Bash Reference Manual

Reference Documentation for Bash
Edition 5.2, for Bash Version 5.2.
September 2022

Chet Ramey, Case Western Reserve University
Brian Fox, Free Software Foundation




This text is a brief description of the features that are present in the Bash shell (version
5.2, 19 September 2022).

This is Edition 5.2, last updated 19 September 2022, of The GNU Bash Reference Manual,
for Bash, Version 5.2.

Copyright (©) 1988-2022 Free Software Foundation, Inc.

Permission is granted to copy, distribute and /or modify this document under the
terms of the GNU Free Documentation License, Version 1.3 or any later version
published by the Free Software Foundation; with no Invariant Sections, no
Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included
in the section entitled “GNU Free Documentation License”.



Table of Contents

1 Introduction..................... ... ............ 1
1.1 Whatis Bash?..... ... 1
1.2 Whatisashell? ... ..o 1

2 Definitions ....... ... 3

3 Basic Shell Features............................. 5
3.1 Shell Syntax. ... 5

3.1.1 Shell Operation...........ooiiiire .. 5
312 QUOLING . .ot 6
3.1.2.1 Escape Character..............oiiiiiiiiiiiiiiia... 6
3.1.2.2 Single QuUOtes........ooiiiii 6
3.1.2.3 Double QUOtes. ... ..ot 6
3.1.2.4 ANSI-C Quoting.........ouuiiiiiii i, 6
3.1.2.5 Locale-Specific Translation............................ 7

3.1.3  COmIMENtS . ..\ttt ettt e 9
3.2 Shell Commands. ... 9
3.2.1 Reserved Words .......cooiiniii i 9
3.2.2 Simple Commands . ......c..vuirire i 9
3.2.3 Pipelines ... 10
3.2.4 Listsof Commands..............c.coiiiiiiiiiiiineen.... 10
3.2.5 Compound Commands. ...........coviiiiiiiiiieenin... 11
3.2.5.1 Looping Constructs..........covviiiiiiiiiini... 11
3.2.5.2 Conditional Constructs ...........covviiiieiiiie. .. 12
3.2.5.3 Grouping Commands ...........c.ccooiiiiiiiiinean... 17

3.2.6  COPTOCESSES .« vttt ettt et e et e 18
3.2.7 GNU Parallel..........oo e 19
3.3 Shell Functions......... ..o 19
3.4 Shell Parameters ...........ooiiiiii i 21
3.4.1 Positional Parameters................. .. ... 23
3.4.2 Special Parameters ......... ... 23
3.5 Shell EXpansions .........cooiuiiiiiiiiiiiii i 24
3.5.1 Brace Expansion..............iiiiii i 24
3.5.2 Tilde Expansion ........ ... 25
3.5.3 Shell Parameter Expansion ...................... ... ..... 26
3.5.4 Command Substitution............. ... ... i 34
3.5.5  Arithmetic Expansion ............. ... ... 34
3.5.6 Process Substitution............ ... ..ot 34
3.5.7 Word Splitting ... 35
3.5.8 Filename Expansion ..............ooiiiiiiiiiiiiiiiii. 35
3.5.8.1 Pattern Matching................ ... . ..., 36

3.5.9 Quote Removal ......... ... 38



3.6 Redirections..........oiiiii e 38
3.6.1 Redirecting Input........ ... i 39
3.6.2 Redirecting Output...... ..o 39
3.6.3 Appending Redirected Output ............ ... ... 39
3.6.4 Redirecting Standard Output and Standard Error......... 40
3.6.5 Appending Standard Output and Standard Error ......... 40
3.6.6 Here Documents............ccoiuiiiiiiiiiiiiiiiiinnnnnn... 40
3.6.7 Here Strings........c.ooiiiiii e 41
3.6.8 Duplicating File Descriptors ...t 41
3.6.9 Moving File Descriptors ... 41
3.6.10 Opening File Descriptors for Reading and Writing ... .... 41

3.7 Executing Commands ...t 42
3.7.1 Simple Command Expansion.............. ... ... 42
3.7.2 Command Search and Execution.......................... 42
3.7.3 Command Execution Environment........................ 43
3.7.4 Environment .............. i 44
3.7.5 Exit Status. ... 44
3.7.6 Signals ... ..o 45

3.8 Shell Seripts. . ..ovun 46

Shell Builtin Commands....................... 48

4.1 Bourne Shell Builtins........ ... i 48

4.2 Bash Builtin Commands. ...........cooiiiiiiiiii i, 55

4.3 Modifying Shell Behavior............ ... . it 67
4.3.1 TheSet Builtin.......... ..., 67
4.3.2 The Shopt Builtin....... ... ... o i 71

4.4 Special Builtins. ... 77

Shell Variables.................................. 78
5.1 Bourne Shell Variables.............. ... 78
5.2 Bash Variables ......... ... 78

Bash Features .................................. 91

6.1 Invoking Bash....... ... . i 91

6.2 Bash Startup Files ....... ..o i i 93

6.3 Interactive Shells....... ... i 94
6.3.1 What is an Interactive Shell? ...... ... .. .. ... ... ... ... 95
6.3.2 Is this Shell Interactive? .............. ..., 95
6.3.3 Interactive Shell Behavior.................. ..., 95

6.4 Bash Conditional Expressions...............cooiiiiiiiiii.. 96

6.5 Shell Arithmetic...... ... . i 98

6.6 AASES ..ottt 100

0.7 AT AYS ottt 100

6.8 The Directory Stack........ ..o 102
6.8.1 Directory Stack Builtins.............. ... ..ol 102

6.9 Controlling the Prompt............. ..o i, 104

6.10 The Restricted Shell. ... ... 105

ii



6.11 Bash POSIX Mode.......c.uiiiitiii i 106
6.12  Shell Compatibility Mode ..., 110
Job Control ......... ... ... ... ... .. 113
7.1 Job Control Basics ...... ... 113
7.2 Job Control Builtins.......... ... i i 114
7.3 Job Control Variables .......... ... ... o i i 116
Command Line Editing....................... 117
8.1 Introduction to Line Editing............. ... ...l 117
8.2 Readline Interaction........... . ... i 117
8.2.1 Readline Bare Essentials.............. ... . ... 118
8.2.2 Readline Movement Commands.......................... 118
8.2.3 Readline Killing Commands ..................coooi... 119
8.2.4 Readline Arguments............. ... 119
8.2.5 Searching for Commands in the History.................. 119
8.3 Readline Init File..... ... ..o i 120
8.3.1 Readline Init File Syntax ............ ... ..., 120
8.3.2 Conditional Init Constructs................ ...t 129
8.3.3 SampleInit File...... ... i 130
8.4 Bindable Readline Commands...............cooiiiiiiiin.... 133
8.4.1 Commands For Moving.............cooiiiiiiiiiiii... 133
8.4.2 Commands For Manipulating The History ............... 134
8.4.3 Commands For Changing Text........................... 136
8.4.4 Killing And Yanking.............coiiiiiiiiiinn.. 137
8.4.5 Specifying Numeric Arguments .......................... 138
8.4.6 Letting Readline Type For You.......................... 139
8.4.7 Keyboard Macros. ........oouuiiiiiiiiiiii .. 140
8.4.8 Some Miscellaneous Commands.......................... 141
8.5 Readline vi Mode ....... ... i 143
8.6 Programmable Completion .......... ... ..., 143
8.7 Programmable Completion Builtins........................... 146
8.8 A Programmable Completion Example........................ 150
Using History Interactively .................. 152
9.1 Bash History Facilities........... .o i i 152
9.2 Bash History Builtins .......... ... .. 152
9.3 History Expansion. ... 154
9.3.1 Event Designators............cooiiiiiiiiiiiiiiiiii.. 155
9.3.2 Word Designators ... 156

9.3.3 Modifiers. ... ..ot 156

iii



10 Imnstalling Bash............................... 158
10.1 Basic Installation............ ... i 158
10.2 Compilers and Options. ..., 159
10.3 Compiling For Multiple Architectures........................ 159
10.4 Installation Names .............iiiiiiiniiiinn. 160
10.5 Specifying the System Type ...t 160
10.6  Sharing Defaults ......... .. i 160
10.7 Operation Controls. ..., 161
10.8 Optional Features............ooiiiiiiiii . 161

Appendix A Reporting Bugs................... 167

Appendix B Major Differences From
The Bourne Shell .............................. 168
B.1 Implementation Differences From The SVR4.2 Shell .......... 172

Appendix C GNU Free Documentation License .. 174

Appendix D Indexes............................ 182
D.1 Index of Shell Builtin Commands ...t .. 182
D.2 Index of Shell Reserved Words . ... ... 183
D.3 Parameter and Variable Index ............. ... ... ... . ...... 184
D.4 Function Index ... 186

D.5 Concept Index ... ..o 188

iv



1 Introduction

1.1 What is Bash?

Bash is the shell, or command language interpreter, for the GNU operating system. The
name is an acronym for the ‘Bourne-Again SHell’, a pun on Stephen Bourne, the author
of the direct ancestor of the current Unix shell sh, which appeared in the Seventh Edition
Bell Labs Research version of Unix.

Bash is largely compatible with sh and incorporates useful features from the Korn shell
ksh and the C shell csh. It is intended to be a conformant implementation of the IEEE
pPOSIX Shell and Tools portion of the IEEE POSIX specification (IEEE Standard 1003.1). It
offers functional improvements over sh for both interactive and programming use.

While the GNU operating system provides other shells, including a version of csh, Bash
is the default shell. Like other GNU software, Bash is quite portable. It currently runs on
nearly every version of Unix and a few other operating systems — independently-supported
ports exist for MS-DOS, 0s/2, and Windows platforms.

1.2 What is a shell?

At its base, a shell is simply a macro processor that executes commands. The term macro
processor means functionality where text and symbols are expanded to create larger expres-
sions.

A Unix shell is both a command interpreter and a programming language. As a com-
mand interpreter, the shell provides the user interface to the rich set of GNU utilities. The
programming language features allow these utilities to be combined. Files containing com-
mands can be created, and become commands themselves. These new commands have the
same status as system commands in directories such as /bin, allowing users or groups to
establish custom environments to automate their common tasks.

Shells may be used interactively or non-interactively. In interactive mode, they accept
input typed from the keyboard. When executing non-interactively, shells execute commands
read from a file.

A shell allows execution of GNU commands, both synchronously and asynchronously.
The shell waits for synchronous commands to complete before accepting more input; asyn-
chronous commands continue to execute in parallel with the shell while it reads and executes
additional commands. The redirection constructs permit fine-grained control of the input
and output of those commands. Moreover, the shell allows control over the contents of
commands’ environments.

Shells also provide a small set of built-in commands (builtins) implementing function-
ality impossible or inconvenient to obtain via separate utilities. For example, cd, break,
continue, and exec cannot be implemented outside of the shell because they directly ma-
nipulate the shell itself. The history, getopts, kill, or pwd builtins, among others, could
be implemented in separate utilities, but they are more convenient to use as builtin com-
mands. All of the shell builtins are described in subsequent sections.

While executing commands is essential, most of the power (and complexity) of shells
is due to their embedded programming languages. Like any high-level language, the shell
provides variables, flow control constructs, quoting, and functions.



Chapter 1: Introduction 2

Shells offer features geared specifically for interactive use rather than to augment the pro-
gramming language. These interactive features include job control, command line editing,
command history and aliases. Each of these features is described in this manual.



2 Definitions

These definitions are used throughout the remainder of this manual.

POSIX A family of open system standards based on Unix. Bash is primarily concerned
with the Shell and Utilities portion of the posix 1003.1 standard.

blank A space or tab character.

builtin A command that is implemented internally by the shell itself, rather than by
an executable program somewhere in the file system.

control operator
A token that performs a control function. It is a newline or one of the following:
4| |7’ 4&&’7 L&’7 4;77 (; ;7, ‘;&7’ C; ;&’7 L|77 (I&’, ‘(7’ or 4)7'

exit status
The value returned by a command to its caller. The value is restricted to eight
bits, so the maximum value is 255.

field A unit of text that is the result of one of the shell expansions. After expansion,
when executing a command, the resulting fields are used as the command name
and arguments.

filename A string of characters used to identify a file.

job A set of processes comprising a pipeline, and any processes descended from it,
that are all in the same process group.

job control
A mechanism by which users can selectively stop (suspend) and restart (resume)
execution of processes.

metacharacter
A character that, when unquoted, separates words. A metacharacter is a space,
tab, newline, or one of the following characters: ‘|’, ‘&’, *;’, ‘C, )7, ‘<, or >’.
name A word consisting solely of letters, numbers, and underscores, and beginning

with a letter or underscore. Names are used as shell variable and function names.
Also referred to as an identifier.

operator A control operator or a redirection operator. See Section 3.6 [Redirec-
tions], page 38, for a list of redirection operators. Operators contain at least
one unquoted metacharacter.

process group
A collection of related processes each having the same process group ID.

process group 1D
A unique identifier that represents a process group during its lifetime.

reserved word
A word that has a special meaning to the shell. Most reserved words introduce
shell flow control constructs, such as for and while.



Chapter 2: Definitions 4

return status
A synonym for exit status.

signal A mechanism by which a process may be notified by the kernel of an event
occurring in the system.

special builtin
A shell builtin command that has been classified as special by the POSIX stan-
dard.

token A sequence of characters considered a single unit by the shell. It is either a
word or an operator.

word A sequence of characters treated as a unit by the shell. Words may not include
unquoted metacharacters.



3 Basic Shell Features

Bash is an acronym for ‘Bourne-Again SHell’. The Bourne shell is the traditional Unix shell
originally written by Stephen Bourne. All of the Bourne shell builtin commands are available
in Bash, The rules for evaluation and quoting are taken from the POSIX specification for the
‘standard’ Unix shell.

This chapter briefly summarizes the shell’s ‘building blocks’: commands, control struc-
tures, shell functions, shell parameters, shell expansions, redirections, which are a way to
direct input and output from and to named files, and how the shell executes commands.

