GNU dbm

A Database Manager

by Philip A. Nelson, Jason Downs and Sergey Poznyakoff

Manual by Pierre Gaumond, Philip A. Nelson, Jason Downs,
Sergey Poznyakoff, and Terence Kelly

Edition 1.23

for GNU dbm, Version 1.23



Published by the Free Software Foundation, 51 Franklin Street, Fifth Floor Boston, MA
02110-1301, USA

Copyright (©) 1989-1999, 2007-2022 Free Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.3 or any later version published by the
Free Software Foundation; with no Invariant Sections, no Front-Cover, and no Back-Cover
texts. A copy of the license is included in the section entitled “GNU Free Documentation
License.”



Short Contents

©O© 0 J O O = W N

NN NN DN DNDNDNDDNRFR P /= /= o= = ) =
CO J O O i W N~ O © 0 ~J O O = W N+~ O

Copying Conditions .. ..., 1
Introduction to GNU dbm. . . ... ... .. .. . ... 2
Opening the database. .. ....... ... ... . . . .. D
Closing the database . ......... ... .. . . ... 8
Number of Records. . ... ... 9
Inserting and replacing records in the database ............ 10
Searching for records in the database .................... 12
Removing records from the database..................... 13
Sequential access torecords . ....... .. e 14
Database reorganization............ .. ... . ... 16
Database Synchronization ............ ... .. ... .. ..... 17
Changing database format . ............................ 18
Export and Import . . ... 19
Error handling . ...... ... . 23
Database consistency . ........... i i 25
Recovering structural consistency .............. ... . .... 26
Crash Tolerance . ... ...t 28
Setting options . .. ..o 36
File Locking .. ... ... o 40
Useful global variables . .......... ... ... ... . ... ... 41
Additional functions. .. ..... .. ... i i 43
Error codes . ... ..o 44
Compatibility with standard dbm and ndbm. ............... 49
Examine and modify a GDBM database.................. 53
The gdbm_dump utility .......... .. i 67
The gdbm_load utility .......... ... .. i L 68
Exit codes. ... ..o 69
Problems and bugs . ........ ... .. . . 70
Additional Tesources . .. ... . 71
GNU Free Documentation License....................... 72



Table of Contents

10

11

12

13

14

15

16

Copying Conditions ............................ 1
Introduction to GNU dbm ...................... 2
Opening the database .......................... 5
Closing the database ........................... 8
Number of Records............................. 9

Inserting and replacing records in the database

................................................ 10
Searching for records in the database........ 12
Removing records from the database........ 13
Sequential access torecords.................. 14

Database reorganization..................... 16

Database Synchronization................... 17

Changing database format................... 18

Export and Import........................ ... 19

Error handling................................ 23

Database consistency ........................ 25

Recovering structural consistency .......... 26



17 Crash Tolerance.............................. 28
17.1 Using Proper Filesystem ........... ... o .. 28
17.2  Enabling crash tolerance ................ ... o i 29
17.3 Synchronizing the Database.............. ... ... ... 29
17.4  Crash recovery ... ..o e 30
17.5 Manual crash recovery ......... ... . i 31
17.6  Performance Impact .......... ..o i 32
17.7 Availability ... ... 32
17.8 Numsync Extension.......... ... i 32
17.9 Crash Tolerance APL.......... ... ., 33

18 Settingoptions............................... 36

19 File Locking .................. . ... ........... 40

20 Useful global variables....................... 41

21 Additional functions ...................... ... 43

22 Errorcodes........... ... ... 44

23 Compatibility with standard dbm and ndbm

................................................ 49
23.1 NDBM interface functions. ............ouuiiiiiinnno.. 49
23.2 DBM interface functions . ...........oiiuiiiiin .. 51

24 Examine and modify a GDBM database... 53

24.1 gdbmtool invocation .......... ... i 53
24.2 gdbmtool interactive mode.......... ... . oL 95
24.2.1 Shell Variables........ ... 56
24.2.2 Gdbmtool Commands............c.oiiiiiiiiiiiiii... 60
24.2.3 Data Definitions ... 64
24.2.4 Startup Files..... ..o 66

25 The gdbm_dump utility......................... 67
26 The gdbm_load utility......................... 68
27 Exitcodes........... .. ...l 69
28 Problems and bugs........................... 70

29 Additional resources . ........... ... 71

iii



Appendix A GNU Free Documentation License
................................................ 72

iv



Chapter 1: Copying Conditions 1

1 Copying Conditions

This library is free; this means that everyone is free to use it and free to redistribute it
on a free basis. GNU dbm (GDBM) is not in the public domain; it is copyrighted and there
are restrictions on its distribution, but these restrictions are designed to permit everything
that a good cooperating citizen would want to do. What is not allowed is to try to prevent
others from further sharing any version of GDBM that they might get from you.

Specifically, we want to make sure that you have the right to give away copies of GDBM,
that you receive source code or else can get it if you want it, that you can change these
functions or use pieces of them in new free programs, and that you know you can do these
things.

To make sure that everyone has such rights, we have to forbid you to deprive anyone else
of these rights. For example, if you distribute copies of GDBM, you must give the recipients
all the rights that you have. You must make sure that they, too, receive or can get the
source code. And you must tell them their rights.

Also, for our own protection, we must make certain that everyone finds out that there
is no warranty for anything in the GDBM distribution. If these functions are modified by
someone else and passed on, we want their recipients to know that what they have is not
what we distributed, so that any problems introduced by others will not reflect on our
reputation.

GDBM is currently distributed under the terms of the GNU General Public License, Version

3. (NOT under the GNU General Library Public License.) A copy the GNU General Public
License is included with the distribution of GDBM.



Chapter 2: Introduction to GNU dbm 2

2 Introduction to GNU dbm

GNU dbm (GDBM) is a library of database functions that use extensible hashing and work
similar to the standard UNIX dbm functions. These routines are provided to a programmer
needing to create and manipulate a hashed database. (GDBM is NOT' a complete database
package for an end user.)

The basic use of GDBM is to store key/data pairs in a data file. Each key must be unique
and each key is paired with only one data item. The keys can not be directly accessed in
sorted order. The basic unit of data in GDBM is the structure:

typedef struct

{
char *dptr;
int dsize;
} datum;

This structure allows for arbitrary sized keys and data items. In particular, zero-length
keys or data (dsize = 0) are allowed. However, the dptr field is required to point to a valid
memory location. In other words, dptr cannot be NULL. Note also that its type is char *
for purely historic reasons. You can use any C data type (either scalar or aggregate) both
as for key and for data.

The key/data pairs are stored in a GDBM disk file, called a gdbm database. An appli-
cation must open a GDBM database to be able manipulate the keys and data contained in
it. GDBM allows an application to have multiple databases open at the same time. When
an application opens a GDBM database, it is designated as a reader or a writer. A GDBM
database can be opened by at most one writer at a time. However, many readers may open
the database simultaneously. Readers and writers can not open the GDBM database at the
same time.

Speaking about application we usually mean a separate process. However, it is entirely
normal for a multi-thread program to operate as a GDBM reader in one thread and writer
in another, provided, of course, that the two threads don’t operate on the same database
simultaneously.

To use the GDBM functions, the programmer must first include the header file gdbm.h.

This file defines, among others, the GDBM_FILE data type, an opaque pointer to the struc-
ture that represents the opened GDBM database. To access the database, the programmer
must first open it using the gdbm_open function. The function takes several arguments, the
name of the database file being one of them, and returns a GDBM_FILE object on success.
This object is then passed to other functions in order to manipulate the database. When
the database is no longer needed, the programmer closes it using the gdbm_close call.

These and other functions are discussed in detail in chapters that follow. Here we show
an example illustrating the use of GDBM to look up a key in the database.

#include <stdio.h>
#include <string.h>
#include <gdbm.h>

int
main (int argc, char x*argv)



Chapter 2: Introduction to GNU dbm 3

{
GDBM_FILE gdbf; /* Database file object pointer */
datum key, content; /* Key and content data */
int status = 0; /* Exit status of the program: 0 - 0K, 1 - key
not found, 2 - error. */
/*
* Validate arguments.
*/
if (argc != 3)
{
fprintf (stderr, "usage: %s DBFILE KEY\n", argv[0]);
return 2;
b
/*

* Open the database. The GDBM_READER flag indicates that we only
* intend to read from it.
*/
gdbf = gdbm_open (argv[1], O, GDBM_READER, O, NULL);
if (gdbf == NULL)
{
fprintf (stderr, "can’t open database: %s\n",
gdbm_strerror (gdbm_errno));

/*
* Prepare the lookup key. Notice, that the terminating \O character
* is not counted in the dsize computation.
*/

key.dptr = argv[2];

key.dsize = strlen (argv([2]);

/*
* Look up the key in the database.
*/
content = gdbm_fetch (gdbf, key);
/*
* Analyze the return.
*/
if (content.dptr != NULL)
{

/*
* The key is found. Print the content on the stdout and
* indicate success.

*/



Chapter 2: Introduction to GNU dbm 4

fwrite (content.dptr, content.dsize, 1, stdout);
putchar (°\n’);
status = 0;

X
else if (gdbm_errno == GDBM_ITEM_NOT_FOUND)
{
/*
* There is no such key in the database.
*/

fprintf (stderr, "no such key\n");
status = 1;

}
else
{
/*
* An error occurred.
*/

fprintf (stderr, "%s\n", gdbm_db_strerror (gdbf));
status = 2;

}

/%
* Close the database and return.
*/
gdbm_close (gdbf);
return status;
}
To compile this example, run
cc —oexample example.c -lgdbm
To run it, you will need an example database. The easiest way to create it is by using the
gdbtool program, which is part of the GDBM package (see Chapter 24 [gdbmtool], page 53):
$ gdbmtool test.gdbm store foo bar

This creates database file test.gdbm and stores a single record in it. The record’s key is
‘foo’, and the value is ‘bar’. Now you can run the example program to see how it works:

$ ./example test.gdbm foo
bar

$ ./example test.gdbm baz
no such key



Chapter 3: Opening the database 5

3 Opening the database

GDBM_FILE gdbm_open (const char *name, int block_size, int [gdbm interface]
flags, int mode, void (*fatal_func)(const char *))
Opens or creates a GDBM database file.

The arguments are:

name

block_size

flags

The name of the file (the complete name, GDBM does not append any
characters to this name).

