: e.g.,
an input file should not contain ‘@var1@var2@’ if var1 and var2 are variable names.
The substituted value is not rescanned for more output variables; occurrences of
‘@variable@’ in the value are inserted literally into the output file. (The algorithm
uses the special marker |#_!!_#| internally, so neither the substituted value nor the
output file may contain |#_!!_#|.)
If value is given, in addition assign it to variable.
The string variable is passed to m4_pattern_allow (see Section 8.3.10 [Forbidden
Patterns], page 146).

[Macro]AC_SUBST_FILE (variable)
Another way to create an output variable from a shell variable. Make AC_OUTPUT
insert (without substitutions) the contents of the file named by shell variable variable
into output files. This means that AC_OUTPUT replaces instances of ‘@variable@’
in output files (such as ‘Makefile.in’) with the contents of the file that the shell
variable variable names when AC_OUTPUT is called. Set the variable to ‘/dev/null’
for cases that do not have a file to insert. This substitution occurs only when the
‘@variable@’ is on a line by itself, optionally surrounded by spaces and tabs. The
substitution replaces the whole line, including the spaces, tabs, and the terminating
newline.
This macro is useful for inserting makefile fragments containing special dependencies
or other make directives for particular host or target types into makefiles. For example,
‘configure.ac’ could contain:

AC_SUBST_FILE([host_frag])
host_frag=$srcdir/conf/sun4.mh

and then a ‘Makefile.in’ could contain:
@host_frag@

The string variable is passed to m4_pattern_allow (see Section 8.3.10 [Forbidden
Patterns], page 146).

Running configure in varying environments can be extremely dangerous. If for instance
the user runs ‘CC=bizarre-cc ./configure’, then the cache, ‘config.h’, and many other
output files depend upon bizarre-cc being the C compiler. If for some reason the user
runs ./configure again, or if it is run via ‘./config.status --recheck’, (See Section 4.8.5
[Automatic Remaking], page 31, and see Chapter 16 [config.status Invocation], page 249),
then the configuration can be inconsistent, composed of results depending upon two different
compilers.

Environment variables that affect this situation, such as ‘CC’ above, are called precious
variables, and can be declared as such by AC_ARG_VAR.

[Macro]AC_ARG_VAR (variable, description)
Declare variable is a precious variable, and include its description in the variable
section of ‘./configure --help’.
Being precious means that

106 Autoconf

− variable is substituted via AC_SUBST.
− The value of variable when configure was launched is saved in the cache,

including if it was not specified on the command line but via the environ-
ment. Indeed, while configure can notice the definition of CC in ‘./configure
CC=bizarre-cc’, it is impossible to notice it in ‘CC=bizarre-cc ./configure’,
which, unfortunately, is what most users do.
We emphasize that it is the initial value of variable which is saved, not that found
during the execution of configure. Indeed, specifying ‘./configure FOO=foo’
and letting ‘./configure’ guess that FOO is foo can be two different things.

− variable is checked for consistency between two configure runs. For instance:
$./configure --silent --config-cache

$ CC=cc ./configure --silent --config-cache

configure: error: ‘CC’ was not set in the previous run
configure: error: changes in the environment can compromise \
the build
configure: error: run ‘make distclean’ and/or \
‘rm config.cache’ and start over

and similarly if the variable is unset, or if its content is changed. If the content
has white space changes only, then the error is degraded to a warning only, but
the old value is reused.

− variable is kept during automatic reconfiguration (see Chapter 16 [config.status
Invocation], page 249) as if it had been passed as a command line argument,
including when no cache is used:

$ CC=/usr/bin/cc ./configure var=raboof --silent

$./config.status --recheck

running CONFIG_SHELL=/bin/sh /bin/sh ./configure var=raboof \
CC=/usr/bin/cc --no-create --no-recursion

7.3 Special Characters in Output Variables

Many output variables are intended to be evaluated both by make and by the shell. Some
characters are expanded differently in these two contexts, so to avoid confusion these vari-
ables’ values should not contain any of the following characters:

" # $ & ’ () * ; < > ? [\ ^ ‘ |

Also, these variables’ values should neither contain newlines, nor start with ‘~’, nor
contain white space or ‘:’ immediately followed by ‘~’. The values can contain nonempty
sequences of white space characters like tabs and spaces, but each such sequence might
arbitrarily be replaced by a single space during substitution.

These restrictions apply both to the values that configure computes, and to the values
set directly by the user. For example, the following invocations of configure are problem-
atic, since they attempt to use special characters within CPPFLAGS and white space within
$(srcdir):

CPPFLAGS=’-DOUCH="&\"#$*?"’ ’../My Source/ouch-1.0/configure’

’../My Source/ouch-1.0/configure’ CPPFLAGS=’-DOUCH="&\"#$*?"’

Chapter 7: Results of Tests 107

7.4 Caching Results

To avoid checking for the same features repeatedly in various configure scripts (or in
repeated runs of one script), configure can optionally save the results of many checks in
a cache file (see Section 7.4.2 [Cache Files], page 108). If a configure script runs with
caching enabled and finds a cache file, it reads the results of previous runs from the cache
and avoids rerunning those checks. As a result, configure can then run much faster than
if it had to perform all of the checks every time.

[Macro]AC_CACHE_VAL (cache-id, commands-to-set-it)
Ensure that the results of the check identified by cache-id are available. If the results
of the check were in the cache file that was read, and configure was not given the
‘--quiet’ or ‘--silent’ option, print a message saying that the result was cached;
otherwise, run the shell commands commands-to-set-it. If the shell commands are
run to determine the value, the value is saved in the cache file just before configure
creates its output files. See Section 7.4.1 [Cache Variable Names], page 108, for how
to choose the name of the cache-id variable.

The commands-to-set-it must have no side effects except for setting the variable
cache-id, see below.

[Macro]AC_CACHE_CHECK (message, cache-id, commands-to-set-it)
A wrapper for AC_CACHE_VAL that takes care of printing the messages. This macro
provides a convenient shorthand for the most common way to use these macros.
It calls AC_MSG_CHECKING for message, then AC_CACHE_VAL with the cache-id and
commands arguments, and AC_MSG_RESULT with cache-id.

The commands-to-set-it must have no side effects except for setting the variable
cache-id, see below.

It is common to find buggy macros using AC_CACHE_VAL or AC_CACHE_CHECK, because
people are tempted to call AC_DEFINE in the commands-to-set-it. Instead, the code that
follows the call to AC_CACHE_VAL should call AC_DEFINE, by examining the value of the
cache variable. For instance, the following macro is broken:

AC_DEFUN([AC_SHELL_TRUE],
[AC_CACHE_CHECK([whether true(1) works], [my_cv_shell_true_works],

[my_cv_shell_true_works=no
(true) 2>/dev/null && my_cv_shell_true_works=yes
if test "$my_cv_shell_true_works" = yes; then
AC_DEFINE([TRUE_WORKS], [1],

[Define if ‘true(1)’ works properly.])
fi])

])

This fails if the cache is enabled: the second time this macro is run, TRUE_WORKS will not
be defined. The proper implementation is:

108 Autoconf

AC_DEFUN([AC_SHELL_TRUE],
[AC_CACHE_CHECK([whether true(1) works], [my_cv_shell_true_works],

[my_cv_shell_true_works=no
(true) 2>/dev/null && my_cv_shell_true_works=yes])

if test "$my_cv_shell_true_works" = yes; then
AC_DEFINE([TRUE_WORKS], [1],

[Define if ‘true(1)’ works properly.])
fi
])

Also, commands-to-set-it should not print any messages, for example with AC_MSG_
CHECKING; do that before calling AC_CACHE_VAL, so the messages are printed regardless of
whether the results of the check are retrieved from the cache or determined by running the
shell commands.

7.4.1 Cache Variable Names

The names of cache variables should have the following format:
package-prefix_cv_value-type_specific-value_[additional-options]

for example, ‘ac_cv_header_stat_broken’ or ‘ac_cv_prog_gcc_traditional’. The parts
of the variable name are:

package-prefix
An abbreviation for your package or organization; the same prefix you begin
local Autoconf macros with, except lowercase by convention. For cache values
used by the distributed Autoconf macros, this value is ‘ac’.

cv Indicates that this shell variable is a cache value. This string must be present
in the variable name, including the leading underscore.

value-type A convention for classifying cache values, to produce a rational naming system.
The values used in Autoconf are listed in Section 9.2 [Macro Names], page 151.

specific-value
Which member of the class of cache values this test applies to. For example,
which function (‘alloca’), program (‘gcc’), or output variable (‘INSTALL’).

additional-options
Any particular behavior of the specific member that this test applies to. For
example, ‘broken’ or ‘set’. This part of the name may be omitted if it does
not apply.

The values assigned to cache variables may not contain newlines. Usually, their values
are Boolean (‘yes’ or ‘no’) or the names of files or functions; so this is not an important
restriction.

7.4.2 Cache Files

A cache file is a shell script that caches the results of configure tests run on one system so
they can be shared between configure scripts and configure runs. It is not useful on other
systems. If its contents are invalid for some reason, the user may delete or edit it.

By default, configure uses no cache file, to avoid problems caused by accidental use of
stale cache files.

Chapter 7: Results of Tests 109

To enable caching, configure accepts ‘--config-cache’ (or ‘-C’) to cache results in the
file ‘config.cache’. Alternatively, ‘--cache-file=file ’ specifies that file be the cache file.
The cache file is created if it does not exist already. When configure calls configure scripts
in subdirectories, it uses the ‘--cache-file’ argument so that they share the same cache.
See Section 4.12 [Subdirectories], page 37, for information on configuring subdirectories
with the AC_CONFIG_SUBDIRS macro.

‘config.status’ only pays attention to the cache file if it is given the ‘--recheck’
option, which makes it rerun configure.

It is wrong to try to distribute cache files for particular system types. There is too
much room for error in doing that, and too much administrative overhead in maintaining
them. For any features that can’t be guessed automatically, use the standard method of the
canonical system type and linking files (see Chapter 13 [Manual Configuration], page 229).

The site initialization script can specify a site-wide cache file to use, instead of the usual
per-program cache. In this case, the cache file gradually accumulates information whenever
someone runs a new configure script. (Running configure merges the new cache results
with the existing cache file.) This may cause problems, however, if the system configuration
(e.g., the installed libraries or compilers) changes and the stale cache file is not deleted.

7.4.3 Cache Checkpointing

If your configure script, or a macro called from ‘configure.ac’, happens to abort the
configure process, it may be useful to checkpoint the cache a few times at key points using
AC_CACHE_SAVE. Doing so reduces the amount of time it takes to rerun the configure script
with (hopefully) the error that caused the previous abort corrected.

[Macro]AC_CACHE_LOAD
Loads values from existing cache file, or creates a new cache file if a cache file is not
found. Called automatically from AC_INIT.

[Macro]AC_CACHE_SAVE
Flushes all cached values to the cache file. Called automatically from AC_OUTPUT, but
it can be quite useful to call AC_CACHE_SAVE at key points in ‘configure.ac’.

For instance:

. . . AC INIT, etc. . . .
Checks for programs.
AC_PROG_CC
AC_PROG_AWK
. . . more program checks . . .
AC_CACHE_SAVE

Checks for libraries.
AC_CHECK_LIB([nsl], [gethostbyname])
AC_CHECK_LIB([socket], [connect])
. . . more lib checks . . .
AC_CACHE_SAVE

110 Autoconf

Might abort...
AM_PATH_GTK([1.0.2], [], [AC_MSG_ERROR([GTK not in path])])
AM_PATH_GTKMM([0.9.5], [], [AC_MSG_ERROR([GTK not in path])])
. . . AC OUTPUT, etc. . . .

7.5 Printing Messages

configure scripts need to give users running them several kinds of information. The fol-
lowing macros print messages in ways appropriate for each kind. The arguments to all of
them get enclosed in shell double quotes, so the shell performs variable and back-quote
substitution on them.

These macros are all wrappers around the echo shell command. They direct output
to the appropriate file descriptor (see Section 8.5 [File Descriptor Macros], page 148).
configure scripts should rarely need to run echo directly to print messages for the user.
Using these macros makes it easy to change how and when each kind of message is printed;
such changes need only be made to the macro definitions and all the callers change auto-
matically.

To diagnose static issues, i.e., when autoconf is run, see Section 8.3.2 [Diagnostic
Macros], page 128.

[Macro]AC_MSG_CHECKING (feature-description)
Notify the user that configure is checking for a particular feature. This macro
prints a message that starts with ‘checking ’ and ends with ‘...’ and no newline.
It must be followed by a call to AC_MSG_RESULT to print the result of the check and
the newline. The feature-description should be something like ‘whether the Fortran
compiler accepts C++ comments’ or ‘for c89’.

This macro prints nothing if configure is run with the ‘--quiet’ or ‘--silent’
option.

[Macro]AC_MSG_RESULT (result-description)
Notify the user of the results of a check. result-description is almost always the value
of the cache variable for the check, typically ‘yes’, ‘no’, or a file name. This macro
should follow a call to AC_MSG_CHECKING, and the result-description should be the
completion of the message printed by the call to AC_MSG_CHECKING.

This macro prints nothing if configure is run with the ‘--quiet’ or ‘--silent’
option.

[Macro]AC_MSG_NOTICE (message)
Deliver the message to the user. It is useful mainly to print a general description of
the overall purpose of a group of feature checks, e.g.,

AC_MSG_NOTICE([checking if stack overflow is detectable])

This macro prints nothing if configure is run with the ‘--quiet’ or ‘--silent’
option.

Chapter 7: Results of Tests 111

[Macro]AC_MSG_ERROR (error-description, [exit-status])
Notify the user of an error that prevents configure from completing. This macro
prints an error message to the standard error output and exits configure with exit-
status (1 by default). error-description should be something like ‘invalid value
$HOME for \$HOME’.
The error-description should start with a lower-case letter, and “cannot” is preferred
to “can’t”.

[Macro]AC_MSG_FAILURE (error-description, [exit-status])
This AC_MSG_ERROR wrapper notifies the user of an error that prevents configure
from completing and that additional details are provided in ‘config.log’. This is
typically used when abnormal results are found during a compilation.

[Macro]AC_MSG_WARN (problem-description)
Notify the configure user of a possible problem. This macro prints the message
to the standard error output; configure continues running afterward, so macros
that call AC_MSG_WARN should provide a default (back-up) behavior for the situations
they warn about. problem-description should be something like ‘ln -s seems to make
hard links’.

112 Autoconf

Chapter 8: Programming in M4 113

8 Programming in M4

Autoconf is written on top of two layers: M4sugar, which provides convenient macros
for pure M4 programming, and M4sh, which provides macros dedicated to shell script
generation.

As of this version of Autoconf, these two layers still contain experimental macros, whose
interface might change in the future. As a matter of fact, anything that is not documented
must not be used.

8.1 M4 Quotation

The most common problem with existing macros is an improper quotation. This section,
which users of Autoconf can skip, but which macro writers must read, first justifies the
quotation scheme that was chosen for Autoconf and then ends with a rule of thumb. Un-
derstanding the former helps one to follow the latter.

8.1.1 Active Characters

To fully understand where proper quotation is important, you first need to know what
the special characters are in Autoconf: ‘#’ introduces a comment inside which no macro
expansion is performed, ‘,’ separates arguments, ‘[’ and ‘]’ are the quotes themselves, ‘(’
and ‘)’ (which M4 tries to match by pairs), and finally ‘$’ inside a macro definition.

In order to understand the delicate case of macro calls, we first have to present some
obvious failures. Below they are “obvious-ified”, but when you find them in real life, they
are usually in disguise.

Comments, introduced by a hash and running up to the newline, are opaque tokens to
the top level: active characters are turned off, and there is no macro expansion:

define([def], ine)
⇒# define([def], ine)

Each time there can be a macro expansion, there is a quotation expansion, i.e., one level
of quotes is stripped:

int tab[10];
⇒int tab10;
[int tab[10];]
⇒int tab[10];

Without this in mind, the reader might try hopelessly to use her macro array:

define([array], [int tab[10];])
array
⇒int tab10;
[array]
⇒array

How can you correctly output the intended results1?

1 Using defn.

114 Autoconf

8.1.2 One Macro Call

Let’s proceed on the interaction between active characters and macros with this small macro,
which just returns its first argument:

define([car], [$1])

The two pairs of quotes above are not part of the arguments of define; rather, they are
understood by the top level when it tries to find the arguments of define. Therefore,
assuming car is not already defined, it is equivalent to write:

define(car, $1)

But, while it is acceptable for a ‘configure.ac’ to avoid unnecessary quotes, it is bad
practice for Autoconf macros which must both be more robust and also advocate perfect
style.

At the top level, there are only two possibilities: either you quote or you don’t:
car(foo, bar, baz)
⇒foo
[car(foo, bar, baz)]
⇒car(foo, bar, baz)

Let’s pay attention to the special characters:
car(#)
error EOF in argument list

The closing parenthesis is hidden in the comment; with a hypothetical quoting, the top
level understood it this way:

car([#)]

Proper quotation, of course, fixes the problem:
car([#])
⇒#

Here are more examples:
car(foo, bar)
⇒foo
car([foo, bar])
⇒foo, bar
car((foo, bar))
⇒(foo, bar)
car([(foo], [bar)])
⇒(foo
define([a], [b])
⇒
car(a)
⇒b
car([a])
⇒b
car([[a]])
⇒a
car([[[a]]])
⇒[a]

Chapter 8: Programming in M4 115

8.1.3 Quoting and Parameters

When M4 encounters ‘$’ within a macro definition, followed immediately by a character it
recognizes (‘0’. . . ‘9’, ‘#’, ‘@’, or ‘*’), it will perform M4 parameter expansion. This happens
regardless of how many layers of quotes the parameter expansion is nested within, or even
if it occurs in text that will be rescanned as a comment.

define([none], [$1])
⇒
define([one], [[$1]])
⇒
define([two], [[[$1]]])
⇒
define([comment], [# $1])
⇒
define([active], [ACTIVE])
⇒
none([active])
⇒ACTIVE
one([active])
⇒active
two([active])
⇒[active]
comment([active])
⇒# active

On the other hand, since autoconf generates shell code, you often want to output shell
variable expansion, rather than performing M4 parameter expansion. To do this, you must
use M4 quoting to separate the ‘$’ from the next character in the definition of your macro.
If the macro definition occurs in single-quoted text, then insert another level of quoting; if
the usage is already inside a double-quoted string, then split it into concatenated strings.

define([single], [a single-quoted $[]1 definition])
⇒
define([double], [[a double-quoted $][1 definition]])
⇒
single
⇒a single-quoted $1 definition
double
⇒a double-quoted $1 definition

Posix states that M4 implementations are free to provide implementation extensions
when ‘${’ is encountered in a macro definition. Autoconf reserves the longer sequence
‘${{’ for use with planned extensions that will be available in the future GNU M4 2.0, but
guarantees that all other instances of ‘${’ will be output literally. Therefore, this idiom can
also be used to output shell code parameter references:

define([first], [${1}])first
⇒${1}

116 Autoconf

Posix also states that ‘$11’ should expand to the first parameter concatenated with a
literal ‘1’, although some versions of GNU M4 expand the eleventh parameter instead. For
portability, you should only use single-digit M4 parameter expansion.

With this in mind, we can explore the cases where macros invoke macros. . .

8.1.4 Quotation and Nested Macros

The examples below use the following macros:

define([car], [$1])
define([active], [ACT, IVE])
define([array], [int tab[10]])

Each additional embedded macro call introduces other possible interesting quotations:

car(active)
⇒ACT
car([active])
⇒ACT, IVE
car([[active]])
⇒active

In the first case, the top level looks for the arguments of car, and finds ‘active’. Because
M4 evaluates its arguments before applying the macro, ‘active’ is expanded, which results
in:

car(ACT, IVE)
⇒ACT

In the second case, the top level gives ‘active’ as first and only argument of car, which
results in:

active
⇒ACT, IVE

i.e., the argument is evaluated after the macro that invokes it. In the third case, car receives
‘[active]’, which results in:

[active]
⇒active

exactly as we already saw above.

The example above, applied to a more realistic example, gives:

car(int tab[10];)
⇒int tab10;
car([int tab[10];])
⇒int tab10;
car([[int tab[10];]])
⇒int tab[10];

Huh? The first case is easily understood, but why is the second wrong, and the third right?
To understand that, you must know that after M4 expands a macro, the resulting text is
immediately subjected to macro expansion and quote removal. This means that the quote
removal occurs twice—first before the argument is passed to the car macro, and second
after the car macro expands to the first argument.

Chapter 8: Programming in M4 117

As the author of the Autoconf macro car, you then consider it to be incorrect that your
users have to double-quote the arguments of car, so you “fix” your macro. Let’s call it qar
for quoted car:

define([qar], [[$1]])

and check that qar is properly fixed:
qar([int tab[10];])
⇒int tab[10];

Ahhh! That’s much better.
But note what you’ve done: now that the result of qar is always a literal string, the only

time a user can use nested macros is if she relies on an unquoted macro call:
qar(active)
⇒ACT
qar([active])
⇒active

leaving no way for her to reproduce what she used to do with car:
car([active])
⇒ACT, IVE

Worse yet: she wants to use a macro that produces a set of cpp macros:
define([my_includes], [#include <stdio.h>])
car([my_includes])
⇒#include <stdio.h>
qar(my_includes)
error EOF in argument list

This macro, qar, because it double quotes its arguments, forces its users to leave their
macro calls unquoted, which is dangerous. Commas and other active symbols are interpreted
by M4 before they are given to the macro, often not in the way the users expect. Also,
because qar behaves differently from the other macros, it’s an exception that should be
avoided in Autoconf.

8.1.5 changequote is Evil

The temptation is often high to bypass proper quotation, in particular when it’s late at
night. Then, many experienced Autoconf hackers finally surrender to the dark side of the
force and use the ultimate weapon: changequote.

The M4 builtin changequote belongs to a set of primitives that allow one to adjust the
syntax of the language to adjust it to one’s needs. For instance, by default M4 uses ‘‘’ and
‘’’ as quotes, but in the context of shell programming (and actually of most programming
languages), that’s about the worst choice one can make: because of strings and back-quoted
expressions in shell code (such as ‘’this’’ and ‘‘that‘’), and because of literal characters in
usual programming languages (as in ‘’0’’), there are many unbalanced ‘‘’ and ‘’’. Proper
M4 quotation then becomes a nightmare, if not impossible. In order to make M4 useful in
such a context, its designers have equipped it with changequote, which makes it possible
to choose another pair of quotes. M4sugar, M4sh, Autoconf, and Autotest all have chosen
to use ‘[’ and ‘]’. Not especially because they are unlikely characters, but because they are
characters unlikely to be unbalanced.

118 Autoconf

There are other magic primitives, such as changecom to specify what syntactic forms
are comments (it is common to see ‘changecom(<!--, -->)’ when M4 is used to produce
HTML pages), changeword and changesyntax to change other syntactic details (such as
the character to denote the nth argument, ‘$’ by default, the parentheses around arguments,
etc.).

These primitives are really meant to make M4 more useful for specific domains: they
should be considered like command line options: ‘--quotes’, ‘--comments’, ‘--words’, and
‘--syntax’. Nevertheless, they are implemented as M4 builtins, as it makes M4 libraries
self contained (no need for additional options).

There lies the problem. . .

The problem is that it is then tempting to use them in the middle of an M4 script, as
opposed to its initialization. This, if not carefully thought out, can lead to disastrous effects:
you are changing the language in the middle of the execution. Changing and restoring the
syntax is often not enough: if you happened to invoke macros in between, these macros are
lost, as the current syntax is probably not the one they were implemented with.

8.1.6 Quadrigraphs

When writing an Autoconf macro you may occasionally need to generate special characters
that are difficult to express with the standard Autoconf quoting rules. For example, you
may need to output the regular expression ‘[^[]’, which matches any character other than
‘[’. This expression contains unbalanced brackets so it cannot be put easily into an M4
macro.

Additionally, there are a few m4sugar macros (such as m4_split and m4_expand) which
internally use special markers in addition to the regular quoting characters. If the arguments
to these macros contain the literal strings ‘-=<{(’ or ‘)}>=-’, the macros might behave
incorrectly.

You can work around these problems by using one of the following quadrigraphs:

‘@<:@’ ‘[’

‘@:>@’ ‘]’

‘@S|@’ ‘$’

‘@%:@’ ‘#’

‘@{:@’ ‘(’

‘@:}@’ ‘)’

‘@&t@’ Expands to nothing.

Quadrigraphs are replaced at a late stage of the translation process, after m4 is run, so
they do not get in the way of M4 quoting. For example, the string ‘^@<:@’, independently
of its quotation, appears as ‘^[’ in the output.

The empty quadrigraph can be used:
− to mark trailing spaces explicitly

Trailing spaces are smashed by autom4te. This is a feature.

Chapter 8: Programming in M4 119

− to produce quadrigraphs and other strings reserved by m4sugar
For instance ‘@<@&t@:@’ produces ‘@<:@’. For a more contrived example:

m4_define([a], [A])m4_define([b], [B])m4_define([c], [C])dnl
m4_split([a)}>=- b -=<{(c])
⇒[a], [], [B], [], [c]
m4_split([a)}@&t@>=- b -=<@&t@{(c])
⇒[a], [)}>=-], [b], [-=<{(], [c]

− to escape occurrences of forbidden patterns
For instance you might want to mention AC_FOO in a comment, while still being sure
that autom4te still catches unexpanded ‘AC_*’. Then write ‘AC@&t@_FOO’.

The name ‘@&t@’ was suggested by Paul Eggert:
I should give some credit to the ‘@&t@’ pun. The ‘&’ is my own invention, but
the ‘t’ came from the source code of the algol68c compiler, written by Steve
Bourne (of Bourne shell fame), and which used ‘mt’ to denote the empty string.
In C, it would have looked like something like:

char const mt[] = "";

but of course the source code was written in Algol 68.
I don’t know where he got ‘mt’ from: it could have been his own invention, and
I suppose it could have been a common pun around the Cambridge University
computer lab at the time.

8.1.7 Quotation Rule Of Thumb

To conclude, the quotation rule of thumb is:
One pair of quotes per pair of parentheses.

Never over-quote, never under-quote, in particular in the definition of macros. In the
few places where the macros need to use brackets (usually in C program text or regular
expressions), properly quote the arguments!

It is common to read Autoconf programs with snippets like:
AC_TRY_LINK(
changequote(<<, >>)dnl
<<#include <time.h>
#ifndef tzname /* For SGI. */
extern char *tzname[]; /* RS6000 and others reject char **tzname. */
#endif>>,
changequote([,])dnl
[atoi (*tzname);], ac_cv_var_tzname=yes, ac_cv_var_tzname=no)

which is incredibly useless since AC_TRY_LINK is already double quoting, so you just need:
AC_TRY_LINK(
[#include <time.h>
#ifndef tzname /* For SGI. */
extern char *tzname[]; /* RS6000 and others reject char **tzname. */
#endif],

[atoi (*tzname);],

120 Autoconf

[ac_cv_var_tzname=yes],
[ac_cv_var_tzname=no])

The M4-fluent reader might note that these two examples are rigorously equivalent, since
M4 swallows both the ‘changequote(<<, >>)’ and ‘<<’ ‘>>’ when it collects the arguments:
these quotes are not part of the arguments!

Simplified, the example above is just doing this:

changequote(<<, >>)dnl
<<[]>>
changequote([,])dnl

instead of simply:

[[]]

With macros that do not double quote their arguments (which is the rule), double-quote
the (risky) literals:

AC_LINK_IFELSE([AC_LANG_PROGRAM(
[[#include <time.h>
#ifndef tzname /* For SGI. */
extern char *tzname[]; /* RS6000 and others reject char **tzname. */
#endif]],

[atoi (*tzname);])],
[ac_cv_var_tzname=yes],
[ac_cv_var_tzname=no])

Please note that the macro AC_TRY_LINK is obsolete, so you really should be using AC_
LINK_IFELSE instead.

See Section 8.1.6 [Quadrigraphs], page 118, for what to do if you run into a hopeless
case where quoting does not suffice.

When you create a configure script using newly written macros, examine it carefully
to check whether you need to add more quotes in your macros. If one or more words have
disappeared in the M4 output, you need more quotes. When in doubt, quote.

However, it’s also possible to put on too many layers of quotes. If this happens, the
resulting configure script may contain unexpanded macros. The autoconf program checks
for this problem by looking for the string ‘AC_’ in ‘configure’. However, this heuristic does
not work in general: for example, it does not catch overquoting in AC_DEFINE descriptions.

8.2 Using autom4te

The Autoconf suite, including M4sugar, M4sh, and Autotest, in addition to Autoconf per
se, heavily rely on M4. All these different uses revealed common needs factored into a layer
over M4: autom4te2.

autom4te is a preprocessor that is like m4. It supports M4 extensions designed for use
in tools like Autoconf.

2 Yet another great name from Lars J. Aas.

Chapter 8: Programming in M4 121

8.2.1 Invoking autom4te

The command line arguments are modeled after M4’s:
autom4te options files

where the files are directly passed to m4. By default, GNU M4 is found during configuration,
but the environment variable M4 can be set to tell autom4te where to look. In addition
to the regular expansion, it handles the replacement of the quadrigraphs (see Section 8.1.6
[Quadrigraphs], page 118), and of ‘__oline__’, the current line in the output. It supports
an extended syntax for the files:

‘file.m4f’
This file is an M4 frozen file. Note that all the previous files are ignored. See
the option ‘--melt’ for the rationale.

‘file?’ If found in the library path, the file is included for expansion, otherwise it is
ignored instead of triggering a failure.

Of course, it supports the Autoconf common subset of options:

‘--help’
‘-h’ Print a summary of the command line options and exit.

‘--version’
‘-V’ Print the version number of Autoconf and exit.

‘--verbose’
‘-v’ Report processing steps.

‘--debug’
‘-d’ Don’t remove the temporary files and be even more verbose.

‘--include=dir ’
‘-I dir ’ Also look for input files in dir. Multiple invocations accumulate.

‘--output=file ’
‘-o file ’ Save output (script or trace) to file. The file ‘-’ stands for the standard output.

As an extension of m4, it includes the following options:

‘--warnings=category ’
‘-W category ’

Report the warnings related to category (which can actually be a comma
separated list). See Section 9.3 [Reporting Messages], page 153, macro AC_
DIAGNOSE, for a comprehensive list of categories. Special values include:

‘all’ report all the warnings

‘none’ report none

‘error’ treats warnings as errors

‘no-category ’
disable warnings falling into category

122 Autoconf

Warnings about ‘syntax’ are enabled by default, and the environment variable
WARNINGS, a comma separated list of categories, is honored. ‘autom4te -W
category ’ actually behaves as if you had run:

autom4te --warnings=syntax,$WARNINGS,category

For example, if you want to disable defaults and WARNINGS of autom4te,
but enable the warnings about obsolete constructs, you would use ‘-W
none,obsolete’.

autom4te displays a back trace for errors, but not for warnings; if you want
them, just pass ‘-W error’.

‘--melt’
‘-M’ Do not use frozen files. Any argument file.m4f is replaced by file.m4. This

helps tracing the macros which are executed only when the files are frozen,
typically m4_define. For instance, running:

autom4te --melt 1.m4 2.m4f 3.m4 4.m4f input.m4

is roughly equivalent to running:

m4 1.m4 2.m4 3.m4 4.m4 input.m4

while

autom4te 1.m4 2.m4f 3.m4 4.m4f input.m4

is equivalent to:

m4 --reload-state=4.m4f input.m4

‘--freeze’
‘-F’ Produce a frozen state file. autom4te freezing is stricter than M4’s: it must

produce no warnings, and no output other than empty lines (a line with white
space is not empty) and comments (starting with ‘#’). Unlike m4’s similarly-
named option, this option takes no argument:

autom4te 1.m4 2.m4 3.m4 --freeze --output=3.m4f

corresponds to

m4 1.m4 2.m4 3.m4 --freeze-state=3.m4f

‘--mode=octal-mode ’
‘-m octal-mode ’

Set the mode of the non-traces output to octal-mode; by default ‘0666’.

As another additional feature over m4, autom4te caches its results. GNU M4 is able to
produce a regular output and traces at the same time. Traces are heavily used in the GNU
Build System: autoheader uses them to build ‘config.h.in’, autoreconf to determine
what GNU Build System components are used, automake to “parse” ‘configure.ac’ etc.
To avoid recomputation, traces are cached while performing regular expansion, and con-
versely. This cache is (actually, the caches are) stored in the directory ‘autom4te.cache’.
It can safely be removed at any moment (especially if for some reason autom4te considers
it trashed).

Chapter 8: Programming in M4 123

‘--cache=directory ’
‘-C directory ’

Specify the name of the directory where the result should be cached. Passing
an empty value disables caching. Be sure to pass a relative file name, as for the
time being, global caches are not supported.

‘--no-cache’
Don’t cache the results.

‘--force’
‘-f’ If a cache is used, consider it obsolete (but update it anyway).

Because traces are so important to the GNU Build System, autom4te provides high level
tracing features as compared to M4, and helps exploiting the cache:

‘--trace=macro[:format]’
‘-t macro[:format]’

Trace the invocations of macro according to the format. Multiple ‘--trace’
arguments can be used to list several macros. Multiple ‘--trace’ arguments
for a single macro are not cumulative; instead, you should just make format as
long as needed.

The format is a regular string, with newlines if desired, and several special
escape codes. It defaults to ‘$f:$l:$n:$%’. It can use the following special
escapes:

‘$$’ The character ‘$’.

‘$f’ The file name from which macro is called.

‘$l’ The line number from which macro is called.

‘$d’ The depth of the macro call. This is an M4 technical detail that
you probably don’t want to know about.

‘$n’ The name of the macro.

‘$num ’ The numth argument of the call to macro.

‘$@’
‘$sep@’
‘${separator}@’

All the arguments passed to macro, separated by the character sep
or the string separator (‘,’ by default). Each argument is quoted,
i.e., enclosed in a pair of square brackets.

‘$*’
‘$sep*’
‘${separator}*’

As above, but the arguments are not quoted.

124 Autoconf

‘$%’
‘$sep%’
‘${separator}%’

As above, but the arguments are not quoted, all new line characters
in the arguments are smashed, and the default separator is ‘:’.
The escape ‘$%’ produces single-line trace outputs (unless you put
newlines in the ‘separator’), while ‘$@’ and ‘$*’ do not.

See Section 3.4 [autoconf Invocation], page 10, for examples of trace uses.

‘--preselect=macro ’
‘-p macro ’

Cache the traces of macro, but do not enable traces. This is especially impor-
tant to save CPU cycles in the future. For instance, when invoked, autoconf
preselects all the macros that autoheader, automake, autoreconf, etc., trace,
so that running m4 is not needed to trace them: the cache suffices. This results
in a huge speed-up.

Finally, autom4te introduces the concept of Autom4te libraries. They consists in a
powerful yet extremely simple feature: sets of combined command line arguments:

‘--language=language ’
‘-l language ’

Use the language Autom4te library. Current languages include:

M4sugar create M4sugar output.

M4sh create M4sh executable shell scripts.

Autotest create Autotest executable test suites.

Autoconf-without-aclocal-m4
create Autoconf executable configure scripts without reading
‘aclocal.m4’.

Autoconf create Autoconf executable configure scripts. This language inher-
its all the characteristics of Autoconf-without-aclocal-m4 and
additionally reads ‘aclocal.m4’.

‘--prepend-include=dir ’
‘-B dir ’ Prepend directory dir to the search path. This is used to include the language-

specific files before any third-party macros.

As an example, if Autoconf is installed in its default location, ‘/usr/local’, the com-
mand ‘autom4te -l m4sugar foo.m4’ is strictly equivalent to the command:

autom4te --prepend-include /usr/local/share/autoconf \
m4sugar/m4sugar.m4f --warnings syntax foo.m4

Recursive expansion applies here: the command ‘autom4te -l m4sh foo.m4’ is the same as
‘autom4te --language M4sugar m4sugar/m4sh.m4f foo.m4’, i.e.:

autom4te --prepend-include /usr/local/share/autoconf \
m4sugar/m4sugar.m4f m4sugar/m4sh.m4f --mode 777 foo.m4

The definition of the languages is stored in ‘autom4te.cfg’.

Chapter 8: Programming in M4 125

8.2.2 Customizing autom4te

One can customize autom4te via ‘~/.autom4te.cfg’ (i.e., as found in the user home
directory), and ‘./.autom4te.cfg’ (i.e., as found in the directory from which autom4te
is run). The order is first reading ‘autom4te.cfg’, then ‘~/.autom4te.cfg’, then
‘./.autom4te.cfg’, and finally the command line arguments.

In these text files, comments are introduced with #, and empty lines are ignored. Cus-
tomization is performed on a per-language basis, wrapped in between a ‘begin-language:
"language"’, ‘end-language: "language"’ pair.

Customizing a language stands for appending options (see Section 8.2.1 [autom4te In-
vocation], page 121) to the current definition of the language. Options, and more generally
arguments, are introduced by ‘args: arguments ’. You may use the traditional shell syntax
to quote the arguments.

As an example, to disable Autoconf caches (‘autom4te.cache’) globally, include the
following lines in ‘~/.autom4te.cfg’:

User Preferences.

begin-language: "Autoconf-without-aclocal-m4"
args: --no-cache
end-language: "Autoconf-without-aclocal-m4"

8.3 Programming in M4sugar

M4 by itself provides only a small, but sufficient, set of all-purpose macros. M4sugar
introduces additional generic macros. Its name was coined by Lars J. Aas: “Readability
And Greater Understanding Stands 4 M4sugar”.

M4sugar reserves the macro namespace ‘^_m4_’ for internal use, and the macro names-
pace ‘^m4_’ for M4sugar macros. You should not define your own macros into these names-
paces.

8.3.1 Redefined M4 Macros

With a few exceptions, all the M4 native macros are moved in the ‘m4_’ pseudo-namespace,
e.g., M4sugar renames define as m4_define etc.

The list of macros unchanged from M4, except for their name, is:
− m4 builtin
− m4 changecom
− m4 changequote
− m4 debugfile
− m4 debugmode
− m4 decr
− m4 define
− m4 divnum
− m4 dumpdef

126 Autoconf

− m4 errprint

− m4 esyscmd

− m4 eval

− m4 format

− m4 ifdef

− m4 incr

− m4 index

− m4 indir

− m4 len

− m4 pushdef

− m4 shift

− m4 substr

− m4 syscmd

− m4 sysval

− m4 traceoff

− m4 traceon

− m4 translit

Some M4 macros are redefined, and are slightly incompatible with their native equivalent.

[Macro]__file__
[Macro]__line__

All M4 macros starting with ‘__’ retain their original name: for example, no m4__
file__ is defined.

[Macro]__oline__
This is not technically a macro, but a feature of Autom4te. The sequence __oline__
can be used similarly to the other m4sugar location macros, but rather than expanding
to the location of the input file, it is translated to the line number where it appears
in the output file after all other M4 expansions.

[Macro]dnl
This macro kept its original name: no m4_dnl is defined.

[Macro]m4_bpatsubst (string, regexp, [replacement])
This macro corresponds to patsubst. The name m4_patsubst is kept for future
versions of M4sugar, once GNU M4 2.0 is released and supports extended regular
expression syntax.

[Macro]m4_bregexp (string, regexp, [replacement])
This macro corresponds to regexp. The name m4_regexp is kept for future versions
of M4sugar, once GNU M4 2.0 is released and supports extended regular expression
syntax.

Chapter 8: Programming in M4 127

[Macro]m4_defn (macro . . .)
This macro fails if macro is not defined, even when using older versions of M4 that did
not warn. See m4_undefine. Unfortunately, in order to support these older versions
of M4, there are some situations involving unbalanced quotes where concatenating
multiple macros together will work in newer M4 but not in m4sugar; use quadrigraphs
to work around this.

[Macro]m4_divert (diversion)
M4sugar relies heavily on diversions, so rather than behaving as a primitive, m4_
divert behaves like:

m4_divert_pop()m4_divert_push([diversion])

See Section 8.3.3 [Diversion support], page 129, for more details about the use of the
diversion stack.

[Macro]m4_exit (exit-status)
This macro corresponds to m4exit.

[Macro]m4_if (comment)
[Macro]m4_if (string-1, string-2, equal, [not-equal])
[Macro]m4_if (string-1, string-2, equal, . . .)

This macro corresponds to ifelse. string-1 and string-2 are compared literally, so
usually one of the two arguments is passed unquoted. See Section 8.3.4 [Conditional
constructs], page 130, for more conditional idioms.

[Macro]m4_include (file)
[Macro]m4_sinclude (file)

Like the M4 builtins, but warn against multiple inclusions of file.

[Macro]m4_mkstemp (template)
[Macro]m4_maketemp (template)

Posix requires maketemp to replace the trailing ‘X’ characters in template with the
process id, without regards to the existence of a file by that name, but this a security
hole. When this was pointed out to the Posix folks, they agreed to invent a new macro
mkstemp that always creates a uniquely named file, but not all versions of GNU M4
support the new macro. In M4sugar, m4_maketemp and m4_mkstemp are synonyms
for each other, and both have the secure semantics regardless of which macro the
underlying M4 provides.

[Macro]m4_popdef (macro . . .)
This macro fails if macro is not defined, even when using older versions of M4 that
did not warn. See m4_undefine.

[Macro]m4_undefine (macro . . .)
This macro fails if macro is not defined, even when using older versions of M4 that
did not warn. Use

m4_ifdef([macro], [m4_undefine([macro])])

if you are not sure whether macro is defined.

128 Autoconf

[Macro]m4_undivert (diversion)
Unlike the M4 builtin, only one diversion can be undiverted per invocation. Also,
since the M4sugar diversion stack prefers named diversions, the use of m4_undivert
to include files is risky. See Section 8.3.3 [Diversion support], page 129, for more
details about the use of the diversion stack.

[Macro]m4_wrap (text)
[Macro]m4_wrap_lifo (text)

These macros correspond to m4wrap. Posix requires arguments of multiple wrap calls
to be reprocessed at EOF in the same order as the original calls (first-in, first-out).
GNU M4 versions through 1.4.10, however, reprocess them in reverse order (last-in,
first-out). Both orders are useful, therefore, you can rely on m4_wrap to provide FIFO
semantics and m4_wrap_lifo for LIFO semantics, regardless of the underlying GNU
M4 version.
Unlike the GNU M4 builtin, these macros only recognize one argument, and avoid
token pasting between consecutive invocations. On the other hand, nested calls to
m4_wrap from within wrapped text work just as in the builtin.

8.3.2 Diagnostic messages from M4sugar

When macros statically diagnose abnormal situations, benign or fatal, they should report
them using these macros. For issuing dynamic issues, i.e., when configure is run, see
Section 7.5 [Printing Messages], page 110.

[Macro]m4_assert (expression, [exit-status = ‘1’])
Assert that the arithmetic expression evaluates to non-zero. Otherwise, issue a fatal
error, and exit autom4te with exit-status.

[Macro]m4_errprintn (message)
Similar to the builtin m4_errprint, except that a newline is guaranteed after message.

[Macro]m4_fatal (message)
Report a severe error message prefixed with the current location, and have autom4te
die.

[Macro]m4_location
Useful as a prefix in a message line. Short for:

__file__:__line__

[Macro]m4_warn (category, message)
Report message as a warning (or as an error if requested by the user) if warnings of
the category are turned on. If the message is emitted, it is prefixed with the current
location, and followed by a call trace of all macros defined via AC_DEFUN used to
get to the current expansion. You are encouraged to use standard categories, which
currently include:

‘all’ messages that don’t fall into one of the following categories. Use of an
empty category is equivalent.

‘cross’ related to cross compilation issues.

Chapter 8: Programming in M4 129

‘obsolete’
use of an obsolete construct.

‘syntax’ dubious syntactic constructs, incorrectly ordered macro calls.

8.3.3 Diversion support

M4sugar makes heavy use of diversions, because it is often the case that text that must
appear early in the output is not discovered until late in the input. Additionally, some
of the topological sorting algorithms used in resolving macro dependencies use diversions.
Therefore, most macros should not need to change diversions directly, but rather rely on
higher-level M4sugar macros to manage diversions transparently.

To make diversion management easier, M4sugar uses the concept of named diversions.
Rather than using diversion numbers directly, it is nicer to associate a name with each diver-
sion; the diversion number associated with a particular diversion name is an implementation
detail, so you should only use diversion names. In general, you should not output text to a
named diversion until after calling the appropriate initialization routine for your language
(m4_init, AS_INIT, AT_INIT, . . .), although there are some exceptions documented below.

M4sugar defines two named diversions.

KILL Text written to this diversion is discarded. This is the default diversion once
M4sugar is initialized.

GROW This diversion is used behind the scenes by topological sorting macros, such as
AC_REQUIRE.

M4sh adds several more named diversions.

BINSH This diversion is reserved for the ‘#!’ interpreter line.

HEADER-REVISION
This diversion holds text from AC_REVISION.

HEADER-COMMENT
This diversion holds comments about the purpose of a file.

HEADER-COPYRIGHT
This diversion is managed by AC_COPYRIGHT.

M4SH-SANITIZE
This diversion contains M4sh sanitization code, used to ensure M4sh is execut-
ing in a reasonable shell environment.

M4SH-INIT
This diversion contains M4sh initialization code, initializing variables that are
required by other M4sh macros.

BODY This diversion contains the body of the shell code, and is the default diversion
once M4sh is initialized.

Autotest inherits diversions from M4sh, and changes the default diversion from BODY back
to KILL. It also adds several more named diversions, with the following subset designed for
developer use.

130 Autoconf

PREPARE_TESTS
This diversion contains initialization sequences which are executed after
‘atconfig’ and ‘atlocal’, and after all command line arguments have been
parsed, but prior to running any tests. It can be used to set up state that is
required across all tests. This diversion will work even before AT_INIT.

For now, the named diversions of Autoconf and Autoheader, and the remaining diversions
of Autotest, are not documented. In other words, intentionally outputting text into an
undocumented diversion is subject to breakage in a future release of Autoconf.

[Macro]m4_divert_once (diversion, [content])
Similar to m4_divert_text, except that content is only output to diversion if this is
the first time that m4_divert_once has been called with its particular arguments.

[Macro]m4_divert_pop ([diversion])
If provided, check that the current diversion is indeed diversion. Then change to the
diversion located earlier on the stack, giving an error if an attempt is made to pop
beyond the initial m4sugar diversion of KILL.

[Macro]m4_divert_push (diversion)
Remember the former diversion on the diversion stack, and output subsequent text
into diversion. M4sugar maintains a diversion stack, and issues an error if there is
not a matching pop for every push.

[Macro]m4_divert_text (diversion, [content])
Output content and a newline into diversion, without affecting the current diversion.
Shorthand for:

m4_divert_push([diversion])content
m4_divert_pop([diversion])dnl

[Macro]m4_init
Initialize the M4sugar environment, setting up the default named diversion to be
KILL.

8.3.4 Conditional constructs

The following macros provide additional conditional contructs, as convenience wrappers
around m4_if.

[Macro]m4_bmatch (string, regex-1, value-1, [regex-2], [value-2], . . . ,
[default])

The string string is repeatedly compared against a series of regex arguments; if a
match is found, the expansion is the corresponding value, otherwise, the macro moves
on to the next regex. If no regex match, then the result is the optional default, or
nothing.

[Macro]m4_bpatsubsts (string, regex-1, subst-1, [regex-2], [subst-2], . . .)
The string string is altered by regex-1 and subst-1, as if by:

m4_bpatsubst([[string]], [regex], [subst])

Chapter 8: Programming in M4 131

The result of the substitution is then passed through the next set of regex and subst,
and so forth. An empty subst implies deletion of any matched portions in the current
string. Note that this macro over-quotes string ; this behavior is intentional, so that
the result of each step of the recursion remains as a quoted string. However, it means
that anchors (‘^’ and ‘$’ in the regex will line up with the extra quotations, and
not the characters of the original string. The overquoting is removed after the final
substitution.

[Macro]m4_case (string, value-1, if-value-1, [value-2], [if-value-2], . . . ,
[default])

Test string against multiple value possibilities, resulting in the first if-value for a
match, or in the optional default. This is shorthand for:

m4_if([string], [value-1], [if-value-1],
[string], [value-2], [if-value-2], ...,
[default])

[Macro]m4_cond (test-1, value-1, if-value-1, [test-2], [value-2],
[if-value-2], . . . , [default])

This macro was introduced in Autoconf 2.62. Similar to m4_if, except that each test
is expanded only when it is encountered. This is useful for short-circuiting expen-
sive tests; while m4_if requires all its strings to be expanded up front before doing
comparisons, m4_cond only expands a test when all earlier tests have failed.

For an example, these two sequences give the same result, but in the case where
‘$1’ does not contain a backslash, the m4_cond version only expands m4_index once,
instead of five times, for faster computation if this is a common case for ‘$1’. Notice
that every third argument is unquoted for m4_if, and quoted for m4_cond:

m4_if(m4_index([$1], [\]), [-1], [$2],
m4_eval(m4_index([$1], [\\]) >= 0), [1], [$2],
m4_eval(m4_index([$1], [\$]) >= 0), [1], [$2],
m4_eval(m4_index([$1], [\‘]) >= 0), [1], [$3],
m4_eval(m4_index([$1], [\"]) >= 0), [1], [$3],
[$2])

m4_cond([m4_index([$1], [\])], [-1], [$2],
[m4_eval(m4_index([$1], [\\]) >= 0)], [1], [$2],
[m4_eval(m4_index([$1], [\$]) >= 0)], [1], [$2],
[m4_eval(m4_index([$1], [\‘]) >= 0)], [1], [$3],
[m4_eval(m4_index([$1], [\"]) >= 0)], [1], [$3],
[$2])

[Macro]m4_default (expr-1, expr-2)
If expr-1 is not empty, use it. Otherwise, expand to expr-2. Useful for providing a
fixed default if the expression that results in expr-1 would otherwise be empty.

[Macro]m4_ifndef (macro, if-not-defined, [if-defined])
This is shorthand for:

m4_ifdef([macro], [if-defined], [if-not-defined])

132 Autoconf

[Macro]m4_ifset (macro, [if-true], [if-false])
If macro is undefined, or is defined as the empty string, expand to if-false. Otherwise,
expands to if-true. Similar to:

m4_ifval(m4_defn([macro]), [if-true], [if-false])

except that it is not an error if macro is undefined.

[Macro]m4_ifval (cond, [if-true], [if-false])
Expands to if-true if cond is not empty, otherwise to if-false. This is shorthand for:

m4_if([cond], [], [if-true], [if-false])

[Macro]m4_ifvaln (cond, [if-true], [if-false])
Similar to m4_ifval, except guarantee that a newline is present after any non-empty
expansion.

[Macro]m4_n (text)
Expand to text, and add a newline if text is not empty.

8.3.5 Looping constructs

The following macros are useful in implementing recursive algorithms in M4, including
loop operations. An M4 list is formed by quoting a list of quoted elements; generally the
lists are comma-separated, although m4_foreach_w is whitespace-separated. For example,
the list ‘[[a], [b,c]]’ contains two elements: ‘[a]’ and ‘[b,c]’. It is common to see
lists with unquoted elements when those elements are not likely to be macro names, as in
‘[fputc_unlocked, fgetc_unlocked]’.

Although not generally recommended, it is possible for quoted lists to have side effects;
all side effects are expanded only once, and prior to visiting any list element. On the other
hand, the fact that unquoted macros are expanded exactly once means that macros without
side effects can be used to generate lists. For example,

m4_foreach([i], [[1], [2], [3]m4_errprintn([hi])], [i])
error hi
⇒123
m4_define([list], [[1], [2], [3]])
⇒
m4_foreach([i], [list], [i])
⇒123

[Macro]m4_car (list)
Expands to the quoted first element of the comma-separated quoted list. Often used
with m4_cdr to recursively iterate through a list. Generally, when using quoted lists
of quoted elements, m4_car should be called without any extra quotes.

[Macro]m4_cdr (list)
Expands to a quoted list of all but the first element of the comma-separated quoted
list, or the empty string if list had only one element. Generally, when using quoted
lists of quoted elements, m4_cdr should be called without any extra quotes.
For example, this is a simple implementation of m4_map; note how each iteration checks
for the end of recursion, then merely applies the first argument to the first element of

Chapter 8: Programming in M4 133

the list, then repeats with the rest of the list. (The actual implementation in M4sugar
is a bit more involved, to gain some speed and share code with m4_map_sep).

m4_define([m4_map], [m4_ifval([$2],
[m4_apply([$1], m4_car($2))[]$0([$1], m4_cdr($2))])])dnl

m4_map([m4_eval], [[[1]], [[1+1]], [[10],[16]]])
⇒ 1 2 a

[Macro]m4_for (var, first, last, [step], expression)
Loop over the numeric values between first and last including bounds by increments of
step. For each iteration, expand expression with the numeric value assigned to var. If
step is omitted, it defaults to ‘1’ or ‘-1’ depending on the order of the limits. If given,
step has to match this order. The number of iterations is determined independently
from definition of var; iteration cannot be short-circuited or lengthened by modifying
var from within expression.