3.1 Shell Syntax

When the shell reads input, it proceeds through a sequence of operations. If the input
indicates the beginning of a comment, the shell ignores the comment symbol (‘#’), and the
rest of that line.

Otherwise, roughly speaking, the shell reads its input and divides the input into words
and operators, employing the quoting rules to select which meanings to assign various words
and characters.

The shell then parses these tokens into commands and other constructs, removes the
special meaning of certain words or characters, expands others, redirects input and output
as needed, executes the specified command, waits for the command’s exit status, and makes
that exit status available for further inspection or processing.

3.1.1 Shell Operation

The following is a brief description of the shell’s operation when it reads and executes a
command. Basically, the shell does the following:

1. Reads its input from a file (see Section 3.8 [Shell Scripts|, page 46), from a string
supplied as an argument to the -c invocation option (see Section 6.1 [Invoking Bash],
page 91), or from the user’s terminal.

2. Breaks the input into words and operators, obeying the quoting rules described in
Section 3.1.2 [Quoting], page 6. These tokens are separated by metacharacters. Alias
expansion is performed by this step (see Section 6.6 [Aliases], page 100).

3. Parses the tokens into simple and compound commands (see Section 3.2 [Shell Com-
mands|, page 9).

4. Performs the various shell expansions (see Section 3.5 [Shell Expansions|, page 24),
breaking the expanded tokens into lists of filenames (see Section 3.5.8 [Filename Ex-
pansion], page 35) and commands and arguments.

5. Performs any necessary redirections (see Section 3.6 [Redirections], page 38) and re-
moves the redirection operators and their operands from the argument list.

6. Executes the command (see Section 3.7 [Executing Commands], page 42).

7. Optionally waits for the command to complete and collects its exit status (see
Section 3.7.5 [Exit Status], page 44).



Chapter 3: Basic Shell Features 6

3.1.2 Quoting

Quoting is used to remove the special meaning of certain characters or words to the shell.
Quoting can be used to disable special treatment for special characters, to prevent reserved
words from being recognized as such, and to prevent parameter expansion.

Each of the shell metacharacters (see Chapter 2 [Definitions]|, page 3) has special meaning
to the shell and must be quoted if it is to represent itself. When the command history
expansion facilities are being used (see Section 9.3 [History Interaction|, page 154), the
history expansion character, usually ‘!’, must be quoted to prevent history expansion. See
Section 9.1 [Bash History Facilities|, page 152, for more details concerning history expansion.

There are three quoting mechanisms: the escape character, single quotes, and double
quotes.

3.1.2.1 Escape Character

A non-quoted backslash ‘\’ is the Bash escape character. It preserves the literal value of
the next character that follows, with the exception of newline. If a \newline pair appears,
and the backslash itself is not quoted, the \newline is treated as a line continuation (that
is, it is removed from the input stream and effectively ignored).

3.1.2.2 Single Quotes

Enclosing characters in single quotes (‘’’) preserves the literal value of each character within
the quotes. A single quote may not occur between single quotes, even when preceded by a
backslash.

3.1.2.3 Double Quotes

Enclosing characters in double quotes (‘"’) preserves the literal value of all characters within
the quotes, with the exception of ‘$’, *“’, ‘\’, and, when history expansion is enabled, ‘!’.
When the shell is in POSIX mode (see Section 6.11 [Bash POSIX Mode], page 106), the ‘!’
has no special meaning within double quotes, even when history expansion is enabled. The
characters ‘$’ and ‘‘’ retain their special meaning within double quotes (see Section 3.5
[Shell Expansions], page 24). The backslash retains its special meaning only when followed
by one of the following characters: ‘$’, ‘¢’, ‘"’. ‘\’, or newline. Within double quotes,
backslashes that are followed by one of these characters are removed. Backslashes preceding
characters without a special meaning are left unmodified. A double quote may be quoted
within double quotes by preceding it with a backslash. If enabled, history expansion will
be performed unless an ‘!’ appearing in double quotes is escaped using a backslash. The
backslash preceding the ‘!’ is not removed.

The special parameters ‘*’ and ‘@ have special meaning when in double quotes (see
Section 3.5.3 [Shell Parameter Expansion|, page 26).

3.1.2.4 ANSI-C Quoting

Character sequences of the form $’string’ are treated as a special kind of single quotes.
The sequence expands to string, with backslash-escaped characters in string replaced as
specified by the ANSI C standard. Backslash escape sequences, if present, are decoded as
follows:

\a alert (bell)



Chapter 3: Basic Shell Features 7

\b backspace

\e

\E an escape character (not ANSI C)

\f form feed

\n newline

\r carriage return

\t horizontal tab

\v vertical tab

\\ backslash

\’ single quote

\" double quote

\7? question mark

\nnn the eight-bit character whose value is the octal value nnn (one to three octal
digits)

\xHH the eight-bit character whose value is the hexadecimal value HH (one or two

hex digits)

\uHHHH the Unicode (ISO/IEC 10646) character whose value is the hexadecimal value
HHHH (one to four hex digits)

\UHHHHHHHH
the Unicode (ISO/IEC 10646) character whose value is the hexadecimal value
HHHHHHHH (one to eight hex digits)

\cx a control-x character

The expanded result is single-quoted, as if the dollar sign had not been present.

3.1.2.5 Locale-Specific Translation

Prefixing a double-quoted string with a dollar sign (‘$’), such as $"hello, world", will
cause the string to be translated according to the current locale. The gettext infrastruc-
ture performs the lookup and translation, using the LC_MESSAGES, TEXTDOMAINDIR, and
TEXTDOMAIN shell variables, as explained below. See the gettext documentation for addi-
tional details not covered here. If the current locale is C or POSIX, if there are no translations
available, of if the string is not translated, the dollar sign is ignored. Since this is a form of
double quoting, the string remains double-quoted by default, whether or not it is translated
and replaced. If the noexpand_translation option is enabled using the shopt builtin (see
Section 4.3.2 [The Shopt Builtin], page 71), translated strings are single-quoted instead of
double-quoted.

The rest of this section is a brief overview of how you use gettext to create transla-
tions for strings in a shell script named scriptname. There are more details in the gettext
documentation.



Chapter 3: Basic Shell Features 8

Once you've marked the strings in your script that you want to translate using $"...",
you create a gettext "template" file using the command

bash --dump-po-strings scriptname > domain.pot

The domain is your message domain. It’s just an arbitrary string that’s used to identify
the files gettext needs, like a package or script name. It needs to be unique among all the
message domains on systems where you install the translations, so gettext knows which
translations correspond to your script. You’ll use the template file to create translations for
each target language. The template file conventionally has the suffix ‘.pot’.

You copy this template file to a separate file for each target language you want to support
(called "PO" files, which use the suffix ‘.po’). PO files use various naming conventions,
but when you are working to translate a template file into a particular language, you first
copy the template file to a file whose name is the language you want to target, with the
‘.po’ suffix. For instance, the Spanish translations of your strings would be in a file named
‘es.po’, and to get started using a message domain named "example," you would run

cp example.pot es.po

Ultimately, PO files are often named domain.po and installed in directories that contain
multiple translation files for a particular language.

Whichever naming convention you choose, you will need to translate the strings in the
PO files into the appropriate languages. This has to be done manually.

When you have the translations and PO files complete, you’ll use the gettext tools to
produce what are called "MO™" files, which are compiled versions of the PO files the gettext
tools use to look up translations efficiently. MO files are also called "message catalog"
files. You use the msgfmt program to do this. For instance, if you had a file with Spanish
translations, you could run

msgfmt -0 es.mo es.po
to produce the corresponding MO file.

Once you have the MO files, you decide where to install them and use the TEXTDOMAINDIR
shell variable to tell the gettext tools where they are. Make sure to use the same message
domain to name the MO files as you did for the PO files when you install them.

Your users will use the LANG or LC_MESSAGES shell variables to select the desired language.

You set the TEXTDOMAIN variable to the script’s message domain. As above, you use the
message domain to name your translation files.

You, or possibly your users, set the TEXTDOMAINDIR variable to the name of a directory
where the message catalog files are stored. If you install the message files into the system’s
standard message catalog directory, you don’t need to worry about this variable.

The directory where the message catalog files are stored varies between systems. Some
use the message catalog selected by the LC_MESSAGES shell variable. Others create the name
of the message catalog from the value of the TEXTDOMAIN shell variable, possibly adding the
‘.mo’ suffix. If you use the TEXTDOMAIN variable, you may need to set the TEXTDOMAINDIR
variable to the location of the message catalog files, as above. It’s common to use both vari-
ables in this fashion: $TEXTDOMAINDIR/$LC_MESSAGES/LC_MESSAGES/$TEXTDOMAIN.mo.

If you used that last convention, and you wanted to store the message catalog files
with Spanish (es) and Esperanto (eo) translations into a local directory you use for custom
translation files, you could run



Chapter 3: Basic Shell Features 9

TEXTDOMAIN=example
TEXTDOMAINDIR=/usr/local/share/locale

cp es.mo ${TEXTDOMAINDIR}/es/LC_MESSAGES/${TEXTDOMAIN}.mo
cp eo.mo ${TEXTDOMAINDIR}/eo/LC_MESSAGES/${TEXTDOMAIN}.mo

When all of this is done, and the message catalog files containing the compiled transla-
tions are installed in the correct location, your users will be able to see translated strings in
any of the supported languages by setting the LANG or LC_MESSAGES environment variables
before running your script.

3.1.3 Comments

In a non-interactive shell, or an interactive shell in which the interactive_comments option
to the shopt builtin is enabled (see Section 4.3.2 [The Shopt Builtin], page 71), a word
beginning with ‘#” causes that word and all remaining characters on that line to be ignored.
An interactive shell without the interactive_comments option enabled does not allow
comments. The interactive_comments option is on by default in interactive shells. See
Section 6.3 [Interactive Shells], page 94, for a description of what makes a shell interactive.

3.2 Shell Commands

A simple shell command such as echo a b ¢ consists of the command itself followed by
arguments, separated by spaces.

More complex shell commands are composed of simple commands arranged together in
a variety of ways: in a pipeline in which the output of one command becomes the input of
a second, in a loop or conditional construct, or in some other grouping.

3.2.1 Reserved Words
Reserved words are words that have special meaning to the shell. They are used to begin
and end the shell’s compound commands.

The following words are recognized as reserved when unquoted and the first word of a
command (see below for exceptions):

if then elif else fi time
for in until while do done
case esac coproc select function

{ } L[ 1] !

in is recognized as a reserved word if it is the third word of a case or select command.
in and do are recognized as reserved words if they are the third word in a for command.

3.2.2 Simple Commands

A simple command is the kind of command encountered most often. It’s just a sequence of
words separated by blanks, terminated by one of the shell’s control operators (see Chapter 2
[Definitions], page 3). The first word generally specifies a command to be executed, with
the rest of the words being that command’s arguments.

The return status (see Section 3.7.5 [Exit Status], page 44) of a simple command is its
exit status as provided by the Posix 1003.1 waitpid function, or 128+n if the command
was terminated by signal n.



Chapter 3: Basic Shell Features 10

3.2.3 Pipelines

A pipeline is a sequence of one or more commands separated by one of the control operators
3 | 9 or 3 | &7'
The format for a pipeline is
[time [-pl] [!] commandl [ | or |& command2 ]

The output of each command in the pipeline is connected via a pipe to the input of the next
command. That is, each command reads the previous command’s output. This connection
is performed before any redirections specified by command]l.

If ‘1& is used, commandl’s standard error, in addition to its standard output, is con-
nected to command2’s standard input through the pipe; it is shorthand for 2>&1 |. This
implicit redirection of the standard error to the standard output is performed after any
redirections specified by command]1.

The reserved word time causes timing statistics to be printed for the pipeline once it
finishes. The statistics currently consist of elapsed (wall-clock) time and user and system
time consumed by the command’s execution. The -p option changes the output format to
that specified by POsIX. When the shell is in POSIX mode (see Section 6.11 [Bash POSIX
Mode], page 106), it does not recognize time as a reserved word if the next token begins
with a ‘-=’. The TIMEFORMAT variable may be set to a format string that specifies how the
timing information should be displayed. See Section 5.2 [Bash Variables|, page 78, for a
description of the available formats. The use of time as a reserved word permits the timing
of shell builtins, shell functions, and pipelines. An external time command cannot time
these easily.

When the shell is in POSIX mode (see Section 6.11 [Bash POSIX Mode], page 106), time
may be followed by a newline. In this case, the shell displays the total user and system time
consumed by the shell and its children. The TIMEFORMAT variable may be used to specify
the format of the time information.

If the pipeline is not executed asynchronously (see Section 3.2.4 [Lists|, page 10), the
shell waits for all commands in the pipeline to complete.

Each command in a multi-command pipeline, where pipes are created, is executed in its
own subshell, which is a separate process (see Section 3.7.3 [Command Execution Environ-
ment|, page 43). If the lastpipe option is enabled using the shopt builtin (see Section 4.3.2
[The Shopt Builtin], page 71), the last element of a pipeline may be run by the shell process
when job control is not active.

The exit status of a pipeline is the exit status of the last command in the pipeline, unless
the pipefail option is enabled (see Section 4.3.1 [The Set Builtin], page 67). If pipefail
is enabled, the pipeline’s return status is the value of the last (rightmost) command to exit
with a non-zero status, or zero if all commands exit successfully. If the reserved word ‘!’
precedes the pipeline, the exit status is the logical negation of the exit status as described
above. The shell waits for all commands in the pipeline to terminate before returning a
value.

3.2.4 Lists of Commands

A list is a sequence of one or more pipelines separated by one of the operators ‘;’, ‘&’,
‘&&’, or ‘| |’, and optionally terminated by one of ¢;’, ‘&’, or a newline.



Chapter 3: Basic Shell Features 11

Of these list operators, ‘&&’ and ‘| |” have equal precedence, followed by ‘;’ and ‘&’, which
have equal precedence.

