
GNU ccScript Scripting Guide IV

David Sugar
GNU Telephony

2008-08-20

(The text was slightly edited in 2017.)

Contents

1 Introduction 1

2 Script file layout 2

3 Statements and syntax 4

4 Loops and conditionals 5

5 Symbol Formatting 7

6 Command Reference 8

7 Copyright 12

1 Introduction

This document covers the “4th” major release of the GNU ccScript engine.
GNU ccScript is a highly specialized embedded scripting engine and vir-
tual execution environment for creating applications that may be automated
through scripting. This system is a C++ class library which allows one to
derive application-specific dialects of the core language as needed through
subclassing. GNU ccScript is not meant to run as a “shell” or offer interac-
tive user sessions.

What makes ccScript different from similar packages is its deterministic run-
time, and its use of step execution for integrating with realtime state transi-
tion and callback event-driven systems. That is, rather than invoke a func-
tion which then parses an interpreter, one executes a single step statement.
This is useful when a callback service thread is monitoring multiple devices;
each device can have a ccScript interpreter instance, and a single thread can
dispatch events upon demand.

GNU ccScript is also meant to script systems without downtime. This has
one curious effect: when ccScript is started, a core script is converted into
a reference-counted object. When an interpreter instance is connected to
process script requests, it attaches a reference. If an active script is modified
and reloaded, a new “image” is created, and new requests are then given this
new image. When the last reference against an old script image is terminated,
the image is also purged. This allows one to compile and rebuild scripts on
the fly and load them into memory even while active interpreter instances
are running.

A number of specialized optimizations also exist in GNU ccScript to greatly
reduce runtime heap management, especially for running massively concur-
rent instances of the interpreter. Another core feature of the GNU ccScript
system is support for extensive compile-time script analysis. This reduces
the need for runtime error checking, and the risk of using incorrect scripts.

1

2 Script file layout

A single text file is used to represent an application “script”. This text file
is compiled into a reference-counted image that is then executed at runtime.
The form and layout of a script application has been defined in release IV as
follows:

First, there is an initialization block, which appears at the start of the script
file without a label. The initialization block is called anytime a runtime
script is “attached”, whichever part of the script is run first. Only certain
statements can be used in the initialization block. They are generally related
to defining and setting global applications and constants.

Some special commands must appear at the very start of the script file. The
strict command is implemented this way. Derived application servers may
have other special commands which have this requirement, or other special
commands that can only be placed in an initialization block.

The next part, immediately following the initialization block, may contain
define statements introducing user-defined functions, and template state-
ments introducing event handlers. The user-defined functions are written in
the scripting language, and operate as if they were new builtin script com-
mands. Variables can be scoped to a function; arguments can thus be passed
as either values or references. Templates are used to apply event handlers to
script “sections” so they do not have to be individually recoded.

The script sections follow any defines and templates. Each section begins
with a @ and a label. There are two special labels, @main, which is the
default entry point for starting a script application unless the attach method
chose a different label, and @exit, which is used when the application service
script terminates.

Each script section can have under it one or more named event handlers, each
of which has script statements. Multiple event handlers can be listed next to
each other directly, thereby sharing the same script statements. All of them
now have free-form definitions. The exact meaning or use of predefined event
handlers will depend on the derived application service. The ^error event
however is always used when the script engine finds a runtime error, and the
^exit handler, if found for the currently running script, is called before the
@exit section on termination events.

2

Each script may also have a special ^init event handler. This is called each
time a script is started, whether from initial attach of @main, or as a result
of a goto or gosub. The ^init section is called before the main part of the
script. Any events that occur will be blocked until ^init completes, and so
this can be used to complete initialization of all variables before the script –
which itself can otherwise be interrupted by an event – actually starts, or (for
example in the case of Bayonne) to play prompts that are not interrupted,
in a script that also has key events.

Starting with ccScript 4.0.1, “templates” can be created which can then be
applied to existing script sections. When this is done, the ^event handlers
of the template will be added to the script @section they are applied to. If
the script @section has defined its own local handlers, these will override
the template handlers.

Templating allows one to define the event handlers that are shared between
multiple sections of a script once and for all, rather than repeatedly re-
code each handler in each section. Only one template can be applied to a
@section, and apply must be the first command of the section.