[Macro]m4_foreach (var, list, expression)
Loop over the comma-separated M4 list list, assigning each value to var, and expand
expression. The following example outputs two lines:

m4_foreach([myvar], [[foo], [bar, baz]],
[echo myvar

])dnl
⇒echo foo
⇒echo bar, baz

[Macro]m4_foreach_w (var, list, expression)
Loop over the white-space-separated list list, assigning each value to var, and expand
expression.
The deprecated macro AC_FOREACH is an alias of m4_foreach_w.

[Macro]m4_map (macro, list)
[Macro]m4_mapall (macro, list)
[Macro]m4_map_sep (macro, separator, list)
[Macro]m4_mapall_sep (macro, separator, list)

Loop over the comma separated quoted list of argument descriptions in list, and
invoke macro with the arguments. An argument description is in turn a comma-
separated quoted list of quoted elements, suitable for m4_apply. The macros m4_
map and m4_map_sep ignore empty argument descriptions, while m4_mapall and m4_
mapall_sep invoke macro with no arguments. The macros m4_map_sep and m4_
mapall_sep additionally expand separator between invocations of macro.
Note that separator is expanded, unlike in m4_join. When separating output with
commas, this means that the map result can be used as a series of arguments, by using
a single-quoted comma as separator, or as a single string, by using a double-quoted
comma.

m4_map([m4_count], [])
⇒
m4_map([m4_count], [[],

[[1]],

134 Autoconf

[[1], [2]]])
⇒ 1 2
m4_mapall([m4_count], [[],

[[1]],
[[1], [2]]])

⇒ 0 1 2
m4_map_sep([m4_eval], [,], [[[1+2]],

[[10], [16]]])
⇒3,a
m4_map_sep([m4_echo], [,], [[[a]], [[b]]])
⇒a,b
m4_count(m4_map_sep([m4_echo], [,], [[[a]], [[b]]]))
⇒2
m4_map_sep([m4_echo], [[,]], [[[a]], [[b]]])
⇒a,b
m4_count(m4_map_sep([m4_echo], [[,]], [[[a]], [[b]]]))
⇒1

[Macro]m4_shiftn (count, . . .)
[Macro]m4_shift2 (. . .)
[Macro]m4_shift3 (. . .)

m4_shiftn performs count iterations of m4_shift, along with validation that enough
arguments were passed in to match the shift count, and that the count is positive.
m4_shift2 and m4_shift3 are specializations of m4_shiftn, introduced in Autoconf
2.62, and are more efficient for two and three shifts, respectively.

8.3.6 Evaluation Macros

The following macros give some control over the order of the evaluation by adding or
removing levels of quotes.

[Macro]m4_apply (macro, list)
Apply the elements of the quoted, comma-separated list as the arguments to macro.
If list is empty, invoke macro without arguments. Note the difference between m4_
indir, which expects its first argument to be a macro name but can use names that
are otherwise invalid, and m4_apply, where macro can contain other text, but must
end in a valid macro name.

m4_apply([m4_count], [])
⇒0
m4_apply([m4_count], [[]])
⇒1
m4_apply([m4_count], [[1], [2]])
⇒2
m4_apply([m4_join], [[|], [1], [2]])
⇒1|2

[Macro]m4_count (arg, . . .)
This macro returns the decimal count of the number of arguments it was passed.

Chapter 8: Programming in M4 135

[Macro]m4_do (arg, . . .)
This macro loops over its arguments and expands each arg in sequence. Its main
use is for readability; it allows the use of indentation and fewer dnl to result in
the same expansion. This macro guarantees that no expansion will be concatenated
with subsequent text; to achieve full concatenation, use m4_unquote(m4_join([],
arg...)).

m4_define([ab],[1])m4_define([bc],[2])m4_define([abc],[3])dnl
m4_do([a],[b])c
⇒abc
m4_unquote(m4_join([],[a],[b]))c
⇒3
m4_define([a],[A])m4_define([b],[B])m4_define([c],[C])dnl
m4_define([AB],[4])m4_define([BC],[5])m4_define([ABC],[6])dnl
m4_do([a],[b])c
⇒ABC
m4_unquote(m4_join([],[a],[b]))c
⇒3

[Macro]m4_dquote (arg, . . .)
Return the arguments as a quoted list of quoted arguments. Conveniently, if there is
just one arg, this effectively adds a level of quoting.

[Macro]m4_dquote_elt (arg, . . .)
Return the arguments as a series of double-quoted arguments. Whereas m4_dquote re-
turns a single argument, m4_dquote_elt returns as many arguments as it was passed.

[Macro]m4_echo (arg, . . .)
Return the arguments, with the same level of quoting. Other than discarding white-
space after unquoted commas, this macro is a no-op.

[Macro]m4_expand (arg)
Return the expansion of arg as a quoted string. Whereas m4_quote is designed to
collect expanded text into a single argument, m4_expand is designed to perform one
level of expansion on quoted text. The distinction is in the treatment of whitespace
following a comma in the original arg. Any time multiple arguments are collected
into one with m4_quote, the M4 argument collection rules discard the whitespace.
However, with m4_expand, whitespace is preserved, even after the expansion of macros
contained in arg.

m4_define([active], [ACT, IVE])dnl
m4_define([active2], [[ACT, IVE]])dnl
m4_quote(active, active)
⇒ACT,IVE,ACT,IVE
m4_expand([active, active])
⇒ACT, IVE, ACT, IVE
m4_quote(active2, active2)
⇒ACT, IVE,ACT, IVE
m4_expand([active2, active2])
⇒ACT, IVE, ACT, IVE

136 Autoconf

Note that m4_expand cannot handle an arg that expands to literal unbalanced quotes,
but that quadrigraphs can be used when unbalanced output is necessary. Likewise,
unbalanced parentheses must be supplied with double quoting or a quadrigraph.

m4_define([pattern], [[!@<:@]])dnl
m4_define([bar], [BAR])dnl
m4_expand([case $foo in
m4_defn([pattern])@:}@ bar ;;
*[)] blah ;;

esac])
⇒case $foo in
⇒ [![]) BAR ;;
⇒ *) blah ;;
⇒esac

[Macro]m4_ignore (. . .)
This macro was introduced in Autoconf 2.62. Expands to nothing, ignoring all of its
arguments. By itself, this isn’t very useful. However, it can be used to conditionally
ignore an arbitrary number of arguments, by deciding which macro name to apply to
a list of arguments.

dnl foo outputs a message only if [debug] is defined.
m4_define([foo],
[m4_ifdef([debug],[AC_MSG_NOTICE],[m4_ignore])([debug message])])

Note that for earlier versions of Autoconf, the macro __gnu__ can serve the same
purpose, although it is less readable.

[Macro]m4_make_list (arg, . . .)
This macro exists to aid debugging of M4sugar algorithms. Its net effect is similar
to m4_dquote—it produces a quoted list of quoted arguments, for each arg. The
difference is that this version uses a comma-newline separator instead of just comma,
to improve readability of the list; with the result that it is less efficient than m4_
dquote.

m4_define([zero],[0])m4_define([one],[1])m4_define([two],[2])dnl
m4_dquote(zero, [one], [[two]])
⇒[0],[one],[[two]]
m4_make_list(zero, [one], [[two]])
⇒[0],
⇒[one],
⇒[[two]]
m4_foreach([number], m4_dquote(zero, [one], [[two]]), [number])
⇒ 0 1 two
m4_foreach([number], m4_make_list(zero, [one], [[two]]), [number])
⇒ 0 1 two

[Macro]m4_quote (arg, . . .)
Return the arguments as a single entity, i.e., wrap them into a pair of quotes. This
effectively collapses multiple arguments into one, although it loses whitespace after
unquoted commas in the process.

Chapter 8: Programming in M4 137

[Macro]m4_reverse (arg, . . .)
Outputs each argument with the same level of quoting, but in reverse order, and with
space following each comma for readability.

m4_define([active], [ACT,IVE])
⇒
m4_reverse(active, [active])
⇒active, IVE, ACT

[Macro]m4_unquote (arg, . . .)
This macro was introduced in Autoconf 2.62. Expand each argument, separated
by commas. For a single arg, this effectively removes a layer of quoting, and m4_
unquote([arg]) is more efficient than the equivalent m4_do([arg]). For multiple
arguments, this results in an unquoted list of expansions. This is commonly used with
m4_split, in order to convert a single quoted list into a series of quoted elements.

The following example aims at emphasizing the difference between several scenarios:
not using these macros, using m4_defn, using m4_quote, using m4_dquote, and using m4_
expand.

$ cat example.m4

dnl Overquote, so that quotes are visible.
m4_define([show], [$[]1 = [$1], $[]@ = [$@]])
m4_define([a], [A])
m4_define([mkargs], [1, 2[,] 3])
m4_define([arg1], [[$1]])
m4_divert([0])dnl
show(a, b)
show([a, b])
show(m4_quote(a, b))
show(m4_dquote(a, b))
show(m4_expand([a, b]))

arg1(mkargs)
arg1([mkargs])
arg1(m4_defn([mkargs]))
arg1(m4_quote(mkargs))
arg1(m4_dquote(mkargs))
arg1(m4_expand([mkargs]))
$ autom4te -l m4sugar example.m4

$1 = A, $@ = [A],[b]
$1 = a, b, $@ = [a, b]
$1 = A,b, $@ = [A,b]
$1 = [A],[b], $@ = [[A],[b]]
$1 = A, b, $@ = [A, b]

1
mkargs
1, 2[,] 3

138 Autoconf

1,2, 3
[1],[2, 3]
1, 2, 3

8.3.7 String manipulation in M4

The following macros may be used to manipulate strings in M4. Many of the macros in
this section intentionally result in quoted strings as output, rather than subjecting the
arguments to further expansions. As a result, if you are manipulating text that contains
active M4 characters, the arguments are passed with single quoting rather than double.

[Macro]m4_append (macro-name, string, [separator])
[Macro]m4_append_uniq (macro-name, string, [separator] [if-uniq],

[if-duplicate])
Redefine macro-name to its former contents with separator and string added at the
end. If macro-name was undefined before (but not if it was defined but empty), then
no separator is added. As of Autoconf 2.62, neither string nor separator are expanded
during this macro; instead, they are expanded when macro-name is invoked.

m4_append can be used to grow strings, and m4_append_uniq to grow strings without
duplicating substrings. Additionally, m4_append_uniq takes two optional parameters
as of Autoconf 2.62; if-uniq is expanded if string was appended, and if-duplicate is
expanded if string was already present. Also, m4_append_uniq warns if separator is
not empty, but occurs within string, since that can lead to duplicates.

Note that m4_append can scale linearly in the length of the final string, depending
on the quality of the underlying M4 implementation, while m4_append_uniq has an
inherent quadratic scaling factor. If an algorithm can tolerate duplicates in the final
string, use the former for speed. If duplicates must be avoided, consider using m4_
set_add instead (see Section 8.3.9 [Set manipulation Macros], page 143).

m4_define([active], [ACTIVE])dnl
m4_append([sentence], [This is an])dnl
m4_append([sentence], [active])dnl
m4_append([sentence], [symbol.])dnl
sentence
⇒This is an ACTIVE symbol.
m4_undefine([active])dnl
⇒This is an active symbol.
m4_append_uniq([list], [one], [,], [new], [existing])
⇒new
m4_append_uniq([list], [one], [,], [new], [existing])
⇒existing
m4_append_uniq([list], [two], [,], [new], [existing])
⇒new
m4_append_uniq([list], [three], [,], [new], [existing])
⇒new
m4_append_uniq([list], [two], [,], [new], [existing])
⇒existing
list

Chapter 8: Programming in M4 139

⇒one, two, three
m4_dquote(list)
⇒[one],[two],[three]
m4_append([list2], [one], [[,]])dnl
m4_append_uniq([list2], [two], [[,]])dnl
m4_append([list2], [three], [[,]])dnl
list2
⇒one, two, three
m4_dquote(list2)
⇒[one, two, three]

[Macro]m4_append_uniq_w (macro-name, strings)
This macro was introduced in Autoconf 2.62. It is similar to m4_append_uniq, but
treats strings as a whitespace separated list of words to append, and only appends
unique words. macro-name is updated with a single space between new words.

m4_append_uniq_w([numbers], [1 1 2])dnl
m4_append_uniq_w([numbers], [2 3])dnl
numbers
⇒1 2 3

[Macro]m4_combine ([separator], prefix-list, [infix], suffix-1,
[suffix-2], . . .)

This macro produces a quoted string containing the pairwise combination of every
element of the quoted, comma-separated prefix-list, and every element from the suffix
arguments. Each pairwise combination is joined with infix in the middle, and suc-
cessive pairs are joined by separator. No expansion occurs on any of the arguments.
No output occurs if either the prefix or suffix list is empty, but the lists can contain
empty elements.

m4_define([a], [oops])dnl
m4_combine([,], [[a], [b], [c]], [-], [1], [2], [3])
⇒a-1, a-2, a-3, b-1, b-2, b-3, c-1, c-2, c-3
m4_combine([,], [[a], [b]], [-])
⇒
m4_combine([,], [[a], [b]], [-], [])
⇒a-, b-
m4_combine([,], [], [-], [1], [2])
⇒
m4_combine([,], [[]], [-], [1], [2])
⇒-1, -2

[Macro]m4_flatten (string)
Flatten string into a single line. Delete all backslash-newline pairs, and replace all
remaining newlines with a space. The result is still a quoted string.

[Macro]m4_join ([separator], args . . .)

140 Autoconf

[Macro]m4_joinall ([separator], args . . .)
Concatenate each arg, separated by separator. joinall uses every argument, while
join omits empty arguments so that there are no back-to-back separators in the
output. The result is a quoted string.

m4_define([active], [ACTIVE])dnl
m4_join([|], [one], [], [active], [two])
⇒one|active|two
m4_joinall([|], [one], [], [active], [two])
⇒one||active|two

Note that if all you intend to do is join args with commas between them, to form a
quoted list suitable for m4_foreach, it is more efficient to use m4_dquote.

[Macro]m4_newline
This macro was introduced in Autoconf 2.62, and expands to a newline. It is primarily
useful for maintaining macro formatting, and ensuring that M4 does not discard
leading whitespace during argument collection.

[Macro]m4_normalize (string)
Remove leading and trailing spaces and tabs, sequences of backslash-then-newline,
and replace multiple spaces, tabs, and newlines with a single space. This is a combi-
nation of m4_flatten and m4_strip.

[Macro]m4_re_escape (string)
Backslash-escape all characters in string that are active in regexps.

[Macro]m4_split (string, [regexp = ‘[\t]+’])
Split string into an M4 list of elements quoted by ‘[’ and ‘]’, while keeping white
space at the beginning and at the end. If regexp is given, use it instead of ‘[\t]+’
for splitting. If string is empty, the result is an empty list.

[Macro]m4_strip (string)
Strip whitespace from string. Sequences of spaces and tabs are reduced to a single
space, then leading and trailing spaces are removed. The result is still a quoted string.
Note that this does not interfere with newlines; if you want newlines stripped as well,
consider m4_flatten, or do it all at once with m4_normalize.

[Macro]m4_text_box (message, [frame = ‘-’])
Add a text box around message, using frame as the border character above and below
the message. The frame correctly accounts for the subsequent expansion of message.
For example:

m4_define([macro], [abc])dnl
m4_text_box([macro])
⇒## --- ##
⇒## abc ##
⇒## --- ##

The message must contain balanced quotes and parentheses, although quadrigraphs
can be used to work around this.

Chapter 8: Programming in M4 141

[Macro]m4_text_wrap (string, [prefix], [prefix1 = ‘prefix ’], [width = ‘79’])
Break string into a series of whitespace-separated words, then output those words
separated by spaces, and wrapping lines any time the output would exceed width
columns. If given, prefix1 begins the first line, and prefix begins all wrapped lines.
If prefix1 is longer than prefix, then the first line consists of just prefix1. If prefix is
longer than prefix1, padding is inserted so that the first word of string begins at the
same indentation as all wrapped lines. Note that using literal tab characters in any
of the arguments will interfere with the calculation of width. No expansions occur on
prefix, prefix1, or the words of string, although quadrigraphs are recognized.
For some examples:

m4_text_wrap([Short string */], [], [/*], [20])
⇒/* Short string */
m4_text_wrap([Much longer string */], [], [/*], [20])
⇒/* Much longer
⇒ string */
m4_text_wrap([Short doc.], [], [--short], [30])
⇒ --short Short doc.
m4_text_wrap([Short doc.], [], [--too-wide], [30])
⇒ --too-wide
⇒ Short doc.
m4_text_wrap([Super long documentation.], [],

[--too-wide], 30)
⇒ --too-wide
⇒ Super long
⇒ documentation.

[Macro]m4_tolower (string)
[Macro]m4_toupper (string)

Return string with letters converted to upper or lower case, respectively.

8.3.8 Arithmetic computation in M4

The following macros facilitate integer arithmetic operations. Where a parameter is doc-
umented as taking an arithmetic expression, you can use anything that can be parsed by
m4_eval.

[Macro]m4_cmp (expr-1, expr-2)
Compare the arithmetic expressions expr-1 and expr-2, and expand to ‘-1’ if expr-1
is smaller, ‘0’ if they are equal, and ‘1’ if expr-1 is larger.

[Macro]m4_list_cmp (list-1, list-2)
Compare the two M4 lists consisting of comma-separated arithmetic expressions, left
to right. Expand to ‘-1’ for the first element pairing where the value from list-1 is
smaller, ‘1’ where the value from list-2 is smaller, or ‘0’ if both lists have the same
values. If one list is shorter than the other, the remaining elements of the longer list
are compared against zero.

m4_list_cmp([1, 0], [1])
⇒0

142 Autoconf

m4_list_cmp([1, [1 * 0]], [1, 0])
⇒0
m4_list_cmp([1, 2], [1, 0])
⇒1
m4_list_cmp([1, [1+1], 3],[1, 2])
⇒1
m4_list_cmp([1, 2, -3], [1, 2])
⇒-1
m4_list_cmp([1, 0], [1, 2])
⇒-1
m4_list_cmp([1], [1, 2])
⇒-1

[Macro]m4_max (arg, . . .)
This macro was introduced in Autoconf 2.62. Expand to the decimal value of the
maximum arithmetic expression among all the arguments.

[Macro]m4_min (arg, . . .)
This macro was introduced in Autoconf 2.62. Expand to the decimal value of the
minimum arithmetic expression among all the arguments.

[Macro]m4_sign (expr)
Expand to ‘-1’ if the arithmetic expression expr is negative, ‘1’ if it is positive, and
‘0’ if it is zero.

[Macro]m4_version_compare (version-1, version-2)
This macro was introduced in Autoconf 2.53, but had a number of usability limitations
that were not lifted until Autoconf 2.62. Compare the version strings version-1 and
version-2, and expand to ‘-1’ if version-1 is smaller, ‘0’ if they are the same, or
‘1’ version-2 is smaller. Version strings must be a list of elements separated by ‘.’,
‘,’ or ‘-’, where each element is a number along with optional case-insensitive letters
designating beta releases. The comparison stops at the leftmost element that contains
a difference, although a 0 element compares equal to a missing element.
It is permissible to include commit identifiers in version, such as an abbreviated SHA1
of the commit, provided there is still a monotonically increasing prefix to allow for
accurate version-based comparisons. For example, this paragraph was written when
the development snapshot of autoconf claimed to be at version ‘2.61a-248-dc51’,
or 248 commits after the 2.61a release, with an abbreviated commit identification of
‘dc51’.

m4_version_compare([1.1], [2.0])
⇒-1
m4_version_compare([2.0b], [2.0a])
⇒1
m4_version_compare([1.1.1], [1.1.1a])
⇒-1
m4_version_compare([1.2], [1.1.1a])
⇒1

Chapter 8: Programming in M4 143

m4_version_compare([1.0], [1])
⇒0
m4_version_compare([1.1pre], [1.1PRE])
⇒0
m4_version_compare([1.1a], [1,10])
⇒-1
m4_version_compare([2.61a], [2.61a-248-dc51])
⇒-1
m4_version_compare([2.61b], [2.61a-248-dc51])
⇒1

8.3.9 Set manipulation in M4

Sometimes, it is necessary to track a set of data, where the order does not matter and
where there are no duplicates in the set. The following macros facilitate set manipulations.
Each set is an opaque object, which can only be accessed via these basic operations. The
underlying implementation guarantees linear scaling for set creation, which is more efficient
than using the quadratic m4_append_uniq. Both set names and values can be arbitrary
strings, except for unbalanced quotes. This implementation ties up memory for removed
elements until the next operation that must traverse all the elements of a set; and although
that may slow down some operations until the memory for removed elements is pruned, it
still guarantees linear performance.

[Macro]m4_set_add (set, value, [if-uniq], [if-dup])
Adds the string value as a member of set set. Expand if-uniq if the element was
added, or if-dup if it was previously in the set. Operates in amortized constant time,
so that set creation scales linearly.

[Macro]m4_set_add_all (set, value . . .)
Adds each value to the set set. This is slightly more efficient than repeatedly invoking
m4_set_add.

[Macro]m4_set_contains (set, value, [if-present], [if-absent])
Expands if-present if the string value is a member of set, otherwise if-absent.

m4_set_contains([a], [1], [yes], [no])
⇒no
m4_set_add([a], [1], [added], [dup])
⇒added
m4_set_add([a], [1], [added], [dup])
⇒dup
m4_set_contains([a], [1], [yes], [no])
⇒yes
m4_set_remove([a], [1], [removed], [missing])
⇒removed
m4_set_contains([a], [1], [yes], [no])
⇒no
m4_set_remove([a], [1], [removed], [missing])
⇒missing

144 Autoconf

[Macro]m4_set_contents (set, [sep])
[Macro]m4_set_dump (set, [sep])

Expands to a single string consisting of all the members of the set set, each separated
by sep, which is not expanded. m4_set_contents leaves the elements in set but re-
claims any memory occupied by removed elements, while m4_set_dump is a faster one-
shot action that also deletes the set. No provision is made for disambiguating members
that contain a non-empty sep as a substring; use m4_set_empty to distinguish between
an empty set and the set containing only the empty string. The order of the output
is unspecified; in the current implementation, part of the speed of m4_set_dump re-
sults from using a different output order than m4_set_contents. These macros scale
linearly in the size of the set before memory pruning, and m4_set_contents([set],
[sep]) is faster than m4_joinall([sep]m4_set_listc([set])).

m4_set_add_all([a], [1], [2], [3])
⇒
m4_set_contents([a], [-])
⇒1-2-3
m4_joinall([-]m4_set_listc([a]))
⇒1-2-3
m4_set_dump([a], [-])
⇒3-2-1
m4_set_contents([a])
⇒
m4_set_add([a], [])
⇒
m4_set_contents([a], [-])
⇒

[Macro]m4_set_delete (set)
Delete all elements and memory associated with set. This is linear in the set size, and
faster than removing one element at a time.

[Macro]m4_set_difference (seta, setb)
[Macro]m4_set_intersection (seta, setb)
[Macro]m4_set_union (seta, setb)

Compute the relation between seta and setb, and output the result as a list of quoted
arguments without duplicates and with a leading comma. Set difference selects the
elements in seta but not setb, intersection selects only elements in both sets, and
union selects elements in either set. These actions are linear in the sum of the set
sizes. The leading comma is necessary to distinguish between no elements and the
empty string as the only element.

m4_set_add_all([a], [1], [2], [3])
⇒
m4_set_add_all([b], [3], [], [4])
⇒
m4_set_difference([a], [b])
⇒,1,2
m4_set_difference([b], [a])

Chapter 8: Programming in M4 145

⇒,,4
m4_set_intersection([a], [b])
⇒,3
m4_set_union([a], [b])
⇒,1,2,3,,4

[Macro]m4_set_empty (set, [if-empty], [if-elements])
Expand if-empty if the set set has no elements, otherwise expand if-elements. This
macro operates in constant time. Using this macro can help disambiguate output
from m4_set_contents or m4_set_list.

[Macro]m4_set_foreach (set, variable, action)
For each element in the set set, expand action with the macro variable defined as
the set element. Behavior is unspecified if action recursively lists the contents of
set (although listing other sets is acceptable), or if it modifies the set in any way
other than removing the element currently contained in variable. This macro is faster
than the corresponding m4_foreach([variable], m4_indir([m4_dquote]m4_set_
listc([set])), [action]).

m4_set_add_all([a]m4_for([i], [1], [5], [], [,i]))
⇒
m4_set_contents([a])
⇒12345
m4_set_foreach([a], [i],
[m4_if(m4_eval(i&1), [0], [m4_set_remove([a], i, [i])])])

⇒24
m4_set_contents([a])
⇒135

[Macro]m4_set_list (set)
[Macro]m4_set_listc (set)

Produce a list of arguments, where each argument is a quoted element from the set
set. The variant m4_set_listc is unambiguous, by adding a leading comma if there
are any set elements, whereas the variant m4_set_list cannot distinguish between
an empty set and a set containing only the empty string. These can be directly
used in macros that take multiple arguments, such as m4_join or m4_set_add_all,
or wrapped by m4_dquote for macros that take a quoted list, such as m4_map or
m4_foreach. Any memory occupied by removed elements is reclaimed during these
macros.

m4_set_add_all([a], [1], [2], [3])
⇒
m4_set_list([a])
⇒1,2,3
m4_set_list([b])
⇒
m4_set_listc([b])
⇒
m4_count(m4_set_list([b]))

146 Autoconf

⇒1
m4_set_empty([b], [0], [m4_count(m4_set_list([b]))])
⇒0
m4_set_add([b], [])
⇒
m4_set_list([b])
⇒
m4_set_listc([b])
⇒,
m4_count(m4_set_list([b]))
⇒1
m4_set_empty([b], [0], [m4_count(m4_set_list([b]))])
⇒1

[Macro]m4_set_remove (set, value, [if-present], [if-absent])
If value is an element in the set set, then remove it and expand if-present. Otherwise
expand if-absent. This macro operates in constant time so that multiple removals will
scale linearly rather than quadratically; but when used outside of m4_set_foreach,
it leaves memory occupied until the set is later compacted by m4_set_contents or
m4_set_list. Several other set operations are then less efficient between the time of
element removal and subsequent memory compaction, but still maintain their guar-
anteed scaling performance.

[Macro]m4_set_size (set)
Expand to the size of the set set. This implementation operates in constant time,
and is thus more efficient than m4_eval(m4_count(m4_set_listc([set])) - 1).

8.3.10 Forbidden Patterns

M4sugar provides a means to define suspicious patterns, patterns describing tokens which
should not be found in the output. For instance, if an Autoconf ‘configure’ script includes
tokens such as ‘AC_DEFINE’, or ‘dnl’, then most probably something went wrong (typically
a macro was not evaluated because of overquotation).

M4sugar forbids all the tokens matching ‘^_?m4_’ and ‘^dnl$’. Additional layers, such
as M4sh and Autoconf, add additional forbidden patterns to the list.

[Macro]m4_pattern_forbid (pattern)
Declare that no token matching pattern must be found in the output. Comments
are not checked; this can be a problem if, for instance, you have some macro left
unexpanded after an ‘#include’. No consensus is currently found in the Autoconf
community, as some people consider it should be valid to name macros in comments
(which doesn’t make sense to the authors of this documentation: input, such as
macros, should be documented by ‘dnl’ comments; reserving ‘#’-comments to docu-
ment the output).

Of course, you might encounter exceptions to these generic rules, for instance you might
have to refer to ‘$m4_flags’.

Chapter 8: Programming in M4 147

[Macro]m4_pattern_allow (pattern)
Any token matching pattern is allowed, including if it matches an m4_pattern_forbid
pattern.

8.4 Programming in M4sh

M4sh, pronounced “mash”, is aiming at producing portable Bourne shell scripts. This name
was coined by Lars J. Aas, who notes that, according to the Webster’s Revised Unabridged
Dictionary (1913):

Mash \Mash\, n. [Akin to G. meisch, maisch, meische, maische, mash, wash,
and prob. to AS. miscian to mix. See “Mix”.]
1. A mass of mixed ingredients reduced to a soft pulpy state by beating or

pressure. . .
2. A mixture of meal or bran and water fed to animals.
3. A mess; trouble. [Obs.] –Beau. & Fl.

For the time being, it is not mature enough to be widely used.
M4sh reserves the M4 macro namespace ‘^_AS_’ for internal use, and the namespace

‘^AS_’ for M4sh macros. It also reserves the shell and environment variable namespace
‘^as_’, and the here-doc delimiter namespace ‘^_AS[A-Z]’ in the output file. You should
not define your own macros or output shell code that conflicts with these namespaces.

M4sh provides portable alternatives for some common shell constructs that unfortunately
are not portable in practice.

[Macro]AS_BOURNE_COMPATIBLE
Set up the shell to be more compatible with the Bourne shell as standardized by
Posix, if possible. This may involve setting environment variables, or setting options,
or similar implementation-specific actions.

[Macro]AS_CASE (word, [pattern1], [if-matched1], . . . , [default])
Expand into a shell ‘case’ statement, where word is matched against one or more
patterns. if-matched is run if the corresponding pattern matched word, else default
is run.

[Macro]AS_DIRNAME (file-name)
Output the directory portion of file-name. For example, if $file is ‘/one/two/three’,
the command dir=‘AS_DIRNAME(["$file"])‘ sets dir to ‘/one/two’.

[Macro]AS_IF (test1, [run-if-true1], . . . , [run-if-false])
Run shell code test1. If test1 exits with a zero status then run shell code run-if-
true1, else examine further tests. If no test exits with a zero status, run shell code
run-if-false, with simplifications if either run-if-true1 or run-if-false1 is empty. For
example,

AS_IF([test "$foo" = yes], [HANDLE_FOO([yes])],
[test "$foo" != no], [HANDLE_FOO([maybe])],
[echo foo not specified])

ensures any required macros of HANDLE_FOO are expanded before the first test.

148 Autoconf

[Macro]AS_INIT
Initialize the M4sh environment. This macro calls m4_init, then outputs the #!
/bin/sh line, a notice about where the output was generated from, and code to
sanitize the environment for the rest of the script. Finally, it changes the current
diversion to BODY.

[Macro]AS_MKDIR_P (file-name)
Make the directory file-name, including intervening directories as necessary. This is
equivalent to ‘mkdir -p file-name ’, except that it is portable to older versions of
mkdir that lack support for the ‘-p’ option. Also, AS_MKDIR_P succeeds if file-name is
a symbolic link to an existing directory, even though Posix is unclear whether ‘mkdir
-p’ should succeed in that case. If creation of file-name fails, exit the script.

Also see the AC_PROG_MKDIR_P macro (see Section 5.2.1 [Particular Programs],
page 41).

[Macro]AS_SHELL_SANITIZE
Initialize the shell suitably for configure scripts. This has the effect of AS_BOURNE_
COMPATIBLE, and sets some other environment variables for predictable results from
configuration tests. For example, it sets LC_ALL to change to the default C locale.
See Section 10.10 [Special Shell Variables], page 175.

[Macro]AS_TR_CPP (expression)
Transform expression into a valid right-hand side for a C #define. For example:

This outputs "#define HAVE_CHAR_P 1".
type="char *"
echo "#define AS_TR_CPP([HAVE_$type]) 1"

[Macro]AS_TR_SH (expression)
Transform expression into a valid shell variable name. For example:

This outputs "Have it!".
header="sys/some file.h"
AS_TR_SH([HAVE_$header])=yes
if test "$HAVE_sys_some_file_h" = yes; then echo "Have it!"; fi

[Macro]AS_SET_CATFILE (var, dir, file)
Set the shell variable var to dir/file, but optimizing the common cases (dir or file is
‘.’, file is absolute, etc.).

8.5 File Descriptor Macros

The following macros define file descriptors used to output messages (or input values) from
‘configure’ scripts. For example:

echo "$wombats found" >&AS_MESSAGE_LOG_FD
echo ’Enter desired kangaroo count:’ >&AS_MESSAGE_FD
read kangaroos <&AS_ORIGINAL_STDIN_FD‘

However doing so is seldom needed, because Autoconf provides higher level macros as
described below.

Chapter 8: Programming in M4 149

[Macro]AS_MESSAGE_FD
The file descriptor for ‘checking for...’ messages and results. Normally this directs
messages to the standard output, however when configure is run with the ‘-q’ option,
messages sent to AS_MESSAGE_FD are discarded.
If you want to display some messages, consider using one of the printing macros (see
Section 7.5 [Printing Messages], page 110) instead. Copies of messages output via
these macros are also recorded in ‘config.log’.

[Macro]AS_MESSAGE_LOG_FD
The file descriptor for messages logged to ‘config.log’. Macros that run tools, like
AC_COMPILE_IFELSE (see Section 6.4 [Running the Compiler], page 97), redirect all
output to this descriptor. You may want to do so if you develop such a low-level
macro.

[Macro]AS_ORIGINAL_STDIN_FD
The file descriptor for the original standard input.
When configure runs, it may accidentally execute an interactive command that has
the same name as the non-interactive meant to be used or checked. If the standard
input was the terminal, such interactive programs would cause configure to stop,
pending some user input. Therefore configure redirects its standard input from
‘/dev/null’ during its initialization. This is not normally a problem, since configure
normally does not need user input.
In the extreme case where your ‘configure’ script really needs to obtain some values
from the original standard input, you can read them explicitly from AS_ORIGINAL_
STDIN_FD.

150 Autoconf

Chapter 9: Writing Autoconf Macros 151

9 Writing Autoconf Macros

When you write a feature test that could be applicable to more than one software package,
the best thing to do is encapsulate it in a new macro. Here are some instructions and
guidelines for writing Autoconf macros.

9.1 Macro Definitions

Autoconf macros are defined using the AC_DEFUN macro, which is similar to the M4 builtin
m4_define macro. In addition to defining a macro, AC_DEFUN adds to it some code that
is used to constrain the order in which macros are called (see Section 9.4.1 [Prerequisite
Macros], page 153).

An Autoconf macro definition looks like this:
AC_DEFUN(macro-name, macro-body)

You can refer to any arguments passed to the macro as ‘$1’, ‘$2’, etc. See section “How
to define new macros” in GNU M4, for more complete information on writing M4 macros.

Be sure to properly quote both the macro-body and the macro-name to avoid any
problems if the macro happens to have been previously defined.

Each macro should have a header comment that gives its prototype, and a brief descrip-
tion. When arguments have default values, display them in the prototype. For example:

AC_MSG_ERROR(ERROR, [EXIT-STATUS = 1])

m4_define([AC_MSG_ERROR],
[{ AS_MESSAGE([error: $1], [2])

exit m4_default([$2], [1]); }])

Comments about the macro should be left in the header comment. Most other comments
make their way into ‘configure’, so just keep using ‘#’ to introduce comments.

If you have some special comments about pure M4 code, comments that make no sense in
‘configure’ and in the header comment, then use the builtin dnl: it causes M4 to discard
the text through the next newline.

Keep in mind that dnl is rarely needed to introduce comments; dnl is more useful to
get rid of the newlines following macros that produce no output, such as AC_REQUIRE.

9.2 Macro Names

All of the public Autoconf macros have all-uppercase names in the namespace ‘^AC_’ to pre-
vent them from accidentally conflicting with other text; Autoconf also reserves the names-
pace ‘^_AC_’ for internal macros. All shell variables that they use for internal purposes have
mostly-lowercase names starting with ‘ac_’. Autoconf also uses here-doc delimiters in the
namespace ‘^_AC[A-Z]’. During configure, files produced by Autoconf make heavy use of
the file system namespace ‘^conf’.

Since Autoconf is built on top of M4sugar (see Section 8.3 [Programming in M4sugar],
page 125) and M4sh (see Section 8.4 [Programming in M4sh], page 147), you must also be
aware of those namespaces (‘^_?\(m4\|AS\)_’). And since ‘configure.ac’ is also designed
to be scanned by Autoheader, Autoscan, Autoupdate, and Automake, you should be aware

152 Autoconf

of the ‘^_?A[HNUM]_’ namespaces. In general, you should not use the namespace of a package
that does not own the macro or shell code you are writing.

To ensure that your macros don’t conflict with present or future Autoconf macros, you
should prefix your own macro names and any shell variables they use with some other
sequence. Possibilities include your initials, or an abbreviation for the name of your orga-
nization or software package. Historically, people have not always followed the rule of using
a namespace appropriate for their package, and this has made it difficult for determining
the origin of a macro (and where to report bugs about that macro), as well as difficult for
the true namespace owner to add new macros without interference from pre-existing uses
of third-party macros. Perhaps the best example of this confusion is the AM_GNU_GETTEXT
macro, which belongs, not to Automake, but to Gettext.

Most of the Autoconf macros’ names follow a structured naming convention that indi-
cates the kind of feature check by the name. The macro names consist of several words,
separated by underscores, going from most general to most specific. The names of their
cache variables use the same convention (see Section 7.4.1 [Cache Variable Names], page 108,
for more information on them).

The first word of the name after the namepace initials (such as ‘AC_’) usually tells the
category of the feature being tested. Here are the categories used in Autoconf for specific
test macros, the kind of macro that you are more likely to write. They are also used for
cache variables, in all-lowercase. Use them where applicable; where they’re not, invent your
own categories.

C C language builtin features.

DECL Declarations of C variables in header files.

FUNC Functions in libraries.

GROUP Posix group owners of files.

HEADER Header files.

LIB C libraries.

PROG The base names of programs.

MEMBER Members of aggregates.

SYS Operating system features.

TYPE C builtin or declared types.

VAR C variables in libraries.

After the category comes the name of the particular feature being tested. Any further
words in the macro name indicate particular aspects of the feature. For example, AC_PROG_
CC_STDC checks whether the C compiler supports ISO Standard C.

An internal macro should have a name that starts with an underscore; Autoconf internals
should therefore start with ‘_AC_’. Additionally, a macro that is an internal subroutine of
another macro should have a name that starts with an underscore and the name of that
other macro, followed by one or more words saying what the internal macro does. For
example, AC_PATH_X has internal macros _AC_PATH_X_XMKMF and _AC_PATH_X_DIRECT.

Chapter 9: Writing Autoconf Macros 153

9.3 Reporting Messages

When macros statically diagnose abnormal situations, benign or fatal, it is possible to make
autoconf detect the problem, and refuse to create ‘configure’ in the case of an error. The
macros in this section are considered obsolescent, and new code should use M4sugar macros
for this purpose, see Section 8.3.2 [Diagnostic Macros], page 128.

On the other hand, it is possible to want to detect errors when configure is run, which
are dependent on the environment of the user rather than the maintainer. For dynamic
diagnostics, see Section 7.5 [Printing Messages], page 110.

[Macro]AC_DIAGNOSE (category, message)
Report message as a warning (or as an error if requested by the user) if warnings of
the category are turned on. This macro is obsolescent; you are encouraged to use:

m4_warn([category], [message])

instead. See [m4 warn], page 128, for more details, including valid category names.

[Macro]AC_WARNING (message)
Report message as a syntax warning. This macro is obsolescent; you are encouraged
to use:

m4_warn([syntax], [message])

instead. See [m4 warn], page 128, for more details, as well as better finer-grained
categories of warnings (not all problems have to do with syntax).

[Macro]AC_FATAL (message)
Report a severe error message, and have autoconf die. This macro is obsolescent;
you are encouraged to use:

m4_fatal([message])

instead. See [m4 fatal], page 128, for more details.

When the user runs ‘autoconf -W error’, warnings from m4_warn (including those issued
through AC_DIAGNOSE and AC_WARNING) are reported as errors, see Section 3.4 [autoconf
Invocation], page 10.

9.4 Dependencies Between Macros

Some Autoconf macros depend on other macros having been called first in order to work
correctly. Autoconf provides a way to ensure that certain macros are called if needed and a
way to warn the user if macros are called in an order that might cause incorrect operation.

9.4.1 Prerequisite Macros

A macro that you write might need to use values that have previously been computed by
other macros. For example, AC_DECL_YYTEXT examines the output of flex or lex, so it
depends on AC_PROG_LEX having been called first to set the shell variable LEX.

Rather than forcing the user of the macros to keep track of the dependencies between
them, you can use the AC_REQUIRE macro to do it automatically. AC_REQUIRE can ensure
that a macro is only called if it is needed, and only called once.

154 Autoconf

[Macro]AC_REQUIRE (macro-name)
If the M4 macro macro-name has not already been called, call it (without any ar-
guments). Make sure to quote macro-name with square brackets. macro-name must
have been defined using AC_DEFUN or else contain a call to AC_PROVIDE to indicate
that it has been called.

AC_REQUIRE must be used inside a macro defined by AC_DEFUN; it must not be called
from the top level.

AC_REQUIRE is often misunderstood. It really implements dependencies between macros
in the sense that if one macro depends upon another, the latter is expanded before the body
of the former. To be more precise, the required macro is expanded before the outermost
defined macro in the current expansion stack. In particular, ‘AC_REQUIRE([FOO])’ is not
replaced with the body of FOO. For instance, this definition of macros:

AC_DEFUN([TRAVOLTA],
[test "$body_temperature_in_celsius" -gt "38" &&
dance_floor=occupied])

AC_DEFUN([NEWTON_JOHN],
[test "$hair_style" = "curly" &&
dance_floor=occupied])

AC_DEFUN([RESERVE_DANCE_FLOOR],
[if date | grep ’^Sat.*pm’ >/dev/null 2>&1; then
AC_REQUIRE([TRAVOLTA])
AC_REQUIRE([NEWTON_JOHN])

fi])

with this ‘configure.ac’

AC_INIT([Dance Manager], [1.0], [bug-dance@example.org])
RESERVE_DANCE_FLOOR
if test "$dance_floor" = occupied; then
AC_MSG_ERROR([cannot pick up here, let’s move])

fi

does not leave you with a better chance to meet a kindred soul at other times than Saturday
night since it expands into:

test "$body_temperature_in_Celsius" -gt "38" &&
dance_floor=occupied

test "$hair_style" = "curly" &&
dance_floor=occupied

fi
if date | grep ’^Sat.*pm’ >/dev/null 2>&1; then

fi

This behavior was chosen on purpose: (i) it prevents messages in required macros from
interrupting the messages in the requiring macros; (ii) it avoids bad surprises when shell
conditionals are used, as in:

Chapter 9: Writing Autoconf Macros 155

if ...; then
AC_REQUIRE([SOME_CHECK])

fi
...
SOME_CHECK

The helper macros AS_IF and AS_CASE may be used to enforce expansion of required
macros outside of shell conditional constructs. You are furthermore encouraged to put all
AC_REQUIRE calls at the beginning of a macro. You can use dnl to avoid the empty lines
they leave.

9.4.2 Suggested Ordering

Some macros should be run before another macro if both are called, but neither requires
that the other be called. For example, a macro that changes the behavior of the C compiler
should be called before any macros that run the C compiler. Many of these dependencies
are noted in the documentation.

Autoconf provides the AC_BEFORE macro to warn users when macros with this kind of
dependency appear out of order in a ‘configure.ac’ file. The warning occurs when creating
configure from ‘configure.ac’, not when running configure.

For example, AC_PROG_CPP checks whether the C compiler can run the C preprocessor
when given the ‘-E’ option. It should therefore be called after any macros that change
which C compiler is being used, such as AC_PROG_CC. So AC_PROG_CC contains:

AC_BEFORE([$0], [AC_PROG_CPP])dnl

This warns the user if a call to AC_PROG_CPP has already occurred when AC_PROG_CC is
called.

[Macro]AC_BEFORE (this-macro-name, called-macro-name)
Make M4 print a warning message to the standard error output if called-macro-name
has already been called. this-macro-name should be the name of the macro that
is calling AC_BEFORE. The macro called-macro-name must have been defined using
AC_DEFUN or else contain a call to AC_PROVIDE to indicate that it has been called.

9.4.3 One-Shot Macros

Some macros should be called only once, either because calling them multiple time is unsafe,
or because it is bad style. For instance Autoconf ensures that AC_CANONICAL_BUILD and
cousins (see Section 13.2 [Canonicalizing], page 230) are evaluated only once, because it
makes no sense to run these expensive checks more than once. Such one-shot macros can
be defined using AC_DEFUN_ONCE.

[Macro]AC_DEFUN_ONCE (macro-name, macro-body)
Declare macro macro-name like AC_DEFUN would (see Section 9.1 [Macro Definitions],
page 151), and emit a warning any time the macro is called more than once.

Obviously it is not sensible to evaluate a macro defined by AC_DEFUN_ONCE in a macro
defined by AC_DEFUN. Most of the time you want to use AC_REQUIRE (see Section 9.4.1
[Prerequisite Macros], page 153).

156 Autoconf

9.5 Obsoleting Macros

Configuration and portability technology has evolved over the years. Often better ways of
solving a particular problem are developed, or ad-hoc approaches are systematized. This
process has occurred in many parts of Autoconf. One result is that some of the macros
are now considered obsolete; they still work, but are no longer considered the best thing to
do, hence they should be replaced with more modern macros. Ideally, autoupdate should
replace the old macro calls with their modern implementation.

Autoconf provides a simple means to obsolete a macro.

[Macro]AU_DEFUN (old-macro, implementation, [message])
Define old-macro as implementation. The only difference with AC_DEFUN is that the
user is warned that old-macro is now obsolete.

If she then uses autoupdate, the call to old-macro is replaced by the modern im-
plementation. message should include information on what to do after running
autoupdate; autoupdate prints it as a warning, and includes it in the updated
‘configure.ac’ file.

The details of this macro are hairy: if autoconf encounters an AU_DEFUNed macro, all
macros inside its second argument are expanded as usual. However, when autoupdate
is run, only M4 and M4sugar macros are expanded here, while all other macros are
disabled and appear literally in the updated ‘configure.ac’.

[Macro]AU_ALIAS (old-name, new-name)
Used if the old-name is to be replaced by a call to new-macro with the same param-
eters. This happens for example if the macro was renamed.

9.6 Coding Style

The Autoconf macros follow a strict coding style. You are encouraged to follow this style,
especially if you intend to distribute your macro, either by contributing it to Autoconf itself,
or via other means.

The first requirement is to pay great attention to the quotation. For more details, see
Section 3.1.2 [Autoconf Language], page 7, and Section 8.1 [M4 Quotation], page 113.

Do not try to invent new interfaces. It is likely that there is a macro in Autoconf
that resembles the macro you are defining: try to stick to this existing interface (order of
arguments, default values, etc.). We are conscious that some of these interfaces are not
perfect; nevertheless, when harmless, homogeneity should be preferred over creativity.

Be careful about clashes both between M4 symbols and between shell variables.

If you stick to the suggested M4 naming scheme (see Section 9.2 [Macro Names],
page 151), you are unlikely to generate conflicts. Nevertheless, when you need to set a
special value, avoid using a regular macro name; rather, use an “impossible” name. For
instance, up to version 2.13, the macro AC_SUBST used to remember what symbol macros
were already defined by setting AC_SUBST_symbol , which is a regular macro name. But
since there is a macro named AC_SUBST_FILE, it was just impossible to ‘AC_SUBST(FILE)’!
In this case, AC_SUBST(symbol) or _AC_SUBST(symbol) should have been used (yes, with
the parentheses).

Chapter 9: Writing Autoconf Macros 157

No Autoconf macro should ever enter the user-variable name space; i.e., except for the
variables that are the actual result of running the macro, all shell variables should start
with ac_. In addition, small macros or any macro that is likely to be embedded in other
macros should be careful not to use obvious names.

Do not use dnl to introduce comments: most of the comments you are likely to write
are either header comments which are not output anyway, or comments that should make
their way into ‘configure’. There are exceptional cases where you do want to comment
special M4 constructs, in which case dnl is right, but keep in mind that it is unlikely.

M4 ignores the leading blanks and newlines before each argument. Use this feature to
indent in such a way that arguments are (more or less) aligned with the opening parenthesis
of the macro being called. For instance, instead of

AC_CACHE_CHECK(for EMX OS/2 environment,
ac_cv_emxos2,
[AC_COMPILE_IFELSE([AC_LANG_PROGRAM(, [return __EMX__;])],
[ac_cv_emxos2=yes], [ac_cv_emxos2=no])])

write
AC_CACHE_CHECK([for EMX OS/2 environment], [ac_cv_emxos2],
[AC_COMPILE_IFELSE([AC_LANG_PROGRAM([], [return __EMX__;])],

[ac_cv_emxos2=yes],
[ac_cv_emxos2=no])])

or even
AC_CACHE_CHECK([for EMX OS/2 environment],

[ac_cv_emxos2],
[AC_COMPILE_IFELSE([AC_LANG_PROGRAM([],

[return __EMX__;])],
[ac_cv_emxos2=yes],
[ac_cv_emxos2=no])])

When using AC_RUN_IFELSE or any macro that cannot work when cross-compiling, pro-
vide a pessimistic value (typically ‘no’).

Feel free to use various tricks to prevent auxiliary tools, such as syntax-highlighting
editors, from behaving improperly. For instance, instead of:

m4_bpatsubst([$1], [$"])

use
m4_bpatsubst([$1], [$""])

so that Emacsen do not open an endless “string” at the first quote. For the same reasons,
avoid:

test $[#] != 0

and use:
test $[@%:@] != 0

Otherwise, the closing bracket would be hidden inside a ‘#’-comment, breaking the bracket-
matching highlighting from Emacsen. Note the preferred style to escape from M4: ‘$[1]’,
‘$[@]’, etc. Do not escape when it is unnecessary. Common examples of useless quotation
are ‘[$]$1’ (write ‘$$1’), ‘[$]var’ (use ‘$var’), etc. If you add portability issues to the

158 Autoconf

picture, you’ll prefer ‘${1+"$[@]"}’ to ‘"[$]@"’, and you’ll prefer do something better than
hacking Autoconf :-).

When using sed, don’t use ‘-e’ except for indenting purposes. With the s and y com-
mands, the preferred separator is ‘/’ unless ‘/’ itself might appear in the pattern or re-
placement, in which case you should use ‘|’, or optionally ‘,’ if you know the pattern and
replacement cannot contain a file name. If none of these characters will do, choose a print-
able character that cannot appear in the pattern or replacement. Characters from the set
‘"#$&’()*;<=>¿|~’ are good choices if the pattern or replacement might contain a file name,
since they have special meaning to the shell and are less likely to occur in file names.

See Section 9.1 [Macro Definitions], page 151, for details on how to define a macro.
If a macro doesn’t use AC_REQUIRE, is expected to never be the object of an AC_REQUIRE
directive, and macros required by other macros inside arguments do not need to be expanded
before this macro, then use m4_define. In case of doubt, use AC_DEFUN. All the AC_REQUIRE
statements should be at the beginning of the macro, and each statement should be followed
by dnl.

You should not rely on the number of arguments: instead of checking whether an argu-
ment is missing, test that it is not empty. It provides both a simpler and a more predictable
interface to the user, and saves room for further arguments.

Unless the macro is short, try to leave the closing ‘])’ at the beginning of a line, followed
by a comment that repeats the name of the macro being defined. This introduces an
additional newline in configure; normally, that is not a problem, but if you want to remove
it you can use ‘[]dnl’ on the last line. You can similarly use ‘[]dnl’ after a macro call to
remove its newline. ‘[]dnl’ is recommended instead of ‘dnl’ to ensure that M4 does not
interpret the ‘dnl’ as being attached to the preceding text or macro output. For example,
instead of:

AC_DEFUN([AC_PATH_X],
[AC_MSG_CHECKING([for X])
AC_REQUIRE_CPP()
. . .omitted. . .
AC_MSG_RESULT([libraries $x_libraries, headers $x_includes])

fi])

you would write:
AC_DEFUN([AC_PATH_X],
[AC_REQUIRE_CPP()[]dnl
AC_MSG_CHECKING([for X])
. . .omitted. . .
AC_MSG_RESULT([libraries $x_libraries, headers $x_includes])

fi[]dnl
])# AC_PATH_X

If the macro is long, try to split it into logical chunks. Typically, macros that check for
a bug in a function and prepare its AC_LIBOBJ replacement should have an auxiliary macro
to perform this setup. Do not hesitate to introduce auxiliary macros to factor your code.