A sequence of one or more newlines may appear in a 1list to delimit commands, equiv-
alent to a semicolon.

If a command is terminated by the control operator ‘&’, the shell executes the command
asynchronously in a subshell. This is known as executing the command in the background,
and these are referred to as asynchronous commands. The shell does not wait for the
command to finish, and the return status is 0 (true). When job control is not active (see
Chapter 7 [Job Control], page 113), the standard input for asynchronous commands, in the
absence of any explicit redirections, is redirected from /dev/null.

Commands separated by a *;’ are executed sequentially; the shell waits for each command
to terminate in turn. The return status is the exit status of the last command executed.

AND and OR lists are sequences of one or more pipelines separated by the control oper-
ators ‘&&’ and ‘| |, respectively. AND and OR lists are executed with left associativity.

An AND list has the form

commandl && command2
command?2 is executed if, and only if, commandl returns an exit status of zero (success).
An OR list has the form
commandl || command2
command? is executed if, and only if, commandl returns a non-zero exit status.

The return status of AND and OR lists is the exit status of the last command executed
in the list.

3.2.5 Compound Commands

Compound commands are the shell programming language constructs. Each construct be-
gins with a reserved word or control operator and is terminated by a corresponding reserved
word or operator. Any redirections (see Section 3.6 [Redirections], page 38) associated with
a compound command apply to all commands within that compound command unless ex-
plicitly overridden.

In most cases a list of commands in a compound command’s description may be separated
from the rest of the command by one or more newlines, and may be followed by a newline
in place of a semicolon.

Bash provides looping constructs, conditional commands, and mechanisms to group
commands and execute them as a unit.

3.2.5.1 Looping Constructs

Bash supports the following looping constructs.
)

Note that wherever a ‘;’ appears in the description of a command’s syntax, it may be
replaced with one or more newlines.

until The syntax of the until command is:

until test-commands; do consequent-commands; done

Execute consequent-commands as long as test-commands has an exit status
which is not zero. The return status is the exit status of the last command
executed in consequent-commands, or zero if none was executed.



Chapter 3: Basic Shell Features 12

while

for

The syntax of the while command is:
while test-commands; do consequent-commands; done

Execute consequent-commands as long as test-commands has an exit status
of zero. The return status is the exit status of the last command executed in
consequent-commands, or zero if none was executed.

The syntax of the for command is:
for name [ [in [words ...] ] ; ] do commands; done

Expand words (see Section 3.5 [Shell Expansions], page 24), and execute com-
mands once for each member in the resultant list, with name bound to the
current member. If ‘in words’ is not present, the for command executes the
commands once for each positional parameter that is set, as if ‘in "$@"’ had
been specified (see Section 3.4.2 [Special Parameters|, page 23).

The return status is the exit status of the last command that executes. If there
are no items in the expansion of words, no commands are executed, and the
return status is zero.

An alternate form of the for command is also supported:
for (( exprl ; expr2 ; expr3 )) ; do commands ; done

First, the arithmetic expression exprl is evaluated according to the rules de-
scribed below (see Section 6.5 [Shell Arithmetic], page 98). The arithmetic
expression expr2 is then evaluated repeatedly until it evaluates to zero. Each
time expr2 evaluates to a non-zero value, commands are executed and the arith-
metic expression expr3 is evaluated. If any expression is omitted, it behaves as
if it evaluates to 1. The return value is the exit status of the last command in
commands that is executed, or false if any of the expressions is invalid.

The break and continue builtins (see Section 4.1 [Bourne Shell Builtins], page 48) may
be used to control loop execution.

3.2.5.2 Conditional Constructs

if

The syntax of the if command is:

if test-commands; then
consequent-commands;
[elif more-test-commands; then
more-consequents; ]
[else alternate-consequents;]
fi
The test-commands list is executed, and if its return status is zero, the
consequent-commands list is executed. If test-commands returns a non-zero
status, each elif list is executed in turn, and if its exit status is zero, the
corresponding more-consequents is executed and the command completes. If
‘else alternate-consequents’ is present, and the final command in the final
if or elif clause has a non-zero exit status, then alternate-consequents is
executed. The return status is the exit status of the last command executed,
or zero if no condition tested true.



Chapter 3: Basic Shell Features 13

case

select

The syntax of the case command is:

case word in
[ [(Q pattern [| pattern]...) command-list ;;]...
esac

case will selectively execute the command-list corresponding to the first pattern
that matches word. The match is performed according to the rules described be-
low in Section 3.5.8.1 [Pattern Matching], page 36. If the nocasematch shell op-
tion (see the description of shopt in Section 4.3.2 [The Shopt Builtin], page 71)
is enabled, the match is performed without regard to the case of alphabetic
characters. The ‘|’ is used to separate multiple patterns, and the ‘)’ operator
terminates a pattern list. A list of patterns and an associated command-list is
known as a clause.

9

Each clause must be terminated with ‘;;’, ;&’, or ‘;;&". The word under-
goes tilde expansion, parameter expansion, command substitution, arithmetic
expansion, and quote removal (see Section 3.5.3 [Shell Parameter Expansion],
page 26) before matching is attempted. Each pattern undergoes tilde expan-
sion, parameter expansion, command substitution, arithmetic expansion, pro-
cess substitution, and quote removal.

There may be an arbitrary number of case clauses, each terminated by a ‘;;’,
‘&, or ¢; ;& . The first pattern that matches determines the command-list that
is executed. It’s a common idiom to use ‘*’ as the final pattern to define the
default case, since that pattern will always match.

Here is an example using case in a script that could be used to describe one
interesting feature of an animal:
echo —n "Enter the name of an animal: "
read ANIMAL
echo -n "The $ANIMAL has "
case $ANIMAL in
horse | dog | cat) echo -n "four";;
man | kangaroo ) echo -n "two";;
*) echo -n "an unknown number of";;
esac
echo " legs."

If the ¢;;’ operator is used, no subsequent matches are attempted after the
first pattern match. Using ‘;&’ in place of ‘;;’ causes execution to continue
with the command-list associated with the next clause, if any. Using ‘; ;& in
place of ‘;;’ causes the shell to test the patterns in the next clause, if any, and
execute any associated command-list on a successful match, continuing the case
statement execution as if the pattern list had not matched.

The return status is zero if no pattern is matched. Otherwise, the return status
is the exit status of the command-list executed.

The select construct allows the easy generation of menus. It has almost the
same syntax as the for command:

select name [in words ...]; do commands; done



Chapter 3: Basic Shell Features 14

(C..

CL..

)

1]

The list of words following in is expanded, generating a list of items, and the
set of expanded words is printed on the standard error output stream, each
preceded by a number. If the ‘in words’ is omitted, the positional parameters
are printed, as if ‘in "$@"’ had been specified. select then displays the PS3
prompt and reads a line from the standard input. If the line consists of a
number corresponding to one of the displayed words, then the value of name
is set to that word. If the line is empty, the words and prompt are displayed
again. If EOF is read, the select command completes and returns 1. Any other
value read causes name to be set to null. The line read is saved in the variable
REPLY.

The commands are executed after each selection until a break command is
executed, at which point the select command completes.

Here is an example that allows the user to pick a filename from the current
directory, and displays the name and index of the file selected.

select fname in *;

do

echo you picked $fname \($REPLY\)
break;

done

(( expression ))

The arithmetic expression is evaluated according to the rules described below
(see Section 6.5 [Shell Arithmetic], page 98). The expression undergoes the same
expansions as if it were within double quotes, but double quote characters in
expression are not treated specially are removed. If the value of the expression
is non-zero, the return status is 0; otherwise the return status is 1.

[[ expression 1]

Return a status of 0 or 1 depending on the evaluation of the conditional expres-
sion expression. Expressions are composed of the primaries described below in
Section 6.4 [Bash Conditional Expressions], page 96. The words between the
[[ and 1] do not undergo word splitting and filename expansion. The shell
performs tilde expansion, parameter and variable expansion, arithmetic expan-
sion, command substitution, process substitution, and quote removal on those
words (the expansions that would occur if the words were enclosed in double
quotes). Conditional operators such as ‘-f” must be unquoted to be recognized
as primaries.

When used with [[, the ‘<’ and ‘>’ operators sort lexicographically using the
current locale.

When the ‘==" and ‘!=’ operators are used, the string to the right of the operator
is considered a pattern and matched according to the rules described below in
Section 3.5.8.1 [Pattern Matching], page 36, as if the extglob shell option were
enabled. The ‘=" operator is identical to ‘==". If the nocasematch shell option
(see the description of shopt in Section 4.3.2 [The Shopt Builtin], page 71)



Chapter 3: Basic Shell Features 15

is enabled, the match is performed without regard to the case of alphabetic
characters. The return value is 0 if the string matches (‘==") or does not match
(‘1=) the pattern, and 1 otherwise.

If you quote any part of the pattern, using any of the shell’s quoting mechanisms,
the quoted portion is matched literally. This means every character in the
quoted portion matches itself, instead of having any special pattern matching
meaning.

(—

An additional binary operator, ‘="", is available, with the same precedence as
‘== and ‘!=". When you use ‘="’, the string to the right of the operator is
considered a POSIX extended regular expression pattern and matched accord-
ingly (using the POSIX regcomp and regexec interfaces usually described in
regex(3)). The return value is 0 if the string matches the pattern, and 1 if it
does not. If the regular expression is syntactically incorrect, the conditional
expression returns 2. If the nocasematch shell option (see the description of
shopt in Section 4.3.2 [The Shopt Builtin], page 71) is enabled, the match is

performed without regard to the case of alphabetic characters.

~9

You can quote any part of the pattern to force the quoted portion to be matched
literally instead of as a regular expression (see above). If the pattern is stored
in a shell variable, quoting the variable expansion forces the entire pattern to
be matched literally.

The pattern will match if it matches any part of the string. If you want to force
the pattern to match the entire string, anchor the pattern using the ‘*’ and ‘$’
regular expression operators.

For example, the following will match a line (stored in the shell variable 1ine)
if there is a sequence of characters anywhere in the value consisting of any
number, including zero, of characters in the space character class, immediately
followed by zero or one instances of ‘a’, then a ‘b’:

[[ $line =~ [[:space:]11*(a)?b 1]

That means values for 1line like ‘aab’, ‘ aaaaaab’, ‘xaby’, and ‘ ab’ will all
match, as will a line containing a ‘b’ anywhere in its value.

If you want to match a character that’s special to the regular expression gram-
mar (‘"$1 [ O\.*+7"), it has to be quoted to remove its special meaning. This
means that in the pattern ‘xxx.txt’, the ‘.’ matches any character in the string
(its usual regular expression meaning), but in the pattern ‘"xxx.txt"’, it can
only match a literal . .

Likewise, if you want to include a character in your pattern that has a special
meaning to the regular expression grammar, you must make sure it’s not quoted.
If you want to anchor a pattern at the beginning or end of the string, for
instance, you cannot quote the ‘’ or ‘¢’ characters using any form of shell

quoting.
If you want to match ‘initial string’ at the start of a line, the following will
work:

[[ $line =~ ~"initial string" 1]

but this will not:

[[ $line =~ "“initial string" ]]



Chapter 3: Basic Shell Features 16

(e~

because in the second example the is quoted and doesn’t have its usual

special meaning.

It is sometimes difficult to specify a regular expression properly without using
quotes, or to keep track of the quoting used by regular expressions while paying
attention to shell quoting and the shell’s quote removal. Storing the regular
expression in a shell variable is often a useful way to avoid problems with
quoting characters that are special to the shell. For example, the following is
equivalent to the pattern used above:

pattern=’[[:space:]]*(a)7b’

[[ $line =~ $pattern 1]
Shell programmers should take special care with backslashes, since backslashes
are used by both the shell and regular expressions to remove the special meaning
from the following character. This means that after the shell’s word expansions
complete (see Section 3.5 [Shell Expansions|, page 24), any backslashes remain-
ing in parts of the pattern that were originally not quoted can remove the
special meaning of pattern characters. If any part of the pattern is quoted, the
shell does its best to ensure that the regular expression treats those remaining
backslashes as literal, if they appeared in a quoted portion.

The following two sets of commands are not equivalent:

pattern=’\.’

[[ . = $pattern 1]
(L. ="1\.1]

[[ . =" "$pattern" ]]
(L.=""\.>11

The first two matches will succeed, but the second two will not, because in the
second two the backslash will be part of the pattern to be matched. In the first
two examples, the pattern passed to the regular expression parser is ‘\.’. The
backslash removes the special meaning from .’; so the literal ‘.’ matches. In
the second two examples, the pattern passed to the regular expression parser
has the backslash quoted (e.g., ‘\\\.”), which will not match the string, since it
does not contain a backslash. If the string in the first examples were anything
other than ‘.’, say ‘a’, the pattern would not match, because the quoted ‘.’ in

the pattern loses its special meaning of matching any single character.

Bracket expressions in regular expressions can be sources of errors as well, since
characters that are normally special in regular expressions lose their special
meanings between brackets. However, you can use bracket expressions to match
special pattern characters without quoting them, so they are sometimes useful
for this purpose.

Though it might seem like a strange way to write it, the following pattern will
match a ‘.’ in the string:

(. =" [.11]
The shell performs any word expansions before passing the pattern to the reg-
ular expression functions, so you can assume that the shell’s quoting takes



Chapter 3: Basic Shell Features 17

precedence. As noted above, the regular expression parser will interpret any
unquoted backslashes remaining in the pattern after shell expansion according
to its own rules. The intention is to avoid making shell programmers quote
things twice as much as possible, so shell quoting should be sufficient to quote
special pattern characters where that’s necessary.

The array variable BASH_REMATCH records which parts of the string matched
the pattern. The element of BASH_REMATCH with index 0 contains the portion
of the string matching the entire regular expression. Substrings matched by
parenthesized subexpressions within the regular expression are saved in the
remaining BASH_REMATCH indices. The element of BASH_REMATCH with index n
is the portion of the string matching the nth parenthesized subexpression.