This parameter is used only when gdbm_open has to create a new database
file and represents the size of a single transfer from disk to memory. If its
value is less than 512, the file system block size is used instead. The size
is adjusted so that the block can hold exact number of directory entries,
so that the effective block size can be slightly greater than requested.
However, if the GDBM_BSEXACT flag is set and the size needs to be adjusted,
the function will return with error status, setting the gdbm_errno variable
to GDBM_BLOCK_SIZE_ERROR.

If f1ags is set to GDBM_READER, the user wants to just read the database
and any call to gdbm_store or gdbm_delete will fail. Many readers can
access the database at the same time. If flags is set to GDBM_WRITER,
the user wants both read and write access to the database and requires
exclusive access. If flags is set to GDBM_WRCREAT, the user wants both
read and write access to the database and wants it created if it does
not already exist. If flags is set to GDBM_NEWDB, the user want a new
database created, regardless of whether one existed, and wants read and
write access to the new database. If an existing database file is opened
with the GDBM_NEWDB flag, the existing data are destroyed, and an empty
database structure is created in its place.

The following constants may also be logically or’d into the database flags:

GDBM_CLOEXEC [gdbm_open flag]
Set the close-on-exec flag on the database file descriptor. The libc
must support the 0_CLOEXEC flag (see Section “O_CLOEXEC” in
open(2) man page).

GDBM_NOLOCK [gdbm_open flag]
Don’t lock the database file. Use this flag if you intend to do locking
separately. See Chapter 19 [Locking], page 40.

GDBM_NOMMAP [gdbm_open flag]
Disable memory mapping mechanism. Note, that this degrades
performance.

GDBM_PREREAD [gdbm_open flag]

When mapping GDBM file to memory, read its contents immediately,
instead of when needed (prefault reading). This can be advanta-
geous if you open a read-only database and are going to do a lot



Chapter 3: Opening the database 6

of look-ups on it. In this case entire database will be pre-read and
look-ups will operate on an in-memory copy. In contrast, GDBM_
PREREAD should not be used if you open a database (even in read-
only mode) only to do a couple of look-ups. Finally, never use
GDBM_PREREAD when opening a database for updates, especially for
inserts: this will degrade performance.

This flag has no effect if GDBM_NOMMAP is given, or if the operating
system does not support prefault reading. It is known to work on
Linux and FreeBSD kernels.

GDBM_XVERIFY [gdbm_open flag]
Enable additional consistency checks. With this flag, eventual cor-
ruptions of the database are discovered when opening it, instead of
when a corrupted structure is read during normal operation. How-
ever, on large databases, it can slow down the opening process.

See Chapter 21 [Additional functions], page 43.

The following additional flags are valid when the database is opened for
writing (i.e. together with GDBM_WRITER, GDBM_WRCREAT, or GDBM_NEWDB):

GDBM_SYNC [gdbm_open flag]
Synchronize all database operations to disk immediately. Notice,
that this option entails severe performance degradation and does
not necessarily ensure that the resulting database state is consis-
tent. In general, we discourage its use (see Chapter 11 [Sync],
page 17). See Chapter 17 [Crash Tolerance|, page 28, for a discus-
sion of how to ensure database consistency with minimal perfor-
mance overhead.

GDBM_FAST [gdbm_open flag]
A reverse of GDBM_SYNC. Synchronize writes only when needed.
This is the default. The flag is provided for compatibility with
previous versions of GDBM.

The following flags can be used together with GDBM_NEWDB. They also
take effect when used with GDBM_WRCREAT, if the requested database file
doesn’t exist:

GDBM_BSEXACT [gdbm_open flag]
If this flag is set and the requested block_size cannot be used with-
out adjustment, gdbm_open will refuse to create the databases. In
this case it will set the gdbm_errno variable to GDBM_BLOCK_SIZE_
ERROR and return NULL.

GDBM_NUMSYNC [gdbm_open flag]
Useful only together with GDBM_NEWDB, this bit instructs gdbm_open
to create new database in extended database format, a format best
suitable for effective crash recovery. See Section 17.8 [Numsync],
page 32, for a detailed discussion of this format, and Chapter 17
[Crash Tolerance|, page 28, for a discussion of crash recovery.



Chapter 3: Opening the database 7

mode File mode!, which is used if the file is created.

fatal_func This parameter is deprecated and must always be NULL.

Early versions of GDBM (prior to 1.13) lacked proper error handling and
would abort on any “fatal” error (such as out of memory condition, disk
write error, or the like). In these versions, fatal_func was provided as
a hook, allowing the caller to do proper cleanup before such abnormal
exit. As of version 1.23, this functionality is deprecated, although still
supported for backward compatibility.

The return value, is the pointer needed by all other functions to access that GDBM file.
If the return is the NULL pointer, gdbm_open was not successful. The errors can be
found in gdbm_errno variable (see Chapter 20 [Variables|, page 41). Available error
codes are discussed in Chapter 22 [Error codes|, page 44.

In all of the following calls, the parameter dbf refers to the pointer returned from
gdbm_open (or gdbm_fd_open, described below).

GDBM_FILE gdbm_fd_open (int fd, const char *name, int [gdbm interface]

block_size, int flags, int mode, void (*fatal_func)(const char *))
Alternative function for opening a GDBM database. The fd argument is the file descrip-
tor of the database file obtained by a call to open(2), creat(2) or similar functions.
The descriptor is not dup’ed, and will be closed when the returned GDBM_FILE is
closed. Use dup(2) if that is not desirable.

In case of error, the function behaves like gdbm_open and does not close fd. This can
be altered by the following value passed in the flags argument:

GDBM_CLOERROR [gdbm_open flag]
Close fd before exiting on error.

int gdbm_copy_meta (GDBM_FILE dst, GDBM_FILE src) [gdbm interface]

Copy file ownership and mode from src to dst.

1 See Section “chmod” in chmod(2) man page, and See Section “open a file” in open(2) man page.



Chapter 4: Closing the database 8

4 Closing the database

It is important that every file opened is also closed. This is needed to properly update its
disk structure and maintain a consistent locking state on the file.

int gdbm_close (GDBM_FILE dbf) [gdbm interface]
This function closes the GDBM file and frees all memory associated with it. The pa-
rameter is:
dbf The pointer returned by gdbm_open.

Gdbm_close returns 0 on success. On error, it sets gdbm_errno and system errno
variables to the codes describing the error and returns -1.



Chapter 5: Number of Records 9

5 Number of Records

int gdbm_count (GDBM_FILE dbf, gdbm_count_t *pcount) [gdbm interface]
Counts the number of records in the database dbf. On success, stores it in the memory
location pointed to by pcount and returns 0. On error, sets gdbm_errno (if relevant,
also errno) and returns -1.

int gdbm_bucket_count (GDBM_FILE dbf, size_t *pcount) [gdbm interface]
Counts the number of buckets in the database dbf. On success, stores it in the memory
location pointed to by pcount and return 0. On error, sets gdbm_errno (if relevant,
also errno) and returns -1.



Chapter 6: Inserting and replacing records in the database 10

6 Inserting and replacing records in the database

int gdbm_store (GDBM_FILE dbf, datum key, datum content, [gdbm interface]
int flag)
The function gdbm_store inserts or replaces records in the database.

The parameters are:

dbf The pointer returned by gdbm_open.
key The search key.

content The data to be associated with the key.

flag Defines the action to take when the key is already in the database.
The value GDBM_REPLACE asks that the old data be replaced by the new
content. The value GDBM_INSERT asks that an error be returned and no
action taken if the key already exists.

This function can return the following values:
0 Success. The value of content is keyed by key in the database.

-1 An error occurred which prevented the item from being stored in the
database. Examine the gdbm_errno variable to determine the actual
cause of the error.

+1 The item was not stored because the argument flag was GDBM_INSERT
and the key was already in the database. The gdbm_errno variable is set
to GDBM_CANNOT_REPLACE.

If the function returns -1, gdbm_errno can have the following values:

GDBM_READER_CANT_STORE
Database was open in read-only mode, i.e. with the GDBM_READER flag.
See Chapter 3 [Open], page 5.

GDBM_MALFORMED_DATA
Either key or content had their dptr field set to NULL.

It is OK to have a zero-length key or content, i.e. a datum with dsize
set to 0, but the dptr field must always be a non-NULL value.

GDBM_BAD_HASH_TABLE
Database hash table is malformed. This usually means that some error
in the application or the library caused memory overrun. The database
is marked as needing recovery. All further calls on this database will
return with gdbm_error set to GDBM_NEED_RECOVERY. See Chapter 16
[Recovery], page 26, for a discussion of database recovery process.

GDBM_BAD_DIR_ENTRY

Database directory entry is corrupted. The database is marked as needing
recovery. See Chapter 16 [Recovery], page 26.

GDBM_BAD_BUCKET
Database bucket is corrupted. The database is marked as needing recov-
ery. See Chapter 16 [Recovery|, page 26.



Chapter 6: Inserting and replacing records in the database 11

GDBM_BAD_AVAIL
Database available storage index is corrupted. The database is marked
as needing recovery. See Chapter 16 [Recovery|, page 26.

GDBM_FILE_SEEK_ERROR
A seek error occurred on the underlying disk file. Examine the system
errno variable for more detail.

If you store data for a key that is already in the data base, GDBM replaces the old data
with the new data if called with GDBM_REPLACE. You do not get two data items for the same
key and you do not get an error from gdbm_store.

The size of datum in GDBM is restricted only by the maximum value for an object of type
int (type of the dsize member of datum).



Chapter 7: Searching for records in the database 12

7 Searching for records in the database

datum gdbm_fetch (GDBM_FILE dbf, datum key) [gdbm interface]
Looks up a given key and returns the information associated with it. The dptr field
in the structure that is returned points to a memory block allocated by malloc. It is
the caller’s responsibility to free it when no longer needed.

If the dptr is NULL, inspect the value of the gdbm_errno variable (see Chapter 20
[Variables|, page 41). If it is GDBM_ITEM_NOT_FOUND, no data was found. Any other
value means an error occurred. Use gdbm_strerror function to convert gdbm_errno
to a human-readable string.

The parameters are:
dbf The pointer returned by gdbm_open.
key The search key.

An example of using this function:

content = gdbm_fetch (dbf, key);
if (content.dptr == NULL)

{
if (gdbm_errno == GDBM_ITEM_NOT_FOUND)
fprintf (stderr, "key not found\n");
else
fprintf(stderr, "error: %s\n", gdbm_db_strerror (dbf));
}
else
{
/* do something with content.dptr */
}

You may also search for a particular key without retrieving it:
int gdbm_exists (GDBM_FILE dbf, datum key) [gdbm interface]
Checks whether the key exists in the database dbf.