Templates can be applied to definition blocks as well as to script sections.
The only requirement is that the template must appear in the script file be-
fore it is applied. An apply command can also be used within the template
itself. Thus one can compose a template from the event handlers of multi-
ple templates which can then be collectively applied to a script section or
definition block.

Starting with ccScript 4.0.3, conditional compilation is supported using one
or more requires blocks. The conditional section is ended with an endreq
statement. The requires statement tests for the presence of keywords in
the interpreter and/or definition blocks. If the required commands are not
found, then compilation is skipped until the next requires statement can
be tested or an endreq statement is used. A requires statement can make
any part of a script file conditional, including labels and event handlers.

Testing for the absence of a command can be done using !token. Hence, a
conditional block can be started with “requires token”, and alternate code
can be substituted using “requires !token”. The entire block can then be
ended with endreq. If multiple command tokens are listed, then the presence
(or absence) of all the listed tokens must be true for the requires block to
conditionally compile.

3

3 Statements and syntax

Each script statement is a single input line in a script file. A script statement
is composed of a script command statement, any script command arguments
that might be used, and any keyword value pairs. White spaces are used
to separate each part of the command statement, and white spaces are also
used to separate each command argument. The newline terminates a script
statement.

GNU ccScript IV is case-sensitive. All built-in keywords are lower case.
Symbol names and defines which are in mixed case have to be used in the
same manner and case they are defined. Hence sET WOULD NOT BE the
same command as set.

Commands are composed of – and keywords can be assigned with – literal
strings, or numbers (integer or decimal), or even references to symbols.

String literals may be enclosed in single quotes, double quotes, or a pair of
{} braces. Literals can also be a single integer or decimal number.

Symbols are normally referenced by starting with the % character. Special
variable formatting rules may be specified with the $ character followed by
the format option, a colon (:), and the symbol name, such as $len:string
to retrieve the length of the variable %string. Symbols, when used to define
or assign new symbols, usually are specified without any prefix, but may
contain a “:” suffix with a size or type field.

Symbols may be scoped. If a symbol comes into existence as part of a state-
ment in a define block, or as part of the arguments of the command which
invoked the define block, that symbol can only be referenced from within
that block. All other symbols are exposed and scoped globally. Locally
scoped symbols in a define block can hide/have the same name as a global
one.

Some statements may be conditional statements. These may use either a
single test which starts with - or !, the latter being verified if the test fails
rather than succeeds, or two values joined by an expression, “%myvar = 2”
for instance. Multiple conditions can be joined together with either and or
or into a more complex expression.

4

if is a special command where two statements may exist on one line. This
happens when if is used with a conditional expression followed by a then
clause. Any single script statement may then appear, and will be executed if
the expression is true. If there is no then clause following the if statement,
then a multi-line if block is assumed, which may include elif and else
sections, and requires an explicit endif line.

4 Loops and conditionals

Scripts can be broken down into blocks of conditional code. To support
this, we have both if-then-else-endif constructs, and case blocks. In addition,
blocks of code can be enclosed in loops, and the loops themselves can be
controlled by conditionals.

All conditional statements use one of two forms; either two arguments sep-
arated by a conditional test operator, or a test condition and a single ar-
gument. Multiple conditions can be chained together with the and and or
keywords.

Conditional operators include = and <>, which provide numeric comparison of
two arguments, along with >, <, <=, and >=, which also perform comparison
of integer values. A simple conditional expression of this form might be
something like “if %val < 3 then break”, which tests to see if %val is less
than 3, and if so, breaks a loop.

Conditional operators also include string comparisons. These differ in that
they do not operate on the integer value of a string, but on its effective
sorting order. The most basic string operators include == and !=, which test
if two arguments are equal or not. All comparisons are case-sensitive.

A special operator, ?, can be used to determine if one substring is contained
within another comma-separated string. This can be used to see if the first
argument is contained in the second. For example, the test “th ? fr,th,is”
would be true, since “th” is in the list. As in Perl, the ~ operator may also be
used. This will test if a regular expression can be matched with the contents
of an argument.

A special string “match” function is defined with the $ and !$ operators.

5

This may depend on the derived application service, but by default may be
used to perform a case-insensitive search.