Bash sets BASH_REMATCH in the global scope; declaring it as a local variable will
lead to unexpected results.

Expressions may be combined using the following operators, listed in decreasing
order of precedence:

( expression )
Returns the value of expression. This may be used to override the
normal precedence of operators.

| expression
True if expression is false.

expressionl && expression2
True if both expressionl and expression2 are true.

expressionl || expression2
True if either expressionl or expression?2 is true.

The && and | | operators do not evaluate expression?2 if the value of expressionl
is sufficient to determine the return value of the entire conditional expression.

3.2.5.3 Grouping Commands

Bash provides two ways to group a list of commands to be executed as a unit. When com-
mands are grouped, redirections may be applied to the entire command list. For example,
the output of all the commands in the list may be redirected to a single stream.

9)

{}

( list )
Placing a list of commands between parentheses forces the shell to create a
subshell (see Section 3.7.3 [Command Execution Environment|, page 43), and
each of the commands in list is executed in that subshell environment. Since
the list is executed in a subshell, variable assignments do not remain in effect
after the subshell completes.

{ list; }
Placing a list of commands between curly braces causes the list to be executed
in the current shell context. No subshell is created. The semicolon (or newline)
following list is required.



Chapter 3: Basic Shell Features 18

In addition to the creation of a subshell, there is a subtle difference between these
two constructs due to historical reasons. The braces are reserved words, so they must
be separated from the list by blanks or other shell metacharacters. The parentheses are
operators, and are recognized as separate tokens by the shell even if they are not separated
from the list by whitespace.

The exit status of both of these constructs is the exit status of Iist.

3.2.6 Coprocesses

A coprocess is a shell command preceded by the coproc reserved word. A coprocess is
executed asynchronously in a subshell, as if the command had been terminated with the
‘&’ control operator, with a two-way pipe established between the executing shell and the
coprocess.

The syntax for a coprocess is:
coproc [NAME] command [redirections]

This creates a coprocess named NAME. command may be either a simple command (see
Section 3.2.2 [Simple Commands|, page 9) or a compound command (see Section 3.2.5
[Compound Commands], page 11). NAME is a shell variable name. If NAME is not
supplied, the default name is COPROC.

The recommended form to use for a coprocess is
coproc NAME { command; }
This form is recommended because simple commands result in the coprocess always being

named COPROC, and it is simpler to use and more complete than the other compound
commands.

There are other forms of coprocesses:

coproc NAME compound-command
coproc compound-command
coproc simple-command

If command is a compound command, NAME is optional. The word following coproc
determines whether that word is interpreted as a variable name: it is interpreted as NAME
if it is not a reserved word that introduces a compound command. If command is a simple
command, NAME is not allowed; this is to avoid confusion between NAME and the first
word of the simple command.

When the coprocess is executed, the shell creates an array variable (see Section 6.7
[Arrays], page 100) named NAME in the context of the executing shell. The standard
output of command is connected via a pipe to a file descriptor in the executing shell, and
that file descriptor is assigned to NAMEI0]. The standard input of command is connected
via a pipe to a file descriptor in the executing shell, and that file descriptor is assigned
to NAME[1]. This pipe is established before any redirections specified by the command
(see Section 3.6 [Redirections|, page 38). The file descriptors can be utilized as arguments
to shell commands and redirections using standard word expansions. Other than those
created to execute command and process substitutions, the file descriptors are not available
in subshells.

The process ID of the shell spawned to execute the coprocess is available as the value of

the variable NAME_PID. The wait builtin command may be used to wait for the coprocess
to terminate.



Chapter 3: Basic Shell Features 19

Since the coprocess is created as an asynchronous command, the coproc command always
returns success. The return status of a coprocess is the exit status of command.

3.2.7 GNU Parallel

There are ways to run commands in parallel that are not built into Bash. GNU Parallel is
a tool to do just that.

GNU Parallel, as its name suggests, can be used to build and run commands in parallel.
You may run the same command with different arguments, whether they are filenames,
usernames, hostnames, or lines read from files. GNU Parallel provides shorthand references
to many of the most common operations (input lines, various portions of the input line,
different ways to specify the input source, and so on). Parallel can replace xargs or feed
commands from its input sources to several different instances of Bash.

For a complete description, refer to the GNU Parallel documentation, which is available
at https://www.gnu.org/software/parallel/parallel_tutorial.html.

3.3 Shell Functions

Shell functions are a way to group commands for later execution using a single name for
the group. They are executed just like a "regular" command. When the name of a shell
function is used as a simple command name, the list of commands associated with that
function name is executed. Shell functions are executed in the current shell context; no new
process is created to interpret them.

Functions are declared using this syntax:
fname () compound-command [ redirections ]
or
function fname [()] compound-command [ redirections ]

This defines a shell function named fname. The reserved word function is optional.
If the function reserved word is supplied, the parentheses are optional. The body of the
function is the compound command compound-command (see Section 3.2.5 [Compound
Commands|, page 11). That command is usually a list enclosed between { and }, but may
be any compound command listed above. If the function reserved word is used, but the
parentheses are not supplied, the braces are recommended. compound-command is executed
whenever fname is specified as the name of a simple command. When the shell is in POSIX
mode (see Section 6.11 [Bash POSIX Mode|, page 106), fname must be a valid shell name
and may not be the same as one of the special builtins (see Section 4.4 [Special Builtins],
page 77). In default mode, a function name can be any unquoted shell word that does not
contain ‘$’. Any redirections (see Section 3.6 [Redirections], page 38) associated with the
shell function are performed when the function is executed. A function definition may be
deleted using the -f option to the unset builtin (see Section 4.1 [Bourne Shell Builtins],
page 48).

The exit status of a function definition is zero unless a syntax error occurs or a readonly
function with the same name already exists. When executed, the exit status of a function
is the exit status of the last command executed in the body.

Note that for historical reasons, in the most common usage the curly braces that surround
the body of the function must be separated from the body by blanks or newlines. This


https://www.gnu.org/software/parallel/parallel_tutorial.html

Chapter 3: Basic Shell Features 20

is because the braces are reserved words and are only recognized as such when they are
separated from the command list by whitespace or another shell metacharacter. Also, when
using the braces, the list must be terminated by a semicolon, a ‘&’, or a newline.

When a function is executed, the arguments to the function become the positional pa-
rameters during its execution (see Section 3.4.1 [Positional Parameters|, page 23). The
special parameter ‘#’ that expands to the number of positional parameters is updated to
reflect the change. Special parameter 0 is unchanged. The first element of the FUNCNAME
variable is set to the name of the function while the function is executing.

All other aspects of the shell execution environment are identical between a function and
its caller with these exceptions: the DEBUG and RETURN traps are not inherited unless the
function has been given the trace attribute using the declare builtin or the —o functrace
option has been enabled with the set builtin, (in which case all functions inherit the DEBUG
and RETURN traps), and the ERR trap is not inherited unless the -o errtrace shell option
has been enabled. See Section 4.1 [Bourne Shell Builtins|, page 48, for the description of
the trap builtin.

The FUNCNEST variable, if set to a numeric value greater than 0, defines a maximum
function nesting level. Function invocations that exceed the limit cause the entire command
to abort.

If the builtin command return is executed in a function, the function completes and
execution resumes with the next command after the function call. Any command associated
with the RETURN trap is executed before execution resumes. When a function completes,
the values of the positional parameters and the special parameter ‘#  are restored to the
values they had prior to the function’s execution. If a numeric argument is given to return,
that is the function’s return status; otherwise the function’s return status is the exit status
of the last command executed before the return.

Variables local to the function may be declared with the local builtin (local variables).
Ordinarily, variables and their values are shared between a function and its caller. These
variables are visible only to the function and the commands it invokes. This is particularly
important when a shell function calls other functions.

In the following description, the current scope is a currently- executing function. Pre-
vious scopes consist of that function’s caller and so on, back to the "global" scope, where
the shell is not executing any shell function. Consequently, a local variable at the current
local scope is a variable declared using the local or declare builtins in the function that
is currently executing.

Local variables "shadow" variables with the same name declared at previous scopes.
For instance, a local variable declared in a function hides a global variable of the same
name: references and assignments refer to the local variable, leaving the global variable
unmodified. When the function returns, the global variable is once again visible.

The shell uses dynamic scoping to control a variable’s visibility within functions. With
dynamic scoping, visible variables and their values are a result of the sequence of function
calls that caused execution to reach the current function. The value of a variable that a
function sees depends on its value within its caller, if any, whether that caller is the "global"
scope or another shell function. This is also the value that a local variable declaration
"shadows", and the value that is restored when the function returns.



Chapter 3: Basic Shell Features 21

For example, if a variable var is declared as local in function func1, and funci calls
another function func2, references to var made from within func2 will resolve to the local
variable var from func1, shadowing any global variable named var.

The following script demonstrates this behavior. When executed, the script displays
In func2, var = funcl local

func1()

{
local var=’funcl local’
func?2

func2()
{

echo "In func2, var = $var"

var=global
funci

The unset builtin also acts using the same dynamic scope: if a variable is local to the
current scope, unset will unset it; otherwise the unset will refer to the variable found in
any calling scope as described above. If a variable at the current local scope is unset, it will
remain so (appearing as unset) until it is reset in that scope or until the function returns.
Once the function returns, any instance of the variable at a previous scope will become
visible. If the unset acts on a variable at a previous scope, any instance of a variable with
that name that had been shadowed will become visible (see below how localvar_unsetshell
option changes this behavior).

Function names and definitions may be listed with the -f option to the declare
(typeset) builtin command (see Section 4.2 [Bash Builtins|, page 55). The -F option
to declare or typeset will list the function names only (and optionally the source file
and line number, if the extdebug shell option is enabled). Functions may be exported
so that child shell processes (those created when executing a separate shell invocation)
automatically have them defined with the -f option to the export builtin (see Section 4.1
[Bourne Shell Builtins], page 48).

Functions may be recursive. The FUNCNEST variable may be used to limit the depth of
the function call stack and restrict the number of function invocations. By default, no limit
is placed on the number of recursive calls.

3.4 Shell Parameters

A parameter is an entity that stores values. It can be a name, a number, or one of the
special characters listed below. A variable is a parameter denoted by a name. A variable
has a value and zero or more attributes. Attributes are assigned using the declare
builtin command (see the description of the declare builtin in Section 4.2 [Bash Builtins],
page 55).

A parameter is set if it has been assigned a value. The null string is a valid value. Once
a variable is set, it may be unset only by using the unset builtin command.



Chapter 3: Basic Shell Features 22

A variable may be assigned to by a statement of the form
name=[value]

If value is not given, the variable is assigned the null string. All values undergo tilde
expansion, parameter and variable expansion, command substitution, arithmetic expansion,
and quote removal (see Section 3.5.3 [Shell Parameter Expansion], page 26). If the variable
has its integer attribute set, then value is evaluated as an arithmetic expression even if
the $((...)) expansion is not used (see Section 3.5.5 [Arithmetic Expansion], page 34).
Word splitting and filename expansion are not performed. Assignment statements may also
appear as arguments to the alias, declare, typeset, export, readonly, and local builtin
commands (declaration commands). When in POSIX mode (see Section 6.11 [Bash POSIX
Mode]|, page 106), these builtins may appear in a command after one or more instances of
the command builtin and retain these assignment statement properties.

In the context where an assignment statement is assigning a value to a shell variable or
array index (see Section 6.7 [Arrays], page 100), the ‘+=" operator can be used to append
to or add to the variable’s previous value. This includes arguments to builtin commands
such as declare that accept assignment statements (declaration commands). When ‘+=’ is
applied to a variable for which the integer attribute has been set, value is evaluated as
an arithmetic expression and added to the variable’s current value, which is also evaluated.
When ‘+=’ is applied to an array variable using compound assignment (see Section 6.7
[Arrays], page 100), the variable’s value is not unset (as it is when using ‘=’), and new
values are appended to the array beginning at one greater than the array’s maximum index
(for indexed arrays), or added as additional key-value pairs in an associative array. When
applied to a string-valued variable, value is expanded and appended to the variable’s value.

A variable can be assigned the nameref attribute using the -n option to the declare or
local builtin commands (see Section 4.2 [Bash Builtins|, page 55) to create a nameref, or a
reference to another variable. This allows variables to be manipulated indirectly. Whenever
the nameref variable is referenced, assigned to, unset, or has its attributes modified (other
than using or changing the nameref attribute itself), the operation is actually performed on
the variable specified by the nameref variable’s value. A nameref is commonly used within
shell functions to refer to a variable whose name is passed as an argument to the function.
For instance, if a variable name is passed to a shell function as its first argument, running

declare -n ref=$1

inside the function creates a nameref variable ref whose value is the variable name passed
as the first argument. References and assignments to ref, and changes to its attributes, are
treated as references, assignments, and attribute modifications to the variable whose name
was passed as $1.

If the control variable in a for loop has the nameref attribute, the list of words can be
a list of shell variables, and a name reference will be established for each word in the list,
in turn, when the loop is executed. Array variables cannot be given the nameref attribute.
However, nameref variables can reference array variables and subscripted array variables.
Namerefs can be unset using the -n option to the unset builtin (see Section 4.1 [Bourne
Shell Builtins], page 48). Otherwise, if unset is executed with the name of a nameref
variable as an argument, the variable referenced by the nameref variable will be unset.



Chapter 3: Basic Shell Features 23

3.4.1 Positional Parameters

A positional parameter is a parameter denoted by one or more digits, other than the single
digit 0. Positional parameters are assigned from the shell’s arguments when it is invoked,
and may be reassigned using the set builtin command. Positional parameter N may be
referenced as ${N}, or as $N when N consists of a single digit. Positional parameters may
not be assigned to with assignment statements. The set and shift builtins are used to
set and unset them (see Chapter 4 [Shell Builtin Commands], page 48). The positional
parameters are temporarily replaced when a shell function is executed (see Section 3.3
[Shell Functions], page 19).