If key is found, returns true (1). If it is not found, returns false (0) and sets
gdbm_errno to GDBM_NO_ERROR (0).

On error, returns 0 and sets gdbm_errno to a non-0 error code.

The parameters are:
dbf The pointer returned by gdbm_open.
key The search key.



Chapter 8: Removing records from the database 13

8 Removing records from the database

To remove some data from the database, use the gdbm_delete function.

int gdbm_delete (GDBM_FILE dbf, datum key) [gdbm interface]
Deletes the data associated with the given key, if it exists in the database dbf.

The parameters are:
dbf The pointer returned by gdbm_open.

datum key
The search key.

The function returns -1 if the item is not present or if an error is encountered.
Examine the gdbm_errno variable or the return from gdbm_last_errno (dbf) to
know the reason.

The return of 0 marks a successful delete.



Chapter 9: Sequential access to records 14

9 Sequential access to records

The next two functions allow for accessing all items in the database. This access is not
key sequential, but it is guaranteed to visit every key in the database once. The order has
to do with the hash values. gdbm_firstkey starts the visit of all keys in the database.
gdbm_nextkey finds and reads the next entry in the hash structure for dbf.

datum gdbm_firstkey (GDBM_FILE dbf) [gdbm interface]
Initiate sequential access to the database dbf. The returned value is the first key
accessed in the database. If the dptr field in the returned datum is NULL, inspect the
gdbm_errno variable (see Chapter 20 [Variables|, page 41). The value of GDBM_ITEM_
NOT_FOUND means that the database contains no data. Other value means an error
occurred.

On success, dptr points to a memory block obtained from malloc, which holds the
key value. The caller is responsible for freeing this memory block when no longer
needed.

datum gdbm_nextkey (GDBM_FILE dbf, datum prev) [gdbm interface]
This function continues iteration over the keys in dbf, initiated by gdbm_firstkey.
The parameter prev holds the value returned from a previous call to gdbm_nextkey
or gdbm_firstkey.

The function returns next key from the database. If the dptr field in the returned
datum is NULL inspect the gdbm_errno variable (see Chapter 20 [Variables|, page 41).
The value of GDBM_ITEM_NOT_FOUND means that all keys in the database has been
visited. Any other value means an error occurred.

Otherwise, dptr points to a memory block obtained from malloc, which holds the
key value. The caller is responsible for freeing this memory block when no longer
needed.

These functions are intended to visit the database in read-only algorithms, for instance,
to validate the database or similar operations. The usual algorithm for sequential access is:

key = gdbm_firstkey (dbf);
while (key.dptr)
{

datum nextkey;

/* do something with the key */

/* Obtain the next key */

nextkey = gdbm_nextkey (dbf, key);

/* Reclaim the memory used by the key */
free (key.dptr);

/* Use nextkey in the next iteration. */
key = nextkey;



Chapter 9: Sequential access to records 15

Don’t use gdbm_delete or gdbm_store in such a loop. File visiting is based on a hash
table. The gdbm_delete function re-arranges the hash table to make sure that any collisions
in the table do not leave some item un-findable. The original key order is not guaranteed
to remain unchanged in all instances. So it is possible that some key will not be visited or
will be visited twice, if a loop like the following is executed:

key = gdbm_firstkey (dbf);
while (key.dptr)
{
datum nextkey;
if (some condition)
{
gdbm_delete (dbf, key);
}
nextkey = gdbm_nextkey (dbf, key);
free (key.dptr);
key = nextkey;



Chapter 10: Database reorganization 16

10 Database reorganization

The following function should be used very seldom.

int gdbm_reorganize (GDBM_FILE dbf) [gdbm interface]
Reorganizes the database.

The parameter is:

dbf The pointer returned by gdbm_open.

If you have had a lot of deletions and would like to shrink the space used by the GDBM
file, this function will reorganize the database. This results, in particular, in shortening the
length of a GDBM file by removing the space occupied by deleted records.

This reorganization requires creating a new file and inserting all the elements in the
old file dbf into the new file. The new file is then renamed to the same name as the old
file and dbf is updated to contain all the correct information about the new file. If an
error is detected, the return value is negative. The value zero is returned after a successful
reorganization.



Chapter 11: Database Synchronization 17

11 Database Synchronization

Normally, GDBM functions don’t flush changed data to the disk immediately after a change.
This allows for faster writing of databases at the risk of having a corrupted database if the
application terminates in an abnormal fashion. The following function allows the program-
mer to make sure the disk version of the database has been completely updated with all
changes to the current time.

int gdbm_sync (GDBM_FILE dbf) [gdbm interface]
Synchronizes the changes in dbf with its disk file. The parameter is a pointer returned
by gdbm_open.
This function would usually be called after a complete set of changes have been made
to the database and before some long waiting time. This set of changes should preserve
application-level invariants. In other words, call gdbm_sync only when the database
is in a consistent state with regard to the application logic, a state from which you
are willing and able to recover. You can think about all database operations between
two consecutive gdbm_sync calls as constituting a single transaction. See Section 17.3
[Synchronizing the Database], page 29, for a detailed discussion about how to properly
select the synchronization points.

The gdbm_close function automatically calls the equivalent of gdbm_sync so no call
is needed if the database is to be closed immediately after the set of changes have
been made.

Gdbm_sync returns 0 on success. On error, it sets gdbm_errno and system errno
variables to the codes describing the error and returns -1.

Opening the database with GDBM_SYNC flag ensures that gdbm_sync function will be
called after each change, thereby flushing the changes to disk immediately. You are advised
against using this flag, however, because it incurs a severe performance penalty, while giving
only a moderate guarantee that the structural consistency of the database will be preserved
in case of failure, and that only unless the failure occurs while being in the fsync call.
For the ways to ensure proper logical consistency of the database, see Chapter 17 [Crash
Tolerance|, page 28.



Chapter 12: Changing database format 18

12 Changing database format

As of version 1.23, GDBM supports databases in two formats: standard and extended. The
standard format is used most often. The extended database format is used to provide
additional crash resistance (see Chapter 17 [Crash Tolerance], page 28).

Depending on the value of the flags parameter in a call to gdbm_open (see Chapter 3
[Open]|, page 5), a database can be created in either format.

The format of an existing database can be changed using the gdbm_convert function:

int gdbm_convert (GDBM_FILE dbf, int flag) [gdbm interface]
Changes the format of the database file dbf. Allowed values for flag are:

0 Convert database to the standard format.

GDBM_NUMSYNC
Convert database to the extended numsync format (see Section 17.8
[Numsync], page 32).
On success, the function returns 0. In this case, it should be followed by a call to
gdbm_sync (see Chapter 11 [Sync|, page 17) or gdbm_close (see Chapter 4 [Close],
page 8) to ensure the changes are written to the disk.

On error, returns -1 and sets the gdbm_errno variable (see Chapter 20 [Variables]
page 41).

)

If the database is already in the requested format, the function returns success (0)
without doing anything.



Chapter 13: Export and Import 19

13 Export and Import

GDBM databases can be converted into so-called flat format files. Such files cannot be used
for searching, their sole purpose is to keep the data from the database for restoring it when
the need arrives. There are two flat file formats, which differ in the way they represent the
data and in the amount of meta-information stored. Both formats can be used, for example,
to migrate between the different versions of GDBM databases. Generally speaking, flat files
are safe to send over the network, and can be used to recreate the database on another
machine. The recreated database is guaranteed to have the same format and contain the
same set of key/value pairs as the database from which the flat file was created. However, it
will not constitute a byte-to-byte equivalent of the latter. Various internal structures in the
database can differ. In particular, ordering of key/value pairs can be different and the table
of available file space will most probably differ, too. For databases in extended format, the
numsync counter will be reset to 0 (see Section 17.8 [Numsync|, page 32). These details are
not visible to the application programmer, and are mentioned here only for completeness
sake.

The fact that the restored database contains the same set of key/value pairs does not
necessarily mean, however, that it can be used in the same way as the original one. For
example, if the original database contained non-ASCII data (e.g. C structures, integers etc.),
the recreated database can be of any use only if the target machine has the same integer size
and byte ordering as the source one and if its C compiler uses the same packing conventions
as the one which generated C which populated the original database. In general, such
binary databases are not portable between machines, unless you follow some stringent rules
on what data is written to them and how it is interpreted.

GDBM version 1.23 supports two flat file formats. The binary flat file format was first
implemented in version 1.9.1. This format stores only key/data pairs, it does not keep
information about the database file itself. As its name implies, files in this format are
binary files. This format is supported for backward compatibility.

The ascii flat file format encodes all data in Base64 and stores not only key/data pairs,
but also the original database file metadata, such as file name, mode and ownership. Files
in this format can be sent without additional encapsulation over transmission channels that
normally allow only ASCII data, such as, e.g. SMTP. Due to additional metadata they allow
for restoring an exact copy of the database, including file ownership and privileges, which
is especially important if the database in question contained some security-related data.

We call a process of creating a flat file from a database exporting or dumping this
database. The reverse process, creating the database from a flat file is called importing or
loading the database.

int gdbm_dump (GDBM_FILE dbf, const char *filename, int [gdbm interface]
format, int open_flags, int mode)
Dumps the database file to the named file in requested format. Arguments are:

dbf A pointer to the source database, returned by a prior call to gdbm_open.
filename  Name of the dump file.

format Output file format. Allowed values are: GDBM_DUMP_FMT_BINARY to create
a binary dump and GDBM_DUMP_FMT_ASCII to create an ASCII dump file.



Chapter 13: Export and Import 20

open_flags How to create the output file. If flag is GDBM_WRCREAT the file will be
created if it does not exist. If it does exist, the gdbm_dump will fail.

If flag is GDBM_NEWDB, the function will create a new output file, replacing
it if it already exists.

mode The permissions to use when creating the output file (see Section “open
a file” in open(2) man page).

int gdbm_load (GDBM_FILE *pdbf, const char *filename, int [gdbm interface]
flag, int meta_mask, unsigned long *errline)

Loads data from the dump file filename into the database pointed to by pdbf. The
latter can point to NULL, in which case the function will try to create a new database.
If it succeeds, the function will return, in the memory location pointed to by pdbf, a
pointer to the newly created database. If the dump file carries no information about
the original database file name, the function will set gdbm_errno to GDBM_NO_DBNAME
and return -1, indicating failure.

The flag has the same meaning as the flag argument to the gdbm_store function (see
Chapter 6 [Store], page 10).

The meta_mask argument can be used to disable restoring certain bits of file’s meta-
data from the information in the input dump file. It is a binary OR of zero or more
of the following:

GDBM_META_MASK_MODE
Do not restore file mode.