In order to highlight the recommended coding style, here is a macro written the old way:
dnl Check for EMX on OS/2.
dnl _AC_EMXOS2

Chapter 9: Writing Autoconf Macros 159

AC_DEFUN(_AC_EMXOS2,
[AC_CACHE_CHECK(for EMX OS/2 environment, ac_cv_emxos2,
[AC_COMPILE_IFELSE([AC_LANG_PROGRAM(, return __EMX__;)],
ac_cv_emxos2=yes, ac_cv_emxos2=no)])
test "$ac_cv_emxos2" = yes && EMXOS2=yes])

and the new way:
_AC_EMXOS2

Check for EMX on OS/2.
m4_define([_AC_EMXOS2],
[AC_CACHE_CHECK([for EMX OS/2 environment], [ac_cv_emxos2],
[AC_COMPILE_IFELSE([AC_LANG_PROGRAM([], [return __EMX__;])],

[ac_cv_emxos2=yes],
[ac_cv_emxos2=no])])

test "$ac_cv_emxos2" = yes && EMXOS2=yes[]dnl
])# _AC_EMXOS2

160 Autoconf

Chapter 10: Portable Shell Programming 161

10 Portable Shell Programming

When writing your own checks, there are some shell-script programming techniques you
should avoid in order to make your code portable. The Bourne shell and upward-compatible
shells like the Korn shell and Bash have evolved over the years, but to prevent trouble, do not
take advantage of features that were added after Unix version 7, circa 1977 (see Section 6.7
[Systemology], page 100).

You should not use aliases, negated character classes, or other features that are not
found in all Bourne-compatible shells; restrict yourself to the lowest common denominator.
Even unset is not supported by all shells!

Shell functions are considered portable nowadays, though Autoconf still does not use
them (Autotest does). However, some pitfalls have to be avoided for portable use of shell
functions (see Section 10.11 [Shell Functions], page 179).

Some ancient systems have quite small limits on the length of the ‘#!’ line; for instance,
32 bytes (not including the newline) on SunOS 4. A few ancient 4.2BSD based systems
(such as Dynix circa 1984) required a single space between the ‘#!’ and the ‘/’. However,
these ancient systems are no longer of practical concern.

The set of external programs you should run in a configure script is fairly small. See
section “Utilities in Makefiles” in GNU Coding Standards, for the list. This restriction
allows users to start out with a fairly small set of programs and build the rest, avoiding too
many interdependencies between packages.

Some of these external utilities have a portable subset of features; see Section 10.13
[Limitations of Usual Tools], page 191.

There are other sources of documentation about shells. The specification for the Posix
Shell Command Language, though more generous than the restrictive shell subset described
above, is fairly portable nowadays. Also please see the Shell FAQs.

10.1 Shellology

There are several families of shells, most prominently the Bourne family and the C shell
family which are deeply incompatible. If you want to write portable shell scripts, avoid
members of the C shell family. The the Shell difference FAQ includes a small history of
Posix shells, and a comparison between several of them.

Below we describe some of the members of the Bourne shell family.

Ash Ash is often used on GNU/Linux and BSD systems as a light-weight Bourne-
compatible shell. Ash 0.2 has some bugs that are fixed in the 0.3.x series, but
portable shell scripts should work around them, since version 0.2 is still shipped
with many GNU/Linux distributions.
To be compatible with Ash 0.2:
− don’t use ‘$?’ after expanding empty or unset variables, or at the start of

an eval:
foo=
false
$foo

http://penalty z@ www.opengroup.org/penalty z@ susv3/penalty z@ utilities/penalty z@ xcu_chap02penalty z@ .html
http://penalty z@ www.faqs.org/penalty z@ faqs/penalty z@ unix-faq/penalty z@ shell/
http://penalty z@ www.faqs.org/penalty z@ faqs/penalty z@ unix-faq/penalty z@ shell/penalty z@ shell-differences/

162 Autoconf

echo "Do not use it: $?"
false
eval ’echo "Do not use it: $?"’

− don’t use command substitution within variable expansion:
cat ${FOO=‘bar‘}

− beware that single builtin substitutions are not performed by a subshell,
hence their effect applies to the current shell! See Section 10.6 [Shell Sub-
stitutions], page 168, item “Command Substitution”.

Bash To detect whether you are running Bash, test whether BASH_VERSION is set.
To require Posix compatibility, run ‘set -o posix’. See section “Bash Posix
Mode” in The GNU Bash Reference Manual, for details.

Bash 2.05 and later
Versions 2.05 and later of Bash use a different format for the output of the set
builtin, designed to make evaluating its output easier. However, this output
is not compatible with earlier versions of Bash (or with many other shells,
probably). So if you use Bash 2.05 or higher to execute configure, you’ll need
to use Bash 2.05 for all other build tasks as well.

Ksh The Korn shell is compatible with the Bourne family and it mostly conforms to
Posix. It has two major variants commonly called ‘ksh88’ and ‘ksh93’, named
after the years of initial release. It is usually called ksh, but is called sh on
some hosts if you set your path appropriately.
Solaris systems have three variants: /usr/bin/ksh is ‘ksh88’; it is standard
on Solaris 2.0 and later. /usr/xpg4/bin/sh is a Posix-compliant variant of
‘ksh88’; it is standard on Solaris 9 and later. /usr/dt/bin/dtksh is ‘ksh93’.
Variants that are not standard may be parts of optional packages. There is no
extra charge for these packages, but they are not part of a minimal OS install
and therefore some installations may not have it.
Starting with Tru64 Version 4.0, the Korn shell /usr/bin/ksh is also available
as /usr/bin/posix/sh. If the environment variable BIN_SH is set to xpg4,
subsidiary invocations of the standard shell conform to Posix.

Pdksh A public-domain clone of the Korn shell called pdksh is widely available: it
has most of the ‘ksh88’ features along with a few of its own. It usually sets
KSH_VERSION, except if invoked as /bin/sh on OpenBSD, and similarly to Bash
you can require Posix compatibility by running ‘set -o posix’. Unfortunately,
with pdksh 5.2.14 (the latest stable version as of January 2007) Posix mode is
buggy and causes pdksh to depart from Posix in at least one respect:

$ echo "‘echo \"hello\"‘"
hello
$ set -o posix

$ echo "‘echo \"hello\"‘"
"hello"

The last line of output contains spurious quotes. This is yet another reason
why portable shell code should not contain "‘...\"...\"...‘" constructs (see
Section 10.6 [Shell Substitutions], page 168).

Chapter 10: Portable Shell Programming 163

Zsh To detect whether you are running zsh, test whether ZSH_VERSION is set. By
default zsh is not compatible with the Bourne shell: you must execute ‘emulate
sh’, and for zsh versions before 3.1.6-dev-18 you must also set NULLCMD to ‘:’.
See section “Compatibility” in The Z Shell Manual, for details.
The default Mac OS X sh was originally Zsh; it was changed to Bash in Mac
OS X 10.2.

The following discussion between Russ Allbery and Robert Lipe is worth reading:
Russ Allbery:

The GNU assumption that /bin/sh is the one and only shell leads to a perma-
nent deadlock. Vendors don’t want to break users’ existing shell scripts, and
there are some corner cases in the Bourne shell that are not completely com-
patible with a Posix shell. Thus, vendors who have taken this route will never
(OK. . .“never say never”) replace the Bourne shell (as /bin/sh) with a Posix
shell.

Robert Lipe:
This is exactly the problem. While most (at least most System V’s) do have
a Bourne shell that accepts shell functions most vendor /bin/sh programs are
not the Posix shell.
So while most modern systems do have a shell somewhere that meets the Posix
standard, the challenge is to find it.

10.2 Here-Documents

Don’t rely on ‘\’ being preserved just because it has no special meaning together with the
next symbol. In the native sh on OpenBSD 2.7 ‘\"’ expands to ‘"’ in here-documents with
unquoted delimiter. As a general rule, if ‘\\’ expands to ‘\’ use ‘\\’ to get ‘\’.

With OpenBSD 2.7’s sh
$ cat <<EOF
> \" \\

> EOF

" \

and with Bash:
bash-2.04$ cat <<EOF
> \" \\

> EOF

\" \

Some shells mishandle large here-documents: for example, Solaris 10 dtksh and the
UnixWare 7.1.1 Posix shell, which are derived from Korn shell version M-12/28/93d, mis-
handle braced variable expansion that crosses a 1024- or 4096-byte buffer boundary within
a here-document. Only the part of the variable name after the boundary is used. For
example, ${variable} could be replaced by the expansion of ${ble}. If the end of the
variable name is aligned with the block boundary, the shell reports an error, as if you used
${}. Instead of ${variable-default}, the shell may expand ${riable-default}, or even
${fault}. This bug can often be worked around by omitting the braces: $variable. The

164 Autoconf

bug was fixed in ‘ksh93g’ (1998-04-30) but as of 2006 many operating systems were still
shipping older versions with the bug.

Many shells (including the Bourne shell) implement here-documents inefficiently. In
particular, some shells can be extremely inefficient when a single statement contains many
here-documents. For instance if your ‘configure.ac’ includes something like:

if <cross_compiling>; then
assume this and that

else
check this
check that
check something else
...
on and on forever
...

fi

A shell parses the whole if/fi construct, creating temporary files for each here-document
in it. Some shells create links for such here-documents on every fork, so that the clean-up
code they had installed correctly removes them. It is creating the links that can take the
shell forever.

Moving the tests out of the if/fi, or creating multiple if/fi constructs, would improve
the performance significantly. Anyway, this kind of construct is not exactly the typical use
of Autoconf. In fact, it’s even not recommended, because M4 macros can’t look into shell
conditionals, so we may fail to expand a macro when it was expanded before in a conditional
path, and the condition turned out to be false at runtime, and we end up not executing the
macro at all.

10.3 File Descriptors

Most shells, if not all (including Bash, Zsh, Ash), output traces on stderr, even for subshells.
This might result in undesirable content if you meant to capture the standard-error output
of the inner command:

$ ash -x -c ’(eval "echo foo >&2") 2>stderr’
$ cat stderr

+ eval echo foo >&2
+ echo foo
foo
$ bash -x -c ’(eval "echo foo >&2") 2>stderr’
$ cat stderr

+ eval ’echo foo >&2’
++ echo foo
foo
$ zsh -x -c ’(eval "echo foo >&2") 2>stderr’
Traces on startup files deleted here.

$ cat stderr

+zsh:1> eval echo foo >&2
+zsh:1> echo foo

Chapter 10: Portable Shell Programming 165

foo

One workaround is to grep out uninteresting lines, hoping not to remove good ones.

If you intend to redirect both standard error and standard output, redirect standard
output first. This works better with HP-UX, since its shell mishandles tracing if standard
error is redirected first:

$ sh -x -c ’: 2>err >out’
+ :
+ 2> err $ cat err

1> out

Don’t try to redirect the standard error of a command substitution. It must be done
inside the command substitution. When running ‘: ‘cd /zorglub‘ 2>/dev/null’ expect
the error message to escape, while ‘: ‘cd /zorglub 2>/dev/null‘’ works properly.

It is worth noting that Zsh (but not Ash nor Bash) makes it possible in assignments
though: ‘foo=‘cd /zorglub‘ 2>/dev/null’.

When catering to old systems, don’t redirect the same file descriptor several times, as
you are doomed to failure under Ultrix.

ULTRIX V4.4 (Rev. 69) System #31: Thu Aug 10 19:42:23 GMT 1995
UWS V4.4 (Rev. 11)
$ eval ’echo matter >fullness’ >void
illegal io
$ eval ’(echo matter >fullness)’ >void
illegal io
$ (eval ’(echo matter >fullness)’) >void
Ambiguous output redirect.

In each case the expected result is of course ‘fullness’ containing ‘matter’ and ‘void’
being empty. However, this bug is probably not of practical concern to modern platforms.

Don’t rely on file descriptors 0, 1, and 2 remaining closed in a subsidiary program. If
any of these descriptors is closed, the operating system may open an unspecified file for the
descriptor in the new process image. Posix says this may be done only if the subsidiary
program is set-user-ID or set-group-ID, but HP-UX 11.23 does it even for ordinary programs.

Don’t rely on open file descriptors being open in child processes. In ksh, file descriptors
above 2 which are opened using ‘exec n>file’ are closed by a subsequent ‘exec’ (such as
that involved in the fork-and-exec which runs a program or script). Thus, using sh, we
have:

$ cat ./descrips

#!/bin/sh -
echo hello >&5
$ exec 5>t
$./descrips

$ cat t

hello
$

But using ksh:

166 Autoconf

$ exec 5>t
$./descrips

hello
$ cat t

$

Within the process which runs the ‘descrips’ script, file descriptor 5 is closed.
Don’t rely on redirection to a closed file descriptor to cause an error. With Solaris

/bin/sh, when the redirection fails, the output goes to the original file descriptor.
$ bash -c ’echo hi >&3’ 3>&-; echo $?
bash: 3: Bad file descriptor
1
$ /bin/sh -c ’echo hi >&3’ 3>&-; echo $?
hi
0

DOS variants cannot rename or remove open files, such as in ‘mv foo bar >foo’ or ‘rm
foo >foo’, even though this is perfectly portable among Posix hosts.

A few ancient systems reserved some file descriptors. By convention, file descriptor 3 was
opened to ‘/dev/tty’ when you logged into Eighth Edition (1985) through Tenth Edition
Unix (1989). File descriptor 4 had a special use on the Stardent/Kubota Titan (circa 1990),
though we don’t now remember what it was. Both these systems are obsolete, so it’s now
safe to treat file descriptors 3 and 4 like any other file descriptors.

10.4 File System Conventions

Autoconf uses shell-script processing extensively, so the file names that it processes should
not contain characters that are special to the shell. Special characters include space, tab,
newline, nul, and the following:

" # $ & ’ () * ; < = > ? [\ ‘ |

Also, file names should not begin with ‘~’ or ‘-’, and should contain neither ‘-’ immedi-
ately after ‘/’ nor ‘~’ immediately after ‘:’. On Posix-like platforms, directory names should
not contain ‘:’, as this runs afoul of ‘:’ used as the path separator.

These restrictions apply not only to the files that you distribute, but also to the absolute
file names of your source, build, and destination directories.

On some Posix-like platforms, ‘!’ and ‘^’ are special too, so they should be avoided.
Posix lets implementations treat leading ‘//’ specially, but requires leading ‘///’ and

beyond to be equivalent to ‘/’. Most Unix variants treat ‘//’ like ‘/’. However, some treat
‘//’ as a “super-root” that can provide access to files that are not otherwise reachable from
‘/’. The super-root tradition began with Apollo Domain/OS, which died out long ago, but
unfortunately Cygwin has revived it.

While autoconf and friends are usually run on some Posix variety, they can be used on
other systems, most notably DOS variants. This impacts several assumptions regarding file
names.
For example, the following code:

case $foo_dir in

Chapter 10: Portable Shell Programming 167

/*) # Absolute
;;

*)
foo_dir=$dots$foo_dir ;;

esac

fails to properly detect absolute file names on those systems, because they can use a
drivespec, and usually use a backslash as directory separator. If you want to be portable to
DOS variants (at the price of rejecting valid but oddball Posix file names like ‘a:\b’), you
can check for absolute file names like this:

case $foo_dir in
[\\/]* | ?:[\\/]*) # Absolute

;;
*)

foo_dir=$dots$foo_dir ;;
esac

Make sure you quote the brackets if appropriate and keep the backslash as first character
(see Section 10.12 [Limitations of Builtins], page 180).

Also, because the colon is used as part of a drivespec, these systems don’t use it as
path separator. When creating or accessing paths, you can use the PATH_SEPARATOR output
variable instead. configure sets this to the appropriate value for the build system (‘:’ or
‘;’) when it starts up.

File names need extra care as well. While DOS variants that are Posixy enough to run
autoconf (such as DJGPP) are usually able to handle long file names properly, there are
still limitations that can seriously break packages. Several of these issues can be easily
detected by the doschk package.

A short overview follows; problems are marked with sfn/lfn to indicate where they
apply: sfn means the issues are only relevant to plain DOS, not to DOS under Microsoft
Windows variants, while lfn identifies problems that exist even under Microsoft Windows
variants.

No multiple dots (sfn)
DOS cannot handle multiple dots in file names. This is an especially important
thing to remember when building a portable configure script, as autoconf uses
a .in suffix for template files.

This is perfectly OK on Posix variants:

AC_CONFIG_HEADERS([config.h])
AC_CONFIG_FILES([source.c foo.bar])
AC_OUTPUT

but it causes problems on DOS, as it requires ‘config.h.in’, ‘source.c.in’
and ‘foo.bar.in’. To make your package more portable to DOS-based envi-
ronments, you should use this instead:

AC_CONFIG_HEADERS([config.h:config.hin])
AC_CONFIG_FILES([source.c:source.cin foo.bar:foobar.in])
AC_OUTPUT

ftp://penalty z@ ftp.gnu.org/penalty z@ gnu/penalty z@ non-gnu/penalty z@ doschk/penalty z@ doschk-1.1.tar.gz

168 Autoconf

No leading dot (sfn)
DOS cannot handle file names that start with a dot. This is usually not impor-
tant for autoconf.

Case insensitivity (lfn)
DOS is case insensitive, so you cannot, for example, have both a file called
‘INSTALL’ and a directory called ‘install’. This also affects make; if there’s a
file called ‘INSTALL’ in the directory, ‘make install’ does nothing (unless the
‘install’ target is marked as PHONY).

The 8+3 limit (sfn)
Because the DOS file system only stores the first 8 characters of the file name
and the first 3 of the extension, those must be unique. That means that
‘foobar-part1.c’, ‘foobar-part2.c’ and ‘foobar-prettybird.c’ all resolve
to the same file name (‘FOOBAR-P.C’). The same goes for ‘foo.bar’ and
‘foo.bartender’.
The 8+3 limit is not usually a problem under Microsoft Windows, as it uses
numeric tails in the short version of file names to make them unique. However,
a registry setting can turn this behavior off. While this makes it possible to
share file trees containing long file names between sfn and lfn environments,
it also means the above problem applies there as well.

Invalid characters (lfn)
Some characters are invalid in DOS file names, and should therefore be avoided.
In a lfn environment, these are ‘/’, ‘\’, ‘?’, ‘*’, ‘:’, ‘<’, ‘>’, ‘|’ and ‘"’. In a
sfn environment, other characters are also invalid. These include ‘+’, ‘,’, ‘[’
and ‘]’.

Invalid names (lfn)
Some DOS file names are reserved, and cause problems if you try to use files
with those names. These names include ‘CON’, ‘AUX’, ‘COM1’, ‘COM2’, ‘COM3’,
‘COM4’, ‘LPT1’, ‘LPT2’, ‘LPT3’, ‘NUL’, and ‘PRN’. File names are case insensitive,
so even names like ‘aux/config.guess’ are disallowed.

10.5 Shell Pattern Matching

Nowadays portable patterns can use negated character classes like ‘[!-aeiou]’. The older
syntax ‘[^-aeiou]’ is supported by some shells but not others; hence portable scripts should
never use ‘^’ as the first character of a bracket pattern.

Outside the C locale, patterns like ‘[a-z]’ are problematic since they may match char-
acters that are not lower-case letters.

10.6 Shell Substitutions

Contrary to a persistent urban legend, the Bourne shell does not systematically split vari-
ables and back-quoted expressions, in particular on the right-hand side of assignments and
in the argument of case. For instance, the following code:

case "$given_srcdir" in
.) top_srcdir="‘echo "$dots" | sed ’s|/$||’‘" ;;

Chapter 10: Portable Shell Programming 169

*) top_srcdir="$dots$given_srcdir" ;;
esac

is more readable when written as:
case $given_srcdir in
.) top_srcdir=‘echo "$dots" | sed ’s|/$||’‘ ;;
*) top_srcdir=$dots$given_srcdir ;;
esac

and in fact it is even more portable: in the first case of the first attempt, the computation
of top_srcdir is not portable, since not all shells properly understand "‘..."..."...‘".
Worse yet, not all shells understand "‘...\"...\"...‘" the same way. There is just no
portable way to use double-quoted strings inside double-quoted back-quoted expressions
(pfew!).

$@ One of the most famous shell-portability issues is related to ‘"$@"’. When there
are no positional arguments, Posix says that ‘"$@"’ is supposed to be equivalent
to nothing, but the original Unix version 7 Bourne shell treated it as equivalent
to ‘""’ instead, and this behavior survives in later implementations like Digital
Unix 5.0.
The traditional way to work around this portability problem is to use
‘${1+"$@"}’. Unfortunately this method does not work with Zsh (3.x and
4.x), which is used on Mac OS X. When emulating the Bourne shell, Zsh
performs word splitting on ‘${1+"$@"}’:

zsh $ emulate sh

zsh $ for i in "$@"; do echo $i; done

Hello World
!
zsh $ for i in ${1+"$@"}; do echo $i; done

Hello
World
!

Zsh handles plain ‘"$@"’ properly, but we can’t use plain ‘"$@"’ because of the
portability problems mentioned above. One workaround relies on Zsh’s “global
aliases” to convert ‘${1+"$@"}’ into ‘"$@"’ by itself:

test "${ZSH_VERSION+set}" = set && alias -g ’${1+"$@"}’=’"$@"’

Zsh only recognizes this alias when a shell word matches it exactly;
‘"foo"${1+"$@"}’ remains subject to word splitting. Since this case always
yields at least one shell word, use plain ‘"$@"’.
A more conservative workaround is to avoid ‘"$@"’ if it is possible that there
may be no positional arguments. For example, instead of:

cat conftest.c "$@"

you can use this instead:
case $# in
0) cat conftest.c;;
*) cat conftest.c "$@";;
esac

170 Autoconf

Autoconf macros often use the set command to update ‘$@’, so if you are writing
shell code intended for configure you should not assume that the value of ‘$@’
persists for any length of time.

${10} The 10th, 11th, . . . positional parameters can be accessed only after a shift.
The 7th Edition shell reported an error if given ${10}, and Solaris 10 /bin/sh
still acts that way:

$ set 1 2 3 4 5 6 7 8 9 10

$ echo ${10}
bad substitution

${var:-value}
Old BSD shells, including the Ultrix sh, don’t accept the colon for any shell
substitution, and complain and die. Similarly for ${var:=value}, ${var:?value},
etc.

${var=literal}
Be sure to quote:

: ${var=’Some words’}

otherwise some shells, such as on Digital Unix V 5.0, die because of a “bad
substitution”.

Solaris /bin/sh has a frightening bug in its interpretation of this. Imagine you
need set a variable to a string containing ‘}’. This ‘}’ character confuses Solaris
/bin/sh when the affected variable was already set. This bug can be exercised
by running:

$ unset foo

$ foo=${foo=’}’}
$ echo $foo
}
$ foo=${foo=’}’ # no error; this hints to what the bug is

$ echo $foo
}
$ foo=${foo=’}’}
$ echo $foo
}}
^ ugh!

It seems that ‘}’ is interpreted as matching ‘${’, even though it is enclosed in
single quotes. The problem doesn’t happen using double quotes.

${var=expanded-value}
On Ultrix, running

default="yu,yaa"
: ${var="$default"}

sets var to ‘M-yM-uM-,M-yM-aM-a’, i.e., the 8th bit of each char is set. You
don’t observe the phenomenon using a simple ‘echo $var’ since apparently the
shell resets the 8th bit when it expands $var. Here are two means to make this
shell confess its sins:

Chapter 10: Portable Shell Programming 171

$ cat -v <<EOF
$var
EOF

and
$ set | grep ’^var=’ | cat -v

One classic incarnation of this bug is:
default="a b c"
: ${list="$default"}
for c in $list; do
echo $c

done

You’ll get ‘a b c’ on a single line. Why? Because there are no spaces in ‘$list’:
there are ‘M- ’, i.e., spaces with the 8th bit set, hence no IFS splitting is per-
formed!!!
One piece of good news is that Ultrix works fine with ‘: ${list=$default}’;
i.e., if you don’t quote. The bad news is then that QNX 4.25 then sets list to
the last item of default!
The portable way out consists in using a double assignment, to switch the 8th
bit twice on Ultrix:

list=${list="$default"}

. . .but beware of the ‘}’ bug from Solaris (see above). For safety, use:
test "${var+set}" = set || var={value}

${#var}
${var%word}
${var%%word}
${var#word}
${var##word}

Posix requires support for these usages, but they do not work with many tra-
ditional shells, e.g., Solaris 10 /bin/sh.
Also, pdksh 5.2.14 mishandles some word forms. For example if ‘$1’ is ‘a/b’
and ‘$2’ is ‘a’, then ‘${1#$2}’ should yield ‘/b’, but with pdksh it yields the
empty string.

‘commands‘
Posix requires shells to trim all trailing newlines from command output before
substituting it, so assignments like ‘dir=‘echo "$file" | tr a A‘’ do not work
as expected if ‘$file’ ends in a newline.
While in general it makes no sense, do not substitute a single builtin with side
effects, because Ash 0.2, trying to optimize, does not fork a subshell to perform
the command.
For instance, if you wanted to check that cd is silent, do not use ‘test -z "‘cd
/‘"’ because the following can happen:

$ pwd

/tmp

172 Autoconf

$ test -z "‘cd /‘" && pwd

/

The result of ‘foo=‘exit 1‘’ is left as an exercise to the reader.
The MSYS shell leaves a stray byte in the expansion of a double-quoted com-
mand substitution of a native program, if the end of the substitution is not
aligned with the end of the double quote. This may be worked around by
inserting another pair of quotes:

$ echo "‘printf ’foo\r\n’‘ bar" > broken

$ echo "‘printf ’foo\r\n’‘"" bar" | cmp - broken

- broken differ: char 4, line 1

Upon interrupt or SIGTERM, some shells may abort a command substitution,
replace it with a null string, and wrongly evaluate the enclosing command before
entering the trap or ending the script. This can lead to spurious errors:

$ sh -c ’if test ‘sleep 5; echo hi‘ = hi; then echo yes; fi’

$ ^C
sh: test: hi: unexpected operator/operand

You can avoid this by assigning the command substitution to a temporary
variable:

$ sh -c ’res=‘sleep 5; echo hi‘

if test "x$res" = xhi; then echo yes; fi’

$ ^C

$(commands)
This construct is meant to replace ‘‘commands‘’, and it has most of the prob-
lems listed under ‘commands‘.
This construct can be nested while this is impossible to do portably with back
quotes. Unfortunately it is not yet universally supported. Most notably, even
recent releases of Solaris don’t support it:

$ showrev -c /bin/sh | grep version

Command version: SunOS 5.10 Generic 121005-03 Oct 2006
$ echo $(echo blah)

syntax error: ‘(’ unexpected

nor does irix 6.5’s Bourne shell:
$ uname -a

IRIX firebird-image 6.5 07151432 IP22
$ echo $(echo blah)

$(echo blah)

If you do use ‘$(commands)’, make sure that the commands do not start with
a parenthesis, as that would cause confusion with a different notation ‘$((ex-
pression))’ that in modern shells is an arithmetic expression not a command.
To avoid the confusion, insert a space between the two opening parentheses.
Avoid commands that contain unbalanced parentheses in here-documents, com-
ments, or case statement patterns, as many shells mishandle them. For example,
Bash 3.1, ‘ksh88’, pdksh 5.2.14, and Zsh 4.2.6 all mishandle the following valid
command:

Chapter 10: Portable Shell Programming 173

echo $(case x in x) echo hello;; esac)

$((expression))
Arithmetic expansion is not portable as some shells (most notably Solaris 10
/bin/sh) don’t support it.
Among shells that do support ‘$(())’, not all of them obey the Posix rule that
octal and hexadecimal constants must be recognized:

$ bash -c ’echo $((010 + 0x10))’

24
$ zsh -c ’echo $((010 + 0x10))’

26
$ zsh -c ’emulate sh; echo $((010 + 0x10))’

24
$ pdksh -c ’echo $((010 + 0x10))’

pdksh: 010 + 0x10 : bad number ‘0x10’
$ pdksh -c ’echo $((010))’

10

When it is available, using arithmetic expansion provides a noticeable speedup
in script execution; but testing for support requires eval to avoid syntax errors.
If shell function support has also been detected, then this construct can be
used to assign ‘foo’ to an arithmetic result, provided all numeric arguments are
provided in decimal and without a leading zero:

if (eval ’test $((1 + 1)) = 2’) 2>/dev/null; then
eval ’func_arith ()
{
func_arith_result=$(($*))

}’
else
func_arith ()
{
func_arith_result=‘expr "$@"‘

}
fi
func_arith 1 + 1
foo=$func_arith_result

^ Always quote ‘^’, otherwise traditional shells such as /bin/sh on Solaris 10
treat this like ‘|’.

10.7 Assignments

When setting several variables in a row, be aware that the order of the evaluation is unde-
fined. For instance ‘foo=1 foo=2; echo $foo’ gives ‘1’ with Solaris /bin/sh, but ‘2’ with
Bash. You must use ‘;’ to enforce the order: ‘foo=1; foo=2; echo $foo’.

Don’t rely on the following to find ‘subdir/program’:
PATH=subdir$PATH_SEPARATOR$PATH program

as this does not work with Zsh 3.0.6. Use something like this instead:

174 Autoconf

(PATH=subdir$PATH_SEPARATOR$PATH; export PATH; exec program)

Don’t rely on the exit status of an assignment: Ash 0.2 does not change the status and
propagates that of the last statement:

$ false || foo=bar; echo $?
1
$ false || foo=‘:‘; echo $?
0

and to make things even worse, QNX 4.25 just sets the exit status to 0 in any case:

$ foo=‘exit 1‘; echo $?
0

To assign default values, follow this algorithm:

1. If the default value is a literal and does not contain any closing brace, use:
: ${var=’my literal’}

2. If the default value contains no closing brace, has to be expanded, and the variable
being initialized is not intended to be IFS-split (i.e., it’s not a list), then use:

: ${var="$default"}

3. If the default value contains no closing brace, has to be expanded, and the variable
being initialized is intended to be IFS-split (i.e., it’s a list), then use:

var=${var="$default"}

4. If the default value contains a closing brace, then use:
test "${var+set}" = set || var="has a ’}’"

In most cases ‘var=${var="$default"}’ is fine, but in case of doubt, just use the
last form. See Section 10.6 [Shell Substitutions], page 168, items ‘${var:-value}’ and
‘${var=value}’ for the rationale.

10.8 Parentheses in Shell Scripts

Beware of two opening parentheses in a row, as many shell implementations treat them
specially. Posix requires that the command ‘((cat))’ must behave like ‘(cat)’, but many
shells, including Bash and the Korn shell, treat ‘((cat))’ as an arithmetic expression
equivalent to ‘let "cat"’, and may or may not report an error when they detect that
‘cat’ is not a number. As another example, ‘pdksh’ 5.2.14 misparses the following code:

if ((true) || false); then
echo ok

fi

To work around this problem, insert a space between the two opening parentheses. There
is a similar problem and workaround with ‘$((’; see Section 10.6 [Shell Substitutions],
page 168.

10.9 Slashes in Shell Scripts

Unpatched Tru64 5.1 sh omits the last slash of command-line arguments that contain two
trailing slashes:

Chapter 10: Portable Shell Programming 175

$ echo / // /// //// .// //.

/ / // /// ./ //.
$ x=//

$ eval "echo \$x"
/
$ set -x

$ echo abc | tr -t ab //

+ echo abc
+ tr -t ab /
/bc

Unpatched Tru64 4.0 sh adds a slash after ‘"$var"’ if the variable is empty and the
second double-quote is followed by a word that begins and ends with slash:

$ sh -xc ’p=; echo "$p"/ouch/’
p=
+ echo //ouch/
//ouch/

However, our understanding is that patches are available, so perhaps it’s not worth
worrying about working around these horrendous bugs.

10.10 Special Shell Variables

Some shell variables should not be used, since they can have a deep influence on the behavior
of the shell. In order to recover a sane behavior from the shell, some variables should be
unset, but unset is not portable (see Section 10.12 [Limitations of Builtins], page 180) and
a fallback value is needed.

As a general rule, shell variable names containing a lower-case letter are safe; you can
define and use these variables without worrying about their effect on the underlying system,
and without worrying about whether the shell changes them unexpectedly. (The exception
is the shell variable status, as described below.)

Here is a list of names that are known to cause trouble. This list is not exhaustive, but
you should be safe if you avoid the name status and names containing only upper-case
letters and underscores.

_ Many shells reserve ‘$_’ for various purposes, e.g., the name of the last command
executed.

BIN_SH In Tru64, if BIN_SH is set to xpg4, subsidiary invocations of the standard shell
conform to Posix.

CDPATH When this variable is set it specifies a list of directories to search when invoking
cd with a relative file name that did not start with ‘./’ or ‘../’. Posix 1003.1-
2001 says that if a nonempty directory name from CDPATH is used successfully,
cd prints the resulting absolute file name. Unfortunately this output can break
idioms like ‘abs=‘cd src && pwd‘’ because abs receives the name twice. Also,
many shells do not conform to this part of Posix; for example, zsh prints the
result only if a directory name other than ‘.’ was chosen from CDPATH.
In practice the shells that have this problem also support unset, so you can
work around the problem as follows:

176 Autoconf

(unset CDPATH) >/dev/null 2>&1 && unset CDPATH

You can also avoid output by ensuring that your directory name is absolute or
anchored at ‘./’, as in ‘abs=‘cd ./src && pwd‘’.
Autoconf-generated scripts automatically unset CDPATH if possible, so you need
not worry about this problem in those scripts.

DUALCASE In the MKS shell, case statements and file name generation are case-insensitive
unless DUALCASE is nonzero. Autoconf-generated scripts export this variable
when they start up.

ENV
MAIL
MAILPATH
PS1
PS2
PS4 These variables should not matter for shell scripts, since they are supposed to

affect only interactive shells. However, at least one shell (the pre-3.0 uwin
Korn shell) gets confused about whether it is interactive, which means that
(for example) a PS1 with a side effect can unexpectedly modify ‘$?’. To work
around this bug, Autoconf-generated scripts do something like this:

(unset ENV) >/dev/null 2>&1 && unset ENV MAIL MAILPATH
PS1=’$ ’
PS2=’> ’
PS4=’+ ’

FPATH The Korn shell uses FPATH to find shell functions, so avoid FPATH in portable
scripts. FPATH is consulted after PATH, but you still need to be wary of tests
that use PATH to find whether a command exists, since they might report the
wrong result if FPATH is also set.

IFS Long ago, shell scripts inherited IFS from the environment, but this caused
many problems so modern shells ignore any environment settings for IFS.
Don’t set the first character of IFS to backslash. Indeed, Bourne shells use
the first character (backslash) when joining the components in ‘"$@"’ and
some shells then reinterpret (!) the backslash escapes, so you can end up with
backspace and other strange characters.
The proper value for IFS (in regular code, not when performing splits) is
‘〈SPC〉〈TAB〉〈RET〉’. The first character is especially important, as it is used to
join the arguments in ‘$*’; however, note that traditional shells, but also bash-
2.04, fail to adhere to this and join with a space anyway.

LANG
LC_ALL
LC_COLLATE
LC_CTYPE
LC_MESSAGES
LC_MONETARY
LC_NUMERIC
LC_TIME

Chapter 10: Portable Shell Programming 177

Autoconf-generated scripts normally set all these variables to ‘C’ because so
much configuration code assumes the C locale and Posix requires that locale
environment variables be set to ‘C’ if the C locale is desired. However, some
older, nonstandard systems (notably SCO) break if locale environment variables
are set to ‘C’, so when running on these systems Autoconf-generated scripts
unset the variables instead.

LANGUAGE

LANGUAGE is not specified by Posix, but it is a GNU extension that overrides
LC_ALL in some cases, so Autoconf-generated scripts set it too.

LC_ADDRESS
LC_IDENTIFICATION
LC_MEASUREMENT
LC_NAME
LC_PAPER
LC_TELEPHONE

These locale environment variables are GNU extensions. They are treated like
their Posix brethren (LC_COLLATE, etc.) as described above.

LINENO Most modern shells provide the current line number in LINENO. Its value is
the line number of the beginning of the current command. Autoconf attempts
to execute configure with a shell that supports LINENO. If no such shell is
available, it attempts to implement LINENO with a Sed prepass that replaces
each instance of the string $LINENO (not followed by an alphanumeric character)
with the line’s number.

You should not rely on LINENO within eval, as the behavior differs in practice.
Also, the possibility of the Sed prepass means that you should not rely on
$LINENO when quoted, when in here-documents, or when in long commands
that cross line boundaries. Subshells should be OK, though. In the following
example, lines 1, 6, and 9 are portable, but the other instances of LINENO are
not:

$ cat lineno

echo 1. $LINENO
cat <<EOF
3. $LINENO
4. $LINENO
EOF
(echo 6. $LINENO)
eval ’echo 7. $LINENO’
echo 8. ’$LINENO’
echo 9. $LINENO ’
10.’ $LINENO

178 Autoconf

$ bash-2.05 lineno

1. 1
3. 2
4. 2
6. 6
7. 1
8. $LINENO
9. 9
10. 9
$ zsh-3.0.6 lineno

1. 1
3. 2
4. 2
6. 6
7. 7
8. $LINENO
9. 9
10. 9
$ pdksh-5.2.14 lineno

1. 1
3. 2
4. 2
6. 6
7. 0
8. $LINENO
9. 9
10. 9
$ sed ’=’ <lineno |
> sed ’

> N

> s,$,-,
> t loop

> :loop

> s,^\([0-9]*\)\(.*\)[$]LINENO\([^a-zA-Z0-9_]\),\1\2\1\3,
> t loop

> s,-$,,
> s,^[0-9]*\n,,
> ’ |
> sh

1. 1
3. 3
4. 4
6. 6
7. 7
8. 8
9. 9
10. 10

Chapter 10: Portable Shell Programming 179

NULLCMD When executing the command ‘>foo’, zsh executes ‘$NULLCMD >foo’ unless it
is operating in Bourne shell compatibility mode and the zsh version is newer
than 3.1.6-dev-18. If you are using an older zsh and forget to set NULLCMD, your
script might be suspended waiting for data on its standard input.

PATH_SEPARATOR
On DJGPP systems, the PATH_SEPARATOR environment variable can be set to
either ‘:’ or ‘;’ to control the path separator Bash uses to set up certain envi-
ronment variables (such as PATH). You can set this variable to ‘;’ if you want
configure to use ‘;’ as a separator; this might be useful if you plan to use
non-Posix shells to execute files. See Section 10.4 [File System Conventions],
page 166, for more information about PATH_SEPARATOR.

PWD Posix 1003.1-2001 requires that cd and pwd must update the PWD environment
variable to point to the logical name of the current directory, but traditional
shells do not support this. This can cause confusion if one shell instance main-
tains PWD but a subsidiary and different shell does not know about PWD and
executes cd; in this case PWD points to the wrong directory. Use ‘‘pwd‘’ rather
than ‘$PWD’.

RANDOM Many shells provide RANDOM, a variable that returns a different integer each
time it is used. Most of the time, its value does not change when it is not used,
but on irix 6.5 the value changes all the time. This can be observed by using
set. It is common practice to use $RANDOM as part of a file name, but code
shouldn’t rely on $RANDOM expanding to a nonempty string.

status This variable is an alias to ‘$?’ for zsh (at least 3.1.6), hence read-only. Do not
use it.

10.11 Shell Functions

Nowadays, it is difficult to find a shell that does not support shell functions at all. However,
some differences should be expected:

Inside a shell function, you should not rely on the error status of a subshell if the last
command of that subshell was exit or trap, as this triggers bugs in zsh 4.x; while Autoconf
tries to find a shell that does not exhibit the bug, zsh might be the only shell present on
the user’s machine.

Likewise, the state of ‘$?’ is not reliable when entering a shell function. This has the
effect that using a function as the first command in a trap handler can cause problems.

$ bash -c ’foo(){ echo $?; }; trap foo 0; (exit 2); exit 2’; echo $?
2
2
$ ash -c ’foo(){ echo $?; }; trap foo 0; (exit 2); exit 2’; echo $?
0
2

Shell variables and functions may share the same namespace, for example with Solaris
10 /bin/sh:

$ f () { :; }; f=; f

180 Autoconf

f: not found

For this reason, Autotest uses the prefix ‘at_func_’ for its functions.
Handling of positional parameters and shell options varies among shells. For example,

Korn shells reset and restore trace output (‘set -x’) and other options upon function entry
and exit. Inside a function, IRIX sh sets ‘$0’ to the function name.

Some ancient Bourne shell variants with function support did not reset ‘$i, i >= 0’,
upon function exit, so effectively the arguments of the script were lost after the first function
invocation. It is probably not worth worrying about these shells any more.

With AIX sh, a trap on 0 installed in a shell function triggers at function exit rather
than at script exit, see See Section 10.12 [Limitations of Builtins], page 180.

10.12 Limitations of Shell Builtins

No, no, we are serious: some shells do have limitations! :)
You should always keep in mind that any builtin or command may support options,

and therefore differ in behavior with arguments starting with a dash. For instance, the
innocent ‘echo "$word"’ can give unexpected results when word starts with a dash. It is
often possible to avoid this problem using ‘echo "x$word"’, taking the ‘x’ into account later
in the pipe.

. Use . only with regular files (use ‘test -f’). Bash 2.03, for instance, chokes on
‘. /dev/null’. Remember that . uses PATH if its argument contains no slashes.
Also, some shells, including bash 3.2, implicitly append the current directory
to this PATH search, even though Posix forbids it. So if you want to use . on a
file ‘foo’ in the current directory, you must use ‘. ./foo’.

! The Unix version 7 shell did not support negating the exit status of commands
with !, and this feature is still absent from some shells (e.g., Solaris /bin/sh).
Other shells, such as FreeBSD /bin/sh or ash, have bugs when using !:

$ sh -c ’! : | :’; echo $?
1
$ ash -c ’! : | :’; echo $?
0
$ sh -c ’! { :; }’; echo $?
1
$ ash -c ’! { :; }’; echo $?
{: not found
Syntax error: "}" unexpected
2

Shell code like this:
if ! cmp file1 file2 >/dev/null 2>&1; then
echo files differ or trouble

fi

is therefore not portable in practice. Typically it is easy to rewrite such code,
e.g.:

cmp file1 file2 >/dev/null 2>&1 ||

Chapter 10: Portable Shell Programming 181

echo files differ or trouble

More generally, one can always rewrite ‘! command ’ as:
if command; then (exit 1); else :; fi

{...} Bash 3.2 (and earlier versions) sometimes does not properly set ‘$?’ when failing
to write redirected output of a compound command. This problem is most
commonly observed with ‘{...}’; it does not occur with ‘(...)’. For example:

$ bash -c ’{ echo foo; } >/bad; echo $?’
bash: line 1: /bad: Permission denied
0
$ bash -c ’while :; do echo; done >/bad; echo $?’
bash: line 1: /bad: Permission denied
0

To work around the bug, prepend ‘:;’:
$ bash -c ’:;{ echo foo; } >/bad; echo $?’
bash: line 1: /bad: Permission denied
1

break The use of ‘break 2’ etc. is safe.

case You don’t need to quote the argument; no splitting is performed.
You don’t need the final ‘;;’, but you should use it.
Posix requires support for case patterns with opening parentheses like this:

case $file_name in
(*.c) echo "C source code";;

esac

but the (in this example is not portable to many Bourne shell implementations,
which is a pity for those of us using tools that rely on balanced parentheses.
For instance, with Solaris /bin/sh:

$ case foo in (foo) echo foo;; esac

error syntax error: ‘(’ unexpected

The leading ‘(’ can be omitted safely. In contexts where unbalanced parentheses
cause other problems, such as when using a case statement as an argument to
an Autoconf macro, you can also resort to creative shell comments to supply
the balance:

case $file_name in #(
*.c) echo "C source code";;

esac

Zsh handles pattern fragments derived from parameter expansions or command
substitutions as though quoted:

$ pat=\?; case aa in ?$pat) echo match;; esac
$ pat=\?; case a? in ?$pat) echo match;; esac
match

Because of a bug in its fnmatch, Bash fails to properly handle backslashes in
character classes:

182 Autoconf

bash-2.02$ case /tmp in [/\\]*) echo OK;; esac

bash-2.02$

This is extremely unfortunate, since you are likely to use this code to handle
Posix or ms-dos absolute file names. To work around this bug, always put the
backslash first:

bash-2.02$ case ’\TMP’ in [\\/]*) echo OK;; esac

OK
bash-2.02$ case /tmp in [\\/]*) echo OK;; esac

OK

Many Bourne shells cannot handle closing brackets in character classes correctly.

Some shells also have problems with backslash escaping in case you do not want
to match the backslash: both a backslash and the escaped character match this
pattern. To work around this, specify the character class in a variable, so that
quote removal does not apply afterwards, and the special characters don’t have
to be backslash-escaped:

$ case ’\’ in [\<]) echo OK;; esac

OK
$ scanset=’[<]’; case ’\’ in $scanset) echo OK;; esac

$

Even with this, Solaris ksh matches a backslash if the set contains any of the
characters ‘|’, ‘&’, ‘(’, or ‘)’.

Conversely, Tru64 ksh (circa 2003) erroneously always matches a closing paren-
thesis if not specified in a character class:

$ case foo in *\)*) echo fail ;; esac

fail
$ case foo in *’)’*) echo fail ;; esac

fail

Some shells, such as Ash 0.3.8, are confused by an empty case/esac:

ash-0.3.8 $ case foo in esac;

error Syntax error: ";" unexpected (expecting ")")

cd Posix 1003.1-2001 requires that cd must support the ‘-L’ (“logical”) and ‘-P’
(“physical”) options, with ‘-L’ being the default. However, traditional shells do
not support these options, and their cd command has the ‘-P’ behavior.

Portable scripts should assume neither option is supported, and should assume
neither behavior is the default. This can be a bit tricky, since the Posix default
behavior means that, for example, ‘ls ..’ and ‘cd ..’ may refer to different
directories if the current logical directory is a symbolic link. It is safe to use cd
dir if dir contains no ‘..’ components. Also, Autoconf-generated scripts check
for this problem when computing variables like ac_top_srcdir (see Section 4.6
[Configuration Actions], page 20), so it is safe to cd to these variables.

See See Section 10.10 [Special Shell Variables], page 175, for portability prob-
lems involving cd and the CDPATH environment variable. Also please see the
discussion of the pwd command.

Chapter 10: Portable Shell Programming 183

echo The simple echo is probably the most surprising source of portability troubles.
It is not possible to use ‘echo’ portably unless both options and escape sequences
are omitted. New applications which are not aiming at portability should use
‘printf’ instead of ‘echo’.

Don’t expect any option. See Section 4.8.1 [Preset Output Variables], page 23,
ECHO_N etc. for a means to simulate ‘-n’.

Do not use backslashes in the arguments, as there is no consensus on their
handling. For ‘echo ’\n’ | wc -l’, the sh of Solaris outputs 2, but Bash and
Zsh (in sh emulation mode) output 1. The problem is truly echo: all the shells
understand ‘’\n’’ as the string composed of a backslash and an ‘n’.

Because of these problems, do not pass a string containing arbitrary characters
to echo. For example, ‘echo "$foo"’ is safe if you know that foo’s value cannot
contain backslashes and cannot start with ‘-’, but otherwise you should use a
here-document like this:

cat <<EOF
$foo
EOF

eval The eval command is useful in limited circumstances, e.g., using commands
like ‘eval table_$key=\$value’ and ‘eval value=table_$key’ to simulate a
hash table when the key is known to be alphanumeric. However, eval is tricky
to use on arbitrary arguments, even when it is implemented correctly.

It is obviously unwise to use ‘eval $cmd’ if the string value of ‘cmd’ was derived
from an untrustworthy source. But even if the string value is valid, ‘eval
$cmd’ might not work as intended, since it causes field splitting and file name
expansion to occur twice, once for the eval and once for the command itself.
It is therefore safer to use ‘eval "$cmd"’. For example, if cmd has the value
‘cat test?.c’, ‘eval $cmd’ might expand to the equivalent of ‘cat test;.c’ if
there happens to be a file named ‘test;.c’ in the current directory; and this
in turn mistakenly attempts to invoke cat on the file ‘test’ and then execute
the command .c. To avoid this problem, use ‘eval "$cmd"’ rather than ‘eval
$cmd’.

However, suppose that you want to output the text of the evaluated command
just before executing it. Assuming the previous example, ‘echo "Executing:
$cmd"’ outputs ‘Executing: cat test?.c’, but this output doesn’t show the
user that ‘test;.c’ is the actual name of the copied file. Conversely, ‘eval
"echo Executing: $cmd"’ works on this example, but it fails with ‘cmd=’cat
foo >bar’’, since it mistakenly replaces the contents of ‘bar’ by the string ‘cat
foo’. No simple, general, and portable solution to this problem is known.

You should also be wary of common bugs in eval implementations. In
some shell implementations (e.g., older ash, OpenBSD 3.8 sh, pdksh v5.2.14
99/07/13.2, and zsh 4.2.5), the arguments of ‘eval’ are evaluated in a context
where ‘$?’ is 0, so they exhibit behavior like this:

$ false; eval ’echo $?’
0

184 Autoconf

The correct behavior here is to output a nonzero value, but portable scripts
should not rely on this.
You should not rely on LINENO within eval. See Section 10.10 [Special Shell
Variables], page 175.

exec Posix describes several categories of shell built-ins. Special built-ins (such as
exit) must impact the environment of the current shell, and need not be avail-
able through exec. All other built-ins are regular, and must not propagate
variable assignments to the environment of the current shell. However, the
group of regular built-ins is further distinguished by commands that do not
require a PATH search (such as cd), in contrast to built-ins that are offered as
a more efficient version of something that must still be found in a PATH search
(such as echo). Posix is not clear on whether exec must work with the list of
17 utilities that are invoked without a PATH search, and many platforms lack
an executable for some of those built-ins:

$ sh -c ’exec cd /tmp’

sh: line 0: exec: cd: not found

All other built-ins that provide utilities specified by Posix must have a coun-
terpart executable that exists on PATH, although Posix allows exec to use the
built-in instead of the executable. For example, contrast bash 3.2 and pdksh
5.2.14:

$ bash -c ’pwd --version’ | head -n1

bash: line 0: pwd: --: invalid option
pwd: usage: pwd [-LP]
$ bash -c ’exec pwd --version’ | head -n1

pwd (GNU coreutils) 6.10
$ pdksh -c ’exec pwd --version’ | head -n1

pdksh: pwd: --: unknown option

When it is desired to avoid a regular shell built-in, the workaround is to use
some other forwarding command, such as env or nice, that will ensure a path
search:

$ pdksh -c ’exec true --version’ | head -n1

$ pdksh -c ’nice true --version’ | head -n1

true (GNU coreutils) 6.10
$ pdksh -c ’env true --version’ | head -n1

true (GNU coreutils) 6.10

exit The default value of exit is supposed to be $?; unfortunately, some shells, such
as the DJGPP port of Bash 2.04, just perform ‘exit 0’.

bash-2.04$ foo=‘exit 1‘ || echo fail

fail
bash-2.04$ foo=‘(exit 1)‘ || echo fail

fail
bash-2.04$ foo=‘(exit 1); exit‘ || echo fail

bash-2.04$

Using ‘exit $?’ restores the expected behavior.