When a positional parameter consisting of more than a single digit is expanded, it must
be enclosed in braces.

3.4.2 Special Parameters

The shell treats several parameters specially. These parameters may only be referenced;
assignment to them is not allowed.

* ($*) Expands to the positional parameters, starting from one. When the ex-
pansion is not within double quotes, each positional parameter expands to a
separate word. In contexts where it is performed, those words are subject to fur-
ther word splitting and filename expansion. When the expansion occurs within
double quotes, it expands to a single word with the value of each parameter
separated by the first character of the IFS special variable. That is, "$*" is
equivalent to "$1c$2c...", where ¢ is the first character of the value of the
IFS variable. If IFS is unset, the parameters are separated by spaces. If IFS is
null, the parameters are joined without intervening separators.

@ ($@) Expands to the positional parameters, starting from one. In contexts
where word splitting is performed, this expands each positional parameter to
a separate word; if not within double quotes, these words are subject to word
splitting. In contexts where word splitting is not performed, this expands to
a single word with each positional parameter separated by a space. When the
expansion occurs within double quotes, and word splitting is performed, each
parameter expands to a separate word. That is, "$@" is equivalent to "$1" "$2"
.. .. If the double-quoted expansion occurs within a word, the expansion of the
first parameter is joined with the beginning part of the original word, and the
expansion of the last parameter is joined with the last part of the original word.
When there are no positional parameters, "$@" and $@ expand to nothing (i.e.,
they are removed).

# ($#) Expands to the number of positional parameters in decimal.
? ($7) Expands to the exit status of the most recently executed foreground
pipeline.

- ($-, a hyphen.) Expands to the current option flags as specified upon invocation,
by the set builtin command, or those set by the shell itself (such as the -i
option).

$ ($$) Expands to the process 1D of the shell. In a subshell, it expands to the
process ID of the invoking shell, not the subshell.



Chapter 3: Basic Shell Features 24

! ($!) Expands to the process ID of the job most recently placed into the back-
ground, whether executed as an asynchronous command or using the bg builtin
(see Section 7.2 [Job Control Builtins|, page 114).

0 ($0) Expands to the name of the shell or shell script. This is set at shell
initialization. If Bash is invoked with a file of commands (see Section 3.8 [Shell
Scripts], page 46), $0 is set to the name of that file. If Bash is started with the
-c option (see Section 6.1 [Invoking Bash], page 91), then $0 is set to the first
argument after the string to be executed, if one is present. Otherwise, it is set
to the filename used to invoke Bash, as given by argument zero.

3.5 Shell Expansions

Expansion is performed on the command line after it has been split into tokens. There are
seven kinds of expansion performed:

e brace expansion

e tilde expansion

e parameter and variable expansion
e command substitution

e arithmetic expansion

e word splitting

e filename expansion

The order of expansions is: brace expansion; tilde expansion, parameter and variable ex-
pansion, arithmetic expansion, and command substitution (done in a left-to-right fashion);
word splitting; and filename expansion.

On systems that can support it, there is an additional expansion available: process sub-
stitution. This is performed at the same time as tilde, parameter, variable, and arithmetic
expansion and command substitution.

After these expansions are performed, quote characters present in the original word are
removed unless they have been quoted themselves (quote removal).

Only brace expansion, word splitting, and filename expansion can increase the number
of words of the expansion; other expansions expand a single word to a single word. The only
exceptions to this are the expansions of "$@" and $* (see Section 3.4.2 [Special Parameters],
page 23), and "${name[@]}" and ${name[*]} (see Section 6.7 [Arrays]|, page 100).

After all expansions, quote removal (see Section 3.5.9 [Quote Removal], page 38) is
performed.

3.5.1 Brace Expansion

Brace expansion is a mechanism by which arbitrary strings may be generated. This mech-
anism is similar to filename expansion (see Section 3.5.8 [Filename Expansion], page 35),
but the filenames generated need not exist. Patterns to be brace expanded take the form of
an optional preamble, followed by either a series of comma-separated strings or a sequence
expression between a pair of braces, followed by an optional postscript. The preamble is
prefixed to each string contained within the braces, and the postscript is then appended to
each resulting string, expanding left to right.



Chapter 3: Basic Shell Features 25

Brace expansions may be nested. The results of each expanded string are not sorted;
left to right order is preserved. For example,
bash$ echo a{d,c,b}te
ade ace abe
A sequence expression takes the form {x..y[..incrl}, where x and y are either integers
or letters, and incr, an optional increment, is an integer. When integers are supplied, the
expression expands to each number between x and y, inclusive. Supplied integers may be
prefixed with ‘0’ to force each term to have the same width. When either x or y begins
with a zero, the shell attempts to force all generated terms to contain the same number
of digits, zero-padding where necessary. When letters are supplied, the expression expands
to each character lexicographically between x and y, inclusive, using the default C locale.
Note that both x and y must be of the same type (integer or letter). When the increment
is supplied, it is used as the difference between each term. The default increment is 1 or -1
as appropriate.

Brace expansion is performed before any other expansions, and any characters special
to other expansions are preserved in the result. It is strictly textual. Bash does not apply
any syntactic interpretation to the context of the expansion or the text between the braces.

A correctly-formed brace expansion must contain unquoted opening and closing braces,
and at least one unquoted comma or a valid sequence expression. Any incorrectly formed
brace expansion is left unchanged.

A {or ‘,” may be quoted with a backslash to prevent its being considered part of a brace
expression. To avoid conflicts with parameter expansion, the string ‘${’ is not considered
eligible for brace expansion, and inhibits brace expansion until the closing ‘}’.

This construct is typically used as shorthand when the common prefix of the strings to
be generated is longer than in the above example:

mkdir /usr/local/src/bash/{old,new,dist,bugs}
or
chown root /usr/{ucb/{ex,edit},lib/{ex?.?*,how_ex}}

3.5.2 Tilde Expansion

If a word begins with an unquoted tilde character (‘~’), all of the characters up to the first
unquoted slash (or all characters, if there is no unquoted slash) are considered a tilde-prefix.
If none of the characters in the tilde-prefix are quoted, the characters in the tilde-prefix
following the tilde are treated as a possible login name. If this login name is the null string,
the tilde is replaced with the value of the HOME shell variable. If HOME is unset, the home
directory of the user executing the shell is substituted instead. Otherwise, the tilde-prefix
is replaced with the home directory associated with the specified login name.

If the tilde-prefix is ‘“+’, the value of the shell variable PWD replaces the tilde-prefix. If
the tilde-prefix is ‘~-’, the value of the shell variable OLDPWD, if it is set, is substituted.

If the characters following the tilde in the tilde-prefix consist of a number N, optionally
prefixed by a ‘+’ or a ‘=’, the tilde-prefix is replaced with the corresponding element from the
directory stack, as it would be displayed by the dirs builtin invoked with the characters
following tilde in the tilde-prefix as an argument (see Section 6.8 [The Directory Stack],
page 102). If the tilde-prefix, sans the tilde, consists of a number without a leading ‘+’ or
‘=7 ‘+’ is assumed.



Chapter 3: Basic Shell Features 26

If the login name is invalid, or the tilde expansion fails, the word is left unchanged.

Each variable assignment is checked for unquoted tilde-prefixes immediately following
a ‘:’ or the first ‘=". In these cases, tilde expansion is also performed. Consequently, one
may use filenames with tildes in assignments to PATH, MAILPATH, and CDPATH, and the shell
assigns the expanded value.

The following table shows how Bash treats unquoted tilde-prefixes:
- The value of $HOME
~/foo $HOME/foo

“fred/foo
The subdirectory foo of the home directory of the user fred

~“+/foo $PWD/foo

~-/foo ${0LDPWD->"-’}/foo0

N The string that would be displayed by ‘dirs +N’
“+N The string that would be displayed by ‘dirs +N’
“-N The string that would be displayed by ‘dirs -’

Bash also performs tilde expansion on words satisfying the conditions of variable as-
signments (see Section 3.4 [Shell Parameters], page 21) when they appear as arguments
to simple commands. Bash does not do this, except for the declaration commands listed
above, when in POSIX mode.

3.5.3 Shell Parameter Expansion

The ‘$’ character introduces parameter expansion, command substitution, or arithmetic
expansion. The parameter name or symbol to be expanded may be enclosed in braces, which
are optional but serve to protect the variable to be expanded from characters immediately
following it which could be interpreted as part of the name.

When braces are used, the matching ending brace is the first ‘}’ not escaped by a
backslash or within a quoted string, and not within an embedded arithmetic expansion,
command substitution, or parameter expansion.

The basic form of parameter expansion is ${parameter}. The value of parameter is
substituted. The parameter is a shell parameter as described above (see Section 3.4 [Shell
Parameters], page 21) or an array reference (see Section 6.7 [Arrays], page 100). The braces
are required when parameter is a positional parameter with more than one digit, or when
parameter is followed by a character that is not to be interpreted as part of its name.

If the first character of parameter is an exclamation point (!), and parameter is not a
nameref, it introduces a level of indirection. Bash uses the value formed by expanding the
rest of parameter as the new parameter; this is then expanded and that value is used in the
rest of the expansion, rather than the expansion of the original parameter. This is known
as indirect expansion. The value is subject to tilde expansion, parameter expansion,
command substitution, and arithmetic expansion. If parameter is a nameref, this expands
to the name of the variable referenced by parameter instead of performing the complete in-
direct expansion. The exceptions to this are the expansions of ${!prefix*} and ${!name[Q]}



Chapter 3: Basic Shell Features 27

described below. The exclamation point must immediately follow the left brace in order to
introduce indirection.

In each of the cases below, word is subject to tilde expansion, parameter expansion,
command substitution, and arithmetic expansion.

When not performing substring expansion, using the form described below (e.g., ‘:="),
Bash tests for a parameter that is unset or null. Omitting the colon results in a test only
for a parameter that is unset. Put another way, if the colon is included, the operator tests
for both parameter’s existence and that its value is not null; if the colon is omitted, the
operator tests only for existence.

${parameter: —word}
If parameter is unset or null, the expansion of word is substituted. Otherwise,
the value of parameter is substituted.

$ v=123
$ echo ${v-unset}
123

${parameter:=word}
If parameter is unset or null, the expansion of word is assigned to parameter.
The value of parameter is then substituted. Positional parameters and special
parameters may not be assigned to in this way.

$ var=

$ : ${var:=DEFAULT}
$ echo $var
DEFAULT

${parameter: 7word}
If parameter is null or unset, the expansion of word (or a message to that effect
if word is not present) is written to the standard error and the shell, if it is not
interactive, exits. Otherwise, the value of parameter is substituted.

$ var=
$ : ${var:?var is unset or null}
bash: var: var is unset or null

${parameter:+word}
If parameter is null or unset, nothing is substituted, otherwise the expansion
of word is substituted.

$ var=123
$ echo ${var:+var is set and not null}
var is set and not null

${parameter: offset}

${parameter: offset: length}
This is referred to as Substring Expansion. It expands to up to length charac-
ters of the value of parameter starting at the character specified by offset. If
parameter is ‘Q" or ‘*’, an indexed array subscripted by ‘@ or ‘*’, or an asso-
ciative array name, the results differ as described below. If length is omitted,
it expands to the substring of the value of parameter starting at the character



Chapter 3: Basic Shell Features 28

specified by offset and extending to the end of the value. length and offset are
arithmetic expressions (see Section 6.5 [Shell Arithmetic], page 98).

If offset evaluates to a number less than zero, the value is used as an offset
in characters from the end of the value of parameter. If length evaluates to a
number less than zero, it is interpreted as an offset in characters from the end of
the value of parameter rather than a number of characters, and the expansion
is the characters between offset and that result. Note that a negative offset
must be separated from the colon by at least one space to avoid being confused
with the ‘: -’ expansion.

Here are some examples illustrating substring expansion on parameters and
subscripted arrays:

$ string=01234567890abcdefgh

$ echo ${string:7}
7890abcdefgh

$ echo ${string:

$ echo ${string:

7:0}

7:2}

78

$ echo ${string:
7890abcdef

$ echo ${string:
bcdefgh

$ echo ${string:

-7}
-7:0}
$ echo ${string: -7:2}
bc

$ echo ${string:
bcdef

$ set -- 01234567890abcdefgh
$ echo ${1:73}

7890abcdefgh

$ echo ${1:7:0}

-7:-2}

$ echo ${1:7:2}

78

$ echo ${1:7:-2}
7890abcdef

$ echo ${1:
bcdefgh

$ echo ${1:

7}
-7:0}

$ echo ${1:
bc

$ echo ${1:
bcdef

$ array[0]=01234567890abcdefgh

-7:2}

-7:-2}



Chapter 3: Basic Shell Features 29

$ echo ${array[0]:7}
7890abcdefgh
$ echo ${array[0]:7:0}

$ echo ${array[0]:7:2}

78

$ echo ${array[0]:7:-2}
7890abcdef

$ echo ${array[0]: -7}
bcdefgh

$ echo ${array[0]: -7:0%}

$ echo ${array[0]: -7:2}

bc

$ echo ${array[0]: -7:-2%}

bcdef

If parameter is ‘@’ or ‘*’, the result is length positional parameters beginning
at offset. A negative offset is taken relative to one greater than the greatest po-
sitional parameter, so an offset of -1 evaluates to the last positional parameter.
It is an expansion error if length evaluates to a number less than zero.

The following examples illustrate substring expansion using positional param-
eters:

$set -1234567890abcdefgh
$ echo ${@:7}

789 0abcdefgh

$ echo ${@:7:0%}

$ echo ${@:7:2}

7 8

$ echo ${@:7:-2}

bash: -2: substring expression < 0

$ echo ${@: -7:2}

bc

$ echo ${@:0%}

./bash 1 23456789 0abcdefgh

$ echo ${0:0:2}

./bash 1

$ echo ${@: -7:0}

If parameter is an indexed array name subscripted by ‘@ or ‘*’, the result is
the length members of the array beginning with ${parameter[offset]}. A
negative offset is taken relative to one greater than the maximum index of the
specified array. It is an expansion error if length evaluates to a number less
than zero.

