23.5 Coding Systems

Users of various languages have established many more-or-less standard coding systems for representing them. Emacs does not use these coding systems internally; instead, it converts from various coding systems to its own system when reading data, and converts the internal coding system to other coding systems when writing data. Conversion is possible in reading or writing files, in sending or receiving from the terminal, and in exchanging data with subprocesses.

Emacs assigns a name to each coding system. Most coding systems are used for one language, and the name of the coding system starts with the language name. Some coding systems are used for several languages; their names usually start with ‘iso’. There are also special coding systems, such as no-conversion, raw-text, and emacs-internal.

A special class of coding systems, collectively known as codepages, is designed to support text encoded by MS-Windows and MS-DOS software. The names of these coding systems are cpnnnn, where nnnn is a 3- or 4-digit number of the codepage. You can use these encodings just like any other coding system; for example, to visit a file encoded in codepage 850, type C-x RET c cp850 RET C-x C-f filename RET.

In addition to converting various representations of non-ASCII characters, a coding system can perform end-of-line conversion. Emacs handles three different conventions for how to separate lines in a file: newline (Unix), carriage return followed by linefeed (DOS), and just carriage return (Mac).

C-h C coding RET

Describe coding system coding (describe-coding-system).

C-h C RET

Describe the coding systems currently in use (describe-coding-system).

M-x list-coding-systems

Display a list of all the supported coding systems.

The command C-h C (describe-coding-system) displays information about particular coding systems, including the end-of-line conversion specified by those coding systems. You can specify a coding system name as the argument; alternatively, with an empty argument, it describes the coding systems currently selected for various purposes, both in the current buffer and as the defaults, and the priority list for recognizing coding systems (see Recognizing Coding Systems).

To display a list of all the supported coding systems, type M-x list-coding-systems. The list gives information about each coding system, including the letter that stands for it in the mode line (see The Mode Line).

Each of the coding systems that appear in this list—except for no-conversion, which means no conversion of any kind—specifies how and whether to convert printing characters, but leaves the choice of end-of-line conversion to be decided based on the contents of each file. For example, if the file appears to use the sequence carriage return and linefeed to separate lines, DOS end-of-line conversion will be used.

Each of the listed coding systems has three variants, which specify exactly what to do for end-of-line conversion:

…-unix

Don’t do any end-of-line conversion; assume the file uses newline to separate lines. (This is the convention normally used on Unix and GNU systems, and macOS.)

…-dos

Assume the file uses carriage return followed by linefeed to separate lines, and do the appropriate conversion. (This is the convention normally used on Microsoft systems.9)

…-mac

Assume the file uses carriage return to separate lines, and do the appropriate conversion. (This was the convention used in Classic Mac OS.)

These variant coding systems are omitted from the list-coding-systems display for brevity, since they are entirely predictable. For example, the coding system iso-latin-1 has variants iso-latin-1-unix, iso-latin-1-dos and iso-latin-1-mac.

The coding systems unix, dos, and mac are aliases for undecided-unix, undecided-dos, and undecided-mac, respectively. These coding systems specify only the end-of-line conversion, and leave the character code conversion to be deduced from the text itself.

The coding system raw-text is good for a file which is mainly ASCII text, but may contain byte values above 127 that are not meant to encode non-ASCII characters. With raw-text, Emacs copies those byte values unchanged, and sets enable-multibyte-characters to nil in the current buffer so that they will be interpreted properly. raw-text handles end-of-line conversion in the usual way, based on the data encountered, and has the usual three variants to specify the kind of end-of-line conversion to use.

In contrast, the coding system no-conversion specifies no character code conversion at all—none for non-ASCII byte values and none for end of line. This is useful for reading or writing binary files, tar files, and other files that must be examined verbatim. It, too, sets enable-multibyte-characters to nil.

The easiest way to edit a file with no conversion of any kind is with the M-x find-file-literally command. This uses no-conversion, and also suppresses other Emacs features that might convert the file contents before you see them. See Visiting Files.

The coding system emacs-internal (or utf-8-emacs, which is equivalent) means that the file contains non-ASCII characters stored with the internal Emacs encoding. This coding system handles end-of-line conversion based on the data encountered, and has the usual three variants to specify the kind of end-of-line conversion.


Footnotes

(9)

It is also specified for MIME ‘text/*’ bodies and in other network transport contexts. It is different from the SGML reference syntax record-start/record-end format, which Emacs doesn’t support directly.