GDBM_META_MASK_OWNER
Do not restore file owner.

The function returns 0 upon successful completion or -1 on fatal errors and 1 on mild
(non-fatal) errors.

If a fatal error occurs, gdbm_errno will be set to one of the following values:

GDBM_FILE_OPEN_ERROR
Input file (filename) cannot be opened. The errno variable can be used
to get more detail about the failure.

GDBM_MALLOC_ERROR

Not enough memory to load data.

GDBM_FILE_READ_ERROR
Reading from filename failed. The errno variable can be used to get
more detail about the failure.

GDBM_MALFORMED_DATA

GDBM_ILLEGAL_DATA
Input contained malformed data, i.e. it is not a valid GDBM dump file.
This often means that the dump file got corrupted during the transfer.

The GDBM_ILLEGAL_DATA is an alias for this error code, maintained for
backward compatibility.



Chapter 13: Export and Import 21

GDBM_ITEM_NOT_FOUND
This error can occur only when the input file is in ASCII format. It indi-
cates that the data part of the record about to be read lacked length spec-
ification. Application developers are advised to treat this error equally
as GDBM_MALFORMED_DATA.

Mild errors mean that the function was able to successfully load and restore the data,
but was unable to change the database file metadata afterwards. The table below lists
possible values for gdbm_errno in this case. To get more detail, inspect the system
errno variable.

GDBM_ERR_FILE_.OWNER
The function was unable to restore database file owner.

GDBM_ERR_FILE_.MODE
The function was unable to restore database file mode (permission bits).

If an error occurs while loading data from an input file in ASCII format, the number
of line in which the error occurred will be stored in the location pointed to by the
errline parameter, unless it is NULL.

If the line information is not available or applicable, errline will be set to 0.

int gdbm_dump_to_file (GDBM_FILE dbf, FILE *fp, int [gdbm interface]
format)
This is an alternative entry point to gdbm_dump (which see). Arguments are:
dbf A pointer to the source database, returned by a call to gdbm_open.
fp File to write the data to.
format Format of the dump file. See the format argument to the gdbm_dump
function.
int gdbm_load_from_file (GDBM_FILE *pdbf, FILE *fp, int [gdbm interface]

replace, int meta_mask, unsigned long *1ine)
This is an alternative entry point to gdbm_load. It writes the output to fp which
must be a file open for writing. The rest of arguments is the same as for gdbm_load
(excepting of course flag, which is not needed in this case).

int gdbm_export (GDBM_FILE dbf, const char *exportfile, [gdbm interface]
int flag, int mode)
This function is retained for compatibility with GDBM 1.10 and earlier. It dumps
the database to a file in binary dump format and is equivalent to

gdbm_dump (dbf, exportfile, GDBM_DUMP_FMT_BINARY, flag, mode)

int gdbm_export_to_file (GDBM_FILE dbf, FILE *fp) [gdbm interface]
This is an alternative entry point to gdbm_export. This function writes to file fp a
binary dump of the database dbf.

gdbm_import (GDBM_FILE dbf, const char *importfile, [gdbm interface]
int flag)

This function is retained for compatibility with GDBM 1.10 and earlier. It loads the file

importfile, which must be a binary flat file, into the database dbf and is equivalent

to the following construct:

ct

in



Chapter 13: Export and Import 22

dbf = gdbm_open (importfile, O,
flag == GDBM_REPLACE ?
GDBM_WRCREAT : GDBM_NEWDB,
0600, NULL);
gdbm_load (&dbf, exportfile, 0, flag, NULL)

int gdbm_import_from_file (GDBM_FILE dbf, FILE *£fp, int [gdbm interface]
flag)
An alternative entry point to gdbm_import. Reads the binary dump from the file fp
and stores the key/value pairs to dbf. See Chapter 6 [Store|, page 10, for a description
of flag.

This function is equivalent to:

dbf = gdbm_open (importfile, O,
flag == GDBM_REPLACE 7
GDBM_WRCREAT : GDBM_NEWDB,
0600, NULL);
gdbm_load_from_file (dbf, fp, flag, O, NULL);



Chapter 14: Error handling 23

14 Error handling

The global variable gdbm_errno (see Chapter 20 [Variables], page 41) keeps the error code
of the most recent error encountered by GDBM functions.

To convert this code to human-readable string, use the following function:

const char * gdbm_strerror (gdbm_error errno) [gdbm interface]
Converts errno (an integer value) into a human-readable descriptive text. Returns a
pointer to a static string. The caller must not free the returned pointer or alter the
string it points to.

Detailed information about the most recent error that occurred while operating on a
GDBM file is stored in the GDBM_FILE object itself. To retrieve it, the following functions are
provided:

gdbm_error gdbm_last_errno (GDBM_FILE dbf) [gdbm interface]
Returns the code of the most recent error encountered when operating on dbf.

When gdbm_last_errno called immediately after the failed function, its return equals
the value of the gdbm_errno variable. However, gdbm_errno can be changed if any
GDBM functions (operating on another databases) were called afterwards, and gdbm_
last_errno will always return the code of the last error that occurred while working
with that database.

int gdbm_last_syserr (GDBM_FILE dbf) [gdbm interface]
Returns the value of the system errno variable associated with the most recent error.

Notice, that not all GDBM errors have an associated system error code. The following
are the ones that have:

e GDBM_FILE_OPEN_ERROR

e GDBM_FILE_WRITE_ERROR

e GDBM_FILE_SEEK_ERROR

e GDBM_FILE_READ_ERROR

e GDBM_FILE_STAT_ERROR

e GDBM_BACKUP_FAILED

e GDBM_BACKUP_FAILED

e GDBM_FILE_CLOSE_ERROR

e GDBM_FILE_SYNC_ERROR

e GDBM_FILE_TRUNCATE_ERROR

For other errors, gdbm_last_syserr will return 0.

int gdbm_check_syserr (gdbm-_errno err) [gdbm interface]
Returns 1, if the system errno value should be inspected to get more info on the
error described by GDBM error code err.

To get a human-readable description of the recent error for a particular database file,
use the gdbm_db_strerror function:



Chapter 14: Error handling 24

const char * gdbm_db_strerror (GDBM_FILE dbf) [gdbm interface]
Returns textual description of the most recent error encountered when operating on
the database dbf. The resulting string is often more informative than what would
be returned by gdbm_strerror (gdbm_last_errno(dbf)). In particular, if there is a
system error associated with the recent failure, it will be described as well.

void gdbm_clear_error (GDBM_FILE dbf) [gdbm interface]
Clears the error state for the database dbf. Normally, this function is called upon the
entry to any GDBM function.

Certain errors (such as write error when saving stored key) can leave database file in
inconsistent state (see Chapter 15 [Database consistency], page 25). When such a critical
error occurs, the database file is marked as needing recovery. Subsequent calls to any GDBM
functions for that database file (except gdbm_recover), will return immediately with GDBM
error code GDBM_NEED_RECOVERY. Additionally, the following function can be used to check
the state of the database file:

int gdbm_needs_recovery (GDBM_FILE dbf) [gdbm interface]
Returns 1 if the database file dbf is in inconsistent state and needs recovery.

To restore structural consistency of the database, use the gdbm_recover function (see
Chapter 16 [Recovery], page 26).

Crash tolerance provides a better way of recovery, because it restores both structural and
logical consistency. See Chapter 17 [Crash Tolerance], page 28, for a detailed discussion,



Chapter 15: Database consistency 25

15 Database consistency

In the chapters that follow we will cover different aspects of database consistency and ways
to maintain it. Speaking about consistency, it is important to distinguish between two
different aspects of it: structural and logical consistency.

Structural consistency means that all internal structures of the database are in good
order, contain valid data and are coherent with one another. Structural consistency means
that the database is in good shape technically, but it does not imply that the data it contains
are in any way meaningful.

Logical consistency means that the data stored in the database are coherent with respect
to the application logic. Usually this implies that structural consistency is observed as well.

For as long as the program is free from memory management errors and each opened data-
base is properly closed before the program terminates, structural consistency is maintained.
Maintaining logical consistency is more complex task and its maintenance is entirely the
responsibility of the application programmer. See Chapter 17 [Crash Tolerance], page 28,
for a detailed discussion.

Both consistency aspects can suffer as a result of both application errors that cause the
program to terminate prematurely without properly saving the database, and hardware
errors, such as disk failures or power outages. When such situations occur, it becomes
necessary to recover the database.

In the next chapter we will discuss how to recover structural consistency of a database.



Chapter 16: Recovering structural consistency 26

16 Recovering structural consistency

Certain errors (such as write error when saving stored key) can leave database file in struc-
turally inconsistent state. When such a critical error occurs, the database file is marked as
needing recovery. Subsequent calls to any GDBM functions for that database file (except
gdbm_recover), will return immediately with GDBM error code GDBM_NEED_RECOVERY.

To escape from this state and bring the database back to operational state, use the
following function:

int gdbm_recover (GDBM_FILE dbf, gdbm_recovery *rcvr, int [gdbm interface]
flags)
Check the database file dbf and fix eventual errors. The rcvr argument points to
a structure that has input members, providing additional information to alter the
behavior of gdbm_recover, and output members, which are used to return additional
statistics about the recovery process (rcvr can be NULL if no such information is
needed).

Each input member has a corresponding flag bit, which must be set in flags, in order
to instruct the function to use it.

The gdbm_recover type is defined as:

typedef struct gdbm_recovery_s
{
/* Input members.
These are initialized before call to gdbm_recover.
The flags argument specifies which of them are initialized. */
void (*errfun) (void *data, char const *fmt, ...);
void *data;
size_t max_failed_keys;
size_t max_failed_buckets;
size_t max_failures;

/* Output members.
The gdbm_recover function fills these before returning. */
size_t recovered_keys;
size_t recovered_buckets;
size_t failed_keys;
size_t failed_buckets;
char *backup_name;
} gdbm_recovery;

The input members modify the behavior of gdbm_recover:

void (*xerrfun) (void *data, char const [input member of gdbm_recovery]
*fmt, ...)