Chapter 10: Portable Shell Programming 185

Some shell scripts, such as those generated by autoconf, use a trap to clean
up before exiting. If the last shell command exited with nonzero status, the
trap also exits with nonzero status so that the invoker can tell that an error
occurred.
Unfortunately, in some shells, such as Solaris /bin/sh, an exit trap ignores the
exit command’s argument. In these shells, a trap cannot determine whether
it was invoked by plain exit or by exit 1. Instead of calling exit directly, use
the AC_MSG_ERROR macro that has a workaround for this problem.

export The builtin export dubs a shell variable environment variable. Each update
of exported variables corresponds to an update of the environment variables.
Conversely, each environment variable received by the shell when it is launched
should be imported as a shell variable marked as exported.
Alas, many shells, such as Solaris /bin/sh, irix 6.3, irix 5.2, AIX 4.1.5, and
Digital Unix 4.0, forget to export the environment variables they receive. As
a result, two variables coexist: the environment variable and the shell variable.
The following code demonstrates this failure:

#!/bin/sh
echo $FOO
FOO=bar
echo $FOO
exec /bin/sh $0

when run with ‘FOO=foo’ in the environment, these shells print alternately ‘foo’
and ‘bar’, although they should print only ‘foo’ and then a sequence of ‘bar’s.
Therefore you should export again each environment variable that you update;
the export can occur before or after the assignment.
Posix is not clear on whether the export of an undefined variable causes the
variable to be defined with the value of an empty string, or merely marks any
future definition of a variable by that name for export. Various shells behave
differently in this regard:

$ sh -c ’export foo; env | grep foo’

$ ash -c ’export foo; env | grep foo’

foo=

false Don’t expect false to exit with status 1: in native Solaris ‘/bin/false’ exits
with status 255.

for To loop over positional arguments, use:
for arg
do
echo "$arg"

done

You may not leave the do on the same line as for, since some shells improperly
grok:

for arg; do
echo "$arg"

186 Autoconf

done

If you want to explicitly refer to the positional arguments, given the ‘$@’ bug
(see Section 10.6 [Shell Substitutions], page 168), use:

for arg in ${1+"$@"}; do
echo "$arg"

done

But keep in mind that Zsh, even in Bourne shell emulation mode, performs
word splitting on ‘${1+"$@"}’; see Section 10.6 [Shell Substitutions], page 168,
item ‘$@’, for more.

if Using ‘!’ is not portable. Instead of:
if ! cmp -s file file.new; then
mv file.new file

fi

use:
if cmp -s file file.new; then :; else
mv file.new file

fi

There are shells that do not reset the exit status from an if:
$ if (exit 42); then true; fi; echo $?
42

whereas a proper shell should have printed ‘0’. This is especially bad in make-
files since it produces false failures. This is why properly written makefiles,
such as Automake’s, have such hairy constructs:

if test -f "$file"; then
install "$file" "$dest"

else
:

fi

printf A format string starting with a ‘-’ can cause problems. Bash interprets it as an
option and gives an error. And ‘--’ to mark the end of options is not good in
the NetBSD Almquist shell (e.g., 0.4.6) which takes that literally as the format
string. Putting the ‘-’ in a ‘%c’ or ‘%s’ is probably easiest:

printf %s -foo

Bash 2.03 mishandles an escape sequence that happens to evaluate to ‘%’:
$ printf ’\045’

bash: printf: ‘%’: missing format character

Large outputs may cause trouble. On Solaris 2.5.1 through 10, for example,
‘/usr/bin/printf’ is buggy, so when using /bin/sh the command ‘printf
%010000x 123’ normally dumps core.

read Not all shells support ‘-r’ (Solaris /bin/sh for example).

pwd With modern shells, plain pwd outputs a “logical” directory name, some of
whose components may be symbolic links. These directory names are in contrast
to “physical” directory names, whose components are all directories.

Chapter 10: Portable Shell Programming 187

Posix 1003.1-2001 requires that pwd must support the ‘-L’ (“logical”) and ‘-P’
(“physical”) options, with ‘-L’ being the default. However, traditional shells do
not support these options, and their pwd command has the ‘-P’ behavior.
Portable scripts should assume neither option is supported, and should assume
neither behavior is the default. Also, on many hosts ‘/bin/pwd’ is equivalent to
‘pwd -P’, but Posix does not require this behavior and portable scripts should
not rely on it.
Typically it’s best to use plain pwd. On modern hosts this outputs logical
directory names, which have the following advantages:
• Logical names are what the user specified.
• Physical names may not be portable from one installation host to another

due to network file system gymnastics.
• On modern hosts ‘pwd -P’ may fail due to lack of permissions to some

parent directory, but plain pwd cannot fail for this reason.

Also please see the discussion of the cd command.

set With the FreeBSD 6.0 shell, the set command (without any options) does not
sort its output.
The set builtin faces the usual problem with arguments starting with a dash.
Modern shells such as Bash or Zsh understand ‘--’ to specify the end of the
options (any argument after ‘--’ is a parameter, even ‘-x’ for instance), but
many traditional shells (e.g., Solaris 10 /bin/sh) simply stop option processing
as soon as a non-option argument is found. Therefore, use ‘dummy’ or simply
‘x’ to end the option processing, and use shift to pop it out:

set x $my_list; shift

Avoid ‘set -’, e.g., ‘set - $my_list’. Posix no longer requires support for this
command, and in traditional shells ‘set - $my_list’ resets the ‘-v’ and ‘-x’
options, which makes scripts harder to debug.
Some nonstandard shells do not recognize more than one option (e.g., ‘set -e
-x’ assigns ‘-x’ to the command line). It is better to combine them:

set -ex

The BSD shell has had several problems with the ‘-e’ option, partly because
BSD make traditionally used ‘-e’ even though this was incompatible with Posix
(see Section 11.2 [Failure in Make Rules], page 205). Older versions of the
BSD shell (circa 1990) mishandled ‘&&’, ‘||’, ‘if’, and ‘case’ when ‘-e’ was in
effect, causing the shell to exit unexpectedly in some cases. This was particu-
larly a problem with makefiles, and led to circumlocutions like ‘sh -c ’test -f
file || touch file’’, where the seemingly-unnecessary ‘sh -c ’...’’ wrap-
per works around the bug.
Even relatively-recent versions of the BSD shell (e.g., OpenBSD 3.4) wrongly
exit with ‘-e’ if a command within ‘&&’ fails inside a compound statement. For
example:

#! /bin/sh
set -e

188 Autoconf

foo=’’
test -n "$foo" && exit 1
echo one
if :; then
test -n "$foo" && exit 1

fi
echo two

does not print ‘two’. One workaround is to use ‘if test -n "$foo"; then exit
1; fi’ rather than ‘test -n "$foo" && exit 1’. Another possibility is to warn
BSD users not to use ‘sh -e’.

shift Not only is shifting a bad idea when there is nothing left to shift, but in
addition it is not portable: the shell of MIPS RISC/OS 4.52 refuses to do it.

Don’t use ‘shift 2’ etc.; it was not in the 7th Edition Bourne shell, and it is
also absent in many pre-Posix shells.

source This command is not portable, as Posix does not require it; use . instead.

test The test program is the way to perform many file and string tests. It is often
invoked by the alternate name ‘[’, but using that name in Autoconf code is
asking for trouble since it is an M4 quote character.

The ‘-a’, ‘-o’, ‘(’, and ‘)’ operands are not portable and should be avoided.
Thus, portable uses of test should never have more than four arguments, and
scripts should use shell constructs like ‘&&’ and ‘||’ instead. If you combine ‘&&’
and ‘||’ in the same statement, keep in mind that they have equal precedence,
so it is often better to parenthesize even when this is redundant. For example:

Not portable:

test "X$a" = "X$b" -a \

’(’ "X$c" != "X$d" -o "X$e" = "X$f" ’)’

Portable:

test "X$a" = "X$b" &&

{ test "X$c" != "X$d" || test "X$e" = "X$f"; }

test does not process options like most other commands do; for example, it
does not recognize the ‘--’ argument as marking the end of options.

It is safe to use ‘!’ as a test operator. For example, ‘if test ! -d foo; ...’
is portable even though ‘if ! test -d foo; ...’ is not.

test (files)
To enable configure scripts to support cross-compilation, they shouldn’t do
anything that tests features of the build system instead of the host system.
But occasionally you may find it necessary to check whether some arbitrary file
exists. To do so, use ‘test -f’ or ‘test -r’. Do not use ‘test -x’, because
4.3BSD does not have it. Do not use ‘test -e’ either, because Solaris /bin/sh
lacks it. To test for symbolic links on systems that have them, use ‘test -h’
rather than ‘test -L’; either form conforms to Posix 1003.1-2001, but older
shells like Solaris 8 /bin/sh support only ‘-h’.

Chapter 10: Portable Shell Programming 189

test (strings)
Posix says that ‘test "string"’ succeeds if string is not null, but this usage is
not portable to traditional platforms like Solaris 10 /bin/sh, which mishandle
strings like ‘!’ and ‘-n’.
Posix also says that ‘test ! "string"’, ‘test -n "string"’ and ‘test -z
"string"’ work with any string, but many shells (such as Solaris, AIX 3.2,
unicos 10.0.0.6, Digital Unix 4, etc.) get confused if string looks like an
operator:

$ test -n =

test: argument expected
$ test ! -n

test: argument expected

Similarly, Posix says that both ‘test "string1" = "string2"’ and ‘test
"string1" != "string2"’ work for any pairs of strings, but in practice this
is not true for troublesome strings that look like operators or parentheses, or
that begin with ‘-’.
It is best to protect such strings with a leading ‘X’, e.g., ‘test "Xstring" !=
X’ rather than ‘test -n "string"’ or ‘test ! "string"’.
It is common to find variations of the following idiom:

test -n "‘echo $ac_feature | sed ’s/[-a-zA-Z0-9_]//g’‘" &&
action

to take an action when a token matches a given pattern. Such constructs should
be avoided by using:

case $ac_feature in
[!-a-zA-Z0-9_]) action;;

esac

If the pattern is a complicated regular expression that cannot be expressed as
a shell pattern, use something like this instead:

expr "X$ac_feature" : ’X.*[^-a-zA-Z0-9_]’ >/dev/null &&
action

‘expr "Xfoo" : "Xbar"’ is more robust than ‘echo "Xfoo" | grep "^Xbar"’,
because it avoids problems when ‘foo ’ contains backslashes.

trap It is safe to trap at least the signals 1, 2, 13, and 15. You can also trap 0, i.e.,
have the trap run when the script ends (either via an explicit exit, or the end
of the script). The trap for 0 should be installed outside of a shell function, or
AIX 5.3 /bin/sh will invoke the trap at the end of this function.
Posix says that ‘trap - 1 2 13 15’ resets the traps for the specified signals to
their default values, but many common shells (e.g., Solaris /bin/sh) misinter-
pret this and attempt to execute a “command” named - when the specified
conditions arise. There is no portable workaround, except for ‘trap - 0’, for
which ‘trap ’’ 0’ is a portable substitute.
Although Posix is not absolutely clear on this point, it is widely admitted that
when entering the trap ‘$?’ should be set to the exit status of the last command
run before the trap. The ambiguity can be summarized as: “when the trap is

190 Autoconf

launched by an exit, what is the last command run: that before exit, or exit
itself?”
Bash considers exit to be the last command, while Zsh and Solaris /bin/sh
consider that when the trap is run it is still in the exit, hence it is the previous
exit status that the trap receives:

$ cat trap.sh

trap ’echo $?’ 0
(exit 42); exit 0
$ zsh trap.sh

42
$ bash trap.sh

0

The portable solution is then simple: when you want to ‘exit 42’, run ‘(exit
42); exit 42’, the first exit being used to set the exit status to 42 for Zsh,
and the second to trigger the trap and pass 42 as exit status for Bash.
The shell in FreeBSD 4.0 has the following bug: ‘$?’ is reset to 0 by empty lines
if the code is inside trap.

$ trap ’false

echo $?’ 0
$ exit

0

Fortunately, this bug only affects trap.

true Don’t worry: as far as we know true is portable. Nevertheless, it’s not always a
builtin (e.g., Bash 1.x), and the portable shell community tends to prefer using
:. This has a funny side effect: when asked whether false is more portable
than true Alexandre Oliva answered:

In a sense, yes, because if it doesn’t exist, the shell will produce an
exit status of failure, which is correct for false, but not for true.

unset In some nonconforming shells (e.g., Bash 2.05a), unset FOO fails when FOO is
not set. Also, Bash 2.01 mishandles unset MAIL in some cases and dumps core.
A few ancient shells lack unset entirely. Nevertheless, because it is extremely
useful to disable embarrassing variables such as PS1, you can test for its ex-
istence and use it provided you give a neutralizing value when unset is not
supported:

"|| exit" suppresses any "Segmentation fault" message.

if ((MAIL=60; unset MAIL) || exit) >/dev/null 2>&1; then

unset=unset

else

unset=false

fi

$unset PS1 || PS1=’$ ’

See Section 10.10 [Special Shell Variables], page 175, for some neutralizing val-
ues. Also, see Section 10.12 [Limitations of Builtins], page 180, documentation
of export, for the case of environment variables.

Chapter 10: Portable Shell Programming 191

10.13 Limitations of Usual Tools

The small set of tools you can expect to find on any machine can still include some limita-
tions you should be aware of.

Awk Don’t leave white space before the opening parenthesis in a user function call.
Posix does not allow this and GNU Awk rejects it:

$ gawk ’function die () { print "Aaaaarg!" }
BEGIN { die () }’

gawk: cmd. line:2: BEGIN { die () }
gawk: cmd. line:2: ^ parse error
$ gawk ’function die () { print "Aaaaarg!" }

BEGIN { die() }’
Aaaaarg!

Posix says that if a program contains only ‘BEGIN’ actions, and contains no
instances of getline, then the program merely executes the actions without
reading input. However, traditional Awk implementations (such as Solaris 10
awk) read and discard input in this case. Portable scripts can redirect input
from ‘/dev/null’ to work around the problem. For example:

awk ’BEGIN {print "hello world"}’ </dev/null

Posix says that in an ‘END’ action, ‘$NF’ (and presumably, ‘$1’) retain their
value from the last record read, if no intervening ‘getline’ occurred. However,
some implementations (such as Solaris 10 ‘/usr/bin/awk’, ‘nawk’, or Darwin
‘awk’) reset these variables. A workaround is to use an intermediate variable
prior to the ‘END’ block. For example:

$ cat end.awk

{ tmp = $1 }
END { print "a", $1, $NF, "b", tmp }
$ echo 1 | awk -f end.awk

a b 1
$ echo 1 | gawk -f end.awk

a 1 1 b 1

If you want your program to be deterministic, don’t depend on for on arrays:

$ cat for.awk

END {
arr["foo"] = 1
arr["bar"] = 1
for (i in arr)
print i

}
$ gawk -f for.awk </dev/null
foo
bar
$ nawk -f for.awk </dev/null
bar
foo

192 Autoconf

Some Awk implementations, such as HP-UX 11.0’s native one, mishandle an-
chors:

$ echo xfoo | $AWK ’/foo|^bar/ { print }’
$ echo bar | $AWK ’/foo|^bar/ { print }’
bar
$ echo xfoo | $AWK ’/^bar|foo/ { print }’
xfoo
$ echo bar | $AWK ’/^bar|foo/ { print }’
bar

Either do not depend on such patterns (i.e., use ‘/^(.*foo|bar)/’, or use a
simple test to reject such implementations.
On ‘ia64-hp-hpux11.23’, Awk mishandles printf conversions after %u:

$ awk ’BEGIN { printf "%u %d\n", 0, -1 }’
0 0

AIX version 5.2 has an arbitrary limit of 399 on the length of regular expressions
and literal strings in an Awk program.
Traditional Awk implementations derived from Unix version 7, such as Solaris
/bin/awk, have many limitations and do not conform to Posix. Nowadays AC_
PROG_AWK (see Section 5.2.1 [Particular Programs], page 41) finds you an Awk
that doesn’t have these problems, but if for some reason you prefer not to use
AC_PROG_AWK you may need to address them.
Traditional Awk does not support multidimensional arrays or user-defined func-
tions.
Traditional Awk does not support the ‘-v’ option. You can use assignments af-
ter the program instead, e.g., $AWK ’{print v $1}’ v=x; however, don’t forget
that such assignments are not evaluated until they are encountered (e.g., after
any BEGIN action).
Traditional Awk does not support the keywords delete or do.
Traditional Awk does not support the expressions a?b:c , !a , a^b , or a^=b .
Traditional Awk does not support the predefined CONVFMT variable.
Traditional Awk supports only the predefined functions exp, index, int,
length, log, split, sprintf, sqrt, and substr.
Traditional Awk getline is not at all compatible with Posix; avoid it.
Traditional Awk has for (i in a) ... but no other uses of the in keyword.
For example, it lacks if (i in a)
In code portable to both traditional and modern Awk, FS must be a string
containing just one ordinary character, and similarly for the field-separator
argument to split.
Traditional Awk has a limit of 99 fields in a record. Since some Awk imple-
mentations, like Tru64’s, split the input even if you don’t refer to any field in
the script, to circumvent this problem, set ‘FS’ to an unusual character and use
split.
Traditional Awk has a limit of at most 99 bytes in a number formatted by OFMT;
for example, OFMT="%.300e"; print 0.1; typically dumps core.

Chapter 10: Portable Shell Programming 193

The original version of Awk had a limit of at most 99 bytes per split field, 99
bytes per substr substring, and 99 bytes per run of non-special characters in
a printf format, but these bugs have been fixed on all practical hosts that we
know of.

basename Not all hosts have a working basename. You can use expr instead.

cat Don’t rely on any option.

cc The command ‘cc -c foo.c’ traditionally produces an object file named
‘foo.o’. Most compilers allow ‘-c’ to be combined with ‘-o’ to specify a
different object file name, but Posix does not require this combination and a
few compilers lack support for it. See Section 5.10.3 [C Compiler], page 74, for
how GNU Make tests for this feature with AC_PROG_CC_C_O.
When a compilation such as ‘cc -o foo foo.c’ fails, some compilers (such as
cds on Reliant Unix) leave a ‘foo.o’.
HP-UX cc doesn’t accept ‘.S’ files to preprocess and assemble. ‘cc -c foo.S’
appears to succeed, but in fact does nothing.
The default executable, produced by ‘cc foo.c’, can be
• ‘a.out’ — usual Posix convention.
• ‘b.out’ — i960 compilers (including gcc).
• ‘a.exe’ — DJGPP port of gcc.
• ‘a_out.exe’ — GNV cc wrapper for DEC C on OpenVMS.
• ‘foo.exe’ — various MS-DOS compilers.

The C compiler’s traditional name is cc, but other names like gcc are common.
Posix 1003.1-2001 specifies the name c99, but older Posix editions specified c89
and anyway these standard names are rarely used in practice. Typically the
C compiler is invoked from makefiles that use ‘$(CC)’, so the value of the ‘CC’
make variable selects the compiler name.

chmod Avoid usages like ‘chmod -w file’; use ‘chmod a-w file’ instead, for two rea-
sons. First, plain ‘-w’ does not necessarily make the file unwritable, since it does
not affect mode bits that correspond to bits in the file mode creation mask. Sec-
ond, Posix says that the ‘-w’ might be interpreted as an implementation-specific
option, not as a mode; Posix suggests using ‘chmod -- -w file’ to avoid this
confusion, but unfortunately ‘--’ does not work on some older hosts.

cmp cmp performs a raw data comparison of two files, while diff compares two text
files. Therefore, if you might compare DOS files, even if only checking whether
two files are different, use diff to avoid spurious differences due to differences
of newline encoding.

cp Avoid the ‘-r’ option, since Posix 1003.1-2004 marks it as obsolescent and its
behavior on special files is implementation-defined. Use ‘-R’ instead. On GNU
hosts the two options are equivalent, but on Solaris hosts (for example) cp -r
reads from pipes instead of replicating them.
Some cp implementations (e.g., BSD/OS 4.2) do not allow trailing slashes at
the end of nonexistent destination directories. To avoid this problem, omit the

194 Autoconf

trailing slashes. For example, use ‘cp -R source /tmp/newdir’ rather than ‘cp
-R source /tmp/newdir/’ if ‘/tmp/newdir’ does not exist.
The ancient SunOS 4 cp does not support ‘-f’, although its mv does.
Traditionally, file timestamps had 1-second resolution, and ‘cp -p’ copied the
timestamps exactly. However, many modern file systems have timestamps
with 1-nanosecond resolution. Unfortunately, ‘cp -p’ implementations trun-
cate timestamps when copying files, so this can result in the destination file
appearing to be older than the source. The exact amount of truncation de-
pends on the resolution of the system calls that cp uses; traditionally this was
utime, which has 1-second resolution, but some newer cp implementations use
utimes, which has 1-microsecond resolution. These newer implementations in-
clude GNU Core Utilities 5.0.91 or later, and Solaris 8 (sparc) patch 109933-02
or later. Unfortunately as of January 2006 there is still no system call to set
timestamps to the full nanosecond resolution.
Bob Proulx notes that ‘cp -p’ always tries to copy ownerships. But whether
it actually does copy ownerships or not is a system dependent policy decision
implemented by the kernel. If the kernel allows it then it happens. If the kernel
does not allow it then it does not happen. It is not something cp itself has
control over.
In Unix System V any user can chown files to any other user, and System V
also has a non-sticky ‘/tmp’. That probably derives from the heritage of System
V in a business environment without hostile users. BSD changed this to be a
more secure model where only root can chown files and a sticky ‘/tmp’ is used.
That undoubtedly derives from the heritage of BSD in a campus environment.
GNU/Linux and Solaris by default follow BSD, but can be configured to allow
a System V style chown. On the other hand, HP-UX follows System V, but can
be configured to use the modern security model and disallow chown. Since it is
an administrator-configurable parameter you can’t use the name of the kernel
as an indicator of the behavior.

date Some versions of date do not recognize special ‘%’ directives, and unfortunately,
instead of complaining, they just pass them through, and exit with success:

$ uname -a

OSF1 medusa.sis.pasteur.fr V5.1 732 alpha
$ date "+%s"
%s

diff Option ‘-u’ is nonportable.
Some implementations, such as Tru64’s, fail when comparing to ‘/dev/null’.
Use an empty file instead.

dirname Not all hosts have a working dirname, and you should instead use AS_DIRNAME
(see Section 8.4 [Programming in M4sh], page 147). For example:

dir=‘dirname "$file"‘ # This is not portable.
dir=‘AS_DIRNAME(["$file"])‘ # This is more portable.

egrep Posix 1003.1-2001 no longer requires egrep, but many hosts do not yet support
the Posix replacement grep -E. Also, some traditional implementations do not

Chapter 10: Portable Shell Programming 195

work on long input lines. To work around these problems, invoke AC_PROG_
EGREP and then use $EGREP.
Portable extended regular expressions should use ‘\’ only to escape characters
in the string ‘$()*+.?[\^{|’. For example, ‘\}’ is not portable, even though it
typically matches ‘}’.
The empty alternative is not portable. Use ‘?’ instead. For instance with Digital
Unix v5.0:

> printf "foo\n|foo\n" | $EGREP ’^(|foo|bar)$’
|foo
> printf "bar\nbar|\n" | $EGREP ’^(foo|bar|)$’
bar|
> printf "foo\nfoo|\n|bar\nbar\n" | $EGREP ’^(foo||bar)$’
foo
|bar

$EGREP also suffers the limitations of grep.

expr No expr keyword starts with ‘X’, so use ‘expr X"word" : ’Xregex’’ to keep
expr from misinterpreting word.
Don’t use length, substr, match and index.

expr (‘|’) You can use ‘|’. Although Posix does require that ‘expr ’’’ return the empty
string, it does not specify the result when you ‘|’ together the empty string (or
zero) with the empty string. For example:

expr ’’ \| ’’

Posix 1003.2-1992 returns the empty string for this case, but traditional Unix
returns ‘0’ (Solaris is one such example). In Posix 1003.1-2001, the specification
was changed to match traditional Unix’s behavior (which is bizarre, but it’s too
late to fix this). Please note that the same problem does arise when the empty
string results from a computation, as in:

expr bar : foo \| foo : bar

Avoid this portability problem by avoiding the empty string.

expr (‘:’) Portable expr regular expressions should use ‘\’ to escape only characters in the
string ‘$()*.0123456789[\^n{}’. For example, alternation, ‘\|’, is common
but Posix does not require its support, so it should be avoided in portable
scripts. Similarly, ‘\+’ and ‘\?’ should be avoided.
Portable expr regular expressions should not begin with ‘^’. Patterns are au-
tomatically anchored so leading ‘^’ is not needed anyway.
The Posix standard is ambiguous as to whether ‘expr ’a’ : ’\(b\)’’ outputs
‘0’ or the empty string. In practice, it outputs the empty string on most plat-
forms, but portable scripts should not assume this. For instance, the QNX 4.25
native expr returns ‘0’.
One might think that a way to get a uniform behavior would be to use the
empty string as a default value:

expr a : ’\(b\)’ \| ’’

196 Autoconf

Unfortunately this behaves exactly as the original expression; see the expr (‘|’)
entry for more information.

Some ancient expr implementations (e.g., SunOS 4 expr and Solaris 8
/usr/ucb/expr) have a silly length limit that causes expr to fail if the
matched substring is longer than 120 bytes. In this case, you might want to
fall back on ‘echo|sed’ if expr fails. Nowadays this is of practical importance
only for the rare installer who mistakenly puts ‘/usr/ucb’ before ‘/usr/bin’
in PATH.

On Mac OS X 10.4, expr mishandles the pattern ‘[^-]’ in some cases. For
example, the command

expr Xpowerpc-apple-darwin8.1.0 : ’X[^-]*-[^-]*-\(.*\)’

outputs ‘apple-darwin8.1.0’ rather than the correct ‘darwin8.1.0’. This
particular case can be worked around by substituting ‘[^--]’ for ‘[^-]’.

Don’t leave, there is some more!

The QNX 4.25 expr, in addition of preferring ‘0’ to the empty string, has a
funny behavior in its exit status: it’s always 1 when parentheses are used!

$ val=‘expr ’a’ : ’a’‘; echo "$?: $val"
0: 1
$ val=‘expr ’a’ : ’b’‘; echo "$?: $val"
1: 0

$ val=‘expr ’a’ : ’\(a\)’‘; echo "?: $val"
1: a
$ val=‘expr ’a’ : ’\(b\)’‘; echo "?: $val"
1: 0

In practice this can be a big problem if you are ready to catch failures of expr
programs with some other method (such as using sed), since you may get twice
the result. For instance

$ expr ’a’ : ’\(a\)’ || echo ’a’ | sed ’s/^\(a\)$/\1/’

outputs ‘a’ on most hosts, but ‘aa’ on QNX 4.25. A simple workaround consists
of testing expr and using a variable set to expr or to false according to the
result.

Tru64 expr incorrectly treats the result as a number, if it can be interpreted
that way:

$ expr 00001 : ’.*\(...\)’

1

fgrep Posix 1003.1-2001 no longer requires fgrep, but many hosts do not yet support
the Posix replacement grep -F. Also, some traditional implementations do not
work on long input lines. To work around these problems, invoke AC_PROG_
FGREP and then use $FGREP.

find The option ‘-maxdepth’ seems to be GNU specific. Tru64 v5.1, NetBSD 1.5 and
Solaris find commands do not understand it.

Chapter 10: Portable Shell Programming 197

The replacement of ‘{}’ is guaranteed only if the argument is exactly {}, not
if it’s only a part of an argument. For instance on DU, and HP-UX 10.20 and
HP-UX 11:

$ touch foo

$ find . -name foo -exec echo "{}-{}" \;

{}-{}

while GNU find reports ‘./foo-./foo’.

grep Portable scripts can rely on the grep options ‘-c’, ‘-l’, ‘-n’, and ‘-v’, but should
avoid other options. For example, don’t use ‘-w’, as Posix does not require it
and Irix 6.5.16m’s grep does not support it. Also, portable scripts should not
combine ‘-c’ with ‘-l’, as Posix does not allow this.
Some of the options required by Posix are not portable in practice. Don’t
use ‘grep -q’ to suppress output, because many grep implementations (e.g.,
Solaris) do not support ‘-q’. Don’t use ‘grep -s’ to suppress output either,
because Posix says ‘-s’ does not suppress output, only some error messages;
also, the ‘-s’ option of traditional grep behaved like ‘-q’ does in most modern
implementations. Instead, redirect the standard output and standard error (in
case the file doesn’t exist) of grep to ‘/dev/null’. Check the exit status of
grep to determine whether it found a match.
Some traditional grep implementations do not work on long input lines. On
AIX the default grep silently truncates long lines on the input before matching.
Also, many implementations do not support multiple regexps with ‘-e’: they
either reject ‘-e’ entirely (e.g., Solaris) or honor only the last pattern (e.g.,
IRIX 6.5 and NeXT). To work around these problems, invoke AC_PROG_GREP
and then use $GREP.
Another possible workaround for the multiple ‘-e’ problem is to separate the
patterns by newlines, for example:

grep ’foo
bar’ in.txt

except that this fails with traditional grep implementations and with OpenBSD
3.8 grep.
Traditional grep implementations (e.g., Solaris) do not support the ‘-E’ or ‘-F’
options. To work around these problems, invoke AC_PROG_EGREP and then use
$EGREP, and similarly for AC_PROG_FGREP and $FGREP. Even if you are willing
to require support for Posix grep, your script should not use both ‘-E’ and ‘-F’,
since Posix does not allow this combination.
Portable grep regular expressions should use ‘\’ only to escape characters in
the string ‘$()*.0123456789[\^{}’. For example, alternation, ‘\|’, is common
but Posix does not require its support in basic regular expressions, so it should
be avoided in portable scripts. Solaris and HP-UX grep do not support it.
Similarly, the following escape sequences should also be avoided: ‘\<’, ‘\>’,
‘\+’, ‘\?’, ‘\‘’, ‘\’’, ‘\B’, ‘\b’, ‘\S’, ‘\s’, ‘\W’, and ‘\w’.
Posix does not specify the behavior of grep on binary files. An example where
this matters is using BSD grep to search text that includes embedded ANSI

198 Autoconf

escape sequences for colored output to terminals (‘\033[m’ is the sequence to
restore normal output); the behavior depends on whether input is seekable:

$ printf ’esc\033[mape\n’ > sample

$ grep . sample

Binary file sample matches
$ cat sample | grep .

escape

join Solaris 8 join has bugs when the second operand is standard input, and when
standard input is a pipe. For example, the following shell script causes Solaris
8 join to loop forever:

cat >file <<’EOF’
1 x
2 y
EOF
cat file | join file -

Use ‘join - file’ instead.

ln Don’t rely on ln having a ‘-f’ option. Symbolic links are not available on old
systems; use ‘$(LN_S)’ as a portable substitute.
For versions of the DJGPP before 2.04, ln emulates symbolic links to executables
by generating a stub that in turn calls the real program. This feature also works
with nonexistent files like in the Posix spec. So ‘ln -s file link’ generates
‘link.exe’, which attempts to call ‘file.exe’ if run. But this feature only
works for executables, so ‘cp -p’ is used instead for these systems. DJGPP
versions 2.04 and later have full support for symbolic links.

ls The portable options are ‘-acdilrtu’. Current practice is for ‘-l’ to output
both owner and group, even though ancient versions of ls omitted the group.
On ancient hosts, ‘ls foo’ sent the diagnostic ‘foo not found’ to standard
output if ‘foo’ did not exist. Hence a shell command like ‘sources=‘ls *.c
2>/dev/null‘’ did not always work, since it was equivalent to ‘sources=’*.c
not found’’ in the absence of ‘.c’ files. This is no longer a practical problem,
since current ls implementations send diagnostics to standard error.

mkdir No mkdir option is portable to older systems. Instead of ‘mkdir -p file-

name ’, you should use AS_MKDIR_P(file-name) (see Section 8.4 [Programming
in M4sh], page 147) or AC_PROG_MKDIR_P (see Section 5.2.1 [Particular Pro-
grams], page 41).
Combining the ‘-m’ and ‘-p’ options, as in ‘mkdir -m go-w -p dir ’, often leads
to trouble. FreeBSD mkdir incorrectly attempts to change the permissions of
dir even if it already exists. HP-UX 11.23 and IRIX 6.5 mkdir often assign the
wrong permissions to any newly-created parents of dir.
Posix does not clearly specify whether ‘mkdir -p foo’ should succeed when ‘foo’
is a symbolic link to an already-existing directory. The GNU Core Utilities 5.1.0
mkdir succeeds, but Solaris mkdir fails.
Traditional mkdir -p implementations suffer from race conditions. For example,
if you invoke mkdir -p a/b and mkdir -p a/c at the same time, both processes

Chapter 10: Portable Shell Programming 199

might detect that ‘a’ is missing, one might create ‘a’, then the other might try
to create ‘a’ and fail with a File exists diagnostic. The GNU Core Utilities
(‘fileutils’ version 4.1), FreeBSD 5.0, NetBSD 2.0.2, and OpenBSD 2.4 are
known to be race-free when two processes invoke mkdir -p simultaneously, but
earlier versions are vulnerable. Solaris mkdir is still vulnerable as of Solaris
10, and other traditional Unix systems are probably vulnerable too. This pos-
sible race is harmful in parallel builds when several Make rules call mkdir -p
to construct directories. You may use install-sh -d as a safe replacement,
provided this script is recent enough; the copy shipped with Autoconf 2.60 and
Automake 1.10 is OK, but copies from older versions are vulnerable.

mktemp Shell scripts can use temporary files safely with mktemp, but it does not exist
on all systems. A portable way to create a safe temporary file name is to create
a temporary directory with mode 700 and use a file inside this directory. Both
methods prevent attackers from gaining control, though mktemp is far less likely
to fail gratuitously under attack.
Here is sample code to create a new temporary directory safely:

Create a temporary directory $tmp in $TMPDIR (default /tmp).
Use mktemp if possible; otherwise fall back on mkdir,
with $RANDOM to make collisions less likely.
: ${TMPDIR=/tmp}
{
tmp=‘
(umask 077 && mktemp -d "$TMPDIR/fooXXXXXX") 2>/dev/null

‘ &&
test -n "$tmp" && test -d "$tmp"

} || {
tmp=$TMPDIR/foo$$-$RANDOM
(umask 077 && mkdir "$tmp")

} || exit $?

mv The only portable options are ‘-f’ and ‘-i’.
Moving individual files between file systems is portable (it was in Unix version
6), but it is not always atomic: when doing ‘mv new existing’, there’s a critical
section where neither the old nor the new version of ‘existing’ actually exists.
On some systems moving files from ‘/tmp’ can sometimes cause undesirable
(but perfectly valid) warnings, even if you created these files. This is because
‘/tmp’ belongs to a group that ordinary users are not members of, and files
created in ‘/tmp’ inherit the group of ‘/tmp’. When the file is copied, mv issues
a diagnostic without failing:

$ touch /tmp/foo

$ mv /tmp/foo .
error mv: ./foo: set owner/group (was: 100/0): Operation not permitted

$ echo $?
0

$ ls foo

foo

This annoying behavior conforms to Posix, unfortunately.

200 Autoconf

Moving directories across mount points is not portable, use cp and rm.
DOS variants cannot rename or remove open files, and do not support com-
mands like ‘mv foo bar >foo’, even though this is perfectly portable among
Posix hosts.

od

In Mac OS X 10.3, od does not support the standard Posix options ‘-A’, ‘-j’,
‘-N’, or ‘-t’, or the XSI option ‘-s’. The only supported Posix option is ‘-v’,
and the only supported XSI options are those in ‘-bcdox’. The BSD hexdump
program can be used instead.
This problem no longer exists in Mac OS X 10.4.3.

rm The ‘-f’ and ‘-r’ options are portable.
It is not portable to invoke rm without operands. For example, on many systems
‘rm -f -r’ (with no other arguments) silently succeeds without doing anything,
but it fails with a diagnostic on NetBSD 2.0.2.
A file might not be removed even if its parent directory is writable and search-
able. Many Posix hosts cannot remove a mount point, a named stream, a
working directory, or a last link to a file that is being executed.
DOS variants cannot rename or remove open files, and do not support commands
like ‘rm foo >foo’, even though this is perfectly portable among Posix hosts.

sed Patterns should not include the separator (unless escaped), even as part of a
character class. In conformance with Posix, the Cray sed rejects ‘s/[^/]*$//’:
use ‘s,[^/]*$,,’.
Avoid empty patterns within parentheses (i.e., ‘\(\)’). Posix does not require
support for empty patterns, and Unicos 9 sed rejects them.
Unicos 9 sed loops endlessly on patterns like ‘.*\n.*’.
Sed scripts should not use branch labels longer than 7 characters and should
not contain comments. HP-UX sed has a limit of 99 commands (not counting
‘:’ commands) and 48 labels, which can not be circumvented by using more
than one script file. It can execute up to 19 reads with the ‘r’ command per
cycle. Solaris /usr/ucb/sed rejects usages that exceed an limit of about 6000
bytes for the internal representation of commands.
Avoid redundant ‘;’, as some sed implementations, such as NetBSD 1.4.2’s,
incorrectly try to interpret the second ‘;’ as a command:

$ echo a | sed ’s/x/x/;;s/x/x/’

sed: 1: "s/x/x/;;s/x/x/": invalid command code ;

Input should not have unreasonably long lines, since some sed implementations
have an input buffer limited to 4000 bytes.
Portable sed regular expressions should use ‘\’ only to escape characters in the
string ‘$()*.0123456789[\^n{}’. For example, alternation, ‘\|’, is common
but Posix does not require its support, so it should be avoided in portable
scripts. Solaris sed does not support alternation; e.g., ‘sed ’/a\|b/d’’ deletes
only lines that contain the literal string ‘a|b’. Similarly, ‘\+’ and ‘\?’ should
be avoided.

Chapter 10: Portable Shell Programming 201

Anchors (‘^’ and ‘$’) inside groups are not portable.

Nested parentheses in patterns (e.g., ‘\(\(a*\)b*)\)’) are quite portable to
current hosts, but was not supported by some ancient sed implementations like
SVR3.

Some sed implementations, e.g., Solaris, restrict the special role of the asterisk
to one-character regular expressions. This may lead to unexpected behavior:

$ echo ’1*23*4’ | /usr/bin/sed ’s/\(.\)*/x/g’

x2x4
$ echo ’1*23*4’ | /usr/xpg4/bin/sed ’s/\(.\)*/x/g’

x

The ‘-e’ option is mostly portable. However, its argument cannot start with
‘a’, ‘c’, or ‘i’, as this runs afoul of a Tru64 5.1 bug. Also, its argument cannot
be empty, as this fails on AIX 5.3. Some people prefer to use ‘-e’:

sed -e ’command-1’ \
-e ’command-2’

as opposed to the equivalent:

sed ’
command-1

command-2

’

The following usage is sometimes equivalent:

sed ’command-1;command-2’

but Posix says that this use of a semicolon has undefined effect if command-1’s
verb is ‘{’, ‘a’, ‘b’, ‘c’, ‘i’, ‘r’, ‘t’, ‘w’, ‘:’, or ‘#’, so you should use semicolon
only with simple scripts that do not use these verbs.

Commands inside { } brackets are further restricted. Posix says that they
cannot be preceded by addresses, ‘!’, or ‘;’, and that each command must be
followed immediately by a newline, without any intervening blanks or semi-
colons. The closing bracket must be alone on a line, other than white space
preceding or following it.

Contrary to yet another urban legend, you may portably use ‘&’ in the replace-
ment part of the s command to mean “what was matched”. All descendants
of Unix version 7 sed (at least; we don’t have first hand experience with older
sed implementations) have supported it.

Posix requires that you must not have any white space between ‘!’ and the
following command. It is OK to have blanks between the address and the ‘!’.
For instance, on Solaris:

$ echo "foo" | sed -n ’/bar/ ! p’

error Unrecognized command: /bar/ ! p
$ echo "foo" | sed -n ’/bar/! p’

error Unrecognized command: /bar/! p
$ echo "foo" | sed -n ’/bar/ !p’

foo

202 Autoconf

Posix also says that you should not combine ‘!’ and ‘;’. If you use ‘!’, it is best
to put it on a command that is delimited by newlines rather than ‘;’.
Also note that Posix requires that the ‘b’, ‘t’, ‘r’, and ‘w’ commands be followed
by exactly one space before their argument. On the other hand, no white space
is allowed between ‘:’ and the subsequent label name.
If a sed script is specified on the command line and ends in an ‘a’, ‘c’, or
‘i’ command, the last line of inserted text should be followed by a newline.
Otherwise some sed implementations (e.g., OpenBSD 3.9) do not append a
newline to the inserted text.
Many sed implementations (e.g., MacOS X 10.4, OpenBSD 3.9, Solaris 10
/usr/ucb/sed) strip leading white space from the text of ‘a’, ‘c’, and ‘i’ com-
mands. Prepend a backslash to work around this incompatibility with Posix:

$ echo flushleft | sed ’a\

> indented

> ’

flushleft
indented
$ echo foo | sed ’a\

> \ indented

> ’

flushleft
indented

Posix requires that with an empty regular expression, the last non-empty regu-
lar expression from either an address specification or substitution command is
applied. However, busybox 1.6.1 complains when using a substitution command
with a replacement containing a back-reference to an empty regular expression;
the workaround is repeating the regular expression.

$ echo abc | busybox sed ’/a\(b\)c/ s//\1/’

sed: No previous regexp.
$ echo abc | busybox sed ’/a\(b\)c/ s/a\(b\)c/\1/’

b

sed (‘t’) Some old systems have sed that “forget” to reset their ‘t’ flag when starting
a new cycle. For instance on MIPS RISC/OS, and on irix 5.3, if you run the
following sed script (the line numbers are not actual part of the texts):

s/keep me/kept/g # a
t end # b
s/.*/deleted/g # c
:end # d

on
delete me # 1
delete me # 2
keep me # 3
delete me # 4

you get

Chapter 10: Portable Shell Programming 203

deleted
delete me
kept
deleted

instead of
deleted
deleted
kept
deleted

Why? When processing line 1, (c) matches, therefore sets the ‘t’ flag, and the
output is produced. When processing line 2, the ‘t’ flag is still set (this is the
bug). Command (a) fails to match, but sed is not supposed to clear the ‘t’
flag when a substitution fails. Command (b) sees that the flag is set, therefore
it clears it, and jumps to (d), hence you get ‘delete me’ instead of ‘deleted’.
When processing line (3), ‘t’ is clear, (a) matches, so the flag is set, hence (b)
clears the flags and jumps. Finally, since the flag is clear, line 4 is processed
properly.
There are two things one should remember about ‘t’ in sed. Firstly, always
remember that ‘t’ jumps if some substitution succeeded, not only the imme-
diately preceding substitution. Therefore, always use a fake ‘t clear’ followed
by a ‘:clear’ on the next line, to reset the ‘t’ flag where needed.
Secondly, you cannot rely on sed to clear the flag at each new cycle.
One portable implementation of the script above is:

t clear
:clear
s/keep me/kept/g
t end
s/.*/deleted/g
:end

touch If you specify the desired timestamp (e.g., with the ‘-r’ option), touch typically
uses the utime or utimes system call, which can result in the same kind of
timestamp truncation problems that ‘cp -p’ has.
On ancient BSD systems, touch or any command that results in an empty file
does not update the timestamps, so use a command like echo as a workaround.
Also, GNU touch 3.16r (and presumably all before that) fails to work on SunOS
4.1.3 when the empty file is on an NFS-mounted 4.2 volume. However, these
problems are no longer of practical concern.

tr Not all versions of tr handle all backslash character escapes. For example,
Solaris 10 /usr/ucb/tr falls over, even though Solaris contains more modern
tr in other locations. Therefore, it is more portable to use octal escapes, even
though this ties the result to ASCII, when using tr to delete newlines or carriage
returns.

$ { echo moon; echo light; } | /usr/ucb/tr -d ’\n’ ; echo

moo

204 Autoconf

light
$ { echo moon; echo light; } | /usr/bin/tr -d ’\n’ ; echo

moonlight
$ { echo moon; echo light; } | /usr/ucb/tr -d ’\012’ ; echo

moonlight

Chapter 11: Portable Make Programming 205

11 Portable Make Programming

Writing portable makefiles is an art. Since a makefile’s commands are executed by the shell,
you must consider the shell portability issues already mentioned. However, other issues are
specific to make itself.

11.1 $< in Ordinary Make Rules

Posix says that the ‘$<’ construct in makefiles can be used only in inference rules and in
the ‘.DEFAULT’ rule; its meaning in ordinary rules is unspecified. Solaris make for instance
replaces it with the empty string. OpenBSD (3.0 and later) make diagnoses these uses and
errors out.

11.2 Failure in Make Rules

Since 1992 Posix has required that make must invoke each command with the equivalent
of a ‘sh -c’ subshell. However, many make implementations, including BSD make through
2004, use ‘sh -e -c’ instead, and the ‘-e’ option causes the subshell to exit immediately if
a subsidiary simple-command fails. For example, the command ‘touch T; rm -f U’ always
attempts to remove ‘U’ with Posix make, but incompatible make implementations skip the rm
if the touch fails. One way to work around this is to reword the affected simple-commands
so that they always succeed, e.g., ‘touch T || :; rm -f U’. However, even this approach
can run into common bugs in BSD implementations of the ‘-e’ option of sh and set (see
Section 10.12 [Limitations of Builtins], page 180), so if you are worried about porting to
buggy BSD shells it may be simpler to migrate complicated make actions into separate
scripts.

11.3 Special Characters in Make Macro Names

Posix limits macro names to nonempty strings containing only ASCII letters and digits,
‘.’, and ‘_’. Many make implementations allow a wider variety of characters, but portable
makefiles should avoid them. It is portable to start a name with a special character, e.g.,
‘$(.FOO)’.

Some ancient make implementations don’t support leading underscores in macro names.
An example is NEWS-OS 4.2R.

$ cat Makefile

_am_include = #
_am_quote =
all:; @echo this is test
$ make

Make: Must be a separator on rules line 2. Stop.
$ cat Makefile2

am_include = #
am_quote =
all:; @echo this is test
$ make -f Makefile2

this is test

However, this problem is no longer of practical concern.

206 Autoconf

11.4 Backslash-Newline-Newline in Make Macro Values

On some versions of HP-UX, make reads multiple newlines following a backslash, continuing
to the next non-empty line. For example,

FOO = one \

BAR = two

test:
: FOO is "$(FOO)"
: BAR is "$(BAR)"

shows FOO equal to one BAR = two. Other implementations sensibly let a backslash continue
only to the immediately following line.

11.5 Backslash-Newline in Make Comments

According to Posix, Make comments start with # and continue until an unescaped newline
is reached.

$ cat Makefile

A = foo \
bar \
baz

all:
@echo ok

$ make # GNU make
ok

However this is not always the case. Some implementations discard everything from #
through the end of the line, ignoring any trailing backslash.

$ pmake # BSD make
"Makefile", line 3: Need an operator
Fatal errors encountered -- cannot continue

Therefore, if you want to comment out a multi-line definition, prefix each line with #, not
only the first.

A = foo \
bar \
baz

11.6 Long Lines in Makefiles

Tru64 5.1’s make has been reported to crash when given a makefile with lines longer than
around 20 kB. Earlier versions are reported to exit with Line too long diagnostics.

11.7 make macro=value and Submakes

A command-line variable definition such as foo=bar overrides any definition of foo in
a makefile. Some make implementations (such as GNU make) propagate this override to

Chapter 11: Portable Make Programming 207

subsidiary invocations of make. Some other implementations do not pass the substitution
along to submakes.

$ cat Makefile

foo = foo
one:

@echo $(foo)
$(MAKE) two

two:
@echo $(foo)

$ make foo=bar # GNU make 3.79.1
bar
make two
make[1]: Entering directory ‘/home/adl’
bar
make[1]: Leaving directory ‘/home/adl’
$ pmake foo=bar # BSD make
bar
pmake two
foo

You have a few possibilities if you do want the foo=bar override to propagate to sub-
makes. One is to use the ‘-e’ option, which causes all environment variables to have
precedence over the makefile macro definitions, and declare foo as an environment variable:

$ env foo=bar make -e

The ‘-e’ option is propagated to submakes automatically, and since the environment is
inherited between make invocations, the foo macro is overridden in submakes as expected.

This syntax (foo=bar make -e) is portable only when used outside of a makefile, for
instance from a script or from the command line. When run inside a make rule, GNU make
3.80 and prior versions forget to propagate the ‘-e’ option to submakes.

Moreover, using ‘-e’ could have unexpected side effects if your environment contains
some other macros usually defined by the makefile. (See also the note about make -e and
SHELL below.)

Another way to propagate overrides to submakes is to do it manually, from your makefile:
foo = foo
one:

@echo $(foo)
$(MAKE) foo=$(foo) two

two:
@echo $(foo)

You need to foresee all macros that a user might want to override if you do that.

11.8 The Make Macro MAKEFLAGS

Posix requires make to use MAKEFLAGS to affect the current and recursive invocations of
make, but allows implementations several formats for the variable. It is tricky to parse
$MAKEFLAGS to determine whether ‘-s’ for silent execution or ‘-k’ for continued execution are

208 Autoconf

in effect. For example, you cannot assume that the first space-separated word in $MAKEFLAGS
contains single-letter options, since in the Cygwin version of GNU make it is either ‘--unix’
or ‘--win32’ with the second word containing single-letter options.

$ cat Makefile

all:
@echo MAKEFLAGS = $(MAKEFLAGS)

$ make

MAKEFLAGS = --unix
$ make -k

MAKEFLAGS = --unix -k

11.9 The Make Macro SHELL

Posix-compliant make internally uses the $(SHELL) macro to spawn shell processes and
execute Make rules. This is a builtin macro supplied by make, but it can be modified by a
makefile or by a command-line argument.

Not all make implementations define this SHELL macro. Tru64 make is an example; this
implementation always uses /bin/sh. So it’s a good idea to always define SHELL in your
makefiles. If you use Autoconf, do

SHELL = @SHELL@

If you use Automake, this is done for you.

Do not force SHELL = /bin/sh because that is not correct everywhere. Remember,
‘/bin/sh’ is not Posix compliant on many systems, such as FreeBSD 4, NetBSD 3, AIX 3,
Solaris 10, or Tru64. Additionally, DJGPP lacks /bin/sh, and when its GNU make port sees
such a setting it enters a special emulation mode where features like pipes and redirections
are emulated on top of DOS’s command.com. Unfortunately this emulation is incomplete;
for instance it does not handle command substitutions. Using @SHELL@ means that your
makefile will benefit from the same improved shell, such as bash or ksh, that was discovered
during configure, so that you aren’t fighting two different sets of shell bugs between the
two contexts.

Posix-compliant make should never acquire the value of $(SHELL) from the environment,
even when make -e is used (otherwise, think about what would happen to your rules if
SHELL=/bin/tcsh).

However not all make implementations have this exception. For instance it’s not surpris-
ing that Tru64 make doesn’t protect SHELL, since it doesn’t use it.

$ cat Makefile

SHELL = /bin/sh
FOO = foo
all:

@echo $(SHELL)
@echo $(FOO)

$ env SHELL=/bin/tcsh FOO=bar make -e # Tru64 Make
/bin/tcsh
bar
$ env SHELL=/bin/tcsh FOO=bar gmake -e # GNU make

Chapter 11: Portable Make Programming 209

/bin/sh
bar

Conversely, make is not supposed to export any changes to the macro SHELL to child
processes. Again, many implementations break this rule:

$ cat Makefile

all:
@echo $(SHELL)
@printenv SHELL

$ env SHELL=sh make -e SHELL=/bin/ksh # BSD Make, GNU make 3.80
/bin/ksh
/bin/ksh
$ env SHELL=sh gmake -e SHELL=/bin/ksh # GNU make 3.81
/bin/ksh
sh

11.10 Comments in Make Rules

Never put comments in a rule.

Some make treat anything starting with a tab as a command for the current rule, even
if the tab is immediately followed by a #. The make from Tru64 Unix V5.1 is one of them.
The following makefile runs # foo through the shell.

all:
foo

11.11 The ‘obj/’ Subdirectory and Make

Never name one of your subdirectories ‘obj/’ if you don’t like surprises.

If an ‘obj/’ directory exists, BSD make enters it before reading the makefile. Hence the
makefile in the current directory is not read.

$ cat Makefile

all:
echo Hello

$ cat obj/Makefile

all:
echo World

$ make # GNU make
echo Hello
Hello
$ pmake # BSD make
echo World
World

11.12 Exit Status of make -k

Do not rely on the exit status of make -k. Some implementations reflect whether they
encountered an error in their exit status; other implementations always succeed.

210 Autoconf

$ cat Makefile

all:
false

$ make -k; echo exit status: $? # GNU make
false
make: *** [all] Error 1
exit status: 2
$ pmake -k; echo exit status: $? # BSD make
false
*** Error code 1 (continuing)
exit status: 0

11.13 VPATH and Make

Posix does not specify the semantics of VPATH. Typically, make supports VPATH, but its
implementation is not consistent.

Autoconf and Automake support makefiles whose usages of VPATH are portable to recent-
enough popular implementations of make, but to keep the resulting makefiles portable, a
package’s makefile prototypes must take the following issues into account. These issues are
complicated and are often poorly understood, and installers who use VPATH should expect
to find many bugs in this area. If you use VPATH, the simplest way to avoid these portability
bugs is to stick with GNU make, since it is the most commonly-used make among Autoconf
users.

Here are some known issues with some VPATH implementations.

11.13.1 VPATH and Double-colon Rules

With ancient versions of Sun make, any assignment to VPATH causes make to execute only
the first set of double-colon rules. However, this problem is no longer of practical concern.

11.13.2 $< Not Supported in Explicit Rules

Using $< in explicit rules is not portable. The prerequisite file must be named explicitly
in the rule. If you want to find the prerequisite via a VPATH search, you have to code the
whole thing manually. See Section 4.8.4 [Build Directories], page 30.