These examples show how you can use substring expansion with indexed arrays:
$ array=(0 1 23456789 0abcdefgh)



Chapter 3: Basic Shell Features 30

echo ${array[@]:7}

89 0abcdefgh

echo ${array[@]:7:2}

8

echo ${arrayl[@]: -7:2%}

c

echo ${arrayl[@]: -7:-2}

bash: -2: substring expression < 0O
$ echo ${array[e]:0}
0123456789 0abcdefgh
$ echo ${arrayl[@]:0:2}

01

$ echo ${array[@]: -7:0}

¥V T A N H NP

Substring expansion applied to an associative array produces undefined results.

Substring indexing is zero-based unless the positional parameters are used, in
which case the indexing starts at 1 by default. If offset is 0, and the positional
parameters are used, $0 is prefixed to the list.

${!prefix*}

${!prefix@}
Expands to the names of variables whose names begin with prefix, separated by
the first character of the IFS special variable. When ‘@’ is used and the expan-
sion appears within double quotes, each variable name expands to a separate
word.

${'name[@]}

${!name[*]}
If name is an array variable, expands to the list of array indices (keys) assigned
in name. If name is not an array, expands to 0 if name is set and null otherwise.
When ‘@ is used and the expansion appears within double quotes, each key
expands to a separate word.

${#parameter’}

The length in characters of the expanded value of parameter is substituted.
If parameter is ‘*’ or ‘@, the value substituted is the number of positional
parameters. If parameter is an array name subscripted by ‘*’ or ‘@', the value
substituted is the number of elements in the array. If parameter is an indexed
array name subscripted by a negative number, that number is interpreted as
relative to one greater than the maximum index of parameter, so negative
indices count back from the end of the array, and an index of -1 references the
last element.

${parameter#tword}

${parameter##tword}
The word is expanded to produce a pattern and matched according to the
rules described below (see Section 3.5.8.1 [Pattern Matching], page 36). If the
pattern matches the beginning of the expanded value of parameter, then the
result of the expansion is the expanded value of parameter with the shortest



Chapter 3: Basic Shell Features 31

matching pattern (the ‘#’ case) or the longest matching pattern (the ‘##’ case)
deleted. If parameter is ‘@’ or ‘*¥’, the pattern removal operation is applied to
each positional parameter in turn, and the expansion is the resultant list. If
parameter is an array variable subscripted with ‘@ or ‘*’, the pattern removal
operation is applied to each member of the array in turn, and the expansion is
the resultant list.

${parameteriword}

${parametery,word}
The word is expanded to produce a pattern and matched according to the
rules described below (see Section 3.5.8.1 [Pattern Matching], page 36). If
the pattern matches a trailing portion of the expanded value of parameter,
then the result of the expansion is the value of parameter with the shortest
matching pattern (the ‘%’ case) or the longest matching pattern (the ‘%% case)
deleted. If parameter is ‘@’ or ‘*¥’, the pattern removal operation is applied to
each positional parameter in turn, and the expansion is the resultant list. If
parameter is an array variable subscripted with ‘@ or ‘*’, the pattern removal
operation is applied to each member of the array in turn, and the expansion is
the resultant list.

${parameter/pattern/string}

${parameter//pattern/stringt

${parameter/#pattern/string’

${parameter/pattern/stringt
The pattern is expanded to produce a pattern just as in filename expansion.
Parameter is expanded and the longest match of pattern against its value is
replaced with string. string undergoes tilde expansion, parameter and variable
expansion, arithmetic expansion, command and process substitution, and quote
removal. The match is performed according to the rules described below (see
Section 3.5.8.1 [Pattern Matching], page 36).

In the first form above, only the first match is replaced. If there are two
slashes separating parameter and pattern (the second form above), all matches
of pattern are replaced with string. If pattern is preceded by ‘#’ (the third form
above), it must match at the beginning of the expanded value of parameter. If
pattern is preceded by ‘%’ (the fourth form above), it must match at the end of
the expanded value of parameter. If the expansion of string is null, matches of
pattern are deleted. If string is null, matches of pattern are deleted and the ‘/’
following pattern may be omitted.

If the patsub_replacement shell option is enabled using shopt, any unquoted
instances of ‘&’ in string are replaced with the matching portion of pattern.
This is intended to duplicate a common sed idiom.

Quoting any part of string inhibits replacement in the expansion of the quoted
portion, including replacement strings stored in shell variables. Backslash will
escape ‘&’ in string; the backslash is removed in order to permit a literal ‘&’
in the replacement string. Users should take care if string is double-quoted to
avoid unwanted interactions between the backslash and double-quoting, since
backslash has special meaning within double quotes. Pattern substitution per-



Chapter 3: Basic Shell Features 32

forms the check for unquoted ‘&’ after expanding string, so users should ensure
to properly quote any occurrences of ‘&’ they want to be taken literally in the
replacement and ensure any instances of ‘4’ they want to be replaced are un-
quoted.

For instance,

var=abcdef

rep="& ’

echo ${var/abc/& }
echo "${var/abc/& }"
echo ${var/abc/$rep}
echo "${var/abc/$rep}"

will display four lines of "abc def", while

var=abcdef

rep="& ’

echo ${var/abc/\& }
echo "${var/abc/\& }"
echo ${var/abc/"& "}
echo ${var/abc/"$rep"}

will display four lines of "& def". Like the pattern removal operators, double
quotes surrounding the replacement string quote the expanded characters, while
double quotes enclosing the entire parameter substitution do not, since the
expansion is performed in a context that doesn’t take any enclosing double
quotes into account.

Since backslash can escape ‘&’, it can also escape a backslash in the replacement
string. This means that ‘\\’ will insert a literal backslash into the replacement,
so these two echo commands

var=abcdef

rep="\\&xyz’

echo ${var/abc/\\&xyz}

echo ${var/abc/$rep}
will both output ‘\abcxyzdef’.
It should rarely be necessary to enclose only string in double quotes.

If the nocasematch shell option (see the description of shopt in Section 4.3.2
[The Shopt Builtin], page 71) is enabled, the match is performed without regard
to the case of alphabetic characters. If parameter is ‘@’ or ‘*’, the substitution
operation is applied to each positional parameter in turn, and the expansion is
the resultant list. If parameter is an array variable subscripted with ‘@ or ‘¥’
the substitution operation is applied to each member of the array in turn, and
the expansion is the resultant list

${parameter-pattern}

${parameter~"pattern}

${parameter,pattern}

${parameter, ,pattern’t
This expansion modifies the case of alphabetic characters in parameter. The
pattern is expanded to produce a pattern just as in filename expansion. Each



Chapter 3: Basic Shell Features 33

character in the expanded value of parameter is tested against pattern, and, if
it matches the pattern, its case is converted. The pattern should not attempt
to match more than one character.

The ~’ operator converts lowercase letters matching pattern to uppercase; the
‘,” operator converts matching uppercase letters to lowercase. The ‘*~” and ¢, ,’
expansions convert each matched character in the expanded value; the *~’ and
‘,” expansions match and convert only the first character in the expanded value.
If pattern is omitted, it is treated like a ‘?’, which matches every character.

If parameter is ‘@ or ‘*’, the case modification operation is applied to each posi-
tional parameter in turn, and the expansion is the resultant list. If parameter is
an array variable subscripted with ‘@ or ‘*’, the case modification operation is
applied to each member of the array in turn, and the expansion is the resultant
list.

${parameter@operatort
The expansion is either a transformation of the value of parameter or informa-
tion about parameter itself, depending on the value of operator. Each operator
is a single letter:

U The expansion is a string that is the value of parameter with low-
ercase alphabetic characters converted to uppercase.

u The expansion is a string that is the value of parameter with the
first character converted to uppercase, if it is alphabetic.

L The expansion is a string that is the value of parameter with up-
percase alphabetic characters converted to lowercase.

Q The expansion is a string that is the value of parameter quoted in
a format that can be reused as input.

E The expansion is a string that is the value of parameter with back-
slash escape sequences expanded as with the $’ ...’ quoting mech-
anism.

P The expansion is a string that is the result of expanding the value of

parameter as if it were a prompt string (see Section 6.9 [Controlling
the Prompt|, page 104).

A The expansion is a string in the form of an assignment statement or
declare command that, if evaluated, will recreate parameter with
its attributes and value.

K Produces a possibly-quoted version of the value of parameter, ex-
cept that it prints the values of indexed and associative arrays
as a sequence of quoted key-value pairs (see Section 6.7 [Arrays],
page 100).

a The expansion is a string consisting of flag values representing pa-
rameter’s attributes.

k Like the ‘K’ transformation, but expands the keys and values of in-
dexed and associative arrays to separate words after word splitting.



Chapter 3: Basic Shell Features 34

If parameter is ‘@’ or ‘*’, the operation is applied to each positional parameter
in turn, and the expansion is the resultant list. If parameter is an array variable
subscripted with ‘@’ or ‘*’, the operation is applied to each member of the array
in turn, and the expansion is the resultant list.

The result of the expansion is subject to word splitting and filename expansion
as described below.

3.5.4 Command Substitution

Command substitution allows the output of a command to replace the command itself.
Command substitution occurs when a command is enclosed as follows:

$ (command)
or
¢ command‘

Bash performs the expansion by executing command in a subshell environment and replacing
the command substitution with the standard output of the command, with any trailing
newlines deleted. Embedded newlines are not deleted, but they may be removed during
word splitting. The command substitution $(cat file) can be replaced by the equivalent
but faster $(< file).

When the old-style backquote form of substitution is used, backslash retains its literal
meaning except when followed by ‘$’, ““’, or ‘\’. The first backquote not preceded by a
backslash terminates the command substitution. When using the $(command) form, all
characters between the parentheses make up the command; none are treated specially.

Command substitutions may be nested. To nest when using the backquoted form, escape
the inner backquotes with backslashes.

If the substitution appears within double quotes, word splitting and filename expansion
are not performed on the results.

3.5.5 Arithmetic Expansion

Arithmetic expansion allows the evaluation of an arithmetic expression and the substitution
of the result. The format for arithmetic expansion is:
$(( expression ))

The expression undergoes the same expansions as if it were within double quotes, but
double quote characters in expression are not treated specially and are removed. All to-
kens in the expression undergo parameter and variable expansion, command substitution,
and quote removal. The result is treated as the arithmetic expression to be evaluated.
Arithmetic expansions may be nested.

The evaluation is performed according to the rules listed below (see Section 6.5 [Shell
Arithmetic], page 98). If the expression is invalid, Bash prints a message indicating failure
to the standard error and no substitution occurs.

3.5.6 Process Substitution

Process substitution allows a process’s input or output to be referred to using a filename.
It takes the form of

<(list)



Chapter 3: Basic Shell Features 35

or
>(1list)

The process list is run asynchronously, and its input or output appears as a filename. This
filename is passed as an argument to the current command as the result of the expansion. If
the >(1ist) form is used, writing to the file will provide input for Iist. If the <(1ist) form
is used, the file passed as an argument should be read to obtain the output of list. Note that
no space may appear between the < or > and the left parenthesis, otherwise the construct
would be interpreted as a redirection. Process substitution is supported on systems that
support named pipes (FIFOs) or the /dev/fd method of naming open files.

When available, process substitution is performed simultaneously with parameter and
variable expansion, command substitution, and arithmetic expansion.

3.5.7 Word Splitting

The shell scans the results of parameter expansion, command substitution, and arithmetic
expansion that did not occur within double quotes for word splitting.

The shell treats each character of $IFS as a delimiter, and splits the results of the other
expansions into words using these characters as field terminators. If IFS is unset, or its value
is exactly <space><tab><newline>, the default, then sequences of <space>, <tab>, and
<newline> at the beginning and end of the results of the previous expansions are ignored,
and any sequence of IFS characters not at the beginning or end serves to delimit words.
If IFS has a value other than the default, then sequences of the whitespace characters
space, tab, and newline are ignored at the beginning and end of the word, as long as the
whitespace character is in the value of IFS (an IFS whitespace character). Any character in
IFS that is not IFS whitespace, along with any adjacent IFS whitespace characters, delimits
a field. A sequence of IFS whitespace characters is also treated as a delimiter. If the value
of IFS is null, no word splitting occurs.

Explicit null arguments ("" or ’ ?) are retained and passed to commands as empty strings.
Unquoted implicit null arguments, resulting from the expansion of parameters that have
no values, are removed. If a parameter with no value is expanded within double quotes, a
null argument results and is retained and passed to a command as an empty string. When
a quoted null argument appears as part of a word whose expansion is non-null, the null
argument is removed. That is, the word -d’’ becomes -d after word splitting and null
argument removal.

Note that if no expansion occurs, no splitting is performed.

3.5.8 Filename Expansion

After word splitting, unless the —-f option has been set (see Section 4.3.1 [The Set Builtin],
page 67), Bash scans each word for the characters ‘*’, ‘?’, and ‘[’. If one of these characters
appears, and is not quoted, then the word is regarded as a pattern, and replaced with an
alphabetically sorted list of filenames matching the pattern (see Section 3.5.8.1 [Pattern
Matching], page 36). If no matching filenames are found, and the shell option nullglob
is disabled, the word is left unchanged. If the nullglob option is set, and no matches
are found, the word is removed. If the failglob shell option is set, and no matches are
found, an error message is printed and the command is not executed. If the shell option
nocaseglob is enabled, the match is performed without regard to the case of alphabetic
characters.



Chapter 3: Basic Shell Features 36

When a pattern is used for filename expansion, the character ‘.’ at the start of a filename
or immediately following a slash must be matched explicitly, unless the shell option dotglob

is set. In order to match the filenames ‘.” and ‘..’, the pattern must begin with ‘.’ (for
example, ‘.?7%), even if dotglob is set. If the globskipdots shell option is enabled, the
filenames ‘.’ and ‘..’ are never matched, even if the pattern begins with a ‘.’. When not

matching filenames, the ‘.’ character is not treated specially.