If the GDBM_RCVR_ERRFUN flag bit is set, errfun points to a function that will

be called upon each recoverable or non-fatal error that occurred during the

recovery. The data field of gdbm_recovery will be passed to it as its first

argument. The fmt argument is a printf-like (see Section “Format of the



Chapter 16: Recovering structural consistency 27

format string” in printf(3) man page), format string. The rest of arguments
supply parameters for that format.

void * data [input member of gdbm_recovery]
Supplies first argument for the errfun invocations.

size_t max_failed_keys [input member of gdbm_recovery|
If GDBM_RCVR_MAX_FATILED_KEYS is set, this member sets the limit on the num-
ber of keys that cannot be retrieved. If the number of failed keys becomes equal
to max_failed_keys, recovery is aborted and error is returned.

size_t max_failed_buckets [input member of gdbm_recovery]
If GDBM_RCVR_MAX_FAILED_BUCKETS is set, this member sets the limit on the
number of buckets that cannot be retrieved or that contain bogus information.
If the number of failed buckets becomes equal to max_failed_buckets, recovery
is aborted and error is returned.

size_t max_failures [output member of gdbm_recovery|
If GDBM_RCVR_MAX_FATILURES is set, this member sets the limit of failures that
are tolerated during recovery. If the number of errors becomes equal to max_
failures, recovery is aborted and error is returned.

The following members are filled on output, upon successful return from the function:

size_t recovered_keys [output member of gdbm_recovery]
Number of recovered keys.

size_t recovered_buckets [output member of gdbm_recovery)|
Number of recovered buckets.

size_t failed_keys [output member of gdbm_recovery]
Number of key/data pairs that could not be retrieved.

size_t failed_buckets [output member of gdbm_recovery]
Number of buckets that could not be retrieved.

char * backup_name [output member of gdbm_recovery|
Name of the file keeping the copy of the original database, in the state prior
to recovery. It is filled if the GDBM_RCVR_BACKUP flag is set. The string
is allocated using the malloc call. The caller is responsible for freeing that
memory when no longer needed.

By default, gdbm_recovery first checks the database for inconsistencies and attempts
recovery only if some were found. The special flag bit GDBM_RCVR_FORCE instructs gdbm_
recovery to omit this check and to perform database recovery unconditionally.



Chapter 17: Crash Tolerance 28

17 Crash Tolerance

Crash tolerance is a new (as of release 1.21) feature that can be enabled at compile time,
and used in environments with appropriate support from the OS and the filesystem. As of
version 1.23, this means a Linux kernel 5.12.12 or later and a filesystem that supports reflink
copying, such as XFS, BtrFS, or OCFS2. If these prerequisites are met, crash tolerance
code will be enabled automatically by the configure script when building the package.

The crash-tolerance mechanism, when used correctly, guarantees that a logically consis-
tent (see Chapter 15 [Database consistency|, page 25) recent state of application data can
be recovered following a crash. Specifically, it guarantees that the state of the database file
corresponding to the most recent successful gdbm_sync call can be recovered.

If the new mechanism is used correctly, crashes such as power outages, OS kernel panics,
and (some) application process crashes will be tolerated. Non-tolerated failures include
physical destruction of storage devices and corruption due to bugs in application logic. For
example, the new mechanism won’t help if a pointer bug in your application corrupts GDBM’s
private in-memory data which in turn corrupts the database file.

In the following sections we will describe how to enable crash tolerance in your application
and what to do if a crash occurs.

The design rationale of the crash tolerance mechanism is described in detail in the
article, Crashproofing the Original NoSQL Key-Value Store, by Terence Kelly, ACM
Queue magazine, July/August 2021, available from the ACM Digital Library. If you
have difficulty retrieving this paper, please contact the author at tpkelly@acm.org,
tpkelly@cs.princeton.edu, or tpkelly@eecs.umich.edu.

17.1 Using Proper Filesystem

Use a filesystem that supports reflink copying. Currently XFS, BtrFS, and OCFS2 support
reflink. You can create such a filesystem if you don’t have one already. (Note that reflink
support may require that special options be specified at the time of filesystem creation; this
is true of XFS.) The most conventional way to create a filesystem is on a dedicated storage
device. However it is also possible to create a filesystem within an ordinary file on some
other filesystem.

For example, the following commands, executed as root, will create a smallish XFS
filesystem inside a file on another filesystem:

mkdir XFS

cd XFS

truncate --size 512m XFSfile

mkfs -t xfs -m crc=1 -m reflink=1 XFSfile
mkdir XFSmountpoint

mount -o loop XFSfile XFSmountpoint

The XFS filesystem is now available in directory XFSmountpoint. Now, create a directory
where your unprivileged user account may create and delete files:

cd XFSmountpoint
mkdir test
chown user:group test


https://queue.acm.org/DrillBits5/
mailto:tpkelly@acm.org
mailto:tpkelly@cs.princeton.edu
mailto:tpkelly@eecs.umich.edu

Chapter 17: Crash Tolerance 29

(where user and group are the user and group names of the unprivileged account the
application uses).

Reflink copying via ioctl(FICLONE) should work for files in and below this directory.
You can test reflink copying using the GNU cp program:

cp --reflink=always filel file2
See Section “reflink” in GNU Coreutils.

Your GNU dbm database file and two snapshot files described below must all reside on
the same reflink-capable filesystem.

17.2 Enabling crash tolerance

Open a GNU dbm database with gdbm_open. Whenever possible, use the extended GDBM
format (see Section 17.8 [Numsync|, page 32). Generally speaking, this means using the
GDBM_NUMSYNC flag when creating the database. Unless you know what you are doing, do
not specify the GDBM_SYNC flag when opening the database. The reason is that you want
your application to explicitly control when gdbm_sync is called; you don’t want an implicit
sync on every database operation (see Chapter 11 [Sync|, page 17).

Request crash tolerance by invoking the following interface:

int gdbm_failure_atomic (GDBM_FILE dbf, const char *even,
const char *odd);

The even and odd arguments are the pathnames of two files that will be created and filled
with snapshots of the database file. These two files must not exist when gdbm_failure_
atomic is called and must reside on the same reflink-capable filesystem as the database
file.

After you call gdbm_failure_atomic, every call to gdbm_sync will make an efficient
reflink snapshot of the database file in either the even or the odd snapshot file; consecutive
gdbm_sync calls alternate between the two, hence the names. The permission bits and mtime
timestamps on the snapshot files determine which one contains the state of the database file
corresponding to the most recent successful gdbm_sync. See Section 17.4 [Crash recovery],
page 30, for discussion of crash recovery.

17.3 Synchronizing the Database

When your application knows that the state of the database is consistent (i.e., all relevant
application-level invariants hold), you may call gdbm_sync. For example, if your application
manages bank accounts, transferring money from one account to another should maintain
the invariant that the sum of the two accounts is the same before and after the transfer:
It is correct to decrement account ‘A’ by $7, increment account ‘B’ by $7, and then call
gdbm_sync. However it is not correct to call gdbm_sync between the decrement of ‘A’ and
the increment of ‘B’, because a crash immediately after that call would destroy money. The
general rule is simple, sensible, and memorable: Call gdbm_sync only when the database is
in a state from which you are willing and able to recover following a crash. (If you think
about it you'll realize that there’s never any other moment when you’d really want to call
gdbm_sync, regardless of whether crash-tolerance is enabled. Why on earth would you push
the state of an inconsistent unrecoverable database down to durable media?).



Chapter 17: Crash Tolerance 30

17.4 Crash recovery

If a crash occurs, the snapshot file (even or odd) containing the database state reflecting
the most recent successful gdbm_sync call is the snapshot file whose permission bits are
read-only and whose last-modification timestamp is greatest. If both snapshot files are
readable, we choose the one with the most recent last-modification timestamp. Modern
operating systems record timestamps in nanoseconds, which gives sufficient confidence that
the timestamps of the two snapshots will differ. However, one can’t rule out the possibility
that the two snapshot files will both be readable and have identical timestamps'. To cope
with this, GDBM version 1.21 introduced the new extended database format, which stores
in the database file header the number of synchronizations performed so far. This number
can reliably be used to select the most recent snapshot, independently of its timestamp.
We strongly suggest using this new format when writing crash-tolerant applications. See
Section 17.8 [Numsync|, page 32, for a detailed discussion.

The gdbm_latest_snapshot function is provided, that selects the right snapshot among
the two. Invoke it as:

const char *recovery_file = NULL;
result = gdbm_latest_snapshot (even, odd, &recovery_file);

where even and odd are names of the snapshot files. On success, it stores the pointer to
the most recent snapshot file name in recovery_file and returns GDBM_SNAPSHOT_OK. To
finalize the recovery, rename this file to the name of your database file and re-open it using
gdbm_open. You should discard the remaining snapshot.

If an error occurs, gdbm_latest_snapshot returns one of the following error codes.

GDBM_SNAPSHOT_BAD [gdbm_latest_snapshot]
Neither snapshot file is readable. This means that the crash has occurred before gdbm_

failure_atomic completed. In this case, it is best to fall back on a safe backup copy
of the data file.

GDBM_SNAPSHOT_ERR [gdbm_latest_snapshot]
System error occurred in gdbm_latest_snapshot. Examine the system errno vari-
able for details. Its possible values are:

EACCES The file mode of one of the snapshot files was incorrect. Each snapshot
file can be either readable (0400) or writable (0200), but not both. This
probably means that someone touched one or both snapshot files after
the crash and before your attempt to recover from it. This case needs
additional investigation. If you're sure that the only change someone
made to the files is altering their modes, and your database is in numsync
format (see Section 17.8 [Numsync|, page 32), you can reset the modes
to 0400 and retry the recovery.

This error can also be returned by underlying stat call, meaning that
search permission was denied for one of the directories in the path prefix
of a snapshot file name. That again means that someone has messed with
permissions after the crash.

I This can happen, for example, if the storage is very fast and the system clock is low-resolution, or if the
system administrator sets the system clock backwards. In the latter case one can end up with the most
recent snapshot file having modification time earlier than that of the obsolete snapshot.



Chapter 17: Crash Tolerance 31

EINVAL Some arguments passed to gdbm_latest_snapshot were not valid. It is a
programmer’s error which means that your application needs to be fixed.

ENOSYS Function is not implemented. This means GDBM was built without crash-
tolerance support.

Other value (EBADF, EFAULT, etc)
An error occurred when trying to stat the snapshot file. See Section
“ERRORS” in stat(2) man page, for a discussion of possible errno values.

GDBM_SNAPSHOT_SAME [gdbm_latest_snapshot]
File modes and modification dates of both snapshot files are exactly the same. This
can happen only if numsync is not available (see Section 17.8 [Numsync|, page 32).

GDBM_SNAPSHOT_SUSPICIOUS [gdbm_latest_snapshot]
For the database in extended numsync format (see Section 17.8 [Numsync|, page 32):
the numsync values of the two snapshot differ by more than one. Check the arguments
to the gdbm_latest_snapshot function. The most probably reason of such an error
is that the even and odd parameters point to snapshot files belonging to different
database files.