11.13.3 Automatic Rule Rewriting

Some make implementations, such as Solaris and Tru64, search for prerequisites in VPATH
and then rewrite each occurrence as a plain word in the rule. For instance:

This isn’t portable to GNU make.
VPATH = ../pkg/src
f.c: if.c

cp if.c f.c

executes cp ../pkg/src/if.c f.c if ‘if.c’ is found in ‘../pkg/src’.
However, this rule leads to real problems in practice. For example, if the source directory

contains an ordinary file named ‘test’ that is used in a dependency, Solaris make rewrites
commands like ‘if test -r foo; ...’ to ‘if ../pkg/src/test -r foo; ...’, which is typ-
ically undesirable. To avoid this problem, portable makefiles should never mention a source

Chapter 11: Portable Make Programming 211

file whose name is that of a shell keyword like ‘until’ or a shell command like cat or gcc
or test.

Because of these problems GNU make and many other make implementations do not
rewrite commands, so portable makefiles should search VPATH manually. It is tempting to
write this:

This isn’t portable to Solaris make.

VPATH = ../pkg/src

f.c: if.c

cp ‘test -f if.c || echo $(VPATH)/‘if.c f.c

However, the “prerequisite rewriting” still applies here. So if ‘if.c’ is in ‘../pkg/src’,
Solaris and Tru64 make execute

cp ‘test -f ../pkg/src/if.c || echo ../pkg/src/‘if.c f.c

which reduces to
cp if.c f.c

and thus fails. Oops.
A simple workaround, and good practice anyway, is to use ‘$?’ and ‘$@’ when possible:

VPATH = ../pkg/src

f.c: if.c

cp $? $@

but this does not generalize well to commands with multiple prerequisites. A more general
workaround is to rewrite the rule so that the prerequisite ‘if.c’ never appears as a plain
word. For example, these three rules would be safe, assuming ‘if.c’ is in ‘../pkg/src’ and
the other files are in the working directory:

VPATH = ../pkg/src

f.c: if.c f1.c

cat ‘test -f ./if.c || echo $(VPATH)/‘if.c f1.c >$@

g.c: if.c g1.c

cat ‘test -f ’if.c’ || echo $(VPATH)/‘if.c g1.c >$@

h.c: if.c h1.c

cat ‘test -f "if.c" || echo $(VPATH)/‘if.c h1.c >$@

Things get worse when your prerequisites are in a macro.
VPATH = ../pkg/src
HEADERS = f.h g.h h.h
install-HEADERS: $(HEADERS)

for i in $(HEADERS); do \
$(INSTALL) -m 644 \
‘test -f $$i || echo $(VPATH)/‘$$i \
$(DESTDIR)$(includedir)/$$i; \

done

The above install-HEADERS rule is not Solaris-proof because for i in $(HEADERS);
is expanded to for i in f.h g.h h.h; where f.h and g.h are plain words and are hence
subject to VPATH adjustments.

If the three files are in ‘../pkg/src’, the rule is run as:
for i in ../pkg/src/f.h ../pkg/src/g.h h.h; do \
install -m 644 \

‘test -f $i || echo ../pkg/src/‘$i \

212 Autoconf

/usr/local/include/$i; \
done

where the two first install calls fail. For instance, consider the f.h installation:

install -m 644 \
‘test -f ../pkg/src/f.h || \
echo ../pkg/src/ \

‘../pkg/src/f.h \
/usr/local/include/../pkg/src/f.h;

It reduces to:

install -m 644 \
../pkg/src/f.h \
/usr/local/include/../pkg/src/f.h;

Note that the manual VPATH search did not cause any problems here; however this
command installs ‘f.h’ in an incorrect directory.

Trying to quote $(HEADERS) in some way, as we did for foo.c a few makefiles ago, does
not help:

install-HEADERS: $(HEADERS)
headers=’$(HEADERS)’; \
for i in $$headers; do \
$(INSTALL) -m 644 \
‘test -f $$i || echo $(VPATH)/‘$$i \
$(DESTDIR)$(includedir)/$$i; \

done

Now, headers=’$(HEADERS)’ macro-expands to:

headers=’f.h g.h h.h’

but g.h is still a plain word. (As an aside, the idiom headers=’$(HEADERS)’; for i in
$$headers; is a good idea if $(HEADERS) can be empty, because some shells diagnose a
syntax error on for i in;.)

One workaround is to strip this unwanted ‘../pkg/src/’ prefix manually:

VPATH = ../pkg/src
HEADERS = f.h g.h h.h
install-HEADERS: $(HEADERS)

headers=’$(HEADERS)’; \
for i in $$headers; do \
i=‘expr "$$i" : ’$(VPATH)/\(.*\)’‘;
$(INSTALL) -m 644 \
‘test -f $$i || echo $(VPATH)/‘$$i \
$(DESTDIR)$(includedir)/$$i; \

done

Automake does something similar. However the above hack works only if the files listed
in HEADERS are in the current directory or a subdirectory; they should not be in an enclosing
directory. If we had HEADERS = ../f.h, the above fragment would fail in a VPATH build
with Tru64 make. The reason is that not only does Tru64 make rewrite dependencies, but it

Chapter 11: Portable Make Programming 213

also simplifies them. Hence ../f.h becomes ../pkg/f.h instead of ../pkg/src/../f.h.
This obviously defeats any attempt to strip a leading ‘../pkg/src/’ component.

The following example makes the behavior of Tru64 make more apparent.
$ cat Makefile

VPATH = sub
all: ../foo

echo ../foo
$ ls

Makefile foo
$ make

echo foo
foo

Dependency ‘../foo’ was found in ‘sub/../foo’, but Tru64 make simplified it as ‘foo’.
(Note that the ‘sub/’ directory does not even exist, this just means that the simplification
occurred before the file was checked for.)

For the record here is how SunOS 4 make behaves on this example.
$ make

make: Fatal error: Don’t know how to make target ‘../foo’

$ mkdir sub

$ make

echo sub/../foo

sub/../foo

11.13.4 Tru64 make Creates Prerequisite Directories Magically

When a prerequisite is a subdirectory of VPATH, Tru64 make creates it in the current direc-
tory.

$ mkdir -p foo/bar build

$ cd build

$ cat >Makefile <<END
VPATH = ..

all: foo/bar

END

$ make

mkdir foo
mkdir foo/bar

This can yield unexpected results if a rule uses a manual VPATH search as presented
before.

VPATH = ..
all : foo/bar

command ‘test -d foo/bar || echo ../‘foo/bar

The above command is run on the empty ‘foo/bar’ directory that was created in the
current directory.

11.13.5 Make Target Lookup

GNU make uses a complex algorithm to decide when it should use files found via a VPATH
search. See section “How Directory Searches are Performed” in The GNU Make Manual.

214 Autoconf

If a target needs to be rebuilt, GNU make discards the file name found during the VPATH
search for this target, and builds the file locally using the file name given in the makefile. If
a target does not need to be rebuilt, GNU make uses the file name found during the VPATH
search.

Other make implementations, like NetBSD make, are easier to describe: the file name
found during the VPATH search is used whether the target needs to be rebuilt or not. There-
fore new files are created locally, but existing files are updated at their VPATH location.

OpenBSD and FreeBSD make, however, never perform a VPATH search for a dependency
that has an explicit rule. This is extremely annoying.

When attempting a VPATH build for an autoconfiscated package (e.g., mkdir build &&
cd build && ../configure), this means GNU make builds everything locally in the ‘build’
directory, while BSD make builds new files locally and updates existing files in the source
directory.

$ cat Makefile

VPATH = ..
all: foo.x bar.x
foo.x bar.x: newer.x

@echo Building $@
$ touch ../bar.x

$ touch ../newer.x

$ make # GNU make
Building foo.x
Building bar.x
$ pmake # NetBSD make
Building foo.x
Building ../bar.x
$ fmake # FreeBSD make, OpenBSD make
Building foo.x
Building bar.x
$ tmake # Tru64 make
Building foo.x
Building bar.x
$ touch ../bar.x

$ make # GNU make
Building foo.x
$ pmake # NetBSD make
Building foo.x
$ fmake # FreeBSD make, OpenBSD make
Building foo.x
Building bar.x
$ tmake # Tru64 make
Building foo.x
Building bar.x

Note how NetBSD make updates ‘../bar.x’ in its VPATH location, and how FreeBSD,
OpenBSD, and Tru64 make always update ‘bar.x’, even when ‘../bar.x’ is up to date.

Chapter 11: Portable Make Programming 215

Another point worth mentioning is that once GNU make has decided to ignore a VPATH
file name (e.g., it ignored ‘../bar.x’ in the above example) it continues to ignore it when
the target occurs as a prerequisite of another rule.

The following example shows that GNU make does not look up ‘bar.x’ in VPATH before
performing the .x.y rule, because it ignored the VPATH result of ‘bar.x’ while running the
bar.x: newer.x rule.

$ cat Makefile

VPATH = ..
all: bar.y
bar.x: newer.x

@echo Building $@
.SUFFIXES: .x .y
.x.y:

cp $< $@
$ touch ../bar.x

$ touch ../newer.x

$ make # GNU make
Building bar.x
cp bar.x bar.y
cp: cannot stat ‘bar.x’: No such file or directory
make: *** [bar.y] Error 1
$ pmake # NetBSD make
Building ../bar.x
cp ../bar.x bar.y
$ rm bar.y

$ fmake # FreeBSD make, OpenBSD make
echo Building bar.x
cp bar.x bar.y
cp: cannot stat ‘bar.x’: No such file or directory
*** Error code 1
$ tmake # Tru64 make
Building bar.x
cp: bar.x: No such file or directory
*** Exit 1

Note that if you drop away the command from the bar.x: newer.x rule, GNU make
magically starts to work: it knows that bar.x hasn’t been updated, therefore it doesn’t
discard the result from VPATH (‘../bar.x’) in succeeding uses. Tru64 also works, but
FreeBSD and OpenBSD still don’t.

$ cat Makefile

VPATH = ..
all: bar.y
bar.x: newer.x
.SUFFIXES: .x .y
.x.y:

cp $< $@
$ touch ../bar.x

216 Autoconf

$ touch ../newer.x

$ make # GNU make
cp ../bar.x bar.y
$ rm bar.y

$ pmake # NetBSD make
cp ../bar.x bar.y
$ rm bar.y

$ fmake # FreeBSD make, OpenBSD make
cp bar.x bar.y
cp: cannot stat ‘bar.x’: No such file or directory
*** Error code 1
$ tmake # Tru64 make
cp ../bar.x bar.y

It seems the sole solution that would please every make implementation is to never rely
on VPATH searches for targets. In other words, VPATH should be reserved to unbuilt sources.

11.14 Single Suffix Rules and Separated Dependencies

A Single Suffix Rule is basically a usual suffix (inference) rule (‘.from.to:’), but which
destination suffix is empty (‘.from:’).

Separated dependencies simply refers to listing the prerequisite of a target, without
defining a rule. Usually one can list on the one hand side, the rules, and on the other hand
side, the dependencies.

Solaris make does not support separated dependencies for targets defined by single suffix
rules:

$ cat Makefile

.SUFFIXES: .in
foo: foo.in
.in:

cp $< $@
$ touch foo.in

$ make

$ ls

Makefile foo.in

while GNU Make does:

$ gmake

cp foo.in foo
$ ls

Makefile foo foo.in

Note it works without the ‘foo: foo.in’ dependency.

$ cat Makefile

.SUFFIXES: .in

.in:
cp $< $@

$ make foo

Chapter 11: Portable Make Programming 217

cp foo.in foo

and it works with double suffix inference rules:
$ cat Makefile

foo.out: foo.in
.SUFFIXES: .in .out
.in.out:

cp $< $@
$ make

cp foo.in foo.out

As a result, in such a case, you have to write target rules.

11.15 Timestamp Resolution and Make

Traditionally, file timestamps had 1-second resolution, and make used those timestamps to
determine whether one file was newer than the other. However, many modern file systems
have timestamps with 1-nanosecond resolution. Some make implementations look at the
entire timestamp; others ignore the fractional part, which can lead to incorrect results.
Normally this is not a problem, but in some extreme cases you may need to use tricks like
‘sleep 1’ to work around timestamp truncation bugs.

Commands like ‘cp -p’ and ‘touch -r’ typically do not copy file timestamps to their full
resolutions (see Section 10.13 [Limitations of Usual Tools], page 191). Hence you should be
wary of rules like this:

dest: src
cp -p src dest

as ‘dest’ often appears to be older than ‘src’ after the timestamp is truncated, and this
can cause make to do needless rework the next time it is invoked. To work around this
problem, you can use a timestamp file, e.g.:

dest-stamp: src
cp -p src dest
date >dest-stamp

218 Autoconf

Chapter 12: Portable C and C++ Programming 219

12 Portable C and C++ Programming

C and C++ programs often use low-level features of the underlying system, and therefore
are often more difficult to make portable to other platforms.

Several standards have been developed to help make your programs more portable. If
you write programs with these standards in mind, you can have greater confidence that your
programs work on a wide variety of systems. See section “Language Standards Supported
by GCC” in Using the GNU Compiler Collection (GCC), for a list of C-related standards.
Many programs also assume the Posix standard.

Some old code is written to be portable to K&R C, which predates any C standard. K&R
C compilers are no longer of practical interest, though, and the rest of section assumes at
least C89, the first C standard.

Program portability is a huge topic, and this section can only briefly introduce common
pitfalls. See section “Portability between System Types” in GNU Coding Standards, for
more information.

12.1 Varieties of Unportability

Autoconf tests and ordinary programs often need to test what is allowed on a system, and
therefore they may need to deliberately exceed the boundaries of what the standards allow,
if only to see whether an optional feature is present. When you write such a program, you
should keep in mind the difference between constraints, unspecified behavior, and undefined
behavior.

In C, a constraint is a rule that the compiler must enforce. An example constraint
is that C programs must not declare a bit-field with negative width. Tests can therefore
reliably assume that programs with negative-width bit-fields are rejected by a compiler that
conforms to the standard.

Unspecified behavior is valid behavior, where the standard allows multiple possibili-
ties. For example, the order of evaluation of function arguments is unspecified. Some
unspecified behavior is implementation-defined, i.e., documented by the implementation,
but since Autoconf tests cannot read the documentation they cannot distinguish between
implementation-defined and other unspecified behavior. It is common for Autoconf tests to
probe implementations to determine otherwise-unspecified behavior.

Undefined behavior is invalid behavior, where the standard allows the implementation
to do anything it pleases. For example, dereferencing a null pointer leads to undefined
behavior. If possible, test programs should avoid undefined behavior, since a program with
undefined behavior might succeed on a test that should fail.

The above rules apply to programs that are intended to conform to the standard. How-
ever, strictly-conforming programs are quite rare, since the standards are so limiting. A
major goal of Autoconf is to support programs that use implementation features not de-
scribed by the standard, and it is fairly common for test programs to violate the above
rules, if the programs work well enough in practice.

http://penalty z@ www.opengroup.org/penalty z@ susv3

220 Autoconf

12.2 Integer Overflow

In practice many portable C programs assume that signed integer overflow wraps around
reliably using two’s complement arithmetic. Yet the C standard says that program behavior
is undefined on overflow, and in a few cases C programs do not work on some modern
implementations because their overflows do not wrap around as their authors expected.
Conversely, in signed integer remainder, the C standard requires overflow behavior that is
commonly not implemented.

12.2.1 Basics of Integer Overflow

In languages like C, unsigned integer overflow reliably wraps around; e.g., UINT_MAX + 1
yields zero. This is guaranteed by the C standard and is portable in practice, unless you
specify aggressive, nonstandard optimization options suitable only for special applications.

In contrast, the C standard says that signed integer overflow leads to undefined behavior
where a program can do anything, including dumping core or overrunning a buffer. The
misbehavior can even precede the overflow. Such an overflow can occur during addition,
subtraction, multiplication, division, and left shift.

Despite this requirement of the standard, many C programs and Autoconf tests assume
that signed integer overflow silently wraps around modulo a power of two, using two’s
complement arithmetic, so long as you cast the resulting value to a signed integer type
or store it into a signed integer variable. If you use conservative optimization flags, such
programs are generally portable to the vast majority of modern platforms, with a few
exceptions discussed later.

For historical reasons the C standard also allows implementations with ones’ complement
or signed magnitude arithmetic, but it is safe to assume two’s complement nowadays.

Also, overflow can occur when converting an out-of-range value to a signed integer type.
Here a standard implementation must define what happens, but this might include raising
an exception. In practice all known implementations support silent wraparound in this case,
so you need not worry about other possibilities.

12.2.2 Examples of Code Assuming Wraparound Overflow

There has long been a tension between what the C standard requires for signed integer
overflow, and what C programs commonly assume. The standard allows aggressive opti-
mizations based on assumptions that overflow never occurs, but many practical C programs
rely on overflow wrapping around. These programs do not conform to the standard, but
they commonly work in practice because compiler writers are understandably reluctant to
implement optimizations that would break many programs, unless perhaps a user specifies
aggressive optimization.

The C Standard says that if a program has signed integer overflow its behavior is un-
defined, and the undefined behavior can even precede the overflow. To take an extreme
example:

if (password == expected_password)
allow_superuser_privileges ();

else if (counter++ == INT_MAX)
abort ();

else

Chapter 12: Portable C and C++ Programming 221

printf ("%d password mismatches\n", counter);

If the int variable counter equals INT_MAX, counter++ must overflow and the behavior is
undefined, so the C standard allows the compiler to optimize away the test against INT_
MAX and the abort call. Worse, if an earlier bug in the program lets the compiler deduce
that counter == INT_MAX or that counter previously overflowed, the C standard allows
the compiler to optimize away the password test and generate code that allows superuser
privileges unconditionally.

Despite this requirement by the standard, it has long been common for C code to assume
wraparound arithmetic after signed overflow, and all known practical C implementations
support some C idioms that assume wraparound signed arithmetic, even if the idioms do
not conform strictly to the standard. If your code looks like the following examples it will
almost surely work with real-world compilers.

Here is an example derived from the 7th Edition Unix implementation of atoi (1979-
01-10):

char *p;
int f, n;
...
while (*p >= ’0’ && *p <= ’9’)
n = n * 10 + *p++ - ’0’;

return (f ? -n : n);

Even if the input string is in range, on most modern machines this has signed overflow when
computing the most negative integer (the -n overflows) or a value near an extreme integer
(the first + overflows).

Here is another example, derived from the 7th Edition implementation of rand (1979-01-
10). Here the programmer expects both multiplication and addition to wrap on overflow:

static long int randx = 1;
...
randx = randx * 1103515245 + 12345;
return (randx >> 16) & 077777;

In the following example, derived from the GNU C Library 2.5 implementation of mktime
(2006-09-09), the code assumes wraparound arithmetic in + to detect signed overflow:

time_t t, t1, t2;
int sec_requested, sec_adjustment;
...
t1 = t + sec_requested;
t2 = t1 + sec_adjustment;
if (((t1 < t) != (sec_requested < 0))

| ((t2 < t1) != (sec_adjustment < 0)))
return -1;

If your code looks like these examples, it is probably safe even though it does not strictly
conform to the C standard. This might lead one to believe that one can generally assume
wraparound on overflow, but that is not always true, as can be seen in the next section.

222 Autoconf

12.2.3 Optimizations That Break Wraparound Arithmetic

Compilers sometimes generate code that is incompatible with wraparound integer arith-
metic. A simple example is an algebraic simplification: a compiler might translate (i *
2000) / 1000 to i * 2 because it assumes that i * 2000 does not overflow. The transla-
tion is not equivalent to the original when overflow occurs: e.g., in the typical case of 32-bit
signed two’s complement wraparound int, if i has type int and value 1073742, the original
expression returns −2147483 but the optimized version returns the mathematically correct
value 2147484.

More subtly, loop induction optimizations often exploit the undefined behavior of signed
overflow. Consider the following contrived function sumc:

int
sumc (int lo, int hi)
{
int sum = 0;
int i;
for (i = lo; i <= hi; i++)
sum ^= i * 53;

return sum;
}

To avoid multiplying by 53 each time through the loop, an optimizing compiler might
internally transform sumc to the equivalent of the following:

int
transformed_sumc (int lo, int hi)
{
int sum = 0;
int hic = hi * 53;
int ic;
for (ic = lo * 53; ic <= hic; ic += 53)
sum ^= ic;

return sum;
}

This transformation is allowed by the C standard, but it is invalid for wraparound arithmetic
when INT_MAX / 53 < hi, because then the overflow in computing expressions like hi * 53
can cause the expression i <= hi to yield a different value from the transformed expression
ic <= hic.

For this reason, compilers that use loop induction and similar techniques often do not
support reliable wraparound arithmetic when a loop induction variable like ic is involved.
Since loop induction variables are generated by the compiler, and are not visible in the
source code, it is not always trivial to say whether the problem affects your code.

Hardly any code actually depends on wraparound arithmetic in cases like these, so in
practice these loop induction optimizations are almost always useful. However, edge cases
in this area can cause problems. For example:

int j;
for (j = 1; 0 < j; j *= 2)
test (j);

Chapter 12: Portable C and C++ Programming 223

Here, the loop attempts to iterate through all powers of 2 that int can represent, but the
C standard allows a compiler to optimize away the comparison and generate an infinite
loop, under the argument that behavior is undefined on overflow. As of this writing this
optimization is not done by any production version of GCC with ‘-O2’, but it might be
performed by other compilers, or by more aggressive GCC optimization options, and the
GCC developers have not decided whether it will continue to work with GCC and ‘-O2’.

12.2.4 Practical Advice for Signed Overflow Issues

Ideally the safest approach is to avoid signed integer overflow entirely. For example, instead
of multiplying two signed integers, you can convert them to unsigned integers, multiply the
unsigned values, then test whether the result is in signed range.

Rewriting code in this way will be inconvenient, though, particularly if the signed values
might be negative. Also, it may hurt performance. Using unsigned arithmetic to check for
overflow is particularly painful to do portably and efficiently when dealing with an integer
type like uid_t whose width and signedness vary from platform to platform.

Furthermore, many C applications pervasively assume wraparound behavior and typi-
cally it is not easy to find and remove all these assumptions. Hence it is often useful to
maintain nonstandard code that assumes wraparound on overflow, instead of rewriting the
code. The rest of this section attempts to give practical advice for this situation.

If your code wants to detect signed integer overflow in sum = a + b, it is generally safe
to use an expression like (sum < a) != (b < 0).

If your code uses a signed loop index, make sure that the index cannot overflow, along
with all signed expressions derived from the index. Here is a contrived example of problem-
atic code with two instances of overflow.

for (i = INT_MAX - 10; i <= INT_MAX; i++)
if (i + 1 < 0)
{
report_overflow ();
break;

}

Because of the two overflows, a compiler might optimize away or transform the two com-
parisons in a way that is incompatible with the wraparound assumption.

If your code uses an expression like (i * 2000) / 1000 and you actually want the mul-
tiplication to wrap around on overflow, use unsigned arithmetic to do it, e.g., ((int) (i *
2000u)) / 1000.

If your code assumes wraparound behavior and you want to insulate it against any GCC
optimizations that would fail to support that behavior, you should use GCC’s ‘-fwrapv’
option, which causes signed overflow to wrap around reliably (except for division and re-
mainder, as discussed in the next section).

If you need to port to platforms where signed integer overflow does not reliably wrap
around (e.g., due to hardware overflow checking, or to highly aggressive optimizations), you
should consider debugging with GCC’s ‘-ftrapv’ option, which causes signed overflow to
raise an exception.

224 Autoconf

12.2.5 Signed Integer Division and Integer Overflow

Overflow in signed integer division is not always harmless: for example, on CPUs of the
i386 family, dividing INT_MIN by -1 yields a SIGFPE signal which by default terminates the
program. Worse, taking the remainder of these two values typically yields the same signal
on these CPUs, even though the C standard requires INT_MIN % -1 to yield zero because
the expression does not overflow.

12.3 Preprocessor Arithmetic

In C99, preprocessor arithmetic, used for #if expressions, must be evaluated as if all signed
values are of type intmax_t and all unsigned values of type uintmax_t. Many compilers
are buggy in this area, though. For example, as of 2007, Sun C mishandles #if LLONG_
MIN < 0 on a platform with 32-bit long int and 64-bit long long int. Also, some older
preprocessors mishandle constants ending in LL. To work around these problems, you can
compute the value of expressions like LONG_MAX < LLONG_MAX at configure-time rather than
at #if-time.

12.4 Properties of Null Pointers

Most modern hosts reliably fail when you attempt to dereference a null pointer.

On almost all modern hosts, null pointers use an all-bits-zero internal representation, so
you can reliably use memset with 0 to set all the pointers in an array to null values.

If p is a null pointer to an object type, the C expression p + 0 always evaluates to p on
modern hosts, even though the standard says that it has undefined behavior.

12.5 Buffer Overruns and Subscript Errors

Buffer overruns and subscript errors are the most common dangerous errors in C programs.
They result in undefined behavior because storing outside an array typically modifies storage
that is used by some other object, and most modern systems lack runtime checks to catch
these errors. Programs should not rely on buffer overruns being caught.

There is one exception to the usual rule that a portable program cannot address outside
an array. In C, it is valid to compute the address just past an object, e.g., &a[N] where a
has N elements, so long as you do not dereference the resulting pointer. But it is not valid
to compute the address just before an object, e.g., &a[-1]; nor is it valid to compute two
past the end, e.g., &a[N+1]. On most platforms &a[-1] < &a[0] && &a[N] < &a[N+1], but
this is not reliable in general, and it is usually easy enough to avoid the potential portability
problem, e.g., by allocating an extra unused array element at the start or end.

Valgrind can catch many overruns. GCC users might also consider using the ‘-fmudflap’
option to catch overruns.

Buffer overruns are usually caused by off-by-one errors, but there are more subtle ways
to get them.

Using int values to index into an array or compute array sizes causes problems on typical
64-bit hosts where an array index might be 231 or larger. Index values of type size_t avoid
this problem, but cannot be negative. Index values of type ptrdiff_t are signed, and are
wide enough in practice.

http://penalty z@ valgrind.org/

Chapter 12: Portable C and C++ Programming 225

If you add or multiply two numbers to calculate an array size, e.g., malloc (x * sizeof
y + z), havoc ensues if the addition or multiplication overflows.

Many implementations of the alloca function silently misbehave and can generate buffer
overflows if given sizes that are too large. The size limits are implementation dependent,
but are at least 4000 bytes on all platforms that we know about.

The standard functions asctime, asctime_r, ctime, ctime_r, and gets are prone to
buffer overflows, and portable code should not use them unless the inputs are known to
be within certain limits. The time-related functions can overflow their buffers if given
timestamps out of range (e.g., a year less than -999 or greater than 9999). Time-related
buffer overflows cannot happen with recent-enough versions of the GNU C library, but
are possible with other implementations. The gets function is the worst, since it almost
invariably overflows its buffer when presented with an input line larger than the buffer.

12.6 Volatile Objects

The keyword volatile is often misunderstood in portable code. Its use inhibits some
memory-access optimizations, but programmers often wish that it had a different meaning
than it actually does.

volatile was designed for code that accesses special objects like memory-mapped device
registers whose contents spontaneously change. Such code is inherently low-level, and it is
difficult to specify portably what volatile means in these cases. The C standard says,
“What constitutes an access to an object that has volatile-qualified type is implementation-
defined,” so in theory each implementation is supposed to fill in the gap by documenting
what volatile means for that implementation. In practice, though, this documentation is
usually absent or incomplete.

One area of confusion is the distinction between objects defined with volatile types, and
volatile lvalues. From the C standard’s point of view, an object defined with a volatile type
has externally visible behavior. You can think of such objects as having little oscilloscope
probes attached to them, so that the user can observe some properties of accesses to them,
just as the user can observe data written to output files. However, the standard does not
make it clear whether users can observe accesses by volatile lvalues to ordinary objects. For
example:

/* Declare and access a volatile object.
Accesses to X are "visible" to users. */

static int volatile x;
x = 1;

/* Access two ordinary objects via a volatile lvalue.
It’s not clear whether accesses to *P are "visible". */

int y;
int *z = malloc (sizeof (int));
int volatile *p;
p = &y;
*p = 1;
p = z;
*p = 1;

226 Autoconf

Programmers often wish that volatile meant “Perform the memory access here and
now, without merging several memory accesses, without changing the memory word size,
and without reordering.” But the C standard does not require this. For objects defined with
a volatile type, accesses must be done before the next sequence point; but otherwise merging,
reordering, and word-size change is allowed. Worse, it is not clear from the standard whether
volatile lvalues provide more guarantees in general than nonvolatile lvalues, if the underlying
objects are ordinary.

Even when accessing objects defined with a volatile type, the C standard allows only
extremely limited signal handlers: the behavior is undefined if a signal handler reads any
nonlocal object, or writes to any nonlocal object whose type is not sig_atomic_t volatile,
or calls any standard library function other than abort, signal, and (if C99) _Exit. Hence
C compilers need not worry about a signal handler disturbing ordinary computation, unless
the computation accesses a sig_atomic_t volatile lvalue that is not a local variable.
(There is an obscure exception for accesses via a pointer to a volatile character, since it
may point into part of a sig_atomic_t volatile object.) Posix adds to the list of library
functions callable from a portable signal handler, but otherwise is like the C standard in
this area.

Some C implementations allow memory-access optimizations within each translation
unit, such that actual behavior agrees with the behavior required by the standard only when
calling a function in some other translation unit, and a signal handler acts like it was called
from a different translation unit. The C standard hints that in these implementations,
objects referred to by signal handlers “would require explicit specification of volatile
storage, as well as other implementation-defined restrictions.” But unfortunately even for
this special case these other restrictions are often not documented well. See section “When
is a Volatile Object Accessed?” in Using the GNU Compiler Collection (GCC), for some
restrictions imposed by GCC. See section “Defining Signal Handlers” in The GNU C Library ,
for some restrictions imposed by the GNU C library. Restrictions differ on other platforms.

If possible, it is best to use a signal handler that fits within the limits imposed by the C
and Posix standards.

If this is not practical, you can try the following rules of thumb. A signal handler should
access only volatile lvalues, preferably lvalues that refer to objects defined with a volatile
type, and should not assume that the accessed objects have an internally consistent state if
they are larger than a machine word. Furthermore, installers should employ compilers and
compiler options that are commonly used for building operating system kernels, because
kernels often need more from volatile than the C Standard requires, and installers who
compile an application in a similar environment can sometimes benefit from the extra con-
straints imposed by kernels on compilers. Admittedly we are handwaving somewhat here,
as there are few guarantees in this area; the rules of thumb may help to fix some bugs but
there is a good chance that they will not fix them all.

For volatile, C++ has the same problems that C does. Multithreaded applications have
even more problems with volatile, but they are beyond the scope of this section.

The bottom line is that using volatile typically hurts performance but should not hurt
correctness. In some cases its use does help correctness, but these cases are often so poorly
understood that all too often adding volatile to a data structure merely alleviates some
symptoms of a bug while not fixing the bug in general.

Chapter 12: Portable C and C++ Programming 227

12.7 Floating Point Portability

Almost all modern systems use IEEE-754 floating point, and it is safe to assume IEEE-754
in most portable code these days. For more information, please see David Goldberg’s classic
paper What Every Computer Scientist Should Know About Floating-Point Arithmetic.

12.8 Exiting Portably

A C or C++ program can exit with status N by returning N from the main function.
Portable programs are supposed to exit either with status 0 or EXIT_SUCCESS to succeed,
or with status EXIT_FAILURE to fail, but in practice it is portable to fail by exiting with
status 1, and test programs that assume Posix can fail by exiting with status values from 1
through 255. Programs on SunOS 2.0 (1985) through 3.5.2 (1988) incorrectly exited with
zero status when main returned nonzero, but ancient systems like these are no longer of
practical concern.

A program can also exit with status N by passing N to the exit function, and a program
can fail by calling the abort function. If a program is specialized to just some platforms, it
can fail by calling functions specific to those platforms, e.g., _exit (Posix) and _Exit (C99).
However, like other functions, an exit function should be declared, typically by including a
header. For example, if a C program calls exit, it should include ‘stdlib.h’ either directly
or via the default includes (see Section 5.1.2 [Default Includes], page 39).

A program can fail due to undefined behavior such as dereferencing a null pointer, but
this is not recommended as undefined behavior allows an implementation to do whatever it
pleases and this includes exiting successfully.

http://penalty z@ www.validlab.com/penalty z@ goldberg/penalty z@ paper.pdf

228 Autoconf

Chapter 13: Manual Configuration 229

13 Manual Configuration

A few kinds of features can’t be guessed automatically by running test programs. For
example, the details of the object-file format, or special options that need to be passed
to the compiler or linker. You can check for such features using ad-hoc means, such as
having configure check the output of the uname program, or looking for libraries that are
unique to particular systems. However, Autoconf provides a uniform method for handling
unguessable features.

13.1 Specifying the System Type

Autoconf-generated configure scripts can make decisions based on a canonical name for
the system type, which has the form: ‘cpu-vendor-os ’, where os can be ‘system ’ or
‘kernel-system ’

configure can usually guess the canonical name for the type of system it’s running
on. To do so it runs a script called config.guess, which infers the name using the uname
command or symbols predefined by the C preprocessor.

Alternately, the user can specify the system type with command line arguments to
configure. Doing so is necessary when cross-compiling. In the most complex case of
cross-compiling, three system types are involved. The options to specify them are:

‘--build=build-type ’
the type of system on which the package is being configured and compiled. It
defaults to the result of running config.guess.

‘--host=host-type ’
the type of system on which the package runs. By default it is the same as the
build machine. Specifying it enables the cross-compilation mode.

‘--target=target-type ’
the type of system for which any compiler tools in the package produce code
(rarely needed). By default, it is the same as host.

If you mean to override the result of config.guess, use ‘--build’, not ‘--host’, since the
latter enables cross-compilation. For historical reasons, whenever you specify ‘--host’, be
sure to specify ‘--build’ too; this will be fixed in the future. So, to enter cross-compilation
mode, use a command like this

./configure --build=i686-pc-linux-gnu --host=m68k-coff

Note that if you do not specify ‘--host’, configure fails if it can’t run the code generated
by the specified compiler. For example, configuring as follows fails:

./configure CC=m68k-coff-gcc

When cross-compiling, configure will warn about any tools (compilers, linkers, assem-
blers) whose name is not prefixed with the host type. This is an aid to users performing
cross-compilation. Continuing the example above, if a cross-compiler named cc is used with
a native pkg-config, then libraries found by pkg-config will likely cause subtle build fail-
ures; but using the names m68k-coff-cc and m68k-coff-pkg-config avoids any confusion.
Avoiding the warning is as simple as creating the correct symlinks naming the cross tools.

230 Autoconf

configure recognizes short aliases for many system types; for example, ‘decstation’
can be used instead of ‘mips-dec-ultrix4.2’. configure runs a script called config.sub
to canonicalize system type aliases.

This section deliberately omits the description of the obsolete interface; see Section 17.6.3
[Hosts and Cross-Compilation], page 270.

13.2 Getting the Canonical System Type

The following macros make the system type available to configure scripts.

The variables ‘build_alias’, ‘host_alias’, and ‘target_alias’ are always exactly the
arguments of ‘--build’, ‘--host’, and ‘--target’; in particular, they are left empty if
the user did not use them, even if the corresponding AC_CANONICAL macro was run. Any
configure script may use these variables anywhere. These are the variables that should be
used when in interaction with the user.

If you need to recognize some special environments based on their system type, run the
following macros to get canonical system names. These variables are not set before the
macro call.

If you use these macros, you must distribute config.guess and config.sub along with
your source code. See Section 4.5 [Output], page 20, for information about the AC_CONFIG_
AUX_DIR macro which you can use to control in which directory configure looks for those
scripts.

[Macro]AC_CANONICAL_BUILD
Compute the canonical build-system type variable, build, and its three individual
parts build_cpu, build_vendor, and build_os.

If ‘--build’ was specified, then build is the canonicalization of build_alias by
config.sub, otherwise it is determined by the shell script config.guess.

[Macro]AC_CANONICAL_HOST
Compute the canonical host-system type variable, host, and its three individual parts
host_cpu, host_vendor, and host_os.

If ‘--host’ was specified, then host is the canonicalization of host_alias by
config.sub, otherwise it defaults to build.

[Macro]AC_CANONICAL_TARGET
Compute the canonical target-system type variable, target, and its three individual
parts target_cpu, target_vendor, and target_os.

If ‘--target’ was specified, then target is the canonicalization of target_alias by
config.sub, otherwise it defaults to host.

Note that there can be artifacts due to the backward compatibility code. See See Sec-
tion 17.6.3 [Hosts and Cross-Compilation], page 270, for more.

Chapter 13: Manual Configuration 231

13.3 Using the System Type

In ‘configure.ac’ the system type is generally used by one or more case statements to
select system-specifics. Shell wildcards can be used to match a group of system types.

For example, an extra assembler code object file could be chosen, giving access to a CPU
cycle counter register. $(CYCLE_OBJ) in the following would be used in a makefile to add
the object to a program or library.

case $host in
alpha*-*-*) CYCLE_OBJ=rpcc.o ;;
i?86-*-*) CYCLE_OBJ=rdtsc.o ;;
*) CYCLE_OBJ= ;;

esac
AC_SUBST([CYCLE_OBJ])

AC_CONFIG_LINKS (see Section 4.11 [Configuration Links], page 37) is another good way
to select variant source files, for example optimized code for some CPUs. The configured
CPU type doesn’t always indicate exact CPU types, so some runtime capability checks may
be necessary too.

case $host in
alpha*-*-*) AC_CONFIG_LINKS([dither.c:alpha/dither.c]) ;;
powerpc*-*-*) AC_CONFIG_LINKS([dither.c:powerpc/dither.c]) ;;
--*) AC_CONFIG_LINKS([dither.c:generic/dither.c]) ;;

esac

The host system type can also be used to find cross-compilation tools with AC_CHECK_
TOOL (see Section 5.2.2 [Generic Programs], page 43).

The above examples all show ‘$host’, since this is where the code is going to run. Only
rarely is it necessary to test ‘$build’ (which is where the build is being done).

Whenever you’re tempted to use ‘$host’ it’s worth considering whether some sort of
probe would be better. New system types come along periodically or previously missing
features are added. Well-written probes can adapt themselves to such things, but hard-
coded lists of names can’t. Here are some guidelines,
• Availability of libraries and library functions should always be checked by probing.
• Variant behavior of system calls is best identified with runtime tests if possible, but

bug workarounds or obscure difficulties might have to be driven from ‘$host’.
• Assembler code is inevitably highly CPU-specific and is best selected according to

‘$host_cpu’.
• Assembler variations like underscore prefix on globals or ELF versus COFF type direc-

tives are however best determined by probing, perhaps even examining the compiler
output.

‘$target’ is for use by a package creating a compiler or similar. For ordinary packages
it’s meaningless and should not be used. It indicates what the created compiler should gen-
erate code for, if it can cross-compile. ‘$target’ generally selects various hard-coded CPU
and system conventions, since usually the compiler or tools under construction themselves
determine how the target works.

232 Autoconf

Chapter 14: Site Configuration 233

14 Site Configuration

configure scripts support several kinds of local configuration decisions. There are ways for
users to specify where external software packages are, include or exclude optional features,
install programs under modified names, and set default values for configure options.

14.1 Controlling Help Output

Users consult ‘configure --help’ to learn of configuration decisions specific to your pack-
age. By default, configure breaks this output into sections for each type of option; within
each section, help strings appear in the order ‘configure.ac’ defines them:

Optional Features:
...
--enable-bar include bar

Optional Packages:
...
--with-foo use foo

[Macro]AC_PRESERVE_HELP_ORDER
Request an alternate ‘--help’ format, in which options of all types appear together,
in the order defined. Call this macro before any AC_ARG_ENABLE or AC_ARG_WITH.

Optional Features and Packages:
...
--enable-bar include bar
--with-foo use foo

14.2 Working With External Software

Some packages require, or can optionally use, other software packages that are already
installed. The user can give configure command line options to specify which such external
software to use. The options have one of these forms:

--with-package[=arg]
--without-package

For example, ‘--with-gnu-ld’ means work with the GNU linker instead of some other
linker. ‘--with-x’ means work with The X Window System.

The user can give an argument by following the package name with ‘=’ and the argument.
Giving an argument of ‘no’ is for packages that are used by default; it says to not use the
package. An argument that is neither ‘yes’ nor ‘no’ could include a name or number of a
version of the other package, to specify more precisely which other package this program is
supposed to work with. If no argument is given, it defaults to ‘yes’. ‘--without-package ’
is equivalent to ‘--with-package=no’.

Normally configure scripts complain about ‘--with-package ’ options that they do not
support. See Section 14.5 [Option Checking], page 237, for details, and for how to override
the defaults.

234 Autoconf

For each external software package that may be used, ‘configure.ac’ should call AC_
ARG_WITH to detect whether the configure user asked to use it. Whether each package is
used or not by default, and which arguments are valid, is up to you.

[Macro]AC_ARG_WITH (package, help-string, [action-if-given],
[action-if-not-given])

If the user gave configure the option ‘--with-package ’ or ‘--without-package ’,
run shell commands action-if-given. If neither option was given, run shell commands
action-if-not-given. The name package indicates another software package that this
program should work with. It should consist only of alphanumeric characters, dashes,
and dots.

The option’s argument is available to the shell commands action-if-given in the shell
variable withval, which is actually just the value of the shell variable named with_
package , with any non-alphanumeric characters in package changed into ‘_’. You
may use that variable instead, if you wish.

The argument help-string is a description of the option that looks like this:

--with-readline support fancy command line editing

help-string may be more than one line long, if more detail is needed. Just make sure
the columns line up in ‘configure --help’. Avoid tabs in the help string. You’ll
need to enclose the help string in ‘[’ and ‘]’ in order to produce the leading blanks.

You should format your help-string with the macro AS_HELP_STRING (see Section 14.4
[Pretty Help Strings], page 236).

The following example shows how to use the AC_ARG_WITH macro in a common sit-
uation. You want to let the user decide whether to enable support for an external
library (e.g., the readline library); if the user specified neither ‘--with-readline’ nor
‘--without-readline’, you want to enable support for readline only if the library is
available on the system.

AC_ARG_WITH([readline],
[AS_HELP_STRING([--with-readline],
[support fancy command line editing @<:@default=check@:>@])],

[],
[with_readline=check])

LIBREADLINE=
AS_IF([test "x$with_readline" != xno],
[AC_CHECK_LIB([readline], [main],
[AC_SUBST([LIBREADLINE], ["-lreadline -lncurses"])
AC_DEFINE([HAVE_LIBREADLINE], [1],

[Define if you have libreadline])
],
[if test "x$with_readline" != xcheck; then

AC_MSG_FAILURE(
[--with-readline was given, but test for readline failed])

fi
], -lncurses)])

Chapter 14: Site Configuration 235

The next example shows how to use AC_ARG_WITH to give the user the possibility to
enable support for the readline library, in case it is still experimental and not well
tested, and is therefore disabled by default.

AC_ARG_WITH([readline],
[AS_HELP_STRING([--with-readline],
[enable experimental support for readline])],

[],
[with_readline=no])

LIBREADLINE=
AS_IF([test "x$with_readline" != xno],
[AC_CHECK_LIB([readline], [main],
[AC_SUBST([LIBREADLINE], ["-lreadline -lncurses"])
AC_DEFINE([HAVE_LIBREADLINE], [1],

[Define if you have libreadline])
],
[AC_MSG_FAILURE(

[--with-readline was given, but test for readline failed])],
[-lncurses])])

The last example shows how to use AC_ARG_WITH to give the user the possibility to
disable support for the readline library, given that it is an important feature and that
it should be enabled by default.

AC_ARG_WITH([readline],
[AS_HELP_STRING([--without-readline],
[disable support for readline])],

[],
[with_readline=yes])

LIBREADLINE=
AS_IF([test "x$with_readline" != xno],
[AC_CHECK_LIB([readline], [main],
[AC_SUBST([LIBREADLINE], ["-lreadline -lncurses"])
AC_DEFINE([HAVE_LIBREADLINE], [1],

[Define if you have libreadline])
],
[AC_MSG_FAILURE(

[readline test failed (--without-readline to disable)])],
[-lncurses])])

These three examples can be easily adapted to the case where AC_ARG_ENABLE should
be preferred to AC_ARG_WITH (see Section 14.3 [Package Options], page 235).

14.3 Choosing Package Options

If a software package has optional compile-time features, the user can give configure
command line options to specify whether to compile them. The options have one of these
forms:

236 Autoconf

--enable-feature[=arg]
--disable-feature

These options allow users to choose which optional features to build and install.
‘--enable-feature ’ options should never make a feature behave differently or cause one
feature to replace another. They should only cause parts of the program to be built rather
than left out.

The user can give an argument by following the feature name with ‘=’ and the argument.
Giving an argument of ‘no’ requests that the feature not be made available. A feature with
an argument looks like ‘--enable-debug=stabs’. If no argument is given, it defaults to
‘yes’. ‘--disable-feature ’ is equivalent to ‘--enable-feature=no’.

Normally configure scripts complain about ‘--enable-package ’ options that they do
not support. See Section 14.5 [Option Checking], page 237, for details, and for how to
override the defaults.

For each optional feature, ‘configure.ac’ should call AC_ARG_ENABLE to detect whether
the configure user asked to include it. Whether each feature is included or not by default,
and which arguments are valid, is up to you.

[Macro]AC_ARG_ENABLE (feature, help-string, [action-if-given],
[action-if-not-given])

If the user gave configure the option ‘--enable-feature ’ or ‘--disable-feature ’,
run shell commands action-if-given. If neither option was given, run shell commands
action-if-not-given. The name feature indicates an optional user-level facility. It
should consist only of alphanumeric characters, dashes, and dots.

The option’s argument is available to the shell commands action-if-given in the shell
variable enableval, which is actually just the value of the shell variable named
enable_feature , with any non-alphanumeric characters in feature changed into ‘_’.
You may use that variable instead, if you wish. The help-string argument is like that
of AC_ARG_WITH (see Section 14.2 [External Software], page 233).

You should format your help-string with the macro AS_HELP_STRING (see Section 14.4
[Pretty Help Strings], page 236).

See the examples suggested with the definition of AC_ARG_WITH (see Section 14.2
[External Software], page 233) to get an idea of possible applications of AC_ARG_
ENABLE.

14.4 Making Your Help Strings Look Pretty

Properly formatting the ‘help strings’ which are used in AC_ARG_WITH (see Section 14.2
[External Software], page 233) and AC_ARG_ENABLE (see Section 14.3 [Package Options],
page 235) can be challenging. Specifically, you want your own ‘help strings’ to line up
in the appropriate columns of ‘configure --help’ just like the standard Autoconf ‘help
strings’ do. This is the purpose of the AS_HELP_STRING macro.

[Macro]AS_HELP_STRING (left-hand-side, right-hand-side [indent-column
= ‘26’], [wrap-column = ‘79’])

Expands into an help string that looks pretty when the user executes ‘configure
--help’. It is typically used in AC_ARG_WITH (see Section 14.2 [External Software],

Chapter 14: Site Configuration 237

page 233) or AC_ARG_ENABLE (see Section 14.3 [Package Options], page 235). The
following example makes this clearer.

AC_ARG_WITH([foo],
[AS_HELP_STRING([--with-foo],

[use foo (default is no)])],
[use_foo=$withval],
[use_foo=no])

Then the last few lines of ‘configure --help’ appear like this:

--enable and --with options recognized:
--with-foo use foo (default is no)

Macro expansion is performed on the first argument. However, the second argument
of AS_HELP_STRING is treated as a whitespace separated list of text to be reformatted,
and is not subject to macro expansion. Since it is not expanded, it should not be
double quoted. See Section 3.1.2 [Autoconf Language], page 7, for a more detailed
explanation.

The AS_HELP_STRING macro is particularly helpful when the left-hand-side and/or
right-hand-side are composed of macro arguments, as shown in the following exam-
ple. Be aware that left-hand-side may not expand to unbalanced quotes, although
quadrigraphs can be used.

AC_DEFUN([MY_ARG_WITH],
[AC_ARG_WITH(m4_translit([[$1]], [_], [-]),

[AS_HELP_STRING([--with-m4_translit([$1], [_], [-])],
[use $1 (default is $2)])],

[use_[]$1=$withval],
[use_[]$1=$2])])

MY_ARG_WITH([a_b], [no])

Here, the last few lines of ‘configure --help’ will include:

--enable and --with options recognized:
--with-a-b use a_b (default is no)

The parameters indent-column and wrap-column were introduced in Autoconf 2.62.
Generally, they should not be specified; they exist for fine-tuning of the wrapping.

AS_HELP_STRING([--option], [description of option])
⇒ --option description of option
AS_HELP_STRING([--option], [description of option], [15], [30])
⇒ --option description of
⇒ option

14.5 Controlling Checking of configure Options

The configure script checks its command-line options against a list of known options, like
‘--help’ or ‘--config-cache’. An unknown option ordinarily indicates a mistake by the
user and configure halts with an error. However, by default unknown ‘--with-package ’
and ‘--enable-feature ’ options elicit only a warning, to support configuring entire source
trees.

238 Autoconf

Source trees often contain multiple packages with a top-level configure script that uses
the AC_CONFIG_SUBDIRS macro (see Section 4.12 [Subdirectories], page 37). Because the
packages generally support different ‘--with-package ’ and ‘--enable-feature ’ options,
the GNU Coding Standards say they must accept unrecognized options without halting.
Even a warning message is undesirable here, so AC_CONFIG_SUBDIRS automatically disables
the warnings.

This default behavior may be modified in two ways. First, the installer can invoke
configure --disable-option-checking to disable these warnings, or invoke configure
--enable-option-checking=fatal options to turn them into fatal errors, respectively.
Second, the maintainer can use AC_DISABLE_OPTION_CHECKING.

[Macro]AC_DISABLE_OPTION_CHECKING
By default, disable warnings related to any unrecognized ‘--with-package ’ or
‘--enable-feature ’ options. This is implied by AC_CONFIG_SUBDIRS.

The installer can override this behavior by passing ‘--enable-option-checking’ (en-
able warnings) or ‘--enable-option-checking=fatal’ (enable errors) to configure.

14.6 Configuring Site Details

Some software packages require complex site-specific information. Some examples are host
names to use for certain services, company names, and email addresses to contact. Since
some configuration scripts generated by Metaconfig ask for such information interactively,
people sometimes wonder how to get that information in Autoconf-generated configuration
scripts, which aren’t interactive.

Such site configuration information should be put in a file that is edited only by users,
not by programs. The location of the file can either be based on the prefix variable,
or be a standard location such as the user’s home directory. It could even be specified
by an environment variable. The programs should examine that file at runtime, rather
than at compile time. Runtime configuration is more convenient for users and makes the
configuration process simpler than getting the information while configuring. See section
“Variables for Installation Directories” in GNU Coding Standards, for more information on
where to put data files.

14.7 Transforming Program Names When Installing

Autoconf supports changing the names of programs when installing them. In order to use
these transformations, ‘configure.ac’ must call the macro AC_ARG_PROGRAM.

[Macro]AC_ARG_PROGRAM
Place in output variable program_transform_name a sequence of sed commands for
changing the names of installed programs.

If any of the options described below are given to configure, program names are
transformed accordingly. Otherwise, if AC_CANONICAL_TARGET has been called and
a ‘--target’ value is given, the target type followed by a dash is used as a prefix.
Otherwise, no program name transformation is done.

Chapter 14: Site Configuration 239

14.7.1 Transformation Options

You can specify name transformations by giving configure these command line options:

‘--program-prefix=prefix ’
prepend prefix to the names;

‘--program-suffix=suffix ’
append suffix to the names;

‘--program-transform-name=expression ’
perform sed substitution expression on the names.

14.7.2 Transformation Examples

These transformations are useful with programs that can be part of a cross-compilation
development environment. For example, a cross-assembler running on a Sun 4 configured
with ‘--target=i960-vxworks’ is normally installed as ‘i960-vxworks-as’, rather than
‘as’, which could be confused with a native Sun 4 assembler.

You can force a program name to begin with ‘g’, if you don’t want GNU programs
installed on your system to shadow other programs with the same name. For example, if
you configure GNU diff with ‘--program-prefix=g’, then when you run ‘make install’
it is installed as ‘/usr/local/bin/gdiff’.

As a more sophisticated example, you could use
--program-transform-name=’s/^/g/; s/^gg/g/; s/^gless/less/’

to prepend ‘g’ to most of the program names in a source tree, excepting those like gdb
that already have one and those like less and lesskey that aren’t GNU programs. (That
is assuming that you have a source tree containing those programs that is set up to use this
feature.)