In addition to the conditional operators, variables may be used in special con-
ditional tests. These tests are named -xxx, where “-xxx <argument>” will
check if the argument meets the specified condition, and “!-xxx <argument>”
will check if it doesn’t. The following conditional tests are defined in ccScript
(additional ones may exist in an implemented application service):

Conditional Description
-defined tests if a given argument is a defined variable
-empty tests if the argument or variable is empty or not
-const tests if a given argument is a constant variable
-modify tests if a given argument is a modifiable variable
-integer tests if a given argument is an integer number
-digits tests if a given argument is only composed of digits
-number tests if a given argument is an integer or decimal number

The “if <condition>” statement can take two forms. It can be used by
itself, or in “if <condition> then ...” constructs where the then clause
is executed if the condition is true. The “if <condition> then ...” block
continues until an endif command is reached, and may support elif and
else options as well. This form is similar to the Bash shell if-then-fi condi-
tional.

The case statement is followed immediately by a conditional expression, and
can be used multiple times to break a group of lines up until the endcase is
reached or a loop exits. The otherwise keyword is the same as the default
case in C. The break command can force a case block to immediately exit
through its endcase statement.

The do statement can be used to enclose a loop. This loop can be ended either
with the loop statement, or with until. The latter supports a conditional
clause. A “do ... loop” block will loop indefinitely. However, all loops,
including do, may also be exited with a break statement, or repeated again
with the continue statement.

The “while <condition>” statement can be used together with loop to
form a conditional looping block of code so long as the condition remains

6

true. A “for <var> <value1> <value2> ...” loop can be used to assign a
variable from a list of values. “foreach <var> <value>” is used to assign a
variable from a comma-delimited list, or from the comma-delimited contents
of a symbol. All loops other than case blocks may be nested, as well as the
if-xxx-endif clauses.

5 Symbol Formatting

Symbol formatting allows the value of a symbol to be transformed, or ac-
cessed in a manner different from the default content. This can be useful for
extracting fields from a comma-delimited keyword list, to get the length of a
symbol, or even to create special rules such as phrasebook expressions.

The rule is in the form $rule[/option]:symbol. If no rule is specified, then
$symbol by itself is the same as %symbol. The actual ruleset can be extended
in application services, but the following are predefined:

Rule Description
$bool gets symbol as true/false boolean
$dec decrements symbol and returns next value
$find/name gets named member from comma-delimited content
$head gets first item in a comma-delimited list
$inc increments symbol and returns next value
$index/val gets partial string by offset index
$int gets symbol as integer value
$key gets keyword of a key/value pair
$len gets length of symbol
$lower converts symbol to lower case
$map/sym maps a symbol to use as find or offset
$num gets numeric symbol to decimal precision of runtime
$pop pops last item from a comma-delimited list
$pull pulls first item from a comma-delimited list
$offset/val gets tuples from specified offset
$size gets storage size of symbol, 0 if const
$tail gets last item in a comma-delimited list
$unquote removes quoting from symbol
$upper converts symbol to upper case
$val gets value of a key/value pair or unquotes a list item

7

6 Command Reference

These are the initial built-in commands of the core ccScript engine. Appli-
cation servers may add further commands of their own.

add symbol[:type or size] value ...
Sets an existing symbol or creates a new global symbol. If the symbol
exists, values will be appended to it.

apply definition
Applies the event handlers of a script definition to the current script
section. If used, this must be the first statement in a section.

break
Exits a case, do, while, for or foreach block.

case condition
Executes block of code if the condition is true. Otherwise tries next
case section, an otherwise block, or reach endcase.

clear %symbol ...
Clears one or more symbols.

const symbol=initial ...
Initializes one or more read-only constants. If the const is in a define
block, the symbol is created in local scope.

continue
Repeats a do, while, for or foreach block.

do
Begins a do-loop block. This can be ended with either a loop or an
until statement.

elif condition
Enters section of an if block if the condition is true, and no other
elif section has been entered. Hence, if an if statement is true and
executes lines, control skips to endif when elif is reached .

else
Used for the else section of an if block.