If you get any of these errors, we strongly suggest to undertake manual recovery.

17.5 Manual crash recovery

Manual recovery is usually performed with the help of the gdbmtool utility. Start gdbmtool
in read-only mode (the -r) option. Once in the command shell, issue the following com-
mand:

snapshot a b

where a and b are names of the two snapshot files you configured using the gdbm_failure_
atomic function. This command investigates both files and prints out detailed diagnostics.

Its output begins with a line listing one of the error codes above, followed by a colon

and a textual description of the error. The lines that follow show details for each snapshot
file.

Each snapshot description begins with the snapshot file name followed by a colon and
four fields, in this order:
1. File permission bits in octal.
2. File permission bits in 1s -1 notation.
3. Modification timestamp.
4

. Numsync counter. For databases in standard GDBM format, this field is ‘N/A’. If the
counter cannot be obtained because of error, this field is ‘7.

Any errors or inconsistencies discovered are reported in the lines that follow, one error per
line. Here’s an example of the snapshot command output, describing the GDBM_SNAPSHOT_
ERR condition:

gdbmtool> snapshot even.dbf odd.dbf
GDBM_SNAPSHOT_ERR: Error selecting snapshot.
even.dbf: 200 -w---——-- 1627820627 .485681330 7
odd.dbf: 600 rw------- 1627820627 .689503918 301
odd.dbf: ERROR: bad file mode



Chapter 17: Crash Tolerance 32

Line 2 lists the meta-data of the snapshot even.dbf. The numsync field contains question
mark because the file permissions (write-only) prevented gdbmtool from opening it.

The lines for odd.dbf show the actual reason for the error: bad file mode (read-write).
Apparently, the file mode has been changed manually after the crash. The timestamp of
the file, which is more recent than that of even.dbf, suggests that it might be used for
recovery. To confirm this guess, change the mode of the even.dbf to read-only and repeat
the snapshot command:

gdbmtool> ! chmod 400 even.dbf

gdbmtool> snapshot even.dbf odd.dbf
GDBM_SNAPSHOT_ERR: Error selecting snapshot.
even.dbf: 400 r-———---- 1627820627 .485681330 300
odd.dbf: 600 rw-—----—- 1627820627.689503918 301
odd.dbf: ERROR: bad file mode

This shows the numsync value of the even.dbf file, which is exactly one less than that
of odd.dbf. This means that the latter should be selected for recovery.

For completeness sake, you can change the mode of odd.dbf to read-only as well and
repeat the snapshot command. In this case you will see:

gdbmtool> ! chmod 400 odd.dbf

gdbmtool> snapshot even.dbf odd.dbf
GDBM_SNAPSHOT_OK: Selected the most recent snapshot.
odd.dbf: 400 r-——-—-—--- 1627820627.689503918 301

17.6 Performance Impact

The purpose of a parachute is not to hasten descent. Crash tolerance is a safety mechanism,
not a performance accelerator. Reflink copying is designed to be as efficient as possible, but
making snapshots of the GNU dbm database file on every gdbm_sync call entails overheads.
The performance impact of GDBM crash tolerance will depend on many factors including the
type and configuration of the underlying storage system, how often the application calls
gdbm_sync, and the extent of changes to the database file between consecutive calls to
gdbm_sync.

17.7 Availability

To ensure that application data can survive the failure of one or more storage devices, repli-
cated storage (e.g., RAID) may be used beneath the reflink-capable filesystem. Some cloud
providers offer block storage services that mimic the interface of individual storage devices
but that are implemented as high-availability fault-tolerant replicated distributed storage
systems. Installing a reflink-capable filesystem atop a high-availability storage system is a
good starting point for a high-availability crash-tolerant GDBM.

17.8 Numsync Extension

In Section 17.4 [Crash recovery]|, page 30, we have shown that for database recovery, one
should select the snapshot whose permission bits are read-only and whose last-modification
timestamp is greatest. However, there may be cases when a crash occurs at such a time
that both snapshot files remain readable. It may also happen, that their permissions had



Chapter 17: Crash Tolerance 33

been reset to read-only and/or modification times inadvertently changed before recovery.
To make it possible to select the right snapshot in such cases, a new extended database
format was introduced in GDBM version 1.21. This format adds to the database header the
numsync field, which holds the number of synchronizations the database underwent before
being closed or abandoned due to a crash.

A readable snapshot is a consistent copy of the database at a given point of time. Thus,
if both snapshots of a database in extended format are readable, it will suffice to examine
their numsync counters and select the one whose numsync is greater. That’s what the
gdbm_latest_snapshot function does in this case.

It is worth noticing, that the two counters should differ exactly by one. If the differ-
ence is greater than that, gdbm_latest_snapshot will return a special status code, GDBM_
SNAPSHOT_SUSPICIQUS. If, during a recovery attempt, you get this status code, we rec-
ommend to proceed with the manual recovery (see Section 17.5 [Manual crash recovery],
page 31).

To create a database in extended format, call gdbm_open with both GDBM_NEWDB and
GDBM_NUMSYNC flags:

dbf = gdbm_open(dbfile, O, GDBM_NEWDB|GDBM_NUMSYNC, 0600, NULL);

Notice, that this flag must always be used together with GDBM_NEWDB (see Chapter 3 [Open],
page 5). It is silently ignored when used together with another opening flag.

A standard GDBM database can be converted to the extended format and vice versa. To
convert an existing database to the extended format, use the gdbm_convert function (see
Chapter 12 [Database format|, page 18):

rc = gdbm_convert(dbf, GDBM_NUMSYNC) ;
You can do the same using the gdbmtool utility (see Section 24.2.2 [commands], page 60):
gdbmtool dbname upgrade
To convert a database from extended format back to the standard GDBM format, do:
rc = gdbm_convert(dbf, 0);
To do the same from the command line, run:

gdbmtool dbname downgrade

17.9 Crash Tolerance API

int gdbm_failure_atomic (GDBM_FILE dbf, const char *even, [gdbm interface]
const char *odd)
Enables crash tolerance for the database file dbf. The even and odd arguments are the
pathnames of two files that will be created and filled with snapshots of the database
file. These two files must not exist when gdbm_failure_atomic is called and must
reside on the same reflink-capable filesystem as the database file.

Returns 0 on success. On failure, returns -1 and sets gdbm_errno to one of the
following values:

GDBM_ERR_USAGE
Improper function usage. Either even or odd is NULL, or they point to
the same string.



Chapter 17: Crash Tolerance 34

GDBM_NEED_RECOVERY
The database needs recovery. See Chapter 16 [Recovery], page 26.

GDBM_ERR_SNAPSHOT_CLONE
Failed to clone the database file into a snapshot. Examine the system
errno variable for details.

If one of the following error codes is returned, examine the system errno variable for
details:

GDBM_ERR_REALPATH
Call to realpath function failed. realpath is used to determine actual
path names of the snapshot files.

GDBM_FILE_OPEN_ERROR
Unable to create snapshot file.

GDBM_FILE_SYNC_ERROR
Failed to sync a snapshot file or one of directories in its pathname, during
initial synchronization.

GDBM_FILE_CLOSE_ERROR
Failed to close a snapshot file or one of directories in its pathname, during
initial synchronization.

GDBM_ERR_FILE_MODE
The fchmod call on one of the snapshot files failed.

Notes:

e It is not an error to call gdbm_failure_atomic several times. Each subsequent
call closes the previously configured snapshot files and installs new ones instead.

e Crash tolerance settings are cleared by functions gdbm_recover (see Chapter 16
[Recovery], page 26) and gdbm_reorganize (see Chapter 10 [Reorganization],
page 16). In case of gdbm_recover, it should not be a problem, because if you
enabled crash tolerance, the procedure described in Section 17.4 [Crash recovery],
page 30 is the preferred way of recovering the database. If, however, you decided
to call either function even though you had enabled crash tolerance previously,
be sure to call gdbm_failure_atomic again with the same arguments as before
(provided that the call returns successfully).

int gdbm_latest_snapshot (const char *even, const char *odd, [gdbm interface]
const char **retval)

Selects between two snapshots, even and odd, the one to be used for crash recovery.
On success, stores a pointer to the selected filename in the memory location pointed
to by retval and returns GDBM_SNAPSHOT_OK. If neither snapshot file is usable, the
function returns GDBM_SNAPSHOT_BAD. If a system error occurs, it returns GDBM_
SNAPSHOT_ERR and sets errno to the error code describing the problem. Finally, in
the unlikely case that it cannot select between the two snapshots (this means they
are both readable and have exactly the same mtime timestamp), the function returns
GDBM_SNAPSHOT_SAME.



Chapter 17: Crash Tolerance 35

If the ‘numsync’ extension is enabled (see Section 17.8 [Numsync|, page 32), the
function can also return the GDBM_SNAPSHOT_SUSPICIOUS status code. This happens
when the numsync counters in the two snapshots differ by more than one.

See Section 17.4 [Crash recovery], page 30, for a detailed description of possible return
codes and their interpretation.

If any value other than GDBM_SNAPSHOT_OK is returned, it is guaranteed that the
function did not touch retval. In this case it is recommended to switch to manual
recovery procedure, letting the user examine the snapshots and take the appropriate
action. see Section 17.5 [Manual crash recovery|, page 31, for details.



Chapter 18: Setting options 36

18 Setting options

GDBM supports the ability to set certain options on an already open database.

int gdbm_setopt (GDBM_FILE dbf, int option, void *value, [gdbm interface]
int size)
Sets an option on the database or returns the value of an option.

The parameters are:

dbf The pointer returned by gdbm_open.
option The option to be set or retrieved.
value A pointer to the value to which option will be set or where to place the

option value (depending on the option).
size The length of the data pointed to by value.

The return value will be -1 upon failure, or 0 upon success. The global variable
gdbm_errno will be set upon failure.

The valid options are:

GDBM_SETCACHESIZE [Option]

GDBM_CACHESIZE [Option]
Set the size of the internal bucket cache. The value should point to a size_t holding
the desired cache size, or the constant GDBM_CACHE_AUTO, to adjust the cache size
automatically.

By default, a newly open database is configured to dynamically accommodate the
cache size to the number of index buckets in the database file. This provides for the
best performance.

If another value is set, it is adjusted to the nearest larger power of two.