One way to install multiple versions of some programs simultaneously is to append a
version number to the name of one or both. For example, if you want to keep Autoconf ver-
sion 1 around for awhile, you can configure Autoconf version 2 using ‘--program-suffix=2’
to install the programs as ‘/usr/local/bin/autoconf2’, ‘/usr/local/bin/autoheader2’,
etc. Nevertheless, pay attention that only the binaries are renamed, therefore you’d have
problems with the library files which might overlap.

14.7.3 Transformation Rules

Here is how to use the variable program_transform_name in a ‘Makefile.in’:
PROGRAMS = cp ls rm
transform = @program_transform_name@
install:

for p in $(PROGRAMS); do \
$(INSTALL_PROGRAM) $$p $(DESTDIR)$(bindir)/‘echo $$p | \

sed ’$(transform)’‘; \
done

uninstall:
for p in $(PROGRAMS); do \

240 Autoconf

rm -f $(DESTDIR)$(bindir)/‘echo $$p | sed ’$(transform)’‘; \
done

It is guaranteed that program_transform_name is never empty, and that there are no
useless separators. Therefore you may safely embed program_transform_name within a sed
program using ‘;’:

transform = @program_transform_name@
transform_exe = s/$(EXEEXT)$$//;$(transform);s/$$/$(EXEEXT)/

Whether to do the transformations on documentation files (Texinfo or man) is a tricky
question; there seems to be no perfect answer, due to the several reasons for name trans-
forming. Documentation is not usually particular to a specific architecture, and Texinfo
files do not conflict with system documentation. But they might conflict with earlier ver-
sions of the same files, and man pages sometimes do conflict with system documentation.
As a compromise, it is probably best to do name transformations on man pages but not on
Texinfo manuals.

14.8 Setting Site Defaults

Autoconf-generated configure scripts allow your site to provide default values for some
configuration values. You do this by creating site- and system-wide initialization files.

If the environment variable CONFIG_SITE is set, configure uses its value as the name
of a shell script to read. Otherwise, it reads the shell script ‘prefix/share/config.site’
if it exists, then ‘prefix/etc/config.site’ if it exists. Thus, settings in machine-specific
files override those in machine-independent ones in case of conflict.

Site files can be arbitrary shell scripts, but only certain kinds of code are really appro-
priate to be in them. Because configure reads any cache file after it has read any site
files, a site file can define a default cache file to be shared between all Autoconf-generated
configure scripts run on that system (see Section 7.4.2 [Cache Files], page 108). If you set
a default cache file in a site file, it is a good idea to also set the output variable CC in that
site file, because the cache file is only valid for a particular compiler, but many systems
have several available.

You can examine or override the value set by a command line option to configure in
a site file; options set shell variables that have the same names as the options, with any
dashes turned into underscores. The exceptions are that ‘--without-’ and ‘--disable-’
options are like giving the corresponding ‘--with-’ or ‘--enable-’ option and the value ‘no’.
Thus, ‘--cache-file=localcache’ sets the variable cache_file to the value ‘localcache’;
‘--enable-warnings=no’ or ‘--disable-warnings’ sets the variable enable_warnings to
the value ‘no’; ‘--prefix=/usr’ sets the variable prefix to the value ‘/usr’; etc.

Site files are also good places to set default values for other output variables, such as
CFLAGS, if you need to give them non-default values: anything you would normally do,
repetitively, on the command line. If you use non-default values for prefix or exec prefix
(wherever you locate the site file), you can set them in the site file if you specify it with the
CONFIG_SITE environment variable.

You can set some cache values in the site file itself. Doing this is useful if you are
cross-compiling, where it is impossible to check features that require running a test pro-
gram. You could “prime the cache” by setting those values correctly for that system in

Chapter 14: Site Configuration 241

‘prefix/etc/config.site’. To find out the names of the cache variables you need to set,
look for shell variables with ‘_cv_’ in their names in the affected configure scripts, or in
the Autoconf M4 source code for those macros.

The cache file is careful to not override any variables set in the site files. Similarly, you
should not override command-line options in the site files. Your code should check that
variables such as prefix and cache_file have their default values (as set near the top of
configure) before changing them.

Here is a sample file ‘/usr/share/local/gnu/share/config.site’. The command
‘configure --prefix=/usr/share/local/gnu’ would read this file (if CONFIG_SITE is not
set to a different file).

config.site for configure
#
Change some defaults.
test "$prefix" = NONE && prefix=/usr/share/local/gnu
test "$exec_prefix" = NONE && exec_prefix=/usr/local/gnu
test "$sharedstatedir" = ’${prefix}/com’ && sharedstatedir=/var
test "$localstatedir" = ’${prefix}/var’ && localstatedir=/var

Give Autoconf 2.x generated configure scripts a shared default
cache file for feature test results, architecture-specific.
if test "$cache_file" = /dev/null; then
cache_file="$prefix/var/config.cache"
A cache file is only valid for one C compiler.
CC=gcc

fi

Another use of ‘config.site’ is for priming the directory variables in a manner con-
sistent with the Filesystem Hierarchy Standard (FHS). Once the following file is installed
at ‘/usr/share/config.site’, a user can execute simply ./configure --prefix=/usr to
get all the directories chosen in the locations recommended by FHS.

/usr/local/config.site for FHS defaults when installing below /usr,
and the respective settings were not changed on the command line.
if test "$prefix" = /usr; then
test "$sysconfdir" = ’${prefix}/etc’ && sysconfdir=/etc
test "$sharedstatedir" = ’${prefix}/com’ && sharedstatedir=/var
test "$localstatedir" = ’${prefix}/var’ && localstatedir=/var

fi

242 Autoconf

Chapter 15: Running configure Scripts 243

15 Running configure Scripts

Below are instructions on how to configure a package that uses a configure script, suitable
for inclusion as an ‘INSTALL’ file in the package. A plain-text version of ‘INSTALL’ which
you may use comes with Autoconf.

15.1 Basic Installation

Briefly, the shell commands ‘./configure; make; make install’ should configure, build,
and install this package. The following more-detailed instructions are generic; see the
‘README’ file for instructions specific to this package.

The configure shell script attempts to guess correct values for various system-dependent
variables used during compilation. It uses those values to create a ‘Makefile’ in each
directory of the package. It may also create one or more ‘.h’ files containing system-
dependent definitions. Finally, it creates a shell script ‘config.status’ that you can run in
the future to recreate the current configuration, and a file ‘config.log’ containing compiler
output (useful mainly for debugging configure).

It can also use an optional file (typically called ‘config.cache’ and enabled with
‘--cache-file=config.cache’ or simply ‘-C’) that saves the results of its tests to speed
up reconfiguring. Caching is disabled by default to prevent problems with accidental use
of stale cache files.

If you need to do unusual things to compile the package, please try to figure out how
configure could check whether to do them, and mail diffs or instructions to the address
given in the ‘README’ so they can be considered for the next release. If you are using the
cache, and at some point ‘config.cache’ contains results you don’t want to keep, you may
remove or edit it.

The file ‘configure.ac’ (or ‘configure.in’) is used to create ‘configure’ by a pro-
gram called autoconf. You need ‘configure.ac’ if you want to change it or regenerate
‘configure’ using a newer version of autoconf.
The simplest way to compile this package is:
1. cd to the directory containing the package’s source code and type ‘./configure’ to

configure the package for your system.
Running configure might take a while. While running, it prints some messages telling
which features it is checking for.

2. Type ‘make’ to compile the package.
3. Optionally, type ‘make check’ to run any self-tests that come with the package.
4. Type ‘make install’ to install the programs and any data files and documentation.
5. You can remove the program binaries and object files from the source code directory

by typing ‘make clean’. To also remove the files that configure created (so you can
compile the package for a different kind of computer), type ‘make distclean’. There is
also a ‘make maintainer-clean’ target, but that is intended mainly for the package’s
developers. If you use it, you may have to get all sorts of other programs in order to
regenerate files that came with the distribution.

6. Often, you can also type ‘make uninstall’ to remove the installed files again.

244 Autoconf

15.2 Compilers and Options

Some systems require unusual options for compilation or linking that the configure script
does not know about. Run ‘./configure --help’ for details on some of the pertinent
environment variables.

You can give configure initial values for configuration parameters by setting variables
in the command line or in the environment. Here is an example:

./configure CC=c99 CFLAGS=-g LIBS=-lposix

See Section 15.9 [Defining Variables], page 246, for more details.

15.3 Compiling For Multiple Architectures

You can compile the package for more than one kind of computer at the same time, by
placing the object files for each architecture in their own directory. To do this, you can
use GNU make. cd to the directory where you want the object files and executables to go
and run the configure script. configure automatically checks for the source code in the
directory that configure is in and in ‘..’.

With a non-GNU make, it is safer to compile the package for one architecture at a time
in the source code directory. After you have installed the package for one architecture, use
‘make distclean’ before reconfiguring for another architecture.

On MacOS X 10.5 and later systems, you can create libraries and executables that
work on multiple system types—known as fat or universal binaries—by specifying multiple
‘-arch’ options to the compiler but only a single ‘-arch’ option to the preprocessor. Like
this:

./configure CC="gcc -arch i386 -arch x86_64 -arch ppc -arch ppc64" \
CXX="g++ -arch i386 -arch x86_64 -arch ppc -arch ppc64" \
CPP="gcc -E" CXXCPP="g++ -E"

This is not guaranteed to produce working output in all cases, you may have to build
one architecture at a time and combine the results using the lipo tool if you have problems.

15.4 Installation Names

By default, ‘make install’ installs the package’s commands under ‘/usr/local/bin’, in-
clude files under ‘/usr/local/include’, etc. You can specify an installation prefix other
than ‘/usr/local’ by giving configure the option ‘--prefix=prefix ’.

You can specify separate installation prefixes for architecture-specific files and
architecture-independent files. If you pass the option ‘--exec-prefix=prefix ’ to
configure, the package uses prefix as the prefix for installing programs and libraries.
Documentation and other data files still use the regular prefix.

In addition, if you use an unusual directory layout you can give options like
‘--bindir=dir ’ to specify different values for particular kinds of files. Run ‘configure
--help’ for a list of the directories you can set and what kinds of files go in them.

If the package supports it, you can cause programs to be installed with an extra prefix
or suffix on their names by giving configure the option ‘--program-prefix=PREFIX ’ or
‘--program-suffix=SUFFIX ’.

Chapter 15: Running configure Scripts 245

15.5 Optional Features

Some packages pay attention to ‘--enable-feature ’ options to configure, where feature
indicates an optional part of the package. They may also pay attention to ‘--with-package ’
options, where package is something like ‘gnu-as’ or ‘x’ (for the X Window System). The
‘README’ should mention any ‘--enable-’ and ‘--with-’ options that the package recog-
nizes.

For packages that use the X Window System, configure can usually find the X in-
clude and library files automatically, but if it doesn’t, you can use the configure options
‘--x-includes=dir ’ and ‘--x-libraries=dir ’ to specify their locations.

15.6 Particular systems

On HP-UX, the default C compiler is not ANSI C compatible. If GNU CC is not installed,
it is recommended to use the following options in order to use an ANSI C compiler:

./configure CC="cc -Ae"

and if that doesn’t work, install pre-built binaries of GCC for HP-UX.

On OSF/1 a.k.a. Tru64, some versions of the default C compiler cannot parse its
<wchar.h> header file. The option ‘-nodtk’ can be used as a workaround. If GNU CC
is not installed, it is therefore recommended to try

./configure CC="cc"

and if that doesn’t work, try

./configure CC="cc -nodtk"

15.7 Specifying the System Type

There may be some features configure cannot figure out automatically, but needs to de-
termine by the type of machine the package will run on. Usually, assuming the package is
built to be run on the same architectures, configure can figure that out, but if it prints a
message saying it cannot guess the machine type, give it the ‘--build=type ’ option. type
can either be a short name for the system type, such as ‘sun4’, or a canonical name which
has the form:

cpu-company-system

where system can have one of these forms:

os kernel-os

See the file ‘config.sub’ for the possible values of each field. If ‘config.sub’ isn’t
included in this package, then this package doesn’t need to know the machine type.

If you are building compiler tools for cross-compiling, you should use the option
‘--target=type ’ to select the type of system they will produce code for.

If you want to use a cross compiler, that generates code for a platform different from
the build platform, you should specify the host platform (i.e., that on which the generated
programs will eventually be run) with ‘--host=type ’.

246 Autoconf

15.8 Sharing Defaults

If you want to set default values for configure scripts to share, you can create a site
shell script called ‘config.site’ that gives default values for variables like CC, cache_
file, and prefix. configure looks for ‘prefix/share/config.site’ if it exists, then
‘prefix/etc/config.site’ if it exists. Or, you can set the CONFIG_SITE environment
variable to the location of the site script. A warning: not all configure scripts look for a
site script.

15.9 Defining Variables

Variables not defined in a site shell script can be set in the environment passed to configure.
However, some packages may run configure again during the build, and the customized
values of these variables may be lost. In order to avoid this problem, you should set them
in the configure command line, using ‘VAR=value’. For example:

./configure CC=/usr/local2/bin/gcc

causes the specified gcc to be used as the C compiler (unless it is overridden in the site
shell script).

Unfortunately, this technique does not work for CONFIG_SHELL due to an Autoconf bug.
Until the bug is fixed you can use this workaround:

CONFIG_SHELL=/bin/bash /bin/bash ./configure CONFIG_SHELL=/bin/bash

15.10 configure Invocation

configure recognizes the following options to control how it operates.

‘--help’
‘-h’ Print a summary of all of the options to configure, and exit.

‘--help=short’
‘--help=recursive’

Print a summary of the options unique to this package’s configure, and exit.
The short variant lists options used only in the top level, while the recursive
variant lists options also present in any nested packages.

‘--version’
‘-V’ Print the version of Autoconf used to generate the configure script, and exit.

‘--cache-file=file ’
Enable the cache: use and save the results of the tests in file, traditionally
‘config.cache’. file defaults to ‘/dev/null’ to disable caching.

‘--config-cache’
‘-C’ Alias for ‘--cache-file=config.cache’.

‘--quiet’
‘--silent’
‘-q’ Do not print messages saying which checks are being made. To suppress all nor-

mal output, redirect it to ‘/dev/null’ (any error messages will still be shown).

Chapter 15: Running configure Scripts 247

‘--srcdir=dir ’
Look for the package’s source code in directory dir. Usually configure can
determine that directory automatically.

‘--prefix=dir ’
Use dir as the installation prefix. Section 15.4 [Installation Names], page 244 for
more details, including other options available for fine-tuning the installation
locations.

‘--no-create’
‘-n’ Run the configure checks, but stop before creating any output files.

configure also accepts some other, not widely useful, options. Run ‘configure --help’
for more details.

248 Autoconf

Chapter 16: config.status Invocation 249

16 config.status Invocation

The configure script creates a file named ‘config.status’, which actually configures,
instantiates, the template files. It also records the configuration options that were specified
when the package was last configured in case reconfiguring is needed.

Synopsis:
./config.status option... [file...]

It configures the files; if none are specified, all the templates are instantiated. The files
must be specified without their dependencies, as in

./config.status foobar

not
./config.status foobar:foo.in:bar.in

The supported options are:

‘--help’
‘-h’ Print a summary of the command line options, the list of the template files,

and exit.

‘--version’
‘-V’ Print the version number of Autoconf and the configuration settings, and exit.

‘--silent’
‘--quiet’
‘-q’ Do not print progress messages.

‘--debug’
‘-d’ Don’t remove the temporary files.

‘--file=file[:template]’
Require that file be instantiated as if ‘AC_CONFIG_FILES(file:template)’ was
used. Both file and template may be ‘-’ in which case the standard output
and/or standard input, respectively, is used. If a template file name is relative,
it is first looked for in the build tree, and then in the source tree. See Section 4.6
[Configuration Actions], page 20, for more details.
This option and the following ones provide one way for separately distributed
packages to share the values computed by configure. Doing so can be useful if
some of the packages need a superset of the features that one of them, perhaps
a common library, does. These options allow a ‘config.status’ file to create
files other than the ones that its ‘configure.ac’ specifies, so it can be used for
a different package.

‘--header=file[:template]’
Same as ‘--file’ above, but with ‘AC_CONFIG_HEADERS’.

‘--recheck’
Ask ‘config.status’ to update itself and exit (no instantiation). This option
is useful if you change configure, so that the results of some tests might be
different from the previous run. The ‘--recheck’ option reruns configure with
the same arguments you used before, plus the ‘--no-create’ option, which

250 Autoconf

prevents configure from running ‘config.status’ and creating ‘Makefile’
and other files, and the ‘--no-recursion’ option, which prevents configure
from running other configure scripts in subdirectories. (This is so other Make
rules can run ‘config.status’ when it changes; see Section 4.8.5 [Automatic
Remaking], page 31, for an example).

‘config.status’ checks several optional environment variables that can alter its behav-
ior:

[Variable]CONFIG_SHELL
The shell with which to run configure for the ‘--recheck’ option. It must be Bourne-
compatible. The default is a shell that supports LINENO if available, and ‘/bin/sh’
otherwise. Invoking configure by hand bypasses this setting, so you may need to use
a command like ‘CONFIG_SHELL=/bin/bash /bin/bash ./configure’ to insure that
the same shell is used everywhere. The absolute name of the shell should be passed.

[Variable]CONFIG_STATUS
The file name to use for the shell script that records the configuration. The default
is ‘./config.status’. This variable is useful when one package uses parts of an-
other and the configure scripts shouldn’t be merged because they are maintained
separately.

You can use ‘./config.status’ in your makefiles. For example, in the dependencies
given above (see Section 4.8.5 [Automatic Remaking], page 31), ‘config.status’ is run
twice when ‘configure.ac’ has changed. If that bothers you, you can make each run only
regenerate the files for that rule:

config.h: stamp-h
stamp-h: config.h.in config.status

./config.status config.h
echo > stamp-h

Makefile: Makefile.in config.status
./config.status Makefile

The calling convention of ‘config.status’ has changed; see Section 17.1 [Obsolete con-
fig.status Use], page 251, for details.

Chapter 17: Obsolete Constructs 251

17 Obsolete Constructs

Autoconf changes, and throughout the years some constructs have been obsoleted. Most
of the changes involve the macros, but in some cases the tools themselves, or even some
concepts, are now considered obsolete.

You may completely skip this chapter if you are new to Autoconf. Its intention is mainly
to help maintainers updating their packages by understanding how to move to more modern
constructs.

17.1 Obsolete ‘config.status’ Invocation

‘config.status’ now supports arguments to specify the files to instantiate; see Chapter 16
[config.status Invocation], page 249, for more details. Before, environment variables had to
be used.

[Variable]CONFIG_COMMANDS
The tags of the commands to execute. The default is the arguments given to AC_
OUTPUT and AC_CONFIG_COMMANDS in ‘configure.ac’.

[Variable]CONFIG_FILES
The files in which to perform ‘@variable@’ substitutions. The default is the argu-
ments given to AC_OUTPUT and AC_CONFIG_FILES in ‘configure.ac’.

[Variable]CONFIG_HEADERS
The files in which to substitute C #define statements. The default is the arguments
given to AC_CONFIG_HEADERS; if that macro was not called, ‘config.status’ ignores
this variable.

[Variable]CONFIG_LINKS
The symbolic links to establish. The default is the arguments given to AC_CONFIG_
LINKS; if that macro was not called, ‘config.status’ ignores this variable.

In Chapter 16 [config.status Invocation], page 249, using this old interface, the example
would be:

config.h: stamp-h
stamp-h: config.h.in config.status

CONFIG_COMMANDS= CONFIG_LINKS= CONFIG_FILES= \
CONFIG_HEADERS=config.h ./config.status

echo > stamp-h

Makefile: Makefile.in config.status
CONFIG_COMMANDS= CONFIG_LINKS= CONFIG_HEADERS= \
CONFIG_FILES=Makefile ./config.status

(If ‘configure.ac’ does not call AC_CONFIG_HEADERS, there is no need to set CONFIG_
HEADERS in the make rules. Equally for CONFIG_COMMANDS, etc.)

252 Autoconf

17.2 ‘acconfig.h’

In order to produce ‘config.h.in’, autoheader needs to build or to find templates for each
symbol. Modern releases of Autoconf use AH_VERBATIM and AH_TEMPLATE (see Section 4.9.3
[Autoheader Macros], page 35), but in older releases a file, ‘acconfig.h’, contained the list
of needed templates. autoheader copied comments and #define and #undef statements
from ‘acconfig.h’ in the current directory, if present. This file used to be mandatory if
you AC_DEFINE any additional symbols.

Modern releases of Autoconf also provide AH_TOP and AH_BOTTOM if you need to
prepend/append some information to ‘config.h.in’. Ancient versions of Autoconf had a
similar feature: if ‘./acconfig.h’ contains the string ‘@TOP@’, autoheader copies the lines
before the line containing ‘@TOP@’ into the top of the file that it generates. Similarly, if
‘./acconfig.h’ contains the string ‘@BOTTOM@’, autoheader copies the lines after that line
to the end of the file it generates. Either or both of those strings may be omitted. An even
older alternate way to produce the same effect in ancient versions of Autoconf is to create
the files ‘file.top’ (typically ‘config.h.top’) and/or ‘file.bot’ in the current directory.
If they exist, autoheader copies them to the beginning and end, respectively, of its output.

In former versions of Autoconf, the files used in preparing a software package for distri-
bution were:

configure.ac --. .------> autoconf* -----> configure
+---+

[aclocal.m4] --+ ‘---.
[acsite.m4] ---’ |

+--> [autoheader*] -> [config.h.in]
[acconfig.h] ----. |

+-----’
[config.h.top] --+
[config.h.bot] --’

Using only the AH_ macros, ‘configure.ac’ should be self-contained, and should not
depend upon ‘acconfig.h’ etc.

17.3 Using autoupdate to Modernize ‘configure.ac’

The autoupdate program updates a ‘configure.ac’ file that calls Autoconf macros by their
old names to use the current macro names. In version 2 of Autoconf, most of the macros
were renamed to use a more uniform and descriptive naming scheme. See Section 9.2
[Macro Names], page 151, for a description of the new scheme. Although the old names
still work (see Section 17.4 [Obsolete Macros], page 253, for a list of the old macros and
the corresponding new names), you can make your ‘configure.ac’ files more readable and
make it easier to use the current Autoconf documentation if you update them to use the
new macro names.

If given no arguments, autoupdate updates ‘configure.ac’, backing up the original ver-
sion with the suffix ‘~’ (or the value of the environment variable SIMPLE_BACKUP_SUFFIX, if
that is set). If you give autoupdate an argument, it reads that file instead of ‘configure.ac’
and writes the updated file to the standard output.

autoupdate accepts the following options:

Chapter 17: Obsolete Constructs 253

‘--help’
‘-h’ Print a summary of the command line options and exit.

‘--version’
‘-V’ Print the version number of Autoconf and exit.

‘--verbose’
‘-v’ Report processing steps.

‘--debug’
‘-d’ Don’t remove the temporary files.

‘--force’
‘-f’ Force the update even if the file has not changed. Disregard the cache.

‘--include=dir ’
‘-I dir ’ Also look for input files in dir. Multiple invocations accumulate. Directories

are browsed from last to first.

‘--prepend-include=dir ’
‘-B dir ’ Prepend directory dir to the search path. This is used to include the language-

specific files before any third-party macros.

17.4 Obsolete Macros

Several macros are obsoleted in Autoconf, for various reasons (typically they failed to quote
properly, couldn’t be extended for more recent issues, etc.). They are still supported, but
deprecated: their use should be avoided.

During the jump from Autoconf version 1 to version 2, most of the macros were renamed
to use a more uniform and descriptive naming scheme, but their signature did not change.
See Section 9.2 [Macro Names], page 151, for a description of the new naming scheme.
Below, if there is just the mapping from old names to new names for these macros, the
reader is invited to refer to the definition of the new macro for the signature and the
description.

[Macro]AC_AIX
This macro is a platform-specific subset of AC_USE_SYSTEM_EXTENSIONS (see
[AC USE SYSTEM EXTENSIONS], page 87).

[Macro]AC_ALLOCA
Replaced by AC_FUNC_ALLOCA (see [AC FUNC ALLOCA], page 50).

[Macro]AC_ARG_ARRAY
Removed because of limited usefulness.

[Macro]AC_C_CROSS
This macro is obsolete; it does nothing.

[Macro]AC_C_LONG_DOUBLE
If the C compiler supports a working long double type with more range or precision
than the double type, define HAVE_LONG_DOUBLE.
You should use AC_TYPE_LONG_DOUBLE or AC_TYPE_LONG_DOUBLE_WIDER instead. See
Section 5.9.1 [Particular Types], page 69.

254 Autoconf

[Macro]AC_CANONICAL_SYSTEM
Determine the system type and set output variables to the names of the canonical sys-
tem types. See Section 13.2 [Canonicalizing], page 230, for details about the variables
this macro sets.
The user is encouraged to use either AC_CANONICAL_BUILD, or AC_CANONICAL_HOST,
or AC_CANONICAL_TARGET, depending on the needs. Using AC_CANONICAL_TARGET is
enough to run the two other macros (see Section 13.2 [Canonicalizing], page 230).

[Macro]AC_CHAR_UNSIGNED
Replaced by AC_C_CHAR_UNSIGNED (see [AC C CHAR UNSIGNED], page 78).

[Macro]AC_CHECK_TYPE (type, default)
Autoconf, up to 2.13, used to provide this version of AC_CHECK_TYPE, deprecated
because of its flaws. First, although it is a member of the CHECK clan, it does more
than just checking. Secondly, missing types are defined using #define, not typedef,
and this can lead to problems in the case of pointer types.
This use of AC_CHECK_TYPE is obsolete and discouraged; see Section 5.9.2 [Generic
Types], page 72, for the description of the current macro.
If the type type is not defined, define it to be the C (or C++) builtin type default,
e.g., ‘short int’ or ‘unsigned int’.
This macro is equivalent to:

AC_CHECK_TYPE([type], [],
[AC_DEFINE_UNQUOTED([type], [default],

[Define to ‘default’
if <sys/types.h> does not define.])])

In order to keep backward compatibility, the two versions of AC_CHECK_TYPE are
implemented, selected using these heuristics:
1. If there are three or four arguments, the modern version is used.
2. If the second argument appears to be a C or C++ type, then the obsolete version

is used. This happens if the argument is a C or C++ builtin type or a C identifier
ending in ‘_t’, optionally followed by one of ‘[(* ’ and then by a string of zero
or more characters taken from the set ‘[]()* _a-zA-Z0-9’.

3. If the second argument is spelled with the alphabet of valid C and C++ types,
the user is warned and the modern version is used.

4. Otherwise, the modern version is used.

You are encouraged either to use a valid builtin type, or to use the equivalent modern
code (see above), or better yet, to use AC_CHECK_TYPES together with

#ifndef HAVE_LOFF_T
typedef loff_t off_t;
#endif

[Macro]AC_CHECKING (feature-description)
Same as

AC_MSG_NOTICE([checking feature-description...]

See [AC MSG NOTICE], page 110.

Chapter 17: Obsolete Constructs 255

[Macro]AC_COMPILE_CHECK (echo-text, includes, function-body,
action-if-true, [action-if-false])

This is an obsolete version of AC_TRY_COMPILE itself replaced by AC_COMPILE_IFELSE
(see Section 6.4 [Running the Compiler], page 97), with the addition that it prints
‘checking for echo-text ’ to the standard output first, if echo-text is non-empty.
Use AC_MSG_CHECKING and AC_MSG_RESULT instead to print messages (see Section 7.5
[Printing Messages], page 110).

[Macro]AC_CONST
Replaced by AC_C_CONST (see [AC C CONST], page 77).

[Macro]AC_CROSS_CHECK
Same as AC_C_CROSS, which is obsolete too, and does nothing :-).

[Macro]AC_CYGWIN
Check for the Cygwin environment in which case the shell variable CYGWIN is set to
‘yes’. Don’t use this macro, the dignified means to check the nature of the host is
using AC_CANONICAL_HOST (see Section 13.2 [Canonicalizing], page 230). As a matter
of fact this macro is defined as:

AC_REQUIRE([AC_CANONICAL_HOST])[]dnl
case $host_os in
cygwin) CYGWIN=yes;;

*) CYGWIN=no;;
esac

Beware that the variable CYGWIN has a special meaning when running Cygwin, and
should not be changed. That’s yet another reason not to use this macro.

[Macro]AC_DECL_SYS_SIGLIST
Same as:

AC_CHECK_DECLS([sys_siglist], [], [],
[#include <signal.h>
/* NetBSD declares sys_siglist in unistd.h. */
#ifdef HAVE_UNISTD_H
include <unistd.h>
#endif
])

See [AC CHECK DECLS], page 67.

[Macro]AC_DECL_YYTEXT
Does nothing, now integrated in AC_PROG_LEX (see [AC PROG LEX], page 42).

[Macro]AC_DIR_HEADER
Like calling AC_FUNC_CLOSEDIR_VOID (see [AC FUNC CLOSEDIR VOID], page 51)
and AC_HEADER_DIRENT (see [AC HEADER DIRENT], page 60), but defines a dif-
ferent set of C preprocessor macros to indicate which header file is found:
Header Old Symbol New Symbol
‘dirent.h’ DIRENT HAVE_DIRENT_H
‘sys/ndir.h’ SYSNDIR HAVE_SYS_NDIR_H

256 Autoconf

‘sys/dir.h’ SYSDIR HAVE_SYS_DIR_H
‘ndir.h’ NDIR HAVE_NDIR_H

[Macro]AC_DYNIX_SEQ
If on DYNIX/ptx, add ‘-lseq’ to output variable LIBS. This macro used to be defined
as

AC_CHECK_LIB([seq], [getmntent], [LIBS="-lseq $LIBS"])

now it is just AC_FUNC_GETMNTENT (see [AC FUNC GETMNTENT], page 53).

[Macro]AC_EXEEXT
Defined the output variable EXEEXT based on the output of the compiler, which is
now done automatically. Typically set to empty string if Posix and ‘.exe’ if a DOS
variant.

[Macro]AC_EMXOS2
Similar to AC_CYGWIN but checks for the EMX environment on OS/2 and sets EMXOS2.
Don’t use this macro, the dignified means to check the nature of the host is using
AC_CANONICAL_HOST (see Section 13.2 [Canonicalizing], page 230).

[Macro]AC_ENABLE (feature, action-if-given, [action-if-not-given])
This is an obsolete version of AC_ARG_ENABLE that does not support providing a help
string (see [AC ARG ENABLE], page 236).

[Macro]AC_ERROR
Replaced by AC_MSG_ERROR (see [AC MSG ERROR], page 110).

[Macro]AC_FIND_X
Replaced by AC_PATH_X (see [AC PATH X], page 86).

[Macro]AC_FIND_XTRA
Replaced by AC_PATH_XTRA (see [AC PATH XTRA], page 86).

[Macro]AC_FOREACH
Replaced by m4_foreach_w (see [m4 foreach w], page 133).

[Macro]AC_FUNC_CHECK
Replaced by AC_CHECK_FUNC (see [AC CHECK FUNC], page 57).

[Macro]AC_FUNC_SETVBUF_REVERSED
Do nothing. Formerly, this macro checked whether setvbuf takes the buffering type
as its second argument and the buffer pointer as the third, instead of the other
way around, and defined SETVBUF_REVERSED. However, the last systems to have the
problem were those based on SVR2, which became obsolete in 1987, and the macro
is no longer needed.

[Macro]AC_FUNC_WAIT3
If wait3 is found and fills in the contents of its third argument (a ‘struct rusage
*’), which HP-UX does not do, define HAVE_WAIT3.
These days portable programs should use waitpid, not wait3, as wait3 has been
removed from Posix.

Chapter 17: Obsolete Constructs 257

[Macro]AC_GCC_TRADITIONAL
Replaced by AC_PROG_GCC_TRADITIONAL (see [AC PROG GCC TRADITIONAL],
page 79).

[Macro]AC_GETGROUPS_T
Replaced by AC_TYPE_GETGROUPS (see [AC TYPE GETGROUPS], page 69).

[Macro]AC_GETLOADAVG
Replaced by AC_FUNC_GETLOADAVG (see [AC FUNC GETLOADAVG], page 53).

[Macro]AC_GNU_SOURCE
This macro is a platform-specific subset of AC_USE_SYSTEM_EXTENSIONS (see
[AC USE SYSTEM EXTENSIONS], page 87).

[Macro]AC_HAVE_FUNCS
Replaced by AC_CHECK_FUNCS (see [AC CHECK FUNCS], page 57).

[Macro]AC_HAVE_HEADERS
Replaced by AC_CHECK_HEADERS (see [AC CHECK HEADERS], page 65).

[Macro]AC_HAVE_LIBRARY (library, [action-if-found],
[action-if-not-found], [other-libraries])

This macro is equivalent to calling AC_CHECK_LIB with a function argument of main.
In addition, library can be written as any of ‘foo’, ‘-lfoo’, or ‘libfoo.a’. In all
of those cases, the compiler is passed ‘-lfoo’. However, library cannot be a shell
variable; it must be a literal name. See [AC CHECK LIB], page 46.

[Macro]AC_HAVE_POUNDBANG
Replaced by AC_SYS_INTERPRETER (see [AC SYS INTERPRETER], page 87).

[Macro]AC_HEADER_CHECK
Replaced by AC_CHECK_HEADER (see [AC CHECK HEADER], page 65).

[Macro]AC_HEADER_EGREP
Replaced by AC_EGREP_HEADER (see [AC EGREP HEADER], page 97).

[Macro]AC_HELP_STRING
Replaced by AS_HELP_STRING (see [AS HELP STRING], page 236).

[Macro]AC_INIT (unique-file-in-source-dir)
Formerly AC_INIT used to have a single argument, and was equivalent to:

AC_INIT
AC_CONFIG_SRCDIR(unique-file-in-source-dir)

See [AC INIT], page 17 and [AC CONFIG SRCDIR], page 19.

[Macro]AC_INLINE
Replaced by AC_C_INLINE (see [AC C INLINE], page 78).

[Macro]AC_INT_16_BITS
If the C type int is 16 bits wide, define INT_16_BITS. Use ‘AC_CHECK_SIZEOF(int)’
instead (see [AC CHECK SIZEOF], page 73).

258 Autoconf

[Macro]AC_IRIX_SUN
If on irix (Silicon Graphics Unix), add ‘-lsun’ to output LIBS. If you were using it to
get getmntent, use AC_FUNC_GETMNTENT instead. If you used it for the NIS versions
of the password and group functions, use ‘AC_CHECK_LIB(sun, getpwnam)’. Up to
Autoconf 2.13, it used to be

AC_CHECK_LIB([sun], [getmntent], [LIBS="-lsun $LIBS"])

now it is defined as

AC_FUNC_GETMNTENT
AC_CHECK_LIB([sun], [getpwnam])

See [AC FUNC GETMNTENT], page 53 and [AC CHECK LIB], page 46.

[Macro]AC_ISC_POSIX
This macro adds ‘-lcposix’ to output variable LIBS if necessary for Posix facilities.
Sun dropped support for the obsolete interactive Systems Corporation Unix on
2006-07-23. New programs need not use this macro. It is implemented as AC_SEARCH_
LIBS([strerror], [cposix]) (see [AC SEARCH LIBS], page 47).

[Macro]AC_LANG_C
Same as ‘AC_LANG([C])’ (see [AC LANG], page 91).

[Macro]AC_LANG_CPLUSPLUS
Same as ‘AC_LANG([C++])’ (see [AC LANG], page 91).

[Macro]AC_LANG_FORTRAN77
Same as ‘AC_LANG([Fortran 77])’ (see [AC LANG], page 91).

[Macro]AC_LANG_RESTORE
Select the language that is saved on the top of the stack, as set by AC_LANG_SAVE,
remove it from the stack, and call AC_LANG(language). See Section 6.1 [Language
Choice], page 91, for the preferred way to change languages.

[Macro]AC_LANG_SAVE
Remember the current language (as set by AC_LANG) on a stack. The current language
does not change. AC_LANG_PUSH is preferred (see [AC LANG PUSH], page 92).

[Macro]AC_LINK_FILES (source . . . , dest . . .)
This is an obsolete version of AC_CONFIG_LINKS (see [AC CONFIG LINKS], page 37.
An updated version of:

AC_LINK_FILES(config/$machine.h config/$obj_format.h,
host.h object.h)

is:

AC_CONFIG_LINKS([host.h:config/$machine.h
object.h:config/$obj_format.h])

[Macro]AC_LN_S
Replaced by AC_PROG_LN_S (see [AC PROG LN S], page 43).

Chapter 17: Obsolete Constructs 259

[Macro]AC_LONG_64_BITS
Define LONG_64_BITS if the C type long int is 64 bits wide. Use the generic macro
‘AC_CHECK_SIZEOF([long int])’ instead (see [AC CHECK SIZEOF], page 73).

[Macro]AC_LONG_DOUBLE
If the C compiler supports a working long double type with more range or precision
than the double type, define HAVE_LONG_DOUBLE.
You should use AC_TYPE_LONG_DOUBLE or AC_TYPE_LONG_DOUBLE_WIDER instead. See
Section 5.9.1 [Particular Types], page 69.

[Macro]AC_LONG_FILE_NAMES
Replaced by

AC_SYS_LONG_FILE_NAMES

See [AC SYS LONG FILE NAMES], page 87.

[Macro]AC_MAJOR_HEADER
Replaced by AC_HEADER_MAJOR (see [AC HEADER MAJOR], page 61).

[Macro]AC_MEMORY_H
Used to define NEED_MEMORY_H if the mem functions were defined in ‘memory.h’. Today
it is equivalent to ‘AC_CHECK_HEADERS([memory.h])’ (see [AC CHECK HEADERS],
page 65). Adjust your code to depend upon HAVE_MEMORY_H, not NEED_MEMORY_H; see
Section 5.1.1 [Standard Symbols], page 39.

[Macro]AC_MINGW32
Similar to AC_CYGWIN but checks for the MinGW compiler environment and sets
MINGW32. Don’t use this macro, the dignified means to check the nature of the host
is using AC_CANONICAL_HOST (see Section 13.2 [Canonicalizing], page 230).

[Macro]AC_MINIX
This macro is a platform-specific subset of AC_USE_SYSTEM_EXTENSIONS (see
[AC USE SYSTEM EXTENSIONS], page 87).

[Macro]AC_MINUS_C_MINUS_O
Replaced by AC_PROG_CC_C_O (see [AC PROG CC C O], page 76).

[Macro]AC_MMAP
Replaced by AC_FUNC_MMAP (see [AC FUNC MMAP], page 55).

[Macro]AC_MODE_T
Replaced by AC_TYPE_MODE_T (see [AC TYPE MODE T], page 70).

[Macro]AC_OBJEXT
Defined the output variable OBJEXT based on the output of the compiler, after .c files
have been excluded. Typically set to ‘o’ if Posix, ‘obj’ if a DOS variant. Now the
compiler checking macros handle this automatically.

[Macro]AC_OBSOLETE (this-macro-name, [suggestion])
Make M4 print a message to the standard error output warning that this-macro-name
is obsolete, and giving the file and line number where it was called. this-macro-name

260 Autoconf

should be the name of the macro that is calling AC_OBSOLETE. If suggestion is given,
it is printed at the end of the warning message; for example, it can be a suggestion
for what to use instead of this-macro-name.

For instance

AC_OBSOLETE([$0], [; use AC_CHECK_HEADERS(unistd.h) instead])dnl

You are encouraged to use AU_DEFUN instead, since it gives better services to the user
(see [AU DEFUN], page 156).

[Macro]AC_OFF_T
Replaced by AC_TYPE_OFF_T (see [AC TYPE OFF T], page 70).

[Macro]AC_OUTPUT ([file]. . . , [extra-cmds], [init-cmds])
The use of AC_OUTPUT with arguments is deprecated. This obsoleted interface is
equivalent to:

AC_CONFIG_FILES(file...)
AC_CONFIG_COMMANDS([default],

extra-cmds, init-cmds)
AC_OUTPUT

See [AC CONFIG FILES], page 22, [AC CONFIG COMMANDS], page 36, and
[AC OUTPUT], page 20.

[Macro]AC_OUTPUT_COMMANDS (extra-cmds, [init-cmds])
Specify additional shell commands to run at the end of ‘config.status’, and
shell commands to initialize any variables from configure. This macro may
be called multiple times. It is obsolete, replaced by AC_CONFIG_COMMANDS (see
[AC CONFIG COMMANDS], page 36).

Here is an unrealistic example:

fubar=27
AC_OUTPUT_COMMANDS([echo this is extra $fubar, and so on.],

[fubar=$fubar])
AC_OUTPUT_COMMANDS([echo this is another, extra, bit],

[echo init bit])

Aside from the fact that AC_CONFIG_COMMANDS requires an additional key, an impor-
tant difference is that AC_OUTPUT_COMMANDS is quoting its arguments twice, unlike
AC_CONFIG_COMMANDS. This means that AC_CONFIG_COMMANDS can safely be given
macro calls as arguments:

AC_CONFIG_COMMANDS(foo, [my_FOO()])

Conversely, where one level of quoting was enough for literal strings with AC_OUTPUT_
COMMANDS, you need two with AC_CONFIG_COMMANDS. The following lines are equiva-
lent:

AC_OUTPUT_COMMANDS([echo "Square brackets: []"])
AC_CONFIG_COMMANDS([default], [[echo "Square brackets: []"]])

[Macro]AC_PID_T
Replaced by AC_TYPE_PID_T (see [AC TYPE PID T], page 71).

Chapter 17: Obsolete Constructs 261

[Macro]AC_PREFIX
Replaced by AC_PREFIX_PROGRAM (see [AC PREFIX PROGRAM], page 38).

[Macro]AC_PROGRAMS_CHECK
Replaced by AC_CHECK_PROGS (see [AC CHECK PROGS], page 44).

[Macro]AC_PROGRAMS_PATH
Replaced by AC_PATH_PROGS (see [AC PATH PROGS], page 45).

[Macro]AC_PROGRAM_CHECK
Replaced by AC_CHECK_PROG (see [AC CHECK PROG], page 44).

[Macro]AC_PROGRAM_EGREP
Replaced by AC_EGREP_CPP (see [AC EGREP CPP], page 97).

[Macro]AC_PROGRAM_PATH
Replaced by AC_PATH_PROG (see [AC PATH PROG], page 45).

[Macro]AC_REMOTE_TAPE
Removed because of limited usefulness.

[Macro]AC_RESTARTABLE_SYSCALLS
This macro was renamed AC_SYS_RESTARTABLE_SYSCALLS. However, these days
portable programs should use sigaction with SA_RESTART if they want restartable
system calls. They should not rely on HAVE_RESTARTABLE_SYSCALLS, since nowadays
whether a system call is restartable is a dynamic issue, not a configuration-time
issue.

[Macro]AC_RETSIGTYPE
Replaced by AC_TYPE_SIGNAL (see [AC TYPE SIGNAL], page 264), which itself is
obsolete when assuming C89 or better.

[Macro]AC_RSH
Removed because of limited usefulness.

[Macro]AC_SCO_INTL
If on SCO Unix, add ‘-lintl’ to output variable LIBS. This macro used to do this:

AC_CHECK_LIB([intl], [strftime], [LIBS="-lintl $LIBS"])

Now it just calls AC_FUNC_STRFTIME instead (see [AC FUNC STRFTIME], page 56).

[Macro]AC_SETVBUF_REVERSED
Replaced by

AC_FUNC_SETVBUF_REVERSED

See [AC FUNC SETVBUF REVERSED], page 256.

[Macro]AC_SET_MAKE
Replaced by AC_PROG_MAKE_SET (see [AC PROG MAKE SET], page 20).

[Macro]AC_SIZEOF_TYPE
Replaced by AC_CHECK_SIZEOF (see [AC CHECK SIZEOF], page 73).

262 Autoconf

[Macro]AC_SIZE_T
Replaced by AC_TYPE_SIZE_T (see [AC TYPE SIZE T], page 71).

[Macro]AC_STAT_MACROS_BROKEN
Replaced by AC_HEADER_STAT (see [AC HEADER STAT], page 62).

[Macro]AC_STDC_HEADERS
Replaced by AC_HEADER_STDC (see [AC HEADER STDC], page 62).

[Macro]AC_STRCOLL
Replaced by AC_FUNC_STRCOLL (see [AC FUNC STRCOLL], page 55).

[Macro]AC_STRUCT_ST_BLKSIZE
If struct stat contains an st_blksize member, define HAVE_STRUCT_STAT_ST_
BLKSIZE. The former name, HAVE_ST_BLKSIZE is to be avoided, as its support will
cease in the future. This macro is obsoleted, and should be replaced by

AC_CHECK_MEMBERS([struct stat.st_blksize])

See [AC CHECK MEMBERS], page 69.

[Macro]AC_STRUCT_ST_RDEV
If struct stat contains an st_rdev member, define HAVE_STRUCT_STAT_ST_RDEV.
The former name for this macro, HAVE_ST_RDEV, is to be avoided as it will cease to
be supported in the future. Actually, even the new macro is obsolete and should be
replaced by:

AC_CHECK_MEMBERS([struct stat.st_rdev])

See [AC CHECK MEMBERS], page 69.

[Macro]AC_ST_BLKSIZE
Replaced by AC_CHECK_MEMBERS (see [AC CHECK MEMBERS], page 69).

[Macro]AC_ST_BLOCKS
Replaced by AC_STRUCT_ST_BLOCKS (see [AC STRUCT ST BLOCKS], page 68).

[Macro]AC_ST_RDEV
Replaced by AC_CHECK_MEMBERS (see [AC CHECK MEMBERS], page 69).

[Macro]AC_SYS_RESTARTABLE_SYSCALLS
If the system automatically restarts a system call that is interrupted by a signal, define
HAVE_RESTARTABLE_SYSCALLS. This macro does not check whether system calls are
restarted in general—it checks whether a signal handler installed with signal (but
not sigaction) causes system calls to be restarted. It does not check whether system
calls can be restarted when interrupted by signals that have no handler.
These days portable programs should use sigaction with SA_RESTART if they want
restartable system calls. They should not rely on HAVE_RESTARTABLE_SYSCALLS, since
nowadays whether a system call is restartable is a dynamic issue, not a configuration-
time issue.

[Macro]AC_SYS_SIGLIST_DECLARED
This macro was renamed AC_DECL_SYS_SIGLIST. However, even that name is
obsolete, as the same functionality is now acheived via AC_CHECK_DECLS (see
[AC CHECK DECLS], page 67).

Chapter 17: Obsolete Constructs 263

[Macro]AC_TEST_CPP
This macro was renamed AC_TRY_CPP, which in turn was replaced by AC_PREPROC_
IFELSE (see [AC PREPROC IFELSE], page 96).

[Macro]AC_TEST_PROGRAM
This macro was renamed AC_TRY_RUN, which in turn was replaced by AC_RUN_IFELSE
(see [AC RUN IFELSE], page 98).

[Macro]AC_TIMEZONE
Replaced by AC_STRUCT_TIMEZONE (see [AC STRUCT TIMEZONE], page 68).

[Macro]AC_TIME_WITH_SYS_TIME
Replaced by AC_HEADER_TIME (see [AC HEADER TIME], page 64).

[Macro]AC_TRY_COMPILE (includes, function-body, [action-if-true],
[action-if-false])

Same as:
AC_COMPILE_IFELSE(
[AC_LANG_PROGRAM([[includes]],

[[function-body]])],
[action-if-true],
[action-if-false])

See Section 6.4 [Running the Compiler], page 97.
This macro double quotes both includes and function-body.
For C and C++, includes is any #include statements needed by the code in function-
body (includes is ignored if the currently selected language is Fortran or Fortran
77). The compiler and compilation flags are determined by the current language (see
Section 6.1 [Language Choice], page 91).

[Macro]AC_TRY_CPP (input, [action-if-true], [action-if-false])
Same as:

AC_PREPROC_IFELSE(
[AC_LANG_SOURCE([[input]])],
[action-if-true],
[action-if-false])

See Section 6.3 [Running the Preprocessor], page 96.
This macro double quotes the input.

[Macro]AC_TRY_LINK (includes, function-body, [action-if-true],
[action-if-false])

Same as:
AC_LINK_IFELSE(
[AC_LANG_PROGRAM([[includes]],

[[function-body]])],
[action-if-true],
[action-if-false])

See Section 6.4 [Running the Compiler], page 97.

264 Autoconf

This macro double quotes both includes and function-body.
Depending on the current language (see Section 6.1 [Language Choice], page 91),
create a test program to see whether a function whose body consists of function-
body can be compiled and linked. If the file compiles and links successfully, run shell
commands action-if-found, otherwise run action-if-not-found.
This macro double quotes both includes and function-body.
For C and C++, includes is any #include statements needed by the code in function-
body (includes is ignored if the currently selected language is Fortran or Fortran
77). The compiler and compilation flags are determined by the current language (see
Section 6.1 [Language Choice], page 91), and in addition LDFLAGS and LIBS are used
for linking.

[Macro]AC_TRY_LINK_FUNC (function, [action-if-found],
[action-if-not-found])

This macro is equivalent to
AC_LINK_IFELSE([AC_LANG_CALL([], [function])],
[action-if-found], [action-if-not-found])

See [AC LINK IFELSE], page 98.

[Macro]AC_TRY_RUN (program, [action-if-true], [action-if-false],
[action-if-cross-compiling])

Same as:
AC_RUN_IFELSE(
[AC_LANG_SOURCE([[program]])],
[action-if-true],
[action-if-false],
[action-if-cross-compiling])

See Section 6.6 [Runtime], page 98.

[Macro]AC_TYPE_SIGNAL
If ‘signal.h’ declares signal as returning a pointer to a function returning void,
define RETSIGTYPE to be void; otherwise, define it to be int. These days, it is
portable to assume C89, and that signal handlers return void, without needing to
use this macro or RETSIGTYPE.
When targetting older K&R C, it is possible to define signal handlers as returning
type RETSIGTYPE, and omit a return statement:

RETSIGTYPE
hup_handler ()
{
...
}

[Macro]AC_UID_T
Replaced by AC_TYPE_UID_T (see [AC TYPE UID T], page 71).

[Macro]AC_UNISTD_H
Same as ‘AC_CHECK_HEADERS([unistd.h])’ (see [AC CHECK HEADERS], page 65).

Chapter 17: Obsolete Constructs 265

[Macro]AC_USG
Define USG if the BSD string functions are defined in ‘strings.h’. You should no
longer depend upon USG, but on HAVE_STRING_H; see Section 5.1.1 [Standard Sym-
bols], page 39.

[Macro]AC_UTIME_NULL
Replaced by AC_FUNC_UTIME_NULL (see [AC FUNC UTIME NULL], page 56).

[Macro]AC_VALIDATE_CACHED_SYSTEM_TUPLE ([cmd])
If the cache file is inconsistent with the current host, target and build system types, it
used to execute cmd or print a default error message. This is now handled by default.

[Macro]AC_VERBOSE (result-description)
Replaced by AC_MSG_RESULT (see [AC MSG RESULT], page 110).

[Macro]AC_VFORK
Replaced by AC_FUNC_FORK (see [AC FUNC FORK], page 52).

[Macro]AC_VPRINTF
Replaced by AC_FUNC_VPRINTF (see [AC FUNC VPRINTF], page 56).

[Macro]AC_WAIT3
This macro was renamed AC_FUNC_WAIT3. However, these days portable programs
should use waitpid, not wait3, as wait3 has been removed from Posix.

[Macro]AC_WARN
Replaced by AC_MSG_WARN (see [AC MSG WARN], page 111).

[Macro]AC_WITH (package, action-if-given, [action-if-not-given])
This is an obsolete version of AC_ARG_WITH that does not support providing a help
string (see [AC ARG WITH], page 234).

[Macro]AC_WORDS_BIGENDIAN
Replaced by AC_C_BIGENDIAN (see [AC C BIGENDIAN], page 77).

[Macro]AC_XENIX_DIR
This macro used to add ‘-lx’ to output variable LIBS if on Xenix. Also, if ‘dirent.h’
is being checked for, added ‘-ldir’ to LIBS. Now it is merely an alias of AC_HEADER_
DIRENT instead, plus some code to detect whether running xenix on which you should
not depend:

AC_MSG_CHECKING([for Xenix])
AC_EGREP_CPP([yes],
[#if defined M_XENIX && !defined M_UNIX
yes

#endif],
[AC_MSG_RESULT([yes]); XENIX=yes],
[AC_MSG_RESULT([no]); XENIX=])

Don’t use this macro, the dignified means to check the nature of the host is using
AC_CANONICAL_HOST (see Section 13.2 [Canonicalizing], page 230).

266 Autoconf

[Macro]AC_YYTEXT_POINTER
This macro was renamed AC_DECL_YYTEXT, which in turn was integrated into AC_
PROG_LEX (see [AC PROG LEX], page 42).