8

endcase
Ends a case block.

endif
Ends an if block.

error text...
Generates a runtime error. The text is copied into the internal %error
symbol, and the script’s ^error handler, if any, is called.

exit
Exits the script. Calls a ^exit handler if there is one, or the @exit
section of the script.

expand tuples symbol[:type or size] ...
Expands a variable or literal holding a list of tuples into a list of sym-
bols. If there are nested tuples, then the nested set is assigned as a
new tuple list to a symbol.

expr symbol[:type or size] = value [op value] ...
This is used to assign a symbol from a simple math expression, such
as “expr %myvar = 3.5 * %somevar”. The decimal precision can be
overriden with the decimals= keyword; decimals=0 ensures integer re-
sults. One can also perform expressions in assignment, for example, to
increment an existing variable with a += or decrement with -=. Hence,
one can use “expr %myvar += 3.5” for example.

for symbol[:type or size] value ...
Begins a for block of code, assigning each value to the symbol in turn
and calling the statements in the block until loop is reached.

foreach symbol[:type or size] value[offset]
Begins a for block of code, assigning each member of a comma-delimited
value to the symbol in turn and calling the statements in the block until
loop is reached. Optionally, a number of entries may be skipped at the
start of the loop. If this option is used and the number is a variable, it
is automatically reset to 0 when the foreach loop is entered.

goto @label or ^event
Transfers control to a new label or an event handler in the current
script.

gosub @label
Calls a script label as a subroutine.

9

if condition then statement
If the specified conditional expression is true, the statement after the
then is executed.

if condition
Used to start an if block when the condition is true. If false, the elif
may be tried, and finally either the else clause will execute, or the
endif will be reached.

index value or expression
Sets the current index of a for or foreach loop to an absolute position,
and then restarts the loop. If the index position is past the limit of
the loop, or evaluates to 0, then the command acts like break. The
continue command can be simulated with “index %index + 1”, the
previous command can be simulated with “index %index - 1”, and
the same item can be repeated over again with “index %index”.

loop
Repeats a do, while, for or foreach block.

nop
Does nothing.

otherwise
Used as a default for a case block when no case conditions are entered.

pack symbol[:type or size] value|key=value ...
Sets an existing symbol or create a new global symbol, and packs it
with a comma-delimited list of values. If the symbol exists, values will
be appended to it.

push symbol[:type or size] [key] value
Appends an optionally key-paired data value to a symbol list. If the list
does not exist, it is created. Member values are normally single-quoted.

pause
Used to guarantee a “scheduler” pause in the stepping engine.

previous
Restarts a for or foreach loop using the prior element in the list. If
already at the first index element, then the command will “break” the
loop, exiting at the loop statement.

10

repeat
Restarts a for or foreach loop using the same index over again. This
can be thought of as similar to continue.

restart
Restart the current labelled script @section. This is convenient since
if you are in a defined function, you can still identify the parent script.
Restart does NOT re-execute the ^init handler, as the state of the
script @section is already presumed to be initialized. For this reason,
restart can also be used together with if to conditionally end an active
^init segment early.

return
Returns from a script section subroutine (see gosub) or a defined script.
Scripts also automatically return when the end of the current section,
define, or event handler is reached.

set symbol[:type or size] [assignment] value ...
Sets an existing symbol or creates a new global symbol. If the symbol
exists, its content will be replaced with the list of values. Alternately,
an assignment operator can be used before the list of values. The two
assignment operators supported are := and +=. If += is used, then set
becomes the same as add.

strict var ...
Must be first statement and specifies strict compile mode. In strict
compile mode, all symbols must be defined before use, and this is veri-
fied at compile time. Additional vars can be specified to be defined. At
minimum, one must use “strict error” to enable the use of the in-
ternal %error symbol. Some application servers may define additional
“internal” symbols which should be stated in strict mode, otherwise
their use will generate a compile-time error.

until condition
Repeats a do block until the condition becomes true.

var symbol[:type or size][=initial] ...
Initializes one or more symbols. If var is used in a define block, the
symbol is created in local scope.

while condition
While condition is true, enters a loop block. If the condition is false,
then falls through the loop command, like break.

11

7 Copyright

Copyright (C) 2005-2008 David Sugar, Tycho Softworks.

Permission is granted to copy, distribute and/or modify this document under
the terms of the GNU Free Documentation License, Version 1.2 or any later
version published by the Free Software Foundation; with no Invariant Sec-
tions, no Front-Cover Texts, and no Back-Cover Texts. The text of the license
is available at https://gnu.org/licenses/old-licenses/fdl-1.2.html.

12

https://gnu.org/licenses/old-licenses/fdl-1.2.html

	Introduction
	Script file layout
	Statements and syntax
	Loops and conditionals
	Symbol Formatting
	Command Reference
	Copyright