Use this option if you wish to limit the memory usage at the expense of performance.
If you chose to do so, please bear in mind that cache becomes effective when its size
is greater then 2/3 of the number of index bucket counts in the database. The best
performance results are achieved when cache size equals the number of buckets. For
example:

size_t bn;

gdbm_bucket_count (dbf, &bn);

ret = gdbm_setopt (dbf, GDBM_SETCACHESIZE, &bn, sizeof (bn));
To request the automatically adjustable cache size, use the constant GDBM_CACHE_
AUTO:

size_t bn = GDBM_CACHE_AUTO;
ret = gdbm_setopt (dbf, GDBM_SETCACHESIZE, &bn, sizeof (bn));

GDBM_GETCACHESIZE [Option]
Return the actual size of the internal bucket cache. The value should point to a
size_t variable, where the size will be stored.



Chapter 18: Setting options 37

GDBM_SETCACHEAUTO [Option]
Controls whether the cache size will be adjusted automatically as needed. The value
should point to an integer: TRUE to enable automatic cache adjustment and FALSE to
disable it.

The following two calls are equivalent:
int t = TRUE;
gdbm_setopt (dbf, GDBM_SETCACHEAUTO, &t, sizeof (t));

size_t n = GDBM_CACHE_AUTO;
gdbm_setopt (dbf, GDBM_SETCACHESIZE, &n, sizeof (n));

GDBM_GETCACHEAUTO [Option]
Return the state of the automatic cache size adjustment. The value should point to
an integer which, upon successful return, will have the value TRUE if the automatic
cache size adjustment is enabled and FALSE otherwise.

GDBM_GETFLAGS [Option]
Return the flags describing the state of the database. The value should point to an
int variable where to store the flags. On success, its value will be similar to the
flags used when opening the database (see Chapter 3 [Open|, page 5), except that
it will reflect the current state (which may have been altered by another calls to
gdbm_setopt).

GDBM_GETDBFORMAT [Option]
Return the database format. The value should point to an int variable. Upon
successful return, it will be set to ‘0’ if the database is in standard format and GDBM_
NUMSYNC if it is in extended format. See Chapter 12 [Database format], page 18.

GDBM_GETDIRDEPTH [Option]
Returns the directory depth: the number of initial (most significant) bits in hash
value that are interpreted as index to the directory. The actual directory size can be
computed as 1 << value.

The value argument should point to an int.

GDBM_GETBUCKETSIZE [Option]
Returns the bucket capacity: maximum number of keys per bucket (int).

GDBM_FASTMODE [Option]
Enable or disable the fast writes mode, i.e. writes without subsequent synchronization.
The value should point to an integer: TRUE to enable fast mode, and FALSE to disable
it.

This option is retained for compatibility with previous versions of GDBM. Its effect is
the reverse of GDBM_SETSYNCMODE.

GDBM_SETSYNCMODE [Option]

GDBM_SYNCMODE [Option]
Turn on or off file system synchronization operations. This setting defaults to off.
The value should point to an integer: TRUE to turn synchronization on, and FALSE to
turn it off.



Chapter 18: Setting options 38

Note, that this option is a reverse of GDBM_FASTMODE, i.e. calling GDBM_SETSYNCMODE
with TRUE has the same effect as calling GDBM_FASTMODE with FALSE.

The GDBM_SYNCMODE option is provided for compatibility with earlier versions.

GDBM_GETSYNCMODE [Option]
Return the current synchronization status. The value should point to an int where
the status will be stored.

GDBM_SETCENTFREE [Option]
GDBM_CENTFREE [Option]
NOTICE: This feature is still under study.

Set central free block pool to either on or off. The default is off, which is how
previous versions of GDBM handled free blocks. If set, this option causes all subsequent
free blocks to be placed in the global pool, allowing (in theory) more file space to be
reused more quickly. The value should point to an integer: TRUE to turn central block
pool on, and FALSE to turn it off.

The GDBM_CENTFREE option is provided for compatibility with earlier versions.

GDBM_SETCOALESCEBLKS [Option]
GDBM_COALESCEBLKS [Option]
NOTICE: This feature is still under study.

Set free block merging to either on or off. The default is off, which is how previous
versions of GDBM handled free blocks. If set, this option causes adjacent free blocks to
be merged. This can become a CPU expensive process with time, though, especially if
used in conjunction with GDBM_CENTFREE. The value should point to an integer:
TRUE to turn free block merging on, and FALSE to turn it off.

GDBM_GETCOALESCEBLKS [Option]
Return the current status of free block merging. The value should point to an int
where the status will be stored.

GDBM_SETMAXMAPSIZE [Option]
Sets maximum size of a memory mapped region. The value should point to a value of
type size_t, unsigned long or unsigned. The actual value is rounded to the nearest
page boundary (the page size is obtained from sysconf (_SC_PAGESIZE)).

GDBM_GETMAXMAPSIZE [Option]
Return the maximum size of a memory mapped region. The value should point to a
value of type size_t where to return the data.

GDBM_SETMMAP [Option]
Enable or disable memory mapping mode. The value should point to an integer: TRUE
to enable memory mapping or FALSE to disable it.

GDBM_GETMMAP [Option]
Check whether memory mapping is enabled. The value should point to an integer
where to return the status.



Chapter 18: Setting options 39

GDBM_GETDBNAME [Option]
Return the name of the database disk file. The value should point to a variable of
type char**. A pointer to the newly allocated copy of the file name will be placed

there. The caller is responsible for freeing this memory when no longer needed. For
example:

char *name;

if (gdbm_setopt (dbf, GDBM_GETDBNAME, &name, sizeof (name)))

{
fprintf (stderr, "gdbm_setopt failed: %s\n",
gdbm_strerror (gdbm_errno));
}
else
{
printf ("database name: %s\n", name);
free (name);
}
GDBM_GETBLOCKSIZE [Option]

Return the block size in bytes. The value should point to int.



Chapter 19: File Locking 40

19 File Locking

With locking disabled (if gdbm_open was called with GDBM_NOLOCK), the user may want
to perform their own file locking on the database file in order to prevent multiple writers
operating on the same file simultaneously.

In order to support this, the gdbm_fdesc routine is provided.
int gdbm_fdesc (GDBM_FILE dbf) [gdbm interface]

Returns the file descriptor of the database dbf. This value can be used as an argument
to flock, lockf or similar calls.



Chapter 20: Useful global variables 41

20 Useful global variables

The following global variables and constants are available:

gdbm_error gdbm_errno [Variable]
This variable contains error code from the last failed GDBM call. See Chapter 22 [Error
codes], page 44, for a list of available error codes and their descriptions.

Use gdbm_strerror (see Chapter 14 [Errors|, page 23) to convert it to a descriptive
text.

const char * gdbm_errlist[] [Variable]
This variable is an array of error descriptions, which is used by gdbm_strerror to
convert error codes to human-readable text (see Chapter 14 [Errors|, page 23). You
can access it directly, if you wish so. It contains _GDBM_MAX_ERRNO + 1 elements and
can be directly indexed by the error code to obtain a corresponding descriptive text.

int const gdbm_syserr(] [Variable]
Array of boolean values indicating, for each GDBM error code, whether the value of
errno(3) variable is meaningful for this error code. See [gdbm_check_syserr|, page 23.

_GDBM_MIN_ERRNO [Constant)|
The minimum error code used by GDBM.

_GDBM_MAX_ERRNO [Constant]
The maximum error code used by GDBM.

const char * gdbm_version [Variable]
A string containing the version information.

int const gdbm_version_number [3] [Variable]
This variable contains the GDBM version numbers:

Index Meaning

0 Major number

1 Minor number

2 Patchlevel number

Additionally, the following constants are defined in the gdbm.h file:

GDBM_VERSION_MAJOR
Major number.

GDBM_VERSION_MINOR

Minor number.

GDBM_VERSION_PATCH
Patchlevel number.

These can be used to verify whether the header file matches the library.

To compare two split-out version numbers, use the following function:



Chapter 20: Useful global variables 42

int gdbm_version_cmp (int const a[3|, int const b[3]) [gdbm interface]
Compare two version numbers. Return -1 if a is less than b, 1 if a is greater than b
and 0 if they are equal.

Comparison is done from left to right, so that:
a={1, 8, 313%;
b=4{1, 8, 3 };
gdbm_version_cmp (a, b) = 0

a=9{1, 8, 31}
b={1,38, 21}
gdbm_version_cmp (a, b) = 1

a=9{1, 8, 31%;
b=1{1,9. 01}
gdbm_version_cmp (a, b) = -1



Chapter 21: Additional functions 43

21 Additional functions

int gdbm_avail_verify (GDBM_FILE dbf) [gdbm interface]
Verify if the available block stack is in consistent state. On success, returns 0. If any
errors are encountered, sets the gdbm_errno to GDBM_BAD_AVAIL, marks the database
as needing recovery (see Chapter 16 [Recovery]|, page 26) and return -1.



Chapter 22: Error codes 44

22 Error codes

This chapter summarizes error codes which can be set by the functions in GDBM library.

GDBM_NO_ERROR [Error Code]

No error occurred.

GDBM_MALLOC_ERROR [Error Code]
Memory allocation failed. Not enough memory.

GDBM_BLOCK_SIZE_ERROR [Error Code]
This error is set by the gdbm_open function (see Chapter 3 [Open], page 5), if the
value of its block_size argument is incorrect and the GDBM_BSEXACT flag is set.

GDBM_FILE_OPEN_ERROR [Error Code]
The library was not able to open a disk file. This can be set by gdbm_open (see
Chapter 3 [Open], page 5), gdbm_dump (gdbm_export) and gdbm_load (gdbm_import)
functions (see Chapter 13 [Flat files|, page 19).

Inspect the value of the system errno variable to get more detailed diagnostics.

GDBM_FILE_WRITE_ERROR [Error Code]
Writing to a disk file failed. This can be set by gdbm_open (see Chapter 3 [Open],
page 5), gdbm_dump (gdbm_export) and gdbm_load (gdbm_import) functions.

Inspect the value of the system errno variable to get more detailed diagnostics.
GDBM_FILE_SEEK_ERROR [Error Code]

Positioning in a disk file failed. This can be set by gdbm_open (see Chapter 3 [Open]
page 5) function.

9

Inspect the value of the system errno variable to get a more detailed diagnostics.

GDBM_FILE_READ_ERROR [Error Code]
Reading from a disk file failed. This can be set by gdbm_open (see Chapter 3 [Open],
page 5), gdbm_dump (gdbm_export) and gdbm_load (gdbm_import) functions.

Inspect the value of the system errno variable to get a more detailed diagnostics.
GDBM_BAD_MAGIC_NUMBER [Error Code]

The file given as argument to gdbm_open function is not a valid GDBM file: it has a
wrong magic number.