17.5 Upgrading From Version 1

Autoconf version 2 is mostly backward compatible with version 1. However, it introduces
better ways to do some things, and doesn’t support some of the ugly things in version 1.
So, depending on how sophisticated your ‘configure.ac’ files are, you might have to do
some manual work in order to upgrade to version 2. This chapter points out some problems
to watch for when upgrading. Also, perhaps your configure scripts could benefit from
some of the new features in version 2; the changes are summarized in the file ‘NEWS’ in the
Autoconf distribution.

17.5.1 Changed File Names

If you have an ‘aclocal.m4’ installed with Autoconf (as opposed to in a particular package’s
source directory), you must rename it to ‘acsite.m4’. See Section 3.4 [autoconf Invocation],
page 10.

If you distribute ‘install.sh’ with your package, rename it to ‘install-sh’ so make
builtin rules don’t inadvertently create a file called ‘install’ from it. AC_PROG_INSTALL
looks for the script under both names, but it is best to use the new name.

If you were using ‘config.h.top’, ‘config.h.bot’, or ‘acconfig.h’, you still can, but
you have less clutter if you use the AH_ macros. See Section 4.9.3 [Autoheader Macros],
page 35.

17.5.2 Changed Makefiles

Add ‘@CFLAGS@’, ‘@CPPFLAGS@’, and ‘@LDFLAGS@’ in your ‘Makefile.in’ files, so they can
take advantage of the values of those variables in the environment when configure is run.
Doing this isn’t necessary, but it’s a convenience for users.

Also add ‘@configure_input@’ in a comment to each input file for AC_OUTPUT, so that
the output files contain a comment saying they were produced by configure. Automatically
selecting the right comment syntax for all the kinds of files that people call AC_OUTPUT on
became too much work.

Add ‘config.log’ and ‘config.cache’ to the list of files you remove in distclean
targets.

If you have the following in ‘Makefile.in’:

prefix = /usr/local
exec_prefix = $(prefix)

you must change it to:

prefix = @prefix@
exec_prefix = @exec_prefix@

The old behavior of replacing those variables without ‘@’ characters around them has been
removed.

Chapter 17: Obsolete Constructs 267

17.5.3 Changed Macros

Many of the macros were renamed in Autoconf version 2. You can still use the old names,
but the new ones are clearer, and it’s easier to find the documentation for them. See
Section 17.4 [Obsolete Macros], page 253, for a table showing the new names for the old
macros. Use the autoupdate program to convert your ‘configure.ac’ to using the new
macro names. See Section 17.3 [autoupdate Invocation], page 252.

Some macros have been superseded by similar ones that do the job better, but are not
call-compatible. If you get warnings about calling obsolete macros while running autoconf,
you may safely ignore them, but your configure script generally works better if you follow
the advice that is printed about what to replace the obsolete macros with. In particular,
the mechanism for reporting the results of tests has changed. If you were using echo or AC_
VERBOSE (perhaps via AC_COMPILE_CHECK), your configure script’s output looks better if
you switch to AC_MSG_CHECKING and AC_MSG_RESULT. See Section 7.5 [Printing Messages],
page 110. Those macros work best in conjunction with cache variables. See Section 7.4
[Caching Results], page 107.

17.5.4 Changed Results

If you were checking the results of previous tests by examining the shell variable DEFS,
you need to switch to checking the values of the cache variables for those tests. DEFS no
longer exists while configure is running; it is only created when generating output files.
This difference from version 1 is because properly quoting the contents of that variable
turned out to be too cumbersome and inefficient to do every time AC_DEFINE is called. See
Section 7.4.1 [Cache Variable Names], page 108.

For example, here is a ‘configure.ac’ fragment written for Autoconf version 1:

AC_HAVE_FUNCS(syslog)
case "$DEFS" in
-DHAVE_SYSLOG) ;;
*) # syslog is not in the default libraries. See if it’s in some other.
saved_LIBS="$LIBS"
for lib in bsd socket inet; do
AC_CHECKING(for syslog in -l$lib)
LIBS="-l$lib $saved_LIBS"
AC_HAVE_FUNCS(syslog)
case "$DEFS" in
-DHAVE_SYSLOG) break ;;
*) ;;
esac
LIBS="$saved_LIBS"

done ;;
esac

Here is a way to write it for version 2:

AC_CHECK_FUNCS([syslog])
if test $ac_cv_func_syslog = no; then
syslog is not in the default libraries. See if it’s in some other.
for lib in bsd socket inet; do

268 Autoconf

AC_CHECK_LIB([$lib], [syslog], [AC_DEFINE([HAVE_SYSLOG])
LIBS="-l$lib $LIBS"; break])

done
fi

If you were working around bugs in AC_DEFINE_UNQUOTED by adding backslashes before
quotes, you need to remove them. It now works predictably, and does not treat quotes
(except back quotes) specially. See Section 7.2 [Setting Output Variables], page 104.

All of the Boolean shell variables set by Autoconf macros now use ‘yes’ for the true
value. Most of them use ‘no’ for false, though for backward compatibility some use the
empty string instead. If you were relying on a shell variable being set to something like 1
or ‘t’ for true, you need to change your tests.

17.5.5 Changed Macro Writing

When defining your own macros, you should now use AC_DEFUN instead of define. AC_DEFUN
automatically calls AC_PROVIDE and ensures that macros called via AC_REQUIRE do not
interrupt other macros, to prevent nested ‘checking...’ messages on the screen. There’s
no actual harm in continuing to use the older way, but it’s less convenient and attractive.
See Section 9.1 [Macro Definitions], page 151.

You probably looked at the macros that came with Autoconf as a guide for how to do
things. It would be a good idea to take a look at the new versions of them, as the style is
somewhat improved and they take advantage of some new features.

If you were doing tricky things with undocumented Autoconf internals (macros, variables,
diversions), check whether you need to change anything to account for changes that have
been made. Perhaps you can even use an officially supported technique in version 2 instead
of kludging. Or perhaps not.

To speed up your locally written feature tests, add caching to them. See whether any of
your tests are of general enough usefulness to encapsulate them into macros that you can
share.

17.6 Upgrading From Version 2.13

The introduction of the previous section (see Section 17.5 [Autoconf 1], page 266) perfectly
suits this section. . .

Autoconf version 2.50 is mostly backward compatible with version 2.13. How-
ever, it introduces better ways to do some things, and doesn’t support some
of the ugly things in version 2.13. So, depending on how sophisticated your
‘configure.ac’ files are, you might have to do some manual work in order
to upgrade to version 2.50. This chapter points out some problems to watch
for when upgrading. Also, perhaps your configure scripts could benefit from
some of the new features in version 2.50; the changes are summarized in the file
‘NEWS’ in the Autoconf distribution.

17.6.1 Changed Quotation

The most important changes are invisible to you: the implementation of most macros have
completely changed. This allowed more factorization of the code, better error messages, a
higher uniformity of the user’s interface etc. Unfortunately, as a side effect, some construct

Chapter 17: Obsolete Constructs 269

which used to (miraculously) work might break starting with Autoconf 2.50. The most
common culprit is bad quotation.

For instance, in the following example, the message is not properly quoted:

AC_INIT
AC_CHECK_HEADERS(foo.h, ,
AC_MSG_ERROR(cannot find foo.h, bailing out))

AC_OUTPUT

Autoconf 2.13 simply ignores it:

$ autoconf-2.13; ./configure --silent

creating cache ./config.cache
configure: error: cannot find foo.h
$

while Autoconf 2.50 produces a broken ‘configure’:

$ autoconf-2.50; ./configure --silent

configure: error: cannot find foo.h
./configure: exit: bad non-numeric arg ‘bailing’
./configure: exit: bad non-numeric arg ‘bailing’
$

The message needs to be quoted, and the AC_MSG_ERROR invocation too!

AC_INIT([Example], [1.0], [bug-example@example.org])
AC_CHECK_HEADERS([foo.h], [],
[AC_MSG_ERROR([cannot find foo.h, bailing out])])

AC_OUTPUT

Many many (and many more) Autoconf macros were lacking proper quotation, including
no less than. . . AC_DEFUN itself!

$ cat configure.in

AC_DEFUN([AC_PROG_INSTALL],
[# My own much better version
])
AC_INIT
AC_PROG_INSTALL
AC_OUTPUT
$ autoconf-2.13

autoconf: Undefined macros:
BUG in Autoconf--please report AC_FD_MSG
BUG in Autoconf--please report AC_EPI
configure.in:1:AC_DEFUN([AC_PROG_INSTALL],
configure.in:5:AC_PROG_INSTALL
$ autoconf-2.50

$

17.6.2 New Macros

While Autoconf was relatively dormant in the late 1990s, Automake provided Autoconf-
like macros for a while. Starting with Autoconf 2.50 in 2001, Autoconf provided versions

270 Autoconf

of these macros, integrated in the AC_ namespace, instead of AM_. But in order to ease the
upgrading via autoupdate, bindings to such AM_ macros are provided.

Unfortunately older versions of Automake (e.g., Automake 1.4) did not quote the names
of these macros. Therefore, when m4 finds something like ‘AC_DEFUN(AM_TYPE_PTRDIFF_T,
...)’ in ‘aclocal.m4’, AM_TYPE_PTRDIFF_T is expanded, replaced with its Autoconf defi-
nition.

Fortunately Autoconf catches pre-AC_INIT expansions, and complains, in its own words:
$ cat configure.ac

AC_INIT([Example], [1.0], [bug-example@example.org])
AM_TYPE_PTRDIFF_T
$ aclocal-1.4

$ autoconf

aclocal.m4:17: error: m4_defn: undefined macro: _m4_divert_diversion
aclocal.m4:17: the top level
autom4te: m4 failed with exit status: 1
$

Modern versions of Automake no longer define most of these macros, and properly quote
the names of the remaining macros. If you must use an old Automake, do not depend upon
macros from Automake as it is simply not its job to provide macros (but the one it requires
itself):

$ cat configure.ac

AC_INIT([Example], [1.0], [bug-example@example.org])
AM_TYPE_PTRDIFF_T
$ rm aclocal.m4

$ autoupdate

autoupdate: ‘configure.ac’ is updated
$ cat configure.ac

AC_INIT([Example], [1.0], [bug-example@example.org])
AC_CHECK_TYPES([ptrdiff_t])
$ aclocal-1.4

$ autoconf

$

17.6.3 Hosts and Cross-Compilation

Based on the experience of compiler writers, and after long public debates, many aspects
of the cross-compilation chain have changed:
− the relationship between the build, host, and target architecture types,
− the command line interface for specifying them to configure,
− the variables defined in configure,
− the enabling of cross-compilation mode.

The relationship between build, host, and target have been cleaned up: the chain of
default is now simply: target defaults to host, host to build, and build to the result of
config.guess. Nevertheless, in order to ease the transition from 2.13 to 2.50, the following

Chapter 17: Obsolete Constructs 271

transition scheme is implemented. Do not rely on it, as it will be completely disabled in a
couple of releases (we cannot keep it, as it proves to cause more problems than it cures).

They all default to the result of running config.guess, unless you specify either
‘--build’ or ‘--host’. In this case, the default becomes the system type you specified. If
you specify both, and they’re different, configure enters cross compilation mode, so it
doesn’t run any tests that require execution.

Hint: if you mean to override the result of config.guess, prefer ‘--build’ over ‘--host’.
In the future, ‘--host’ will not override the name of the build system type. Whenever you
specify ‘--host’, be sure to specify ‘--build’ too.

For backward compatibility, configure accepts a system type as an option by itself.
Such an option overrides the defaults for build, host, and target system types. The following
configure statement configures a cross toolchain that runs on NetBSD/alpha but generates
code for GNU Hurd/sparc, which is also the build platform.

./configure --host=alpha-netbsd sparc-gnu

In Autoconf 2.13 and before, the variables build, host, and target had a different
semantics before and after the invocation of AC_CANONICAL_BUILD etc. Now, the argument
of ‘--build’ is strictly copied into build_alias, and is left empty otherwise. After the
AC_CANONICAL_BUILD, build is set to the canonicalized build type. To ease the transition,
before, its contents is the same as that of build_alias. Do not rely on this broken feature.

For consistency with the backward compatibility scheme exposed above, when ‘--host’
is specified but ‘--build’ isn’t, the build system is assumed to be the same as ‘--host’,
and ‘build_alias’ is set to that value. Eventually, this historically incorrect behavior will
go away.

The former scheme to enable cross-compilation proved to cause more harm than good,
in particular, it used to be triggered too easily, leaving regular end users puzzled in front of
cryptic error messages. configure could even enter cross-compilation mode only because
the compiler was not functional. This is mainly because configure used to try to detect
cross-compilation, instead of waiting for an explicit flag from the user.

Now, configure enters cross-compilation mode if and only if ‘--host’ is passed.
That’s the short documentation. To ease the transition between 2.13 and its successors,

a more complicated scheme is implemented. Do not rely on the following, as it will be
removed in the near future.

If you specify ‘--host’, but not ‘--build’, when configure performs the first compiler
test it tries to run an executable produced by the compiler. If the execution fails, it enters
cross-compilation mode. This is fragile. Moreover, by the time the compiler test is per-
formed, it may be too late to modify the build-system type: other tests may have already
been performed. Therefore, whenever you specify ‘--host’, be sure to specify ‘--build’
too.

./configure --build=i686-pc-linux-gnu --host=m68k-coff

enters cross-compilation mode. The former interface, which consisted in setting the compiler
to a cross-compiler without informing configure is obsolete. For instance, configure fails
if it can’t run the code generated by the specified compiler if you configure as follows:

272 Autoconf

./configure CC=m68k-coff-gcc

17.6.4 AC_LIBOBJ vs. LIBOBJS

Up to Autoconf 2.13, the replacement of functions was triggered via the variable LIBOBJS.
Since Autoconf 2.50, the macro AC_LIBOBJ should be used instead (see Section 5.5.3 [Generic
Functions], page 57). Starting at Autoconf 2.53, the use of LIBOBJS is an error.

This change is mandated by the unification of the GNU Build System components. In
particular, the various fragile techniques used to parse a ‘configure.ac’ are all replaced
with the use of traces. As a consequence, any action must be traceable, which obsoletes
critical variable assignments. Fortunately, LIBOBJS was the only problem, and it can even
be handled gracefully (read, “without your having to change something”).

There were two typical uses of LIBOBJS: asking for a replacement function, and adjusting
LIBOBJS for Automake and/or Libtool.

As for function replacement, the fix is immediate: use AC_LIBOBJ. For instance:

LIBOBJS="$LIBOBJS fnmatch.o"
LIBOBJS="$LIBOBJS malloc.$ac_objext"

should be replaced with:

AC_LIBOBJ([fnmatch])
AC_LIBOBJ([malloc])

When used with Automake 1.10 or newer, a suitable value for LIBOBJDIR is set so that
the LIBOBJS and LTLIBOBJS can be referenced from any ‘Makefile.am’. Even without
Automake, arranging for LIBOBJDIR to be set correctly enables referencing LIBOBJS and
LTLIBOBJS in another directory. The LIBOBJDIR feature is experimental.

17.6.5 AC_FOO_IFELSE vs. AC_TRY_FOO

Since Autoconf 2.50, internal codes uses AC_PREPROC_IFELSE, AC_COMPILE_IFELSE, AC_
LINK_IFELSE, and AC_RUN_IFELSE on one hand and AC_LANG_SOURCES, and AC_LANG_
PROGRAM on the other hand instead of the deprecated AC_TRY_CPP, AC_TRY_COMPILE, AC_
TRY_LINK, and AC_TRY_RUN. The motivations where:

− a more consistent interface: AC_TRY_COMPILE etc. were double quoting their arguments;
− the combinatoric explosion is solved by decomposing on the one hand the generation

of sources, and on the other hand executing the program;
− this scheme helps supporting more languages than plain C and C++.

In addition to the change of syntax, the philosophy has changed too: while emphasis
was put on speed at the expense of accuracy, today’s Autoconf promotes accuracy of the
testing framework at, ahem. . . , the expense of speed.

As a perfect example of what is not to be done, here is how to find out whether a header
file contains a particular declaration, such as a typedef, a structure, a structure member,
or a function. Use AC_EGREP_HEADER instead of running grep directly on the header file;
on some systems the symbol might be defined in another header file that the file you are
checking includes.

Chapter 17: Obsolete Constructs 273

As a (bad) example, here is how you should not check for C preprocessor symbols, either
defined by header files or predefined by the C preprocessor: using AC_EGREP_CPP:

AC_EGREP_CPP(yes,
[#ifdef _AIX
yes

#endif
], is_aix=yes, is_aix=no)

The above example, properly written would (i) use AC_LANG_PROGRAM, and (ii) run the
compiler:

AC_COMPILE_IFELSE([AC_LANG_PROGRAM(
[[#ifndef _AIX
error: This isn’t AIX!
#endif
]])],

[is_aix=yes],
[is_aix=no])

274 Autoconf

Chapter 18: Generating Test Suites with Autotest 275

18 Generating Test Suites with Autotest

N.B.: This section describes an experimental feature which will
be part of Autoconf in a forthcoming release. Although we believe
Autotest is stabilizing, this documentation describes an interface which
might change in the future: do not depend upon Autotest without
subscribing to the Autoconf mailing lists.

It is paradoxical that portable projects depend on nonportable tools to run their test
suite. Autoconf by itself is the paragon of this problem: although it aims at perfectly
portability, up to 2.13 its test suite was using DejaGNU, a rich and complex testing frame-
work, but which is far from being standard on Posix systems. Worse yet, it was likely to
be missing on the most fragile platforms, the very platforms that are most likely to torture
Autoconf and exhibit deficiencies.

To circumvent this problem, many package maintainers have developed their own testing
framework, based on simple shell scripts whose sole outputs are exit status values describing
whether the test succeeded. Most of these tests share common patterns, and this can result
in lots of duplicated code and tedious maintenance.

Following exactly the same reasoning that yielded to the inception of Autoconf, Autotest
provides a test suite generation framework, based on M4 macros building a portable shell
script. The suite itself is equipped with automatic logging and tracing facilities which
greatly diminish the interaction with bug reporters, and simple timing reports.

Autoconf itself has been using Autotest for years, and we do attest that it has consider-
ably improved the strength of the test suite and the quality of bug reports. Other projects
are known to use some generation of Autotest, such as Bison, Free Recode, Free Wdiff, GNU
Tar, each of them with different needs, and this usage has validated Autotest as a general
testing framework.

Nonetheless, compared to DejaGNU, Autotest is inadequate for interactive tool testing,
which is probably its main limitation.

18.1 Using an Autotest Test Suite

18.1.1 testsuite Scripts

Generating testing or validation suites using Autotest is rather easy. The whole validation
suite is held in a file to be processed through autom4te, itself using GNU M4 under the
scene, to produce a stand-alone Bourne shell script which then gets distributed. Neither
autom4te nor GNU M4 are needed at the installer’s end.

Each test of the validation suite should be part of some test group. A test group is a
sequence of interwoven tests that ought to be executed together, usually because one test
in the group creates data files than a later test in the same group needs to read. Complex
test groups make later debugging more tedious. It is much better to keep only a few tests
per test group. Ideally there is only one test per test group.

For all but the simplest packages, some file such as ‘testsuite.at’ does not fully hold all
test sources, as these are often easier to maintain in separate files. Each of these separate
files holds a single test group, or a sequence of test groups all addressing some common
functionality in the package. In such cases, ‘testsuite.at’ merely initializes the validation

276 Autoconf

suite, and sometimes does elementary health checking, before listing include statements
for all other test files. The special file ‘package.m4’, containing the identification of the
package, is automatically included if found.

A convenient alternative consists in moving all the global issues (local Autotest macros,
elementary health checking, and AT_INIT invocation) into the file local.at, and making
‘testsuite.at’ be a simple list of m4_include of sub test suites. In such case, generating
the whole test suite or pieces of it is only a matter of choosing the autom4te command line
arguments.

The validation scripts that Autotest produces are by convention called testsuite. When
run, testsuite executes each test group in turn, producing only one summary line per test
to say if that particular test succeeded or failed. At end of all tests, summarizing counters
get printed. One debugging directory is left for each test group which failed, if any: such
directories are named ‘testsuite.dir/nn ’, where nn is the sequence number of the test
group, and they include:
• a debugging script named ‘run’ which reruns the test in debug mode (see Section 18.3

[testsuite Invocation], page 279). The automatic generation of debugging scripts has
the purpose of easing the chase for bugs.

• all the files created with AT_DATA

• a log of the run, named ‘testsuite.log’

In the ideal situation, none of the tests fail, and consequently no debugging directory is
left behind for validation.

It often happens in practice that individual tests in the validation suite need to get
information coming out of the configuration process. Some of this information, common
for all validation suites, is provided through the file ‘atconfig’, automatically created
by AC_CONFIG_TESTDIR. For configuration informations which your testing environment
specifically needs, you might prepare an optional file named ‘atlocal.in’, instantiated
by AC_CONFIG_FILES. The configuration process produces ‘atconfig’ and ‘atlocal’ out of
these two input files, and these two produced files are automatically read by the ‘testsuite’
script.

Here is a diagram showing the relationship between files.
Files used in preparing a software package for distribution:

[package.m4] -->.
\

subfile-1.at ->. [local.at] ---->+
... \ \

subfile-i.at ---->-- testsuite.at -->-- autom4te* -->testsuite
... /

subfile-n.at ->’

Files used in configuring a software package:
.--> atconfig
/

[atlocal.in] --> config.status* --<
\
‘--> [atlocal]

Chapter 18: Generating Test Suites with Autotest 277

Files created during the test suite execution:
atconfig -->. .--> testsuite.log

\ /
>-- testsuite* --<
/ \

[atlocal] ->’ ‘--> [testsuite.dir]

18.1.2 Autotest Logs

When run, the test suite creates a log file named after itself, e.g., a test suite named
testsuite creates ‘testsuite.log’. It contains a lot of information, usually more than
maintainers actually need, but therefore most of the time it contains all that is needed:

command line arguments
A bad but unfortunately widespread habit consists of setting environment vari-
ables before the command, such as in ‘CC=my-home-grown-cc ./testsuite’.
The test suite does not know this change, hence (i) it cannot report it to you,
and (ii) it cannot preserve the value of CC for subsequent runs. Autoconf faced
exactly the same problem, and solved it by asking users to pass the variable
definitions as command line arguments. Autotest requires this rule, too, but
has no means to enforce it; the log then contains a trace of the variables that
were changed by the user.

‘ChangeLog’ excerpts
The topmost lines of all the ‘ChangeLog’ files found in the source hierarchy.
This is especially useful when bugs are reported against development versions
of the package, since the version string does not provide sufficient information
to know the exact state of the sources the user compiled. Of course, this relies
on the use of a ‘ChangeLog’.

build machine
Running a test suite in a cross-compile environment is not an easy task, since
it would mean having the test suite run on a machine build, while running
programs on a machine host. It is much simpler to run both the test suite and
the programs on host, but then, from the point of view of the test suite, there
remains a single environment, host = build. The log contains relevant informa-
tion on the state of the build machine, including some important environment
variables.

tested programs
The absolute file name and answers to ‘--version’ of the tested programs (see
Section 18.2 [Writing Testsuites], page 277, AT_TESTED).

configuration log
The contents of ‘config.log’, as created by configure, are appended. It
contains the configuration flags and a detailed report on the configuration itself.

18.2 Writing ‘testsuite.at’

The ‘testsuite.at’ is a Bourne shell script making use of special Autotest M4 macros. It
often contains a call to AT_INIT near its beginning followed by one call to m4_include per

278 Autoconf

source file for tests. Each such included file, or the remainder of ‘testsuite.at’ if include
files are not used, contain a sequence of test groups. Each test group begins with a call
to AT_SETUP, then an arbitrary number of shell commands or calls to AT_CHECK, and then
completes with a call to AT_CLEANUP. Multiple test groups can be categorized by a call to
AT_BANNER.

[Macro]AT_INIT ([name])
Initialize Autotest. Giving a name to the test suite is encouraged if your package
includes several test suites. In any case, the test suite always displays the package
name and version. It also inherits the package bug report address.

[Macro]AT_COPYRIGHT (copyright-notice)
State that, in addition to the Free Software Foundation’s copyright on the Autotest
macros, parts of your test suite are covered by copyright-notice.
The copyright-notice shows up in both the head of testsuite and in ‘testsuite
--version’.

[Macro]AT_TESTED (executables)
Log the file name and answer to ‘--version’ of each program in space-separated list
executables. Several invocations register new executables, in other words, don’t fear
registering one program several times.

Autotest test suites rely on PATH to find the tested program. This avoids the need to
generate absolute names of the various tools, and makes it possible to test installed pro-
grams. Therefore, knowing which programs are being exercised is crucial to understanding
problems in the test suite itself, or its occasional misuses. It is a good idea to also subscribe
foreign programs you depend upon, to avoid incompatible diagnostics.

[Macro]AT_BANNER (test-category-name)
This macro identifies the start of a category of related test groups. When the resulting
‘testsuite’ is invoked with more than one test group to run, its output will include
a banner containing test-category-name prior to any tests run from that category.
The banner should be no more than about 40 or 50 characters. A blank banner will
not print, effectively ending a category and letting subsequent test groups behave as
though they are uncategorized when run in isolation.

[Macro]AT_SETUP (test-group-name)
This macro starts a group of related tests, all to be executed in the same subshell.
It accepts a single argument, which holds a few words (no more than about 30 or
40 characters) quickly describing the purpose of the test group being started. test-
group-name must not expand to unbalanced quotes, although quadrigraphs can be
used.

[Macro]AT_KEYWORDS (keywords)
Associate the space-separated list of keywords to the enclosing test group. This
makes it possible to run “slices” of the test suite. For instance, if some of your
test groups exercise some ‘foo’ feature, then using ‘AT_KEYWORDS(foo)’ lets you run
‘./testsuite -k foo’ to run exclusively these test groups. The title of the test group
is automatically recorded to AT_KEYWORDS.

Chapter 18: Generating Test Suites with Autotest 279

Several invocations within a test group accumulate new keywords. In other words,
don’t fear registering the same keyword several times in a test group.

[Macro]AT_CAPTURE_FILE (file)
If the current test group fails, log the contents of file. Several identical calls within
one test group have no additional effect.

[Macro]AT_XFAIL_IF (shell-condition)
Determine whether the test is expected to fail because it is a known bug (for unsup-
ported features, you should skip the test). shell-condition is a shell expression such as
a test command; you can instantiate this macro many times from within the same
test group, and one of the conditions is enough to turn the test into an expected
failure.

[Macro]AT_CLEANUP
End the current test group.

[Macro]AT_DATA (file, contents)
Initialize an input data file with given contents. Of course, the contents have to
be properly quoted between square brackets to protect against included commas or
spurious M4 expansion. The contents must end with an end of line. file must be a
single shell word that expands into a single file name.

[Macro]AT_CHECK (commands, [status = ‘0’], [stdout = ‘’], [stderr = ‘’],
[run-if-fail], [run-if-pass])

Execute a test by performing given shell commands. These commands should nor-
mally exit with status, while producing expected stdout and stderr contents. If com-
mands exit with status 77, then the whole test group is skipped. Otherwise, if this
test fails, run shell commands run-if-fail or, if this test passes, run shell commands
run-if-pass.
This macro must be invoked in between AT_SETUP and AT_CLEANUP.
If status, or stdout, or stderr is ‘ignore’, then the corresponding value is not checked.
The special value ‘expout’ for stdout means the expected output of the commands
is the content of the file ‘expout’. If stdout is ‘stdout’, then the standard output of
the commands is available for further tests in the file ‘stdout’. Similarly for stderr
with ‘experr’ and ‘stderr’.

18.3 Running testsuite Scripts

Autotest test suites support the following arguments:

‘--help’
‘-h’ Display the list of options and exit successfully.

‘--version’
‘-V’ Display the version of the test suite and exit successfully.

‘--directory=dir ’
‘-C dir ’ Change the current directory to dir before creating any files. Useful for running

the testsuite in a subdirectory from a top-level Makefile.

280 Autoconf

‘--clean’
‘-c’ Remove all the files the test suite might have created and exit. Meant for clean

Make targets.

‘--list’
‘-l’ List all the tests (or only the selection), including their possible keywords.

By default all tests are performed (or described with ‘--list’) in the default environment
first silently, then verbosely, but the environment, set of tests, and verbosity level can be
tuned:

‘variable=value ’
Set the environment variable to value. Use this rather than ‘FOO=foo
./testsuite’ as debugging scripts would then run in a different environment.
The variable AUTOTEST_PATH specifies the testing path to prepend to PATH. Rel-
ative directory names (not starting with ‘/’) are considered to be relative to
the top level of the package being built. All directories are made absolute, first
starting from the top level build tree, then from the source tree. For instance
‘./testsuite AUTOTEST_PATH=tests:bin’ for a ‘/src/foo-1.0’ source pack-
age built in ‘/tmp/foo’ results in ‘/tmp/foo/tests:/tmp/foo/bin’ and then
‘/src/foo-1.0/tests:/src/foo-1.0/bin’ being prepended to PATH.

‘number ’
‘number-number ’
‘number-’
‘-number ’ Add the corresponding test groups, with obvious semantics, to the selection.

‘--keywords=keywords ’
‘-k keywords ’

Add to the selection the test groups with title or keywords (arguments to AT_
SETUP or AT_KEYWORDS) that match all keywords of the comma separated list
keywords, case-insensitively. Use ‘!’ immediately before the keyword to invert
the selection for this keyword. By default, the keywords match whole words;
enclose them in ‘.*’ to also match parts of words.
For example, running

./testsuite -k ’autoupdate,.*FUNC.*’

selects all tests tagged ‘autoupdate’ and with tags containing ‘FUNC’ (as in
‘AC_CHECK_FUNC’, ‘AC_FUNC_ALLOCA’, etc.), while

./testsuite -k ’!autoupdate’ -k ’.*FUNC.*’

selects all tests not tagged ‘autoupdate’ or with tags containing ‘FUNC’.

‘--errexit’
‘-e’ If any test fails, immediately abort testing. It implies ‘--debug’: post test

group clean up, and top-level logging are inhibited. This option is meant for
the full test suite, it is not really useful for generated debugging scripts.

‘--verbose’
‘-v’ Force more verbosity in the detailed output of what is being done. This is the

default for debugging scripts.

Chapter 18: Generating Test Suites with Autotest 281

‘--debug’
‘-d’ Do not remove the files after a test group was performed —but they are still

removed before, therefore using this option is sane when running several test
groups. Create debugging scripts. Do not overwrite the top-level log (in order
to preserve supposedly existing full log file). This is the default for debugging
scripts, but it can also be useful to debug the testsuite itself.

‘--trace’
‘-x’ Trigger shell tracing of the test groups.

18.4 Making testsuite Scripts

For putting Autotest into movement, you need some configuration and makefile machinery.
We recommend, at least if your package uses deep or shallow hierarchies, that you use
‘tests/’ as the name of the directory holding all your tests and their makefile. Here is a
check list of things to do.
− Make sure to create the file ‘package.m4’, which defines the identity of the package.

It must define AT_PACKAGE_STRING, the full signature of the package, and AT_PACKAGE_
BUGREPORT, the address to which bug reports should be sent. For sake of complete-
ness, we suggest that you also define AT_PACKAGE_NAME, AT_PACKAGE_TARNAME, and
AT_PACKAGE_VERSION. See Section 4.1 [Initializing configure], page 17, for a descrip-
tion of these variables. We suggest the following makefile excerpt:

The ‘:;’ works around a Bash 3.2 bug when the output is not writeable.

$(srcdir)/package.m4: $(top_srcdir)/configure.ac

:;{ \

echo ’# Signature of the current package.’ && \

echo ’m4_define([AT_PACKAGE_NAME], [@PACKAGE_NAME@])’ && \

echo ’m4_define([AT_PACKAGE_TARNAME], [@PACKAGE_TARNAME@])’ && \

echo ’m4_define([AT_PACKAGE_VERSION], [@PACKAGE_VERSION@])’ && \

echo ’m4_define([AT_PACKAGE_STRING], [@PACKAGE_STRING@])’ && \

echo ’m4_define([AT_PACKAGE_BUGREPORT], [@PACKAGE_BUGREPORT@])’; \

} >’$(srcdir)/package.m4’

Be sure to distribute ‘package.m4’ and to put it into the source hierarchy: the test
suite ought to be shipped!

− Invoke AC_CONFIG_TESTDIR.

[Macro]AC_CONFIG_TESTDIR (directory, [test-path = ‘directory’])
An Autotest test suite is to be configured in directory. This macro requires the in-
stantiation of ‘directory/atconfig’ from ‘directory/atconfig.in’, and sets
the default AUTOTEST_PATH to test-path (see Section 18.3 [testsuite Invocation],
page 279).

− Still within ‘configure.ac’, as appropriate, ensure that some AC_CONFIG_FILES com-
mand includes substitution for ‘tests/atlocal’.

− The ‘tests/Makefile.in’ should be modified so the validation in your package is
triggered by ‘make check’. An example is provided below.

With Automake, here is a minimal example about how to link ‘make check’ with a
validation suite.

EXTRA_DIST = testsuite.at $(TESTSUITE) atlocal.in

282 Autoconf

TESTSUITE = $(srcdir)/testsuite

check-local: atconfig atlocal $(TESTSUITE)
$(SHELL) ’$(TESTSUITE)’ $(TESTSUITEFLAGS)

installcheck-local: atconfig atlocal $(TESTSUITE)
$(SHELL) ’$(TESTSUITE)’ AUTOTEST_PATH=’$(bindir)’ \
$(TESTSUITEFLAGS)

clean-local:
test ! -f ’$(TESTSUITE)’ || \
$(SHELL) ’$(TESTSUITE)’ --clean

AUTOTEST = $(AUTOM4TE) --language=autotest
$(TESTSUITE): $(srcdir)/testsuite.at

$(AUTOTEST) -I ’$(srcdir)’ -o $@.tmp $@.at
mv $@.tmp $@

You might want to list explicitly the dependencies, i.e., the list of the files ‘testsuite.at’
includes.

If you don’t use Automake, you might need to add lines inspired from the following:
subdir = tests

atconfig: $(top_builddir)/config.status
cd $(top_builddir) && \

$(SHELL) ./config.status $(subdir)/$@

atlocal: $(srcdir)/atlocal.in $(top_builddir)/config.status
cd $(top_builddir) && \

$(SHELL) ./config.status $(subdir)/$@

and manage to have $(EXTRA_DIST) distributed.
If you use Automake, however, you don’t need to add a rule to generate ‘atlocal’.
With all this in place, and if you have not initialized ‘TESTSUITEFLAGS’ within your

makefile, you can fine-tune test suite execution with this variable, for example:
make check TESTSUITEFLAGS=’-v -d -x 75 -k AC_PROG_CC CFLAGS=-g’

Chapter 19: Frequent Autoconf Questions, with answers 283

19 Frequent Autoconf Questions, with answers

Several questions about Autoconf come up occasionally. Here some of them are addressed.

19.1 Distributing configure Scripts

What are the restrictions on distributing configure
scripts that Autoconf generates? How does that affect my
programs that use them?

There are no restrictions on how the configuration scripts that Autoconf produces may
be distributed or used. In Autoconf version 1, they were covered by the GNU General Public
License. We still encourage software authors to distribute their work under terms like those
of the GPL, but doing so is not required to use Autoconf.

Of the other files that might be used with configure, ‘config.h.in’ is under whatever
copyright you use for your ‘configure.ac’. ‘config.sub’ and ‘config.guess’ have an
exception to the GPL when they are used with an Autoconf-generated configure script,
which permits you to distribute them under the same terms as the rest of your package.
‘install-sh’ is from the X Consortium and is not copyrighted.

19.2 Why Require GNU M4?

Why does Autoconf require GNU M4?

Many M4 implementations have hard-coded limitations on the size and number of macros
that Autoconf exceeds. They also lack several builtin macros that it would be difficult to
get along without in a sophisticated application like Autoconf, including:

m4_builtin
m4_indir
m4_bpatsubst
__file__
__line__

Autoconf requires version 1.4.5 or later of GNU M4.

Since only software maintainers need to use Autoconf, and since GNU M4 is simple to
configure and install, it seems reasonable to require GNU M4 to be installed also. Many
maintainers of GNU and other free software already have most of the GNU utilities installed,
since they prefer them.

19.3 How Can I Bootstrap?

If Autoconf requires GNU M4 and GNU M4 has an Autoconf
configure script, how do I bootstrap? It seems like a chicken
and egg problem!

This is a misunderstanding. Although GNU M4 does come with a configure script
produced by Autoconf, Autoconf is not required in order to run the script and install GNU
M4. Autoconf is only required if you want to change the M4 configure script, which few
people have to do (mainly its maintainer).

284 Autoconf

19.4 Why Not Imake?

Why not use Imake instead of configure scripts?
Several people have written addressing this question, so I include adaptations of their

explanations here.
The following answer is based on one written by Richard Pixley:

Autoconf generated scripts frequently work on machines that it has never been
set up to handle before. That is, it does a good job of inferring a configuration
for a new system. Imake cannot do this.
Imake uses a common database of host specific data. For X11, this makes sense
because the distribution is made as a collection of tools, by one central authority
who has control over the database.
GNU tools are not released this way. Each GNU tool has a maintainer; these
maintainers are scattered across the world. Using a common database would be
a maintenance nightmare. Autoconf may appear to be this kind of database,
but in fact it is not. Instead of listing host dependencies, it lists program
requirements.
If you view the GNU suite as a collection of native tools, then the problems
are similar. But the GNU development tools can be configured as cross tools in
almost any host+target permutation. All of these configurations can be installed
concurrently. They can even be configured to share host independent files across
hosts. Imake doesn’t address these issues.
Imake templates are a form of standardization. The GNU coding standards
address the same issues without necessarily imposing the same restrictions.

Here is some further explanation, written by Per Bothner:
One of the advantages of Imake is that it easy to generate large makefiles
using the ‘#include’ and macro mechanisms of cpp. However, cpp is not pro-
grammable: it has limited conditional facilities, and no looping. And cpp
cannot inspect its environment.
All of these problems are solved by using sh instead of cpp. The shell is fully pro-
grammable, has macro substitution, can execute (or source) other shell scripts,
and can inspect its environment.

Paul Eggert elaborates more:
With Autoconf, installers need not assume that Imake itself is already installed
and working well. This may not seem like much of an advantage to people
who are accustomed to Imake. But on many hosts Imake is not installed or the
default installation is not working well, and requiring Imake to install a package
hinders the acceptance of that package on those hosts. For example, the Imake
template and configuration files might not be installed properly on a host, or
the Imake build procedure might wrongly assume that all source files are in
one big directory tree, or the Imake configuration might assume one compiler
whereas the package or the installer needs to use another, or there might be a
version mismatch between the Imake expected by the package and the Imake
supported by the host. These problems are much rarer with Autoconf, where
each package comes with its own independent configuration processor.

Chapter 19: Frequent Autoconf Questions, with answers 285

Also, Imake often suffers from unexpected interactions between make and the
installer’s C preprocessor. The fundamental problem here is that the C pre-
processor was designed to preprocess C programs, not makefiles. This is much
less of a problem with Autoconf, which uses the general-purpose preproces-
sor M4, and where the package’s author (rather than the installer) does the
preprocessing in a standard way.

Finally, Mark Eichin notes:
Imake isn’t all that extensible, either. In order to add new features to Imake,
you need to provide your own project template, and duplicate most of the
features of the existing one. This means that for a sophisticated project, using
the vendor-provided Imake templates fails to provide any leverage—since they
don’t cover anything that your own project needs (unless it is an X11 program).
On the other side, though:
The one advantage that Imake has over configure: ‘Imakefile’ files tend to
be much shorter (likewise, less redundant) than ‘Makefile.in’ files. There is a
fix to this, however—at least for the Kerberos V5 tree, we’ve modified things
to call in common ‘post.in’ and ‘pre.in’ makefile fragments for the entire
tree. This means that a lot of common things don’t have to be duplicated, even
though they normally are in configure setups.

19.5 How Do I #define Installation Directories?

My program needs library files, installed in datadir and
similar. If I use

AC_DEFINE_UNQUOTED([DATADIR], [$datadir],
[Define to the read-only architecture-independent
data directory.])

I get

#define DATADIR "${prefix}/share"

As already explained, this behavior is on purpose, mandated by the GNU Coding Stan-
dards, see Section 4.8.2 [Installation Directory Variables], page 26. There are several means
to achieve a similar goal:
− Do not use AC_DEFINE but use your makefile to pass the actual value of datadir via

compilation flags. See Section 4.8.2 [Installation Directory Variables], page 26, for the
details.

− This solution can be simplified when compiling a program: you may either extend the
CPPFLAGS:

CPPFLAGS = -DDATADIR=’"$(datadir)"’ @CPPFLAGS@

If you are using Automake, you should use AM_CPPFLAGS instead:
AM_CPPFLAGS = -DDATADIR=’"$(datadir)"’

Alternatively, create a dedicated header file:

286 Autoconf

DISTCLEANFILES = myprog-paths.h
myprog-paths.h: Makefile

echo ’#define DATADIR "$(datadir)"’ >$@

− Use AC_DEFINE but have configure compute the literal value of datadir and others.
Many people have wrapped macros to automate this task; for an example, see the
macro AC_DEFINE_DIR from the Autoconf Macro Archive.

This solution does not conform to the GNU Coding Standards.

− Note that all the previous solutions hard wire the absolute name of these directories
in the executables, which is not a good property. You may try to compute the names
relative to prefix, and try to find prefix at runtime, this way your package is relo-
catable.

19.6 What is ‘autom4te.cache’?

What is this directory ‘autom4te.cache’? Can I safely remove it?

In the GNU Build System, ‘configure.ac’ plays a central role and is read by many tools:
autoconf to create ‘configure’, autoheader to create ‘config.h.in’, automake to create
‘Makefile.in’, autoscan to check the completeness of ‘configure.ac’, autoreconf to
check the GNU Build System components that are used. To “read ‘configure.ac’” actually
means to compile it with M4, which can be a long process for complex ‘configure.ac’.

This is why all these tools, instead of running directly M4, invoke autom4te (see Sec-
tion 8.2.1 [autom4te Invocation], page 121) which, while answering to a specific demand,
stores additional information in ‘autom4te.cache’ for future runs. For instance, if you run
autoconf, behind the scenes, autom4te also stores information for the other tools, so that
when you invoke autoheader or automake etc., reprocessing ‘configure.ac’ is not needed.
The speed up is frequently 30%, and is increasing with the size of ‘configure.ac’.

But it is and remains being simply a cache: you can safely remove it.

Can I permanently get rid of it?

The creation of this cache can be disabled from ‘~/.autom4te.cfg’, see Section 8.2.2
[Customizing autom4te], page 125, for more details. You should be aware that disabling the
cache slows down the Autoconf test suite by 40%. The more GNU Build System components
are used, the more the cache is useful; for instance running ‘autoreconf -f’ on the Core
Utilities is twice slower without the cache although ‘--force’ implies that the cache is not
fully exploited, and eight times slower than without ‘--force’.

19.7 Header Present But Cannot Be Compiled

The most important guideline to bear in mind when checking for features is to mimic
as much as possible the intended use. Unfortunately, old versions of AC_CHECK_HEADER
and AC_CHECK_HEADERS failed to follow this idea, and called the preprocessor, instead of
the compiler, to check for headers. As a result, incompatibilities between headers went
unnoticed during configuration, and maintainers finally had to deal with this issue elsewhere.

As of Autoconf 2.56 both checks are performed, and configure complains loudly if the
compiler and the preprocessor do not agree. For the time being the result used is that of the

http://penalty z@ autoconf-archivepenalty z@ .cryp.to/

Chapter 19: Frequent Autoconf Questions, with answers 287

preprocessor, to give maintainers time to adjust their ‘configure.ac’, but in the future,
only the compiler will be considered.

Consider the following example:
$ cat number.h

typedef int number;

$ cat pi.h

const number pi = 3;

$ cat configure.ac

AC_INIT([Example], [1.0], [bug-example@example.org])

AC_CHECK_HEADERS([pi.h])

$ autoconf -Wall

$./configure

checking for gcc... gcc

checking for C compiler default output file name... a.out

checking whether the C compiler works... yes

checking whether we are cross compiling... no

checking for suffix of executables...

checking for suffix of object files... o

checking whether we are using the GNU C compiler... yes

checking whether gcc accepts -g... yes

checking for gcc option to accept ISO C89... none needed

checking how to run the C preprocessor... gcc -E

checking for grep that handles long lines and -e... grep

checking for egrep... grep -E

checking for ANSI C header files... yes

checking for sys/types.h... yes

checking for sys/stat.h... yes

checking for stdlib.h... yes

checking for string.h... yes

checking for memory.h... yes

checking for strings.h... yes

checking for inttypes.h... yes

checking for stdint.h... yes

checking for unistd.h... yes

checking pi.h usability... no

checking pi.h presence... yes

configure: WARNING: pi.h: present but cannot be compiled

configure: WARNING: pi.h: check for missing prerequisite headers?

configure: WARNING: pi.h: see the Autoconf documentation

configure: WARNING: pi.h: section "Present But Cannot Be Compiled"

configure: WARNING: pi.h: proceeding with the preprocessor’s result

configure: WARNING: pi.h: in the future, the compiler will take precedence

configure: WARNING: ## -------------------------------------- ##

configure: WARNING: ## Report this to bug-example@example.org ##

configure: WARNING: ## -------------------------------------- ##

checking for pi.h... yes

The proper way the handle this case is using the fourth argument (see Section 5.6.3 [Generic
Headers], page 65):

$ cat configure.ac

AC_INIT([Example], [1.0], [bug-example@example.org])
AC_CHECK_HEADERS([number.h pi.h], [], [],
[[#ifdef HAVE_NUMBER_H
include <number.h>
#endif
]])

288 Autoconf

$ autoconf -Wall

$./configure

checking for gcc... gcc
checking for C compiler default output... a.out
checking whether the C compiler works... yes
checking whether we are cross compiling... no
checking for suffix of executables...
checking for suffix of object files... o
checking whether we are using the GNU C compiler... yes
checking whether gcc accepts -g... yes
checking for gcc option to accept ANSI C... none needed
checking for number.h... yes
checking for pi.h... yes

See Section 5.6.2 [Particular Headers], page 60, for a list of headers with their prerequi-
site.

Chapter 20: History of Autoconf 289

20 History of Autoconf

You may be wondering, Why was Autoconf originally written? How did it get into its
present form? (Why does it look like gorilla spit?) If you’re not wondering, then this
chapter contains no information useful to you, and you might as well skip it. If you are
wondering, then let there be light. . .

20.1 Genesis

In June 1991 I was maintaining many of the GNU utilities for the Free Software Foundation.
As they were ported to more platforms and more programs were added, the number of ‘-D’
options that users had to select in the makefile (around 20) became burdensome. Especially
for me—I had to test each new release on a bunch of different systems. So I wrote a little
shell script to guess some of the correct settings for the fileutils package, and released it
as part of fileutils 2.0. That configure script worked well enough that the next month
I adapted it (by hand) to create similar configure scripts for several other GNU utilities
packages. Brian Berliner also adapted one of my scripts for his CVS revision control system.

Later that summer, I learned that Richard Stallman and Richard Pixley were developing
similar scripts to use in the GNU compiler tools; so I adapted my configure scripts to
support their evolving interface: using the file name ‘Makefile.in’ as the templates; adding
‘+srcdir’, the first option (of many); and creating ‘config.status’ files.

20.2 Exodus

As I got feedback from users, I incorporated many improvements, using Emacs to search
and replace, cut and paste, similar changes in each of the scripts. As I adapted more GNU
utilities packages to use configure scripts, updating them all by hand became impractical.
Rich Murphey, the maintainer of the GNU graphics utilities, sent me mail saying that the
configure scripts were great, and asking if I had a tool for generating them that I could
send him. No, I thought, but I should! So I started to work out how to generate them.
And the journey from the slavery of hand-written configure scripts to the abundance and
ease of Autoconf began.

Cygnus configure, which was being developed at around that time, is table driven;
it is meant to deal mainly with a discrete number of system types with a small number
of mainly unguessable features (such as details of the object file format). The automatic
configuration system that Brian Fox had developed for Bash takes a similar approach. For
general use, it seems to me a hopeless cause to try to maintain an up-to-date database of
which features each variant of each operating system has. It’s easier and more reliable to
check for most features on the fly—especially on hybrid systems that people have hacked
on locally or that have patches from vendors installed.

I considered using an architecture similar to that of Cygnus configure, where there
is a single configure script that reads pieces of ‘configure.in’ when run. But I didn’t
want to have to distribute all of the feature tests with every package, so I settled on having
a different configure made from each ‘configure.in’ by a preprocessor. That approach
also offered more control and flexibility.

I looked briefly into using the Metaconfig package, by Larry Wall, Harlan Stenn, and
Raphael Manfredi, but I decided not to for several reasons. The Configure scripts it

290 Autoconf

produces are interactive, which I find quite inconvenient; I didn’t like the ways it checked
for some features (such as library functions); I didn’t know that it was still being maintained,
and the Configure scripts I had seen didn’t work on many modern systems (such as System
V R4 and NeXT); it wasn’t flexible in what it could do in response to a feature’s presence
or absence; I found it confusing to learn; and it was too big and complex for my needs (I
didn’t realize then how much Autoconf would eventually have to grow).

I considered using Perl to generate my style of configure scripts, but decided that M4
was better suited to the job of simple textual substitutions: it gets in the way less, because
output is implicit. Plus, everyone already has it. (Initially I didn’t rely on the GNU
extensions to M4.) Also, some of my friends at the University of Maryland had recently
been putting M4 front ends on several programs, including tvtwm, and I was interested in
trying out a new language.

20.3 Leviticus

Since my configure scripts determine the system’s capabilities automatically, with no
interactive user intervention, I decided to call the program that generates them Autoconfig.
But with a version number tacked on, that name would be too long for old Unix file systems,
so I shortened it to Autoconf.

In the fall of 1991 I called together a group of fellow questers after the Holy Grail of
portability (er, that is, alpha testers) to give me feedback as I encapsulated pieces of my
handwritten scripts in M4 macros and continued to add features and improve the techniques
used in the checks. Prominent among the testers were François Pinard, who came up with
the idea of making an Autoconf shell script to run M4 and check for unresolved macro calls;
Richard Pixley, who suggested running the compiler instead of searching the file system to
find include files and symbols, for more accurate results; Karl Berry, who got Autoconf to
configure TEX and added the macro index to the documentation; and Ian Lance Taylor,
who added support for creating a C header file as an alternative to putting ‘-D’ options in
a makefile, so he could use Autoconf for his UUCP package. The alpha testers cheerfully
adjusted their files again and again as the names and calling conventions of the Autoconf
macros changed from release to release. They all contributed many specific checks, great
ideas, and bug fixes.

20.4 Numbers

In July 1992, after months of alpha testing, I released Autoconf 1.0, and converted many
GNU packages to use it. I was surprised by how positive the reaction to it was. More people
started using it than I could keep track of, including people working on software that
wasn’t part of the GNU Project (such as TCL, FSP, and Kerberos V5). Autoconf continued
to improve rapidly, as many people using the configure scripts reported problems they
encountered.

Autoconf turned out to be a good torture test for M4 implementations. Unix M4 started
to dump core because of the length of the macros that Autoconf defined, and several bugs
showed up in GNU M4 as well. Eventually, we realized that we needed to use some features
that only GNU M4 has. 4.3BSD M4, in particular, has an impoverished set of builtin macros;
the System V version is better, but still doesn’t provide everything we need.

Chapter 20: History of Autoconf 291

More development occurred as people put Autoconf under more stresses (and to uses I
hadn’t anticipated). Karl Berry added checks for X11. david zuhn contributed C++ support.
François Pinard made it diagnose invalid arguments. Jim Blandy bravely coerced it into
configuring GNU Emacs, laying the groundwork for several later improvements. Roland
McGrath got it to configure the GNU C Library, wrote the autoheader script to automate
the creation of C header file templates, and added a ‘--verbose’ option to configure. Noah
Friedman added the ‘--autoconf-dir’ option and AC_MACRODIR environment variable. (He
also coined the term autoconfiscate to mean “adapt a software package to use Autoconf”.)
Roland and Noah improved the quoting protection in AC_DEFINE and fixed many bugs,
especially when I got sick of dealing with portability problems from February through
June, 1993.