When matching a filename, the slash character must always be matched explicitly by a
slash in the pattern, but in other matching contexts it can be matched by a special pattern
character as described below (see Section 3.5.8.1 [Pattern Matching], page 36).

See the description of shopt in Section 4.3.2 [The Shopt Builtin|, page 71, for a descrip-
tion of the nocaseglob, nullglob, globskipdots, failglob, and dotglob options.

The GLOBIGNORE shell variable may be used to restrict the set of file names matching
a pattern. If GLOBIGNORE is set, each matching file name that also matches one of the
patterns in GLOBIGNORE is removed from the list of matches. If the nocaseglob option is
set, the matching against the patterns in GLOBIGNORE is performed without regard to case.
The filenames . and .. are always ignored when GLOBIGNORE is set and not null. However,
setting GLOBIGNORE to a non-null value has the effect of enabling the dotglob shell option,
so all other filenames beginning with a ‘.’ will match. To get the old behavior of ignoring
filenames beginning with a ‘.’, make ‘.*’ one of the patterns in GLOBIGNORE. The dotglob
option is disabled when GLOBIGNORE is unset.

3.5.8.1 Pattern Matching

Any character that appears in a pattern, other than the special pattern characters described
below, matches itself. The NUL character may not occur in a pattern. A backslash escapes
the following character; the escaping backslash is discarded when matching. The special
pattern characters must be quoted if they are to be matched literally.

The special pattern characters have the following meanings:

* Matches any string, including the null string. When the globstar shell option
is enabled, and ‘*’ is used in a filename expansion context, two adjacent ‘*’s
used as a single pattern will match all files and zero or more directories and
subdirectories. If followed by a /’, two adjacent ‘*’s will match only directories
and subdirectories.

? Matches any single character.

[...] Matches any one of the enclosed characters. A pair of characters separated by a
hyphen denotes a range expression; any character that falls between those two
characters, inclusive, using the current locale’s collating sequence and character
set, is matched. If the first character following the ‘[’ is a ‘!’ or a ‘~’ then any
character not enclosed is matched. A ‘—’ may be matched by including it as the
first or last character in the set. A ‘]’ may be matched by including it as the
first character in the set. The sorting order of characters in range expressions,
and the characters included in the range, are determined by the current locale
and the values of the LC_COLLATE and LC_ALL shell variables, if set.

For example, in the default C locale, ‘[a-dx-z]’ is equivalent to ‘[abcdxyz]’.
Many locales sort characters in dictionary order, and in these locales



Chapter 3: Basic Shell Features 37

‘[a-dx-z]’ is typically not equivalent to ‘[abcdxyz]’; it might be equivalent
to ‘[aBbCcDdxYyZz]’, for example. To obtain the traditional interpretation of
ranges in bracket expressions, you can force the use of the C locale by setting
the LC_COLLATE or LC_ALL environment variable to the value ‘C’, or enable the
globasciiranges shell option.

Within ‘[’ and ‘]1°, character classes can be specified using the syntax [:class:],
where class is one of the following classes defined in the POSIX standard:

alnum alpha ascii  blank cntrl digit graph  lower
print  punct space upper word xdigit

A character class matches any character belonging to that class. The word
character class matches letters, digits, and the character ‘_’.

Within ‘[" and ‘]1’, an equivalence class can be specified using the syntax [=c=],
which matches all characters with the same collation weight (as defined by the
current locale) as the character c.

Within ‘[’ and ‘]1’, the syntax [.symbol.] matches the collating symbol symbol.

If the extglob shell option is enabled using the shopt builtin, the shell recognizes several
extended pattern matching operators. In the following description, a pattern-list is a list of
one or more patterns separated by a ‘|’. When matching filenames, the dotglob shell option
determines the set of filenames that are tested, as described above. Composite patterns may
be formed using one or more of the following sub-patterns:

?(pattern-list)
Matches zero or one occurrence of the given patterns.

*(pattern-list)
Matches zero or more occurrences of the given patterns.

+(pattern-list)
Matches one or more occurrences of the given patterns.

@(pattern-list)
Matches one of the given patterns.

! (pattern-1ist)
Matches anything except one of the given patterns.

The extglob option changes the behavior of the parser, since the parentheses are nor-
mally treated as operators with syntactic meaning. To ensure that extended matching
patterns are parsed correctly, make sure that extglob is enabled before parsing constructs
containing the patterns, including shell functions and command substitutions.

When matching filenames, the dotglob shell option determines the set of filenames that
are tested: when dotglob is enabled, the set of filenames includes all files beginning with
.7, but the filenames ‘.’ and ‘..’ must be matched by a pattern or sub-pattern that begins
with a dot; when it is disabled, the set does not include any filenames beginning with “.”
unless the pattern or sub-pattern begins with a ©.’. As above, ‘.’ only has a special meaning
when matching filenames.

Complicated extended pattern matching against long strings is slow, especially when
the patterns contain alternations and the strings contain multiple matches. Using separate



Chapter 3: Basic Shell Features 38

matches against shorter strings, or using arrays of strings instead of a single long string,
may be faster.

3.5.9 Quote Removal

After the preceding expansions, all unquoted occurrences of the characters ‘\’, ©>’, and ‘"’
that did not result from one of the above expansions are removed.

3.6 Redirections

Before a command is executed, its input and output may be redirected using a special no-
tation interpreted by the shell. Redirection allows commands’ file handles to be duplicated,
opened, closed, made to refer to different files, and can change the files the command reads
from and writes to. Redirection may also be used to modify file handles in the current
shell execution environment. The following redirection operators may precede or appear
anywhere within a simple command or may follow a command. Redirections are processed
in the order they appear, from left to right.

Each redirection that may be preceded by a file descriptor number may instead be
preceded by a word of the form {varname}. In this case, for each redirection operator
except >&- and <&-, the shell will allocate a file descriptor greater than 10 and assign it
to {varname}. If >&- or <&- is preceded by {varname}, the value of varname defines the
file descriptor to close. If {varname} is supplied, the redirection persists beyond the scope
of the command, allowing the shell programmer to manage the file descriptor’s lifetime
manually. The varredir_close shell option manages this behavior (see Section 4.3.2 [The
Shopt Builtin], page 71).

In the following descriptions, if the file descriptor number is omitted, and the first char-
acter of the redirection operator is ‘<’; the redirection refers to the standard input (file
descriptor 0). If the first character of the redirection operator is ‘>’, the redirection refers
to the standard output (file descriptor 1).

The word following the redirection operator in the following descriptions, unless other-
wise noted, is subjected to brace expansion, tilde expansion, parameter expansion, command
substitution, arithmetic expansion, quote removal, filename expansion, and word splitting.
If it expands to more than one word, Bash reports an error.

Note that the order of redirections is significant. For example, the command

1s > dirlist 2>&1

directs both standard output (file descriptor 1) and standard error (file descriptor 2) to the
file dirlist, while the command

1s 2>&1 > dirlist
directs only the standard output to file dirlist, because the standard error was made a copy
of the standard output before the standard output was redirected to dirlist.

Bash handles several filenames specially when they are used in redirections, as described
in the following table. If the operating system on which Bash is running provides these
special files, bash will use them; otherwise it will emulate them internally with the behavior
described below.

/dev/fd/fd
If fd is a valid integer, file descriptor fd is duplicated.



Chapter 3: Basic Shell Features 39

/dev/stdin
File descriptor 0 is duplicated.

/dev/stdout
File descriptor 1 is duplicated.

/dev/stderr
File descriptor 2 is duplicated.

/dev/tcp/host/port
If host is a valid hostname or Internet address, and port is an integer port
number or service name, Bash attempts to open the corresponding TCP socket.

/dev/udp/host/port
If host is a valid hostname or Internet address, and port is an integer port
number or service name, Bash attempts to open the corresponding UDP socket.

A failure to open or create a file causes the redirection to fail.

Redirections using file descriptors greater than 9 should be used with care, as they may
conflict with file descriptors the shell uses internally.

3.6.1 Redirecting Input

Redirection of input causes the file whose name results from the expansion of word to be
opened for reading on file descriptor n, or the standard input (file descriptor 0) if n is not
specified.

The general format for redirecting input is:

[n]<word

3.6.2 Redirecting Output

Redirection of output causes the file whose name results from the expansion of word to be
opened for writing on file descriptor n, or the standard output (file descriptor 1) if n is not
specified. If the file does not exist it is created; if it does exist it is truncated to zero size.

The general format for redirecting output is:
[n]>[|]word

If the redirection operator is ‘>’, and the noclobber option to the set builtin has been
enabled, the redirection will fail if the file whose name results from the expansion of word
exists and is a regular file. If the redirection operator is ‘>|’, or the redirection operator is
‘>’ and the noclobber option is not enabled, the redirection is attempted even if the file
named by word exists.

3.6.3 Appending Redirected Output

Redirection of output in this fashion causes the file whose name results from the expansion of
word to be opened for appending on file descriptor n, or the standard output (file descriptor
1) if n is not specified. If the file does not exist it is created.

The general format for appending output is:

[n] >>word



Chapter 3: Basic Shell Features 40

3.6.4 Redirecting Standard Output and Standard Error

This construct allows both the standard output (file descriptor 1) and the standard error
output (file descriptor 2) to be redirected to the file whose name is the expansion of word.

There are two formats for redirecting standard output and standard error:
&>word
and
>&word
Of the two forms, the first is preferred. This is semantically equivalent to
>word 2>&1

3

When using the second form, word may not expand to a number or ‘=’. If it does,
other redirection operators apply (see Duplicating File Descriptors below) for compatibility
reasons.

3.6.5 Appending Standard Output and Standard Error

This construct allows both the standard output (file descriptor 1) and the standard error
output (file descriptor 2) to be appended to the file whose name is the expansion of word.

The format for appending standard output and standard error is:
&>>word
This is semantically equivalent to
>>word 2>&1

(see Duplicating File Descriptors below).

3.6.6 Here Documents

This type of redirection instructs the shell to read input from the current source until a line
containing only word (with no trailing blanks) is seen. All of the lines read up to that point
are then used as the standard input (or file descriptor n if n is specified) for a command.

The format of here-documents is:

[n] << [—]word
here-document
delimiter

No parameter and variable expansion, command substitution, arithmetic expansion, or
filename expansion is performed on word. If any part of word is quoted, the delimiter is the
result of quote removal on word, and the lines in the here-document are not expanded. If
word is unquoted, all lines of the here-document are subjected to parameter expansion, com-
mand substitution, and arithmetic expansion, the character sequence \newline is ignored,
and ‘\’ must be used to quote the characters ‘\’, ‘$’, and ‘*’.

If the redirection operator is ‘<<-’, then all leading tab characters are stripped from input
lines and the line containing delimiter. This allows here-documents within shell scripts to
be indented in a natural fashion.



Chapter 3: Basic Shell Features 41

3.6.7 Here Strings
A variant of here documents, the format is:
[n]<<< word

The word undergoes tilde expansion, parameter and variable expansion, command sub-
stitution, arithmetic expansion, and quote removal. Filename expansion and word splitting
are not performed. The result is supplied as a single string, with a newline appended, to
the command on its standard input (or file descriptor n if n is specified).

3.6.8 Duplicating File Descriptors
The redirection operator
[n] <&word

is used to duplicate input file descriptors. If word expands to one or more digits, the file
descriptor denoted by n is made to be a copy of that file descriptor. If the digits in word
do not specify a file descriptor open for input, a redirection error occurs. If word evaluates
to ‘=7, file descriptor n is closed. If n is not specified, the standard input (file descriptor 0)
is used.
The operator
[n]>&word

is used similarly to duplicate output file descriptors. If n is not specified, the standard
output (file descriptor 1) is used. If the digits in word do not specify a file descriptor open
for output, a redirection error occurs. If word evaluates to ‘-’, file descriptor n is closed.

(o

As a special case, if n is omitted, and word does not expand to one or more digits or ‘-,
the standard output and standard error are redirected as described previously.

3.6.9 Moving File Descriptors
The redirection operator
[n]<&digit-

moves the file descriptor digit to file descriptor n, or the standard input (file descriptor 0)
if n is not specified. digit is closed after being duplicated to n.

Similarly, the redirection operator
[n]>&digit-

moves the file descriptor digit to file descriptor n, or the standard output (file descriptor 1)
if n is not specified.

3.6.10 Opening File Descriptors for Reading and Writing
The redirection operator
[n] <>word

causes the file whose name is the expansion of word to be opened for both reading and
writing on file descriptor n, or on file descriptor 0 if n is not specified. If the file does not
exist, it is created.



Chapter 3: Basic Shell Features 42

3.7 Executing Commands

3.7.1 Simple Command Expansion

When a simple command is executed, the shell performs the following expansions, assign-
ments, and redirections, from left to right, in the following order.

1. The words that the parser has marked as variable assignments (those preceding the
command name) and redirections are saved for later processing.

2. The words that are not variable assignments or redirections are expanded (see
Section 3.5 [Shell Expansions], page 24). If any words remain after expansion, the
first word is taken to be the name of the command and the remaining words are the
arguments.

3. Redirections are performed as described above (see Section 3.6 [Redirections]|, page 38).

4. The text after the ‘=" in each variable assignment undergoes tilde expansion, parameter
expansion, command substitution, arithmetic expansion, and quote removal before
being assigned to the variable.

If no command name results, the variable assignments affect the current shell environ-
ment. In the case of such a command (one that consists only of assignment statements
and redirections), assignment statements are performed before redirections. Otherwise, the
variables are added to the environment of the executed command and do not affect the cur-
rent shell environment. If any of the assignments attempts to assign a value to a readonly
variable, an error occurs, and the command exits with a non-zero status.

If no command name results, redirections are performed, but do not affect the current
shell environment. A redirection error causes the command to exit with a non-zero status.

If there is a command name left after expansion, execution proceeds as described below.
Otherwise, the command exits. If one of the expansions contained a command substitu-
tion, the exit status of the command is the exit status of the last command substitution
performed. If there were no command substitutions, the command exits with a status of
Z€ro.

3.7.2 Command Search and Execution

After a command has been split into words, if it results in a simple command and an
optional list of arguments, the following actions are taken.

1. If the command name contains no slashes, the shell attempts to locate it. If there exists
a shell function by that name, that function is invoked as described in Section 3.3 [Shell
Functions], page 19.

2. If the name does not match a function, the shell searches for it in the list of shell
builtins. If a match is found, that builtin is invoked.

3. If the name is neither a shell function nor a builtin, and contains no slashes, Bash
searches each element of $PATH for a directory containing an executable file by that
name. Bash uses a hash table to remember the full pathnames of executable files to
avoid multiple PATH searches (see the description of hash in Section 4.1 [Bourne Shell
Builtins], page 48). A full search of the directories in $PATH is performed only if the
command is not found in the hash table. If the search is unsuccessful, the shell searches
for a defined shell function named command_not_found_handle. If that function exists,



Chapter 3: Basic Shell Features 43

it is invoked in a separate execution environment with the original command and the
original command’s arguments as its arguments, and the function’s exit status becomes
the exit status of that subshell. If that function is not defined, the shell prints an error
message and returns an exit status of 127.

If the search is successful, or if the command name contains one or more slashes, the
shell executes the named program in a separate execution environment. Argument 0
is set to the name given, and the remaining arguments to the command are set to the
arguments supplied, if any.

If this execution fails because the file is not in executable format, and the file is not
a directory, it is assumed to be a shell script and the shell executes it as described in
Section 3.8 [Shell Scripts], page 46.

If the command was not begun asynchronously, the shell waits for the command to
complete and collects its exit status.

3.7.3 Command Execution Environment

The shell has an execution environment, which consists of the following:

open files inherited by the shell at invocation, as modified by redirections supplied to
the exec builtin

the current working directory as set by cd, pushd, or popd, or inherited by the shell at
invocation

the file creation mode mask as set by umask or inherited from the shell’s parent
current traps set by trap

shell parameters that are set by variable assignment or with set or inherited from the
shell’s parent in the environment

shell functions defined during execution or inherited from the shell’s parent in the
environment

options enabled at invocation (either by default or with command-line arguments) or
by set

options enabled by shopt (see Section 4.3.2 [The Shopt Builtin], page 71)

shell aliases defined with alias (see Section 6.6 [Aliases|, page 100)

various process IDs, including those of background jobs (see Section 3.2.4 [Lists],
page 10), the value of $$, and the value of $PPID

When a simple command other than a builtin or shell function is to be executed, it is

invoked in a separate execution environment that consists of the following. Unless otherwise
noted, the values are inherited from the shell.

the shell’s open files, plus any modifications and additions specified by redirections to
the command

the current working directory

the file creation mode mask

shell variables and functions marked for export, along with variables exported for the
command, passed in the environment (see Section 3.7.4 [Environment], page 44)

traps caught by the shell are reset to the values inherited from the shell’s parent, and
traps ignored by the shell are ignored



Chapter 3: Basic Shell Features 44

A command invoked in this separate environment cannot affect the shell’s execution
environment.

A subshell is a copy of the shell process.

Command substitution, commands grouped with parentheses, and asynchronous com-
mands are invoked in a subshell environment that is a duplicate of the shell environment,
except that traps caught by the shell are reset to the values that the shell inherited from
its parent at invocation. Builtin commands that are invoked as part of a pipeline are also
executed in a subshell environment. Changes made to the subshell environment cannot
affect the shell’s execution environment.

Subshells spawned to execute command substitutions inherit the value of the —e option
from the parent shell. When not in POSIX mode, Bash clears the —e option in such subshells.

If a command is followed by a ‘&’ and job control is not active, the default standard input
for the command is the empty file /dev/null. Otherwise, the invoked command inherits
the file descriptors of the calling shell as modified by redirections.

3.7.4 Environment

When a program is invoked it is given an array of strings called the environment. This is a
list of name-value pairs, of the form name=value.

Bash provides several ways to manipulate the environment. On invocation, the shell
scans its own environment and creates a parameter for each name found, automatically
marking it for export to child processes. Executed commands inherit the environment. The
export and ‘declare -x’ commands allow parameters and functions to be added to and
deleted from the environment. If the value of a parameter in the environment is modified, the
new value becomes part of the environment, replacing the old. The environment inherited
by any executed command consists of the shell’s initial environment, whose values may be
modified in the shell, less any pairs removed by the unset and ‘export -n’ commands, plus
any additions via the export and ‘declare -x’ commands.

The environment for any simple command or function may be augmented temporarily
by prefixing it with parameter assignments, as described in Section 3.4 [Shell Parameters],
page 21. These assignment statements affect only the environment seen by that command.

If the -k option is set (see Section 4.3.1 [The Set Builtin|, page 67), then all parameter
assignments are placed in the environment for a command, not just those that precede the
command name.

When Bash invokes an external command, the variable ‘$_’ is set to the full pathname
of the command and passed to that command in its environment.

3.7.5 Exit Status

The exit status of an executed command is the value returned by the waitpid system call or
equivalent function. Exit statuses fall between 0 and 255, though, as explained below, the
shell may use values above 125 specially. Exit statuses from shell builtins and compound
commands are also limited to this range. Under certain circumstances, the shell will use
special values to indicate specific failure modes.

For the shell’s purposes, a command which exits with a zero exit status has succeeded.
A non-zero exit status indicates failure. This seemingly counter-intuitive scheme is used so
there is one well-defined way to indicate success and a variety of ways to indicate various



Chapter 3: Basic Shell Features 45

failure modes. When a command terminates on a fatal signal whose number is N, Bash
uses the value 128+N as the exit status.

If a command is not found, the child process created to execute it returns a status of
127. If a command is found but is not executable, the return status is 126.

If a command fails because of an error during expansion or redirection, the exit status
is greater than zero.

The exit status is used by the Bash conditional commands (see Section 3.2.5.2 [Con-
ditional Constructs], page 12) and some of the list constructs (see Section 3.2.4 [Lists],
page 10).

All of the Bash builtins return an exit status of zero if they succeed and a non-zero
status on failure, so they may be used by the conditional and list constructs. All builtins
return an exit status of 2 to indicate incorrect usage, generally invalid options or missing
arguments.

The exit status of the last command is available in the special parameter $7 (see
Section 3.4.2 [Special Parameters], page 23).

3.7.6 Signals

When Bash is interactive, in the absence of any traps, it ignores SIGTERM (so that ‘kill
0’ does not kill an interactive shell), and SIGINT is caught and handled (so that the wait
builtin is interruptible). When Bash receives a SIGINT, it breaks out of any executing loops.
In all cases, Bash ignores SIGQUIT. If job control is in effect (see Chapter 7 [Job Control],
page 113), Bash ignores SIGTTIN, SIGTTOU, and SIGTSTP.

Non-builtin commands started by Bash have signal handlers set to the values inherited
by the shell from its parent. When job control is not in effect, asynchronous commands
ignore SIGINT and SIGQUIT in addition to these inherited handlers. Commands run as a
result of command substitution ignore the keyboard-generated job control signals SIGTTIN,
SIGTTOU, and SIGTSTP.

The shell exits by default upon receipt of a SIGHUP. Before exiting, an interactive shell
resends the SIGHUP to all jobs, running or stopped. Stopped jobs are sent SIGCONT to
ensure that they receive the SIGHUP. To prevent the shell from sending the SIGHUP signal
to a particular job, it should be removed from the jobs table with the disown builtin (see
Section 7.2 [Job Control Builtins|, page 114) or marked to not receive SIGHUP using disown
-h.

If the huponexit shell option has been set with shopt (see Section 4.3.2 [The Shopt
Builtin], page 71), Bash sends a SIGHUP to all jobs when an interactive login shell exits.

If Bash is waiting for a command to complete and receives a signal for which a trap
has been set, the trap will not be executed until the command completes. When Bash is
waiting for an asynchronous command via the wait builtin, the reception of a signal for
which a trap has been set will cause the wait builtin to return immediately with an exit
status greater than 128, immediately after which the trap is executed.

When job control is not enabled, and Bash is waiting for a foreground command to
complete, the shell receives keyboard-generated signals such as SIGINT (usually generated
by ‘~C’) that users commonly intend to send to that command. This happens because the
shell and the command are in the same process group as the terminal, and ‘~C’ sends SIGINT



Chapter 3: Basic Shell Features 46

to all processes in that process group. See Chapter 7 [Job Control], page 113, for a more
in-depth discussion of process groups.

When Bash is running without job control enabled and receives SIGINT while waiting
for a foreground command, it waits until that foreground command terminates and then
decides what to do about the SIGINT:

1. If the command terminates due to the SIGINT, Bash concludes that the user meant to
end the entire script, and acts on the SIGINT (e.g., by running a SIGINT trap or exiting
itself);

2. If the pipeline does not terminate due to SIGINT, the program handled the SIGINT
itself and did not treat it as a fatal signal. In that case, Bash does not treat SIGINT
as a fatal signal, either, instead assuming that the SIGINT was used as part of the
program’s normal operation (e.g., emacs uses it to abort editing commands) or delib-
erately discarded. However, Bash will run any trap set on SIGINT, as it does with
any other trapped signal it receives while it is waiting for the foreground command to
complete, for compatibility.

3.8 Shell Scripts

A shell script is a text file containing shell commands. When such a file is used as the first
non-option argument when invoking Bash, and neither the —c nor -s option is supplied (see
Section 6.1 [Invoking Bash], page 91), Bash reads and executes commands from the file,
then exits. This mode of operation creates a non-interactive shell. The shell first searches
for the file in the current directory, and looks in the directories in $PATH if not found there.

When Bash runs a shell script, it sets the special parameter 0 to the name of the file,
rather than the name of the shell, and the positional parameters are set to the remain-
ing arguments, if any are given. If no additional arguments are supplied, the positional
parameters are unset.

A shell script may be made executable by using the chmod command to turn on the
execute bit. When Bash finds such a file while searching the $PATH for a command, it
creates a new instance of itself to execute it. In other words, executing

filename arguments
is equivalent to executing
bash filename arguments

if filename is an executable shell script. This subshell reinitializes itself, so that the effect
is as if a new shell had been invoked to interpret the script, with the exception that the
locations of commands remembered by the parent (see the description of hash in Section 4.1
[Bourne Shell Builtins], page 48) are retained by the child.

Most versions of Unix make this a part of the operating system’s command execution
mechanism. If the first line of a script begins with the two characters ‘#!’, the remainder
of the line specifies an interpreter for the program and, depending on the operating system,
one or more optional arguments for that interpreter. Thus, you can specify Bash, awk, Perl,
or some other interpreter and write the rest of the script file in that language.

The arguments to the interpreter consist of one or more optional arguments following
the interpreter name on the first line of the script file, followed by the name of the script
file, followed by the rest of the arguments supplied to the script. The details of how the



Chapter 3: Basic Shell Features 47

interpreter line is split into an interpreter name and a set of arguments vary across systems.
Bash will perform this action on operating systems that do not handle it themselves. Note
that some older versions of Unix limit the interpreter name and a single argument to a
maximum of 32 characters, so it’s not portable to assume that using more than one argument
will work.

Bash scripts often begin with #! /bin/bash (assuming that Bash has been installed in
/bin), since this ensures that Bash will be used to interpret the script, even if it is executed
under another shell. It’s a common idiom to use env to find bash even if it’s been installed
in another directory: #!/usr/bin/env bash will find the first occurrence of bash in $PATH.



48

4 Shell Builtin Commands

Builtin commands are contained within the shell itself. When the name of a builtin com-
mand is used as the first word of a simple command (see Section 3.2.2 [Simple Commands],
page 9), the shell executes the command directly, without invoking another program. Builtin
commands are necessary to implement functionality impossible or inconvenient to obtain
with separate utilities.

This section briefly describes the builtins which Bash inherits from the Bourne Shell, as
well as the builtin commands which are unique to or have been extended in Bash.

Several builtin commands are described in other chapters: builtin commands which
provide the Bash interface to the job control facilities (see Section 7.2 [Job Control Builtins],
page 114), the directory stack (see Section 6.8.1 [Directory Stack Builtins], page 102), the
command history (see Section 9.2 [Bash History Builtins|, page 152), and the programmable
completion facilities (see Section 8.7 [Programmable Completion Builtins|, page 146).

Many of the builtins have been extended by POSIX or Bash.

Unless otherwise noted, each builtin command documented as accepting options preceded
by ‘-’ accepts ‘==’ to signify the end of the options. The :, true, false, and test/[
builtins do not accept options and do not treat ‘--’ specially. The exit, logout, return,
break, continue, let, and shift builtins accept and process arguments beginning with
‘=7 without requiring ‘--’. Other builtins that accept arguments but are not specified as
accepting options interpret arguments beginning with ‘-’ as invalid options and require ‘==’
to prevent this interpretation.

4.1 Bourne Shell Builtins

The following shell builtin commands are inherited from the Bourne Shell. These commands
are implemented as specified by the POSIX standard.

: (a colon)
larguments]
Do nothing beyond expanding arguments and performing redirections. The
return status is zero.

. (a period)

. filename [arguments]
Read and execute commands from the filename argument in the current shell
context. If filename does not contain a slash, the PATH variable is used to find
filename, but filename does not need to be executable. When Bash is not in
POSIX mode, it searches the current directory if filename is not found in $PATH.
If any arguments are supplied, they become the positional parameters when
filename is executed. Otherwise the positional parameters are unchanged. If
the -T option is enabled, . inherits any trap on DEBUG; if it is not, any DEBUG
trap string is saved and restored around the call to ., and . unsets the DEBUG
trap while