20.5 Deuteronomy

A long wish list for major features had accumulated, and the effect of several years of
patching by various people had left some residual cruft. In April 1994, while working for
Cygnus Support, I began a major revision of Autoconf. I added most of the features of
the Cygnus configure that Autoconf had lacked, largely by adapting the relevant parts of
Cygnus configure with the help of david zuhn and Ken Raeburn. These features include
support for using ‘config.sub’, ‘config.guess’, ‘--host’, and ‘--target’; making links
to files; and running configure scripts in subdirectories. Adding these features enabled
Ken to convert GNU as, and Rob Savoye to convert DejaGNU, to using Autoconf.

I added more features in response to other peoples’ requests. Many people had asked
for configure scripts to share the results of the checks between runs, because (particularly
when configuring a large source tree, like Cygnus does) they were frustratingly slow. Mike
Haertel suggested adding site-specific initialization scripts. People distributing software
that had to unpack on MS-DOS asked for a way to override the ‘.in’ extension on the file
names, which produced file names like ‘config.h.in’ containing two dots. Jim Avera did
an extensive examination of the problems with quoting in AC_DEFINE and AC_SUBST; his
insights led to significant improvements. Richard Stallman asked that compiler output be
sent to ‘config.log’ instead of ‘/dev/null’, to help people debug the Emacs configure
script.

I made some other changes because of my dissatisfaction with the quality of the program.
I made the messages showing results of the checks less ambiguous, always printing a result.
I regularized the names of the macros and cleaned up coding style inconsistencies. I added
some auxiliary utilities that I had developed to help convert source code packages to use
Autoconf. With the help of François Pinard, I made the macros not interrupt each others’
messages. (That feature revealed some performance bottlenecks in GNU M4, which he
hastily corrected!) I reorganized the documentation around problems people want to solve.
And I began a test suite, because experience had shown that Autoconf has a pronounced
tendency to regress when we change it.

Again, several alpha testers gave invaluable feedback, especially François Pinard, Jim
Meyering, Karl Berry, Rob Savoye, Ken Raeburn, and Mark Eichin.

Finally, version 2.0 was ready. And there was much rejoicing. (And I have free time
again. I think. Yeah, right.)

292 Autoconf

Appendix A: GNU Free Documentation License 293

Appendix A GNU Free Documentation License

Version 1.2, November 2002
Copyright c© 2000,2001,2002 Free Software Foundation, Inc.
51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE
The purpose of this License is to make a manual, textbook, or other functional and
useful document free in the sense of freedom: to assure everyone the effective freedom
to copy and redistribute it, with or without modifying it, either commercially or non-
commercially. Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible for modifications
made by others.
This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.
We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS
This License applies to any manual or other work, in any medium, that contains a
notice placed by the copyright holder saying it can be distributed under the terms
of this License. Such a notice grants a world-wide, royalty-free license, unlimited in
duration, to use that work under the conditions stated herein. The “Document”,
below, refers to any such manual or work. Any member of the public is a licensee, and
is addressed as “you”. You accept the license if you copy, modify or distribute the work
in a way requiring permission under copyright law.
A “Modified Version” of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into
another language.
A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that
could fall directly within that overall subject. (Thus, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding
them.
The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released

294 Autoconf

under this License. If a section does not fit the above definition of Secondary then it is
not allowed to be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then there are none.
The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may
be at most 25 words.
A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, that is suitable for
revising the document straightforwardly with generic text editors or (for images com-
posed of pixels) generic paint programs or (for drawings) some widely available drawing
editor, and that is suitable for input to text formatters or for automatic translation to
a variety of formats suitable for input to text formatters. A copy made in an otherwise
Transparent file format whose markup, or absence of markup, has been arranged to
thwart or discourage subsequent modification by readers is not Transparent. An image
format is not Transparent if used for any substantial amount of text. A copy that is
not “Transparent” is called “Opaque”.
Examples of suitable formats for Transparent copies include plain ascii without
markup, Texinfo input format, LaTEX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML, PostScript or PDF designed
for human modification. Examples of transparent image formats include PNG, XCF
and JPG. Opaque formats include proprietary formats that can be read and edited
only by proprietary word processors, SGML or XML for which the DTD and/or
processing tools are not generally available, and the machine-generated HTML,
PostScript or PDF produced by some word processors for output purposes only.
The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.
A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such
as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve
the Title” of such a section when you modify the Document means that it remains a
section “Entitled XYZ” according to this definition.
The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to
be included by reference in this License, but only as regards disclaiming warranties:
any other implication that these Warranty Disclaimers may have is void and has no
effect on the meaning of this License.

2. VERBATIM COPYING
You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and

Appendix A: GNU Free Documentation License 295

that you add no other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for copies.
If you distribute a large enough number of copies you must also follow the conditions
in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of
the Document, numbering more than 100, and the Document’s license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify you as the publisher
of these copies. The front cover must present the full title with all words of the title
equally prominent and visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verbatim copying in other
respects.

If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a computer-network location from which
the general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material. If
you use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will
remain thus accessible at the stated location until at least one year after the last time
you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of
it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any,
be listed in the History section of the Document). You may use the same title as
a previous version if the original publisher of that version gives permission.

296 Autoconf

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has fewer
than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item
stating at least the title, year, new authors, and publisher of the Modified Version
as given on the Title Page. If there is no section Entitled “History” in the Docu-
ment, create one stating the title, year, authors, and publisher of the Document
as given on its Title Page, then add an item describing the Modified Version as
stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
“History” section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included
in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in
title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their
titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.

Appendix A: GNU Free Documentation License 297

You may add a section Entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties—for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.
You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but
you may replace the old one, on explicit permission from the previous publisher that
added the old one.
The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS
You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice, and that you preserve all their Warranty Disclaimers.
The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.
In the combination, you must combine any sections Entitled “History” in the vari-
ous original documents, forming one section Entitled “History”; likewise combine any
sections Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You
must delete all sections Entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS
You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.
You may extract a single document from such a collection, and distribute it individu-
ally under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.

7. AGGREGATION WITH INDEPENDENT WORKS
A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called

298 Autoconf

an “aggregate” if the copyright resulting from the compilation is not used to limit the
legal rights of the compilation’s users beyond what the individual works permit. When
the Document is included in an aggregate, this License does not apply to the other
works in the aggregate which are not themselves derivative works of the Document.
If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they
must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION
Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original versions
of these Invariant Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warranty Disclaimers, provided that you
also include the original English version of this License and the original versions of
those notices and disclaimers. In case of a disagreement between the translation and
the original version of this License or a notice or disclaimer, the original version will
prevail.
If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “His-
tory”, the requirement (section 4) to Preserve its Title (section 1) will typically require
changing the actual title.

9. TERMINATION
You may not copy, modify, sublicense, or distribute the Document except as expressly
provided for under this License. Any other attempt to copy, modify, sublicense or
distribute the Document is void, and will automatically terminate your rights under
this License. However, parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such parties remain in full
compliance.

10. FUTURE REVISIONS OF THIS LICENSE
The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.
Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of
this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation.

http://www.gnu.org/copyleft/

Appendix A: GNU Free Documentation License 299

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify this document

under the terms of the GNU Free Documentation License, Version 1.2

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover

Texts. A copy of the license is included in the section entitled ‘‘GNU

Free Documentation License’’.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with. . .Texts.” line with this:

with the Invariant Sections being list their titles, with

the Front-Cover Texts being list, and with the Back-Cover Texts

being list.

If you have Invariant Sections without Cover Texts, or some other combination of the
three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.

300 Autoconf

Appendix B: Indices 301

Appendix B Indices

B.1 Environment Variable Index

This is an alphabetical list of the environment variables that Autoconf checks.

B
BIN_SH . 175

C
CDPATH . 175
CONFIG_COMMANDS . 251
CONFIG_FILES . 251
CONFIG_HEADERS . 251
CONFIG_LINKS . 251
CONFIG_SHELL . 250
CONFIG_SITE . 240
CONFIG_STATUS . 250
CYGWIN . 255

D
DUALCASE . 176

E
ENV . 176

I
IFS . 176

L
LANG . 176
LANGUAGE . 177
LC_ADDRESS . 177
LC_ALL . 176
LC_COLLATE . 176
LC_CTYPE . 176
LC_IDENTIFICATION . 177
LC_MEASUREMENT . 177

LC_MESSAGES . 176
LC_MONETARY . 176
LC_NAME . 177
LC_NUMERIC . 176
LC_PAPER . 177
LC_TELEPHONE . 177
LC_TIME . 176

M
M4 . 121
MAIL . 176
MAILPATH . 176

N
NULLCMD . 179

P
PATH_SEPARATOR . 179
PS1 . 176
PS2 . 176
PS4 . 176
PWD . 179

S
SIMPLE_BACKUP_SUFFIX. 252

W
WARNINGS . 11, 14, 35, 121

X
XMKMF . 86

B.2 Output Variable Index

This is an alphabetical list of the variables that Autoconf can substitute into files that
it creates, typically one or more makefiles. See Section 7.2 [Setting Output Variables],
page 104, for more information on how this is done.

A

abs_builddir . 25

abs_srcdir . 26

abs_top_builddir . 25
abs_top_srcdir . 26
ALLOCA . 51
AWK . 41

302 Autoconf

B
bindir . 26
build . 230
build_alias . 230
build_cpu . 230
build_os . 230
build_vendor . 230
builddir . 25

C
CC . 75, 80, 87
CFLAGS . 23, 75
configure_input . 23
CPP . 76
CPPFLAGS . 24
cross_compiling . 99
CXX . 80
CXXCPP . 80
CXXFLAGS . 24, 80

D
datadir . 26
datarootdir . 26
DEFS . 24
docdir . 26
dvidir . 26

E
ECHO_C . 24
ECHO_N . 24
ECHO_T . 24
EGREP . 41
ERL . 81, 92, 98
ERLANG_INSTALL_LIB_DIR 29, 89
ERLANG_INSTALL_LIB_DIR_library 29, 89
ERLANG_LIB_DIR . 88
ERLANG_LIB_DIR_library . 88
ERLANG_LIB_VER_library . 88
ERLANG_ROOT_DIR . 88
ERLC . 81, 92
ERLCFLAGS . 24, 81, 92
exec_prefix . 26
EXEEXT . 72, 256

F
F77 . 82
FC . 82
FCFLAGS . 25, 82
FCLIBS . 83
FFLAGS . 25, 82
FGREP . 41
FLIBS . 83

G
GETGROUPS_LIBS . 53
GETLOADAVG_LIBS . 53
GREP . 41

H
host . 230
host_alias . 230
host_cpu . 230
host_os . 230
host_vendor . 230
htmldir . 26

I
includedir . 26
infodir . 26
INSTALL . 41
INSTALL_DATA . 41
INSTALL_PROGRAM . 41
INSTALL_SCRIPT . 41

K
KMEM_GROUP . 53

L
LDFLAGS . 25
LEX . 42
LEX_OUTPUT_ROOT . 42
LEXLIB . 42
libdir . 26
libexecdir . 27
LIBOBJDIR . 272
LIBOBJS . 53, 54, 57, 58, 68
LIBS . 25, 258, 261, 265
LN_S . 43
localedir . 27
localstatedir . 27

M
mandir . 27
MKDIR_P . 42

N
NEED_SETGID . 53

O
OBJC . 80
OBJCFLAGS . 25, 80
OBJCPP . 81
OBJEXT . 72, 259
oldincludedir . 27

Appendix B: Indices 303

OPENMP_CFLAGS . 74
OPENMP_CXXFLAGS . 74
OPENMP_FCFLAGS . 74
OPENMP_FFLAGS . 74

P
PACKAGE_BUGREPORT . 17
PACKAGE_NAME . 17
PACKAGE_STRING . 17
PACKAGE_TARNAME . 17
PACKAGE_VERSION . 17
pdfdir . 27
POW_LIB . 56
prefix . 27
program_transform_name 238
psdir . 27

R
RANLIB . 43

S
sbindir . 27
SED . 43
SET_MAKE . 20

sharedstatedir . 27
srcdir . 26
subdirs . 37
sysconfdir . 27

T
target . 230
target_alias . 230
target_cpu . 230
target_os . 230
target_vendor . 230
top_build_prefix . 25
top_builddir . 25
top_srcdir . 26

X
X_CFLAGS . 87
X_EXTRA_LIBS . 87
X_LIBS . 87
X_PRE_LIBS . 87

Y
YACC . 43

B.3 Preprocessor Symbol Index

This is an alphabetical list of the C preprocessor symbols that the Autoconf macros define.
To work with Autoconf, C source code needs to use these names in #if or #ifdef directives.

__CHAR_UNSIGNED__ . 78
__EXTENSIONS__ . 87
__PROTOTYPES . 79
_ALL_SOURCE . 87, 253
_FILE_OFFSET_BITS . 87
_GNU_SOURCE . 87, 257
_LARGE_FILES . 87
_LARGEFILE_SOURCE . 52
_MINIX . 87, 259
_OPENMP . 74
_POSIX_1_SOURCE. 87, 259
_POSIX_PTHREAD_SEMANTICS 87
_POSIX_SOURCE . 87, 259
_POSIX_VERSION . 64
_TANDEM_SOURCE . 87

A
ALIGNOF_type . 73

C
C_ALLOCA . 51
C_GETLOADAVG . 53
CLOSEDIR_VOID . 51
const . 77
CXX_NO_MINUS_C_MINUS_O . 80

D
DGUX . 53
DIRENT . 255

F
F77_DUMMY_MAIN . 83
F77_FUNC . 84
F77_FUNC_ . 84
F77_MAIN . 84
F77_NO_MINUS_C_MINUS_O . 82
FC_FUNC . 84
FC_FUNC_ . 84
FC_MAIN . 84
FC_NO_MINUS_C_MINUS_O . 82

304 Autoconf

FLEXIBLE_ARRAY_MEMBER . 79

G
GETGROUPS_T . 69
GETLOADAVG_PRIVILEGED . 53
GETPGRP_VOID . 53
gid_t . 71
GWINSZ_IN_SYS_IOCTL . 65

H
HAVE__BOOL . 62
HAVE_aggregate_member . 69
HAVE_ALLOCA_H . 51
HAVE_C_BACKSLASH_A . 77
HAVE_C_VARARRAYS . 79
HAVE_CHOWN . 51
HAVE_CONFIG_H . 32
HAVE_DECL_STRERROR_R . 56
HAVE_DECL_symbol . 67
HAVE_DECL_TZNAME . 68
HAVE_DIRENT_H . 61
HAVE_DOPRNT . 56
HAVE_FSEEKO . 52
HAVE_function . 57, 58
HAVE_GETGROUPS . 53
HAVE_GETMNTENT . 53
HAVE_header . 65, 66
HAVE_INT16_T . 70
HAVE_INT32_T . 70
HAVE_INT64_T . 70
HAVE_INT8_T . 69
HAVE_INTMAX_T . 70
HAVE_INTPTR_T . 70
HAVE_LONG_DOUBLE . 70, 253
HAVE_LONG_DOUBLE_WIDER . 70
HAVE_LONG_FILE_NAMES . 87
HAVE_LONG_LONG_INT . 70
HAVE_LSTAT_EMPTY_STRING_BUG 55
HAVE_MALLOC . 54
HAVE_MBRTOWC . 54
HAVE_MMAP . 55
HAVE_NDIR_H . 61
HAVE_NLIST_H . 53
HAVE_OBSTACK . 55
HAVE_REALLOC . 55
HAVE_RESOLV_H . 61
HAVE_RESTARTABLE_SYSCALLS 262
HAVE_ST_BLKSIZE . 262
HAVE_ST_BLOCKS . 68
HAVE_ST_RDEV . 262
HAVE_STAT_EMPTY_STRING_BUG 55
HAVE_STDBOOL_H . 62
HAVE_STRCOLL . 55
HAVE_STRERROR_R . 56
HAVE_STRFTIME . 56
HAVE_STRINGIZE . 79

HAVE_STRNLEN . 56
HAVE_STRTOLD . 56
HAVE_STRUCT_DIRENT_D_INO 68
HAVE_STRUCT_DIRENT_D_TYPE 68
HAVE_STRUCT_STAT_ST_BLKSIZE 262
HAVE_STRUCT_STAT_ST_BLOCKS 68
HAVE_STRUCT_STAT_ST_RDEV 262
HAVE_STRUCT_TM_TM_ZONE . 68
HAVE_SYS_DIR_H . 61
HAVE_SYS_NDIR_H . 61
HAVE_SYS_WAIT_H . 64
HAVE_TM_ZONE . 68
HAVE_type . 72
HAVE_TYPEOF . 79
HAVE_TZNAME . 68
HAVE_UINT16_T . 71
HAVE_UINT32_T . 71
HAVE_UINT64_T . 71
HAVE_UINT8_T . 71
HAVE_UINTMAX_T . 71
HAVE_UINTPTR_T . 71
HAVE_UNSIGNED_LONG_LONG_INT 71
HAVE_UTIME_NULL . 56
HAVE_VFORK_H . 52
HAVE_VPRINTF . 56
HAVE_WAIT3 . 256
HAVE_WORKING_FORK . 52
HAVE_WORKING_VFORK . 52

I
inline . 78
INT_16_BITS . 257
int16_t . 70
int32_t . 70
int64_t . 70
int8_t . 69
intmax_t . 70
intptr_t . 70

L
LONG_64_BITS . 259
LSTAT_FOLLOWS_SLASHED_SYMLINK 54

M
MAJOR_IN_MKDEV . 61
MAJOR_IN_SYSMACROS . 61
malloc . 54
mbstate_t . 70
mode_t . 70

N
NDEBUG . 60
NDIR . 255
NEED_MEMORY_H . 259

Appendix B: Indices 305

NEED_SETGID . 53
NLIST_NAME_UNION . 53
NO_MINUS_C_MINUS_O . 76

O
off_t . 71

P
PACKAGE_BUGREPORT . 17
PACKAGE_NAME . 17
PACKAGE_STRING . 17
PACKAGE_TARNAME . 17
PACKAGE_VERSION . 17
PARAMS . 79
pid_t . 71
PROTOTYPES . 79

R
realloc . 55
restrict . 78
RETSIGTYPE . 264

S
SELECT_TYPE_ARG1 . 55
SELECT_TYPE_ARG234 . 55
SELECT_TYPE_ARG5 . 55
SETPGRP_VOID . 55
SETVBUF_REVERSED . 256
size_t . 71
SIZEOF_type-or-expr . 73
ssize_t . 71
STAT_MACROS_BROKEN . 62
STDC_HEADERS . 62
STRERROR_R_CHAR_P . 56
SVR4 . 53
SYS_SIGLIST_DECLARED. 255

SYSDIR . 255
SYSNDIR . 255

T
TIME_WITH_SYS_TIME . 64
TM_IN_SYS_TIME . 68
typeof . 79

U
uid_t . 71
uint16_t . 71
uint32_t . 71
uint64_t . 71
uint8_t . 71
uintmax_t . 71
uintptr_t . 71
UMAX . 53
UMAX4_3 . 53
USG . 265

V
variable . 103, 104
vfork . 52
volatile . 78

W
WORDS_BIGENDIAN . 77

X
X_DISPLAY_MISSING . 87

Y
YYTEXT_POINTER . 42

B.4 Autoconf Macro Index

This is an alphabetical list of the Autoconf macros. To make the list easier to use, the
macros are listed without their preceding ‘AC_’.

A
AH_BOTTOM . 36

AH_HEADER . 32

AH_TEMPLATE . 35

AH_TOP . 36

AH_VERBATIM . 35

AIX . 253

ALLOCA . 253

ARG_ARRAY . 253

ARG_ENABLE . 236

ARG_PROGRAM . 238
ARG_VAR . 105
ARG_WITH . 234
AU_ALIAS . 156
AU_DEFUN . 156
AUTOCONF_VERSION . 18

B
BEFORE . 155

306 Autoconf

C
C_BACKSLASH_A . 77
C_BIGENDIAN . 77
C_CHAR_UNSIGNED . 78
C_CONST . 77
C_CROSS . 253
C_FLEXIBLE_ARRAY_MEMBER 79
C_INLINE . 78
C_LONG_DOUBLE . 253
C_PROTOTYPES . 79
C_RESTRICT . 78
C_STRINGIZE . 79
C_TYPEOF . 79
C_VARARRAYS . 79
C_VOLATILE . 78
CACHE_CHECK . 107
CACHE_LOAD . 109
CACHE_SAVE . 109
CACHE_VAL . 107
CANONICAL_BUILD . 230
CANONICAL_HOST . 230
CANONICAL_SYSTEM . 254
CANONICAL_TARGET . 230
CHAR_UNSIGNED . 254
CHECK_ALIGNOF . 73
CHECK_DECL . 66
CHECK_DECLS . 67
CHECK_DECLS_ONCE . 67
CHECK_FILE . 46
CHECK_FILES . 46
CHECK_FUNC . 57
CHECK_FUNCS . 57
CHECK_FUNCS_ONCE . 57
CHECK_HEADER . 65
CHECK_HEADERS . 65
CHECK_HEADERS_ONCE . 66
CHECK_LIB . 47
CHECK_MEMBER . 69
CHECK_MEMBERS . 69
CHECK_PROG . 44
CHECK_PROGS . 44
CHECK_SIZEOF . 73
CHECK_TARGET_TOOL . 44
CHECK_TARGET_TOOLS . 45
CHECK_TOOL . 44
CHECK_TOOLS . 45
CHECK_TYPE . 72, 254
CHECK_TYPES . 72
CHECKING . 254
COMPILE_CHECK . 255
COMPILE_IFELSE . 97
COMPUTE_INT . 73
CONFIG_AUX_DIR . 19
CONFIG_COMMANDS . 36
CONFIG_COMMANDS_POST . 36
CONFIG_COMMANDS_PRE . 36
CONFIG_FILES . 22
CONFIG_HEADERS . 32

CONFIG_LIBOBJ_DIR . 58
CONFIG_LINKS . 37
CONFIG_MACRO_DIR . 19
CONFIG_SRCDIR . 19
CONFIG_SUBDIRS . 37
CONFIG_TESTDIR . 281
CONST . 255
COPYRIGHT . 18
CROSS_CHECK . 255
CYGWIN . 255

D
DATAROOTDIR_CHECKED . 30
DECL_SYS_SIGLIST . 255
DECL_YYTEXT . 255
DEFINE . 103
DEFINE_UNQUOTED . 104
DEFUN . 151
DEFUN_ONCE . 155
DIAGNOSE . 153
DIR_HEADER . 255
DISABLE_OPTION_CHECKING 238
DYNIX_SEQ . 256

E
EGREP_CPP . 97
EGREP_HEADER . 97
EMXOS2 . 256
ENABLE . 256
ERLANG_CHECK_LIB . 88
ERLANG_NEED_ERL . 81
ERLANG_NEED_ERLC . 81
ERLANG_PATH_ERL . 81
ERLANG_PATH_ERLC . 81
ERLANG_SUBST_INSTALL_LIB_DIR. 29, 89
ERLANG_SUBST_INSTALL_LIB_SUBDIR 29, 89
ERLANG_SUBST_LIB_DIR . 88
ERLANG_SUBST_ROOT_DIR . 88
ERROR . 256
EXEEXT . 256

F
F77_DUMMY_MAIN . 83
F77_FUNC . 85
F77_LIBRARY_LDFLAGS . 83
F77_MAIN . 84
F77_WRAPPERS . 84
FATAL . 153
FC_FREEFORM . 86
FC_FUNC . 85
FC_LIBRARY_LDFLAGS . 83
FC_MAIN . 84
FC_SRCEXT . 85
FC_WRAPPERS . 84
FIND_X . 256

Appendix B: Indices 307

FIND_XTRA . 256
FOREACH . 256
FUNC_ALLOCA . 51
FUNC_CHECK . 256
FUNC_CHOWN . 51
FUNC_CLOSEDIR_VOID . 51
FUNC_ERROR_AT_LINE . 52
FUNC_FNMATCH . 52
FUNC_FNMATCH_GNU . 52
FUNC_FORK . 52
FUNC_FSEEKO . 52
FUNC_GETGROUPS . 53
FUNC_GETLOADAVG . 53
FUNC_GETMNTENT . 53
FUNC_GETPGRP . 53
FUNC_LSTAT . 55
FUNC_LSTAT_FOLLOWS_SLASHED_SYMLINK 54
FUNC_MALLOC . 54
FUNC_MBRTOWC . 54
FUNC_MEMCMP . 54
FUNC_MKTIME . 54
FUNC_MMAP . 55
FUNC_OBSTACK . 55
FUNC_REALLOC . 55
FUNC_SELECT_ARGTYPES . 55
FUNC_SETPGRP . 55
FUNC_SETVBUF_REVERSED . 256
FUNC_STAT . 55
FUNC_STRCOLL . 55
FUNC_STRERROR_R . 56
FUNC_STRFTIME . 56
FUNC_STRNLEN . 56
FUNC_STRTOD . 56
FUNC_STRTOLD . 56
FUNC_UTIME_NULL . 56
FUNC_VPRINTF . 56
FUNC_WAIT3 . 256

G
GCC_TRADITIONAL . 257
GETGROUPS_T . 257
GETLOADAVG . 257
GNU_SOURCE . 257

H
HAVE_FUNCS . 257
HAVE_HEADERS . 257
HAVE_LIBRARY . 257
HAVE_POUNDBANG . 257
HEADER_ASSERT . 60
HEADER_CHECK . 257
HEADER_DIRENT . 61
HEADER_EGREP . 257
HEADER_MAJOR . 61
HEADER_RESOLV . 61
HEADER_STAT . 62

HEADER_STDBOOL . 62
HEADER_STDC . 62
HEADER_SYS_WAIT . 64
HEADER_TIME . 64
HEADER_TIOCGWINSZ . 65
HELP_STRING . 257

I
INCLUDES_DEFAULT . 40
INIT . 17, 257
INLINE . 257
INT_16_BITS . 257
IRIX_SUN . 258
ISC_POSIX . 258

L
LANG_ASSERT . 92
LANG_C . 258
LANG_CALL . 96
LANG_CONFTEST . 94
LANG_CPLUSPLUS . 258
LANG_FORTRAN77 . 258
LANG_FUNC_LINK_TRY . 96
LANG_POP . 92
LANG_PROGRAM . 94
LANG_PUSH . 92
LANG_RESTORE . 258
LANG_SAVE . 258
LANG_SOURCE . 94
LANG_WERROR . 73
LIBOBJ . 57
LIBSOURCE . 58
LIBSOURCES . 58
LINK_FILES . 258
LINK_IFELSE . 98
LN_S . 258
LONG_64_BITS . 259
LONG_DOUBLE . 259
LONG_FILE_NAMES . 259

M
MAJOR_HEADER . 259
MEMORY_H . 259
MINGW32 . 259
MINIX . 259
MINUS_C_MINUS_O . 259
MMAP . 259
MODE_T . 259
MSG_CHECKING . 110
MSG_ERROR . 111
MSG_FAILURE . 111
MSG_NOTICE . 110
MSG_RESULT . 110
MSG_WARN . 111

308 Autoconf

O
OBJEXT . 259
OBSOLETE . 259
OFF_T . 260
OPENMP . 74
OUTPUT . 20, 260
OUTPUT_COMMANDS . 260

P
PACKAGE_BUGREPORT . 17
PACKAGE_NAME . 17
PACKAGE_STRING . 17
PACKAGE_TARNAME . 17
PACKAGE_VERSION . 17
PATH_PROG . 45
PATH_PROGS . 45
PATH_PROGS_FEATURE_CHECK 45
PATH_TARGET_TOOL . 46
PATH_TOOL . 46
PATH_X . 86
PATH_XTRA . 87
PID_T . 260
PREFIX . 261
PREFIX_DEFAULT . 38
PREFIX_PROGRAM . 38
PREPROC_IFELSE . 96
PREREQ . 18
PRESERVE_HELP_ORDER . 233
PROG_AWK . 41
PROG_CC . 75
PROG_CC_C_O . 76
PROG_CC_C89 . 76
PROG_CC_C99 . 76
PROG_CC_STDC . 76
PROG_CPP . 76
PROG_CPP_WERROR . 76
PROG_CXX . 80
PROG_CXX_C_O . 80
PROG_CXXCPP . 80
PROG_EGREP . 41
PROG_F77 . 82
PROG_F77_C_O . 82
PROG_FC . 82
PROG_FC_C_O . 82
PROG_FGREP . 41
PROG_GCC_TRADITIONAL . 80
PROG_GREP . 41
PROG_INSTALL . 41
PROG_LEX . 42
PROG_LN_S . 43
PROG_MAKE_SET . 20
PROG_MKDIR_P . 42
PROG_OBJC . 80
PROG_OBJCPP . 81
PROG_RANLIB . 43
PROG_SED . 43
PROG_YACC . 43

PROGRAM_CHECK . 261
PROGRAM_EGREP . 261
PROGRAM_PATH . 261
PROGRAMS_CHECK . 261
PROGRAMS_PATH . 261

R
REMOTE_TAPE . 261
REPLACE_FNMATCH . 56
REPLACE_FUNCS . 58
REQUIRE . 154
REQUIRE_AUX_FILE . 19
REQUIRE_CPP . 92
RESTARTABLE_SYSCALLS. 261
RETSIGTYPE . 261
REVISION . 18
RSH . 261
RUN_IFELSE . 98

S
SCO_INTL . 261
SEARCH_LIBS . 47
SET_MAKE . 261
SETVBUF_REVERSED . 261
SIZE_T . 262
SIZEOF_TYPE . 261
ST_BLKSIZE . 262
ST_BLOCKS . 262
ST_RDEV . 262
STAT_MACROS_BROKEN . 262
STDC_HEADERS . 262
STRCOLL . 262
STRUCT_DIRENT_D_INO . 68
STRUCT_DIRENT_D_TYPE . 68
STRUCT_ST_BLKSIZE . 262
STRUCT_ST_BLOCKS . 68
STRUCT_ST_RDEV . 262
STRUCT_TIMEZONE . 68
STRUCT_TM . 68
SUBST . 104
SUBST_FILE . 105
SYS_INTERPRETER . 87
SYS_LARGEFILE . 87
SYS_LONG_FILE_NAMES . 87
SYS_POSIX_TERMIOS . 87
SYS_RESTARTABLE_SYSCALLS 262
SYS_SIGLIST_DECLARED. 262

T
TEST_CPP . 263
TEST_PROGRAM . 263
TIME_WITH_SYS_TIME . 263
TIMEZONE . 263
TRY_COMPILE . 263
TRY_CPP . 263

Appendix B: Indices 309

TRY_LINK . 263
TRY_LINK_FUNC . 264
TRY_RUN . 264
TYPE_GETGROUPS . 69
TYPE_INT16_T . 70
TYPE_INT32_T . 70
TYPE_INT64_T . 70
TYPE_INT8_T . 69
TYPE_INTMAX_T . 70
TYPE_INTPTR_T . 70
TYPE_LONG_DOUBLE . 70
TYPE_LONG_DOUBLE_WIDER . 70
TYPE_LONG_LONG_INT . 70
TYPE_MBSTATE_T . 70
TYPE_MODE_T . 70
TYPE_OFF_T . 71
TYPE_PID_T . 71
TYPE_SIGNAL . 264
TYPE_SIZE_T . 71
TYPE_SSIZE_T . 71
TYPE_UID_T . 71
TYPE_UINT16_T . 71
TYPE_UINT32_T . 71
TYPE_UINT64_T . 71
TYPE_UINT8_T . 71
TYPE_UINTMAX_T . 71
TYPE_UINTPTR_T . 71
TYPE_UNSIGNED_LONG_LONG_INT 71

U
UID_T . 264
UNISTD_H . 264
USE_SYSTEM_EXTENSIONS . 87
USG . 265
UTIME_NULL . 265

V
VALIDATE_CACHED_SYSTEM_TUPLE 265
VERBOSE . 265
VFORK . 265
VPRINTF . 265

W
WAIT3 . 265
WARN . 265
WARNING . 153
WITH . 265
WORDS_BIGENDIAN . 265

X
XENIX_DIR . 265

Y
YYTEXT_POINTER . 266

B.5 M4 Macro Index

This is an alphabetical list of the M4, M4sugar, and M4sh macros. To make the list easier
to use, the macros are listed without their preceding ‘m4_’ or ‘AS_’.

__file__ . 126
__line__ . 126
__oline__ . 126

A
append . 138
append_uniq . 138
append_uniq_w . 139
apply . 134
assert . 128

B
bmatch . 130
BOURNE_COMPATIBLE . 147
bpatsubst . 126
bpatsubsts . 130
bregexp . 126
builtin . 125

C
car . 132
case . 131
CASE . 147
cdr . 132
changecom . 125
changequote . 125
cmp . 141
combine . 139
cond . 131
count . 134

D
debugfile . 125
debugmode . 125
decr . 125
default . 131
define . 125
defn . 127
DIRNAME . 147

310 Autoconf

divert . 127
divert_once . 130
divert_pop . 130
divert_push . 130
divert_text . 130
divnum . 125
dnl . 126
do . 135
dquote . 135
dquote_elt . 135
dumpdef . 125

E
echo . 135
errprint . 125
errprintn . 128
esyscmd . 125
eval . 125
exit . 127
expand . 135

F
fatal . 128
flatten . 139
for . 133
foreach . 133
foreach_w . 133
format . 125

H
HELP_STRING . 236

I
if . 127
IF . 147
ifdef . 125
ifndef . 131
ifset . 132
ifval . 132
ifvaln . 132
ignore . 136
include . 127
incr . 125
index . 125
indir . 125
init . 130
INIT . 148

J
join . 140
joinall . 140

L
len . 125
list_cmp . 141
location . 128

M
make_list . 136
maketemp . 127
map . 133
map_sep . 133
mapall . 133
mapall_sep . 133
max . 142
MESSAGE_FD . 149
MESSAGE_LOG_FD . 149
min . 142
MKDIR_P . 148
mkstemp . 127

N
n . 132
newline . 140
normalize . 140

O
ORIGINAL_STDIN_FD . 149

P
pattern_allow . 147
pattern_forbid . 146
popdef . 127
pushdef . 125

Q
quote . 136

R
re_escape . 140
reverse . 137

S
set_add . 143
set_add_all . 143
SET_CATFILE . 148
set_contains . 143
set_contents . 144
set_delete . 144
set_difference . 144
set_dump . 144
set_empty . 145

Appendix B: Indices 311

set_foreach . 145
set_intersection . 144
set_list . 145
set_listc . 145
set_remove . 146
set_size . 146
set_union . 144
SHELL_SANITIZE . 148
shift . 125
shift2 . 134
shift3 . 134
shiftn . 134
sign . 142
sinclude . 127
split . 140
strip . 140
substr . 125
syscmd . 125
sysval . 125

T
text_box . 140
text_wrap . 141

tolower . 141
toupper . 141
TR_CPP . 148
TR_SH . 148
traceoff . 125
traceon . 125
translit . 125

U
undefine . 127
undivert . 128
unquote . 137

V
version_compare . 142

W
warn . 128
wrap . 128
wrap_lifo . 128

B.6 Autotest Macro Index

This is an alphabetical list of the Autotest macros. To make the list easier to use, the
macros are listed without their preceding ‘AT_’.

B
BANNER . 278

C
CAPTURE_FILE . 279
CHECK . 279
CLEANUP . 279
COPYRIGHT . 278

D
DATA . 279

I
INIT . 278

K
KEYWORDS . 278

P
PACKAGE_BUGREPORT . 281

PACKAGE_NAME . 281

PACKAGE_STRING . 281

PACKAGE_TARNAME . 281

PACKAGE_VERSION . 281

S
SETUP . 278

T
TESTED . 278

X
XFAIL_IF . 279

312 Autoconf

B.7 Program and Function Index

This is an alphabetical list of the programs and functions whose portability is discussed in
this document.

!
! . 180

.

. 180

/
/usr/bin/ksh on Solaris . 162
/usr/dt/bin/dtksh on Solaris 162
/usr/xpg4/bin/sh on Solaris 162

{
{...} . 181

A
alloca . 51
‘alloca.h’ . 51
‘assert.h’ . 60
Awk . 191

B
basename . 193
break . 181

C
case . 181
cat . 193
cc . 193
cd . 182
chmod . 193
chown . 51
closedir . 51
cmp . 193
cp . 193
‘ctype.h’ . 62

D
date . 194
diff . 194
‘dirent.h’ . 61
dirname . 194

E
echo . 183

egrep . 194
error_at_line . 52
eval . 183
exec . 184
exit . 48
exit . 184
export . 185
expr . 195
expr (‘|’) . 195

F
false . 185
fgrep . 196
find . 196
‘float.h’ . 62
fnmatch . 52, 56
‘fnmatch.h’ . 56
for . 185
fork . 52
free . 48
fseeko . 52
ftello . 52

G
getgroups . 53
getloadavg . 53
getmntent . 53
getpgid . 53
getpgrp . 53
grep . 197

I
if . 186
‘inttypes.h’ . 59, 69
isinf . 48
isnan . 48

J
join . 198

K
‘ksh’ . 162
‘ksh88’ . 162
‘ksh93’ . 162

Appendix B: Indices 313

L
‘linux/irda.h’ . 59
‘linux/random.h’ . 59
ln . 198
ls . 198
lstat . 54, 55

M
make . 205
malloc . 49, 54
mbrtowc . 54
memcmp . 54
mkdir . 198
mktemp . 199
mktime . 54
mmap . 55
mv . 199

N
‘ndir.h’. 61
‘net/if.h’ . 59
‘netinet/if_ether.h’ . 59
‘nlist.h’ . 53

O
od . 200

P
‘pdksh’ . 162
printf . 186
putenv . 49
pwd . 186

R
read . 186
realloc . 49, 55
‘resolv.h’ . 61
rm . 200

S
sed . 200
sed (‘t’) . 202
select . 55
set . 187
setpgrp . 55
setvbuf . 256
shift . 188
sigaction . 49
signal . 49
‘signal.h’ . 264
snprintf . 49
source . 188

sprintf . 49
sscanf . 49
stat . 55
‘stdarg.h’ . 62
‘stdbool.h’ . 62
‘stdint.h’ . 59, 69
‘stdlib.h’ . 60, 62, 69
strcoll . 55
strerror_r . 49, 56
strftime . 56
‘string.h’ . 62, 63
‘strings.h’ . 63
strnlen . 50, 56
strtod . 56
strtold . 56
‘sys/dir.h’ . 61
‘sys/ioctl.h’ . 65
‘sys/mkdev.h’ . 61
‘sys/mount.h’ . 60
‘sys/ndir.h’ . 61
‘sys/ptem.h’ . 60
‘sys/socket.h’ . 60
‘sys/stat.h’ . 62
‘sys/sysmacros.h’ . 61
‘sys/time.h’ . 64, 68
‘sys/types.h’ . 69
‘sys/ucred.h’ . 60
‘sys/wait.h’ . 64
sysconf . 50
‘system.h’ . 62

T
‘termios.h’ . 65
test . 188
‘time.h’ . 64, 68
touch . 203
tr . 203
trap . 189
true . 190

U
‘unistd.h’ . 64
unlink . 50
unset . 190
unsetenv . 50
utime . 56

V
va_copy . 50
va_list . 50
vfork . 52
‘vfork.h’ . 52
vprintf . 56
vsnprintf . 49
vsprintf . 49, 56

314 Autoconf

W
wait3 . 256
‘wchar.h’ . 70

X

‘X11/extensions/scrnsaver.h’ 60

B.8 Concept Index

This is an alphabetical list of the files, tools, and concepts introduced in this document.

"
‘"$@"’ . 169

$
$((expression)) . 173
$(commands) . 172
$<, explicit rules, and VPATH 210
${#var} . 171
${var##word} . 171
${var#word}. 171
${var%%word} . 171
${var%word}. 171
${var=expanded-value} . 170
${var=literal} . 170

@
‘@&t@’ . 118
‘@S|@’ . 118

^
^ quoting . 173

_m4_divert_diversion. 269

‘
‘commands‘ . 171

A
absolute file names, detect 167
‘acconfig.h’ . 252
‘aclocal.m4’ . 5
Ash. 161
autoconf . 10
Autoconf upgrading . 266, 268
Autoconf version . 18
autoheader . 34
Autoheader macros . 35
Autom4te Library . 124
‘autom4te.cache’ . 122
‘autom4te.cfg’ . 124
Automake . 3

Automatic remaking . 31
automatic rule rewriting and VPATH 210
autopoint . 13
autoreconf . 13
autoscan . 9
Autotest . 275
AUTOTEST_PATH . 280
autoupdate . 252

B
Back trace . 11, 122
Bash . 162
Bash 2.05 and later . 162
Bootstrap . 283
BSD make and ‘obj/’ . 209
buffer overruns . 224
Build directories . 30

C
C function portability . 48
C types . 69
Cache . 107
Cache variable . 108
Cache, enabling . 246
Canonical system type . 230
carriage return, deleting . 203
changequote . 117
Coding style . 156
Command Substitution . 171
Commands for configuration 36
Comments in ‘Makefile’ rules 209
Common autoconf behavior. 39
Compilers . 72
‘config.h’ . 32
‘config.h.bot’ . 252
‘config.h.in’ . 33
‘config.h.top’ . 252
config.status . 249
config.sub . 229
Configuration actions . 20
Configuration commands . 36
Configuration file creation . 22
Configuration Header . 32
Configuration Header Template 33
Configuration links . 37
configure . 5, 243

Appendix B: Indices 315

Configure subdirectories . 37
‘configure.ac’ . 5
‘configure.in’ . 5
Copyright Notice . 18, 278
Creating configuration files 22
Creating temporary files . 199
Cross compilation. 270

D
Darwin . 100
Data structure, set . 143
‘datarootdir’ . 29
Declaration, checking . 66
Default includes . 39
deleting carriage return . 203
Dependencies between macros 153
descriptors . 148
Descriptors . 164
Directories, build . 30
Directories, installation . 26
division, integer . 224
dnl . 151, 157
double-colon rules and VPATH 210

E
Endianness . 77
Erlang . 81
Erlang, Library, checking . 88
exiting portably . 227
explicit rules, $<, and VPATH 210
External software . 233

F
F77 . 81
FHS . 241
file descriptors . 148
File descriptors . 164
File system conventions . 166
File, checking . 46
Filesystem Hierarchy Standard. 241
floating point . 227
Forbidden patterns . 146
Fortran . 81
Function, checking . 50

G
Gettext . 13
GNU build system . 3
Gnulib . 3

H
Header portability . 59
Header templates . 33

Header, checking . 59
Help strings . 236
Here-documents . 163
History of autoconf . 289

I
ifnames . 10
Imake . 284
Includes, default . 39
input . 148
Install prefix . 38
Installation directories . 26
Instantiation . 20
integer overflow . 220, 223
Introduction . 1

K
Korn shell . 162
Ksh . 162

L
Language . 91
Large file support . 87
LFS . 87
Library, checking . 46
Libtool . 4
License . 283
Limitations of make . 205
Limitations of shell builtins 180
Limitations of usual tools 191
Links . 37
Links for configuration . 37
Listing directories . 198
loop induction . 222
low-level output . 148

M
M4 . 113
M4 quotation . 113
M4sugar . 125
Macro invocation stack 11, 122
Macros, called once . 155
Macros, obsoleting . 156
Macros, ordering. 155
Macros, prerequisites . 153
make -k . 209
make and MAKEFLAGS . 207
make and SHELL . 208
‘Makefile’ rules and comments 209
Makefile substitutions . 23
MAKEFLAGS and make . 207
Making directories . 198
Messages, from autoconf . 153
Messages, from configure 110

316 Autoconf

Messages, from M4sugar . 128
Moving open files . 199

N
Notices in configure. 18
null pointers . 224

O
‘obj/’, subdirectory . 209
Obsolete constructs . 251
Obsoleting macros . 156
obstack . 55
One-shot macros . 155
Options, package . 235
Options, Package . 237
Ordering macros . 155
Output variables . 23, 104
Output variables, special characters in 106
output, low-level . 148
Outputting files . 20
overflow, signed integer 220, 223

P
Package options . 235
‘package.m4’ . 281
Patterns, forbidden . 146
portability . 219
Portability of C functions . 48
Portability of headers . 59
Portable C and C++ programming 219
Portable shell programming 161
positional parameters . 170
Posix termios headers . 87
Precious Variable . 105
Prefix for install . 38
preprocessor arithmetic . 224
Preprocessors . 72
prerequisite directories and VPATH 213
Prerequisite macros . 153
Program names, transforming. 238
Programs, checking . 41

Q
QNX 4.25 . 100
quadrigraphs . 118
quotation . 7, 113

R
Remaking automatically . 31
Revision . 18
Rule, Single Suffix Inference 216

S
Separated Dependencies . 216
Set manipulation . 143
SHELL and make . 208
Shell assignments . 173
Shell builtins . 180
Shell file descriptors. 164
Shell Functions . 179
Shell here-documents . 163
Shell parentheses . 174
Shell pattern matching . 168
Shell slashes . 174
Shell substitutions . 168
Shell variables . 175
Shellology . 161
signed integer overflow 220, 223
Single Suffix Inference Rule 216
Site defaults . 240
Site details . 238
Special shell variables . 175
standard input . 148
Standard symbols . 39
Structure, checking . 68
Subdirectory configure . 37
Substitutions in makefiles . 23
Symbolic links . 198
System type . 229, 230
Systemology . 100

T
termios Posix headers . 87
test group . 275
testsuite . 275, 279
timestamp resolution 194, 203, 217
Transforming program names 238
Tru64 . 100
Types . 69

U
undefined macro . 269
Unix version 7 . 100
Unordered set manipulation 143
Upgrading autoconf . 266, 268

V
V7 . 100
Variable, Precious . 105
Version . 18
version, Autoconf . 18
volatile objects . 225
VPATH . 210
VPATH and automatic rule rewriting 210
VPATH and double-colon rules 210
VPATH and prerequisite directories 213

Appendix B: Indices 317

VPATH, explicit rules, and $< 210
VPATH, resolving target pathnames 213

W
wraparound arithmetic 220, 223

X
X Window System . 86

Z
Zsh . 163

318 Autoconf

	Introduction
	The GNU Build System
	Automake
	Gnulib
	Libtool
	Pointers

	Making configure Scripts
	Writing configure.ac
	A Shell Script Compiler
	The Autoconf Language
	Standard configure.ac Layout

	Using autoscan to Create configure.ac
	Using ifnames to List Conditionals
	Using autoconf to Create configure
	Using autoreconf to Update configure Scripts

	Initialization and Output Files
	Initializing configure
	Dealing with Autoconf versions
	Notices in configure
	Finding configure Input
	Outputting Files
	Performing Configuration Actions
	Creating Configuration Files
	Substitutions in Makefiles
	Preset Output Variables
	Installation Directory Variables
	Changed Directory Variables
	Build Directories
	Automatic Remaking

	Configuration Header Files
	Configuration Header Templates
	Using autoheader to Create config.h.in
	Autoheader Macros

	Running Arbitrary Configuration Commands
	Creating Configuration Links
	Configuring Other Packages in Subdirectories
	Default Prefix

	Existing Tests
	Common Behavior
	Standard Symbols
	Default Includes

	Alternative Programs
	Particular Program Checks
	Generic Program and File Checks

	Files
	Library Files
	Library Functions
	Portability of C Functions
	Particular Function Checks
	Generic Function Checks

	Header Files
	Portability of Headers
	Particular Header Checks
	Generic Header Checks

	Declarations
	Particular Declaration Checks
	Generic Declaration Checks

	Structures
	Particular Structure Checks
	Generic Structure Checks

	Types
	Particular Type Checks
	Generic Type Checks

	Compilers and Preprocessors
	Specific Compiler Characteristics
	Generic Compiler Characteristics
	C Compiler Characteristics
	C++ Compiler Characteristics
	Objective C Compiler Characteristics
	Erlang Compiler and Interpreter Characteristics
	Fortran Compiler Characteristics

	System Services
	Posix Variants
	Erlang Libraries

	Writing Tests
	Language Choice
	Writing Test Programs
	Guidelines for Test Programs
	Test Functions
	Generating Sources

	Running the Preprocessor
	Running the Compiler
	Running the Linker
	Checking Runtime Behavior
	Systemology
	Multiple Cases

	Results of Tests
	Defining C Preprocessor Symbols
	Setting Output Variables
	Special Characters in Output Variables
	Caching Results
	Cache Variable Names
	Cache Files
	Cache Checkpointing

	Printing Messages

	Programming in M4
	M4 Quotation
	Active Characters
	One Macro Call
	Quoting and Parameters
	Quotation and Nested Macros
	changequote is Evil
	Quadrigraphs
	Quotation Rule Of Thumb

	Using autom4te
	Invoking autom4te
	Customizing autom4te

	Programming in M4sugar
	Redefined M4 Macros
	Diagnostic messages from M4sugar
	Diversion support
	Conditional constructs
	Looping constructs
	Evaluation Macros
	String manipulation in M4
	Arithmetic computation in M4
	Set manipulation in M4
	Forbidden Patterns

	Programming in M4sh
	File Descriptor Macros

	Writing Autoconf Macros
	Macro Definitions
	Macro Names
	Reporting Messages
	Dependencies Between Macros
	Prerequisite Macros
	Suggested Ordering
	One-Shot Macros

	Obsoleting Macros
	Coding Style

	Portable Shell Programming
	Shellology
	Here-Documents
	File Descriptors
	File System Conventions
	Shell Pattern Matching
	Shell Substitutions
	Assignments
	Parentheses in Shell Scripts
	Slashes in Shell Scripts
	Special Shell Variables
	Shell Functions
	Limitations of Shell Builtins
	Limitations of Usual Tools

	Portable Make Programming
	$< in Ordinary Make Rules
	Failure in Make Rules
	Special Characters in Make Macro Names
	Backslash-Newline-Newline in Make Macro Values
	Backslash-Newline in Make Comments
	Long Lines in Makefiles
	make macro=value and Submakes
	The Make Macro MAKEFLAGS
	The Make Macro SHELL
	Comments in Make Rules
	The obj/ Subdirectory and Make
	Exit Status of make -k
	VPATH and Make
	VPATH and Double-colon Rules
	$< Not Supported in Explicit Rules
	Automatic Rule Rewriting
	Tru64 make Creates Prerequisite Directories Magically
	Make Target Lookup

	Single Suffix Rules and Separated Dependencies
	Timestamp Resolution and Make

	Portable C and C++ Programming
	Varieties of Unportability
	Integer Overflow
	Basics of Integer Overflow
	Examples of Code Assuming Wraparound Overflow
	Optimizations That Break Wraparound Arithmetic
	Practical Advice for Signed Overflow Issues
	Signed Integer Division and Integer Overflow

	Preprocessor Arithmetic
	Properties of Null Pointers
	Buffer Overruns and Subscript Errors
	Volatile Objects
	Floating Point Portability
	Exiting Portably

	Manual Configuration
	Specifying the System Type
	Getting the Canonical System Type
	Using the System Type

	Site Configuration
	Controlling Help Output
	Working With External Software
	Choosing Package Options
	Making Your Help Strings Look Pretty
	Controlling Checking of configure Options
	Configuring Site Details
	Transforming Program Names When Installing
	Transformation Options
	Transformation Examples
	Transformation Rules

	Setting Site Defaults

	Running configure Scripts
	Basic Installation
	Compilers and Options
	Compiling For Multiple Architectures
	Installation Names
	Optional Features
	Particular systems
	Specifying the System Type
	Sharing Defaults
	Defining Variables
	configure Invocation

	config.status Invocation
	Obsolete Constructs
	Obsolete config.status Invocation
	acconfig.h
	Using autoupdate to Modernize configure.ac
	Obsolete Macros
	Upgrading From Version 1
	Changed File Names
	Changed Makefiles
	Changed Macros
	Changed Results
	Changed Macro Writing

	Upgrading From Version 2.13
	Changed Quotation
	New Macros
	Hosts and Cross-Compilation
	AC_LIBOBJ vs. LIBOBJS
	AC_FOO_IFELSE vs. AC_TRY_FOO

	Generating Test Suites with Autotest
	Using an Autotest Test Suite
	testsuite Scripts
	Autotest Logs

	Writing testsuite.at
	Running testsuite Scripts
	Making testsuite Scripts

	Frequent Autoconf Questions, with answers
	Distributing configure Scripts
	Why Require GNU M4?
	How Can I Bootstrap?
	Why Not Imake?
	How Do I #define Installation Directories?
	What is autom4te.cache?
	Header Present But Cannot Be Compiled

	History of Autoconf
	Genesis
	Exodus
	Leviticus
	Numbers
	Deuteronomy

	GNU Free Documentation License
	Indices
	Environment Variable Index
	Output Variable Index
	Preprocessor Symbol Index
	Autoconf Macro Index
	M4 Macro Index
	Autotest Macro Index
	Program and Function Index
	Concept Index