GDBM_EMPTY_DATABASE [Error Code]
The file given as argument to gdbm_open function is not a valid GDBM file: it has zero
length.

GDBM_CANT_BE_READER [Error Code]

This error code is set by the gdbm_open function if it is not able to lock file when
called in GDBM_READER mode (see Chapter 3 [Open], page 5).

GDBM_CANT_BE_WRITER [Error Code]
This error code is set by the gdbm_open function if it is not able to lock file when
called in writer mode (see Chapter 3 [Open], page 5).



Chapter 22: Error codes 45

GDBM_READER_CANT_DELETE [Error Code]
Set by the gdbm_delete (see Chapter 8 [Delete], page 13) if it attempted to operate
on a database that is open in read-only mode (see Chapter 3 [Open]|, page 5).

GDBM_READER_CANT_STORE [Error Code]
Set by the gdbm_store (see Chapter 6 [Store|, page 10) if it attempted to operate on
a database that is open in read-only mode (see Chapter 3 [Open]|, page 5).

GDBM_READER_CANT_REORGANIZE [Error Code]
Set by the gdbm_reorganize (see Chapter 10 [Reorganization], page 16) if it at-
tempted to operate on a database that is open in read-only mode (see Chapter 3
[Open], page 5).

GDBM_ITEM_NOT_FQOUND [Error Code]
Requested item was not found. This error is set by gdbm_delete (see Chapter 8
[Delete], page 13) and gdbm_fetch (see Chapter 7 [Fetch], page 12) when the requested
key value is not found in the database.

GDBM_REORGANIZE_FAILED [Error Code]
The gdbm_reorganize function is not able to create a temporary database. See
Chapter 10 [Reorganization], page 16.

GDBM_CANNOT_REPLACE [Error Code]
Cannot replace existing item. This error is set by the gdbm_store if the requested
key value is found in the database and the flag parameter is not GDBM_REPLACE. See
Chapter 6 [Store], page 10, for a detailed discussion.

GDBM_MALFORMED_DATA [Error Code]

GDBM_ILLEGAL_DATA [Error Code]
Input data was malformed in some way. When returned by gdbm_load, this means
that the input file was not a valid GDBM dump file (see [gdbm_load function|, page 20).
When returned by gdbm_store, this means that either key or content parameter had
its dptr field set to NULL (see Chapter 6 [Store|, page 10).

The GDBM_ILLEGAL_DATA is an alias for this error code, maintained for backward
compatibility. Its use in modern applications is discouraged.

GDBM_OPT_ALREADY_SET [Error Code]
Requested option can be set only once and was already set. As of version 1.23, this
error code is no longer used. In prior versions it could have been returned by the
gdbm_setopt function when setting the GDBM_CACHESIZE value.

GDBM_OPT_BADVAL [Error Code]

GDBM_OPT_ILLEGAL [Error Code]
The option argument is not valid or the value argument points to an invalid value in
a call to gdbm_setopt function. See Chapter 18 [Options]|, page 36.

GDBM_OPT_ILLEGAL is an alias for this error code, maintained for backward compati-
bility. Modern applications should not use it.

GDBM_BYTE_SWAPPED [Error Code]
The gdbm_open function (see Chapter 3 [Open], page 5) attempts to open a database
which is created on a machine with different byte ordering.



Chapter 22: Error codes 46

GDBM_BAD_FILE_OFFSET [Error Code]
The gdbm_open function (see Chapter 3 [Open], page 5) sets this error code if the file
it tries to open has a wrong magic number.

GDBM_BAD_QOPEN_FLAGS [Error Code]
Set by the gdbm_dump (gdbm_export) function if supplied an invalid flags argument.
See Chapter 13 [Flat files|, page 19.

GDBM_FILE_STAT_ERROR [Error Code]
Getting information about a disk file failed. The system errno will give more details
about the error.

This error can be set by the following functions: gdbm_open, gdbm_reorganize.

GDBM_FILE_EQF [Error Code]
End of file was encountered where more data was expected to be present. This error
can occur when fetching data from the database and usually means that the database
is truncated or otherwise corrupted.

This error can be set by any GDBM function that does I/O. Some of these functions
are: gdbm_delete, gdbm_exists, gdbm_fetch, gdbm_dump, gdbm_load, gdbm_export,
gdbm_import, gdbm_reorganize, gdbm_firstkey, gdbm_nextkey, gdbm_store.

GDBM_NO_DBNAME [Error Code]
Output database name is not specified. This error code is set by gdbm_load (see
[gdbm _load], page 20) if the first argument points to NULL and the input file does not
specify the database name.

GDBM_ERR_FILE_QOWNER [Error Code]
This error code is set by gdbm_load if it is unable to restore database file owner. It
is a mild error condition, meaning that the data have been restored successfully, only
changing the target file owner failed. Inspect the system errno variable to get a more
detailed diagnostics.

GDBM_ERR_FILE_MODE [Error Code]
This error code is set by gdbm_load if it is unable to restore database file mode. It
is a mild error condition, meaning that the data have been restored successfully, only
changing the target file owner failed. Inspect the system errno variable to get a more
detailed diagnostics.

GDBM_NEED_RECOVERY [Error Code]
Database is in inconsistent state and needs recovery. Call gdbm_recover if you get
this error. See Chapter 16 [Recovery], page 26, for a detailed description of recovery
functions.

GDBM_BACKUP_FAILED [Error Code]
The GDBM engine is unable to create backup copy of the file.

GDBM_DIR_OVERFLOW [Error Code]
Bucket directory would overflow the size limit during an attempt to split hash bucket.
This error can occur while storing a new key.



Chapter 22: Error codes 47

GDBM_BAD_BUCKET [Error Code]
Invalid index bucket is encountered in the database. Database recovery is needed (see
Chapter 16 [Recovery]|, page 26).

GDBM_BAD_HEADER [Error Code]
This error is set by gdbm_open and gdbm_fd_open, if the first block read from the
database file does not contain a valid GDBM header.

GDBM_BAD_AVAIL [Error Code]
The available space stack is invalid. This error can be set by gdbm_open and gdbm_
fd_open, if the extended database verification was requested (GDBM_XVERIFY). It is
also set by the gdbm_avail_verify function (see Chapter 21 [Additional functions],
page 43).

Database recovery is needed (see Chapter 16 [Recovery], page 26).

GDBM_BAD_HASH_TABLE [Error Code]
Hash table in a bucket is invalid. This error can be set by the following func-
tions: gdbm_delete, gdbm_exists, gdbm_fetch, gdbm_firstkey, gdbm_nextkey, and
gdbm_store.

Database recovery is needed (see Chapter 16 [Recovery|, page 26).

GDBM_BAD_DIR_ENTRY [Error Code]
Bad directory entry found in the bucket. The database recovery is needed (see
Chapter 16 [Recovery]|, page 26).

GDBM_FILE_CLOSE_ERROR [Error Code]
The gdbm_close function was unable to close the database file descriptor. The system
errno variable contains the corresponding error code.

GDBM_FILE_SYNC_ERROR [Error Code]
Cached content couldn’t be synchronized to disk. Examine the errno variable to get
more info,

Database recovery is needed (see Chapter 16 [Recovery|, page 26).

GDBM_FILE_TRUNCATE_ERROR [Error Code]
File cannot be truncated. Examine the errno variable to get more info.

This error is set by gdbm_open and gdbm_fd_open when called with the GDBM_NEWDB
flag.

GDBM_BUCKET _CACHE_CORRUPTED [Error Code]
The bucket cache structure is corrupted. Database recovery is needed (see Chapter 16
[Recovery], page 26).

)

GDBM_BAD_HASH_ENTRY [Error Code]
This error is set during sequential access (see Chapter 9 [Sequential], page 14), if
the next hash table entry does not contain the expected key. This means that the
bucket is malformed or corrupted and the database needs recovery (see Chapter 16
[Recovery], page 26).

9



Chapter 22: Error codes 48

GDBM_ERR_SNAPSHOT_CLONE [Error Code]
Set by the gdbm_failure_atomic function if it was unable to clone the database file
into a snapshot. Inspect the system errno variable for the underlying cause of the
error. If errno is EINVAL or ENOSYS, crash tolerance settings will be removed from
the database.

See Section 17.9 [Crash Tolerance API|, page 33.

GDBM_ERR_REALPATH [Error Code]
Set by the gdbm_failure_atomic function if the call to realpath function failed.
realpath is used to determine actual path names of the snapshot files. Examine the
system errno variable for details.

See Section 17.9 [Crash Tolerance API], page 33.

GDBM_ERR_USAGE [Error Code]
Function usage error. That includes invalid argument values, and the like.



Chapter 23: Compatibility with standard dbm and ndbm 49

23 Compatibility with standard dbm and ndbm

Gdbm includes a compatibility layer, which provides traditional ndbm and older dbm functions.
The layer is compiled and installed if the --enable-1ibgdbm-compat option is used when
configuring the package.

The compatibility layer consists of two header files: ndbm.h and dbm.h and the 1ibgdbm_
compat library.

Older programs using ndbm or dbm interfaces can use libgdbm_compat without any
changes. To link a program with the compatibility library, add the following two options to
the cc invocation: -1gdbm -1gdbm_compat. The -L option may also be required, depending
on where GDBM is installed, e.g.:

cc ... —lgdbm -lgdbm_compat

Databases created and manipulated by the compatibility interfaces consist of two dif-
ferent files: file.dir and file.pag. This is required by the POSIX specification and
corresponds to the traditional usage. Note, however, that despite the similarity of the nam-
ing convention, actual data stored in these files has not the same format as in the databases
created by other dbm or ndbm libraries. In other words, you cannot access a standard UNIX
dbm file with GNU dbm!

Compatibility interface includes only functions required by POSIX (see Section 23.1
[ndbm], page 49) or present in the traditional DBM implementation (see Section 23.2 [dbm],
page 51). Advanced GDBM features, such as crash tolerance, cannot be used with such
databases.

GNU dbm files are not sparse. You can copy them with the usual cp command and they
will not expand in the copying process.

23.1 NDBM interface functions
The functions below implement the POSIX ndbm interface:

DBM * dbm_open (char *file, int flags, int mode) [ndbm]
Opens a database. The file argument is the full name of the database file to be
opened. The function opens two files: file.pag and file.dir. The flags and mode
arguments have the same meaning as the second and third arguments of open (see
Section “open” in open(2) man page), except that a database opened for write-only
access opens the files for read and write access and the behavior of the 0_APPEND flag
is unspecified.

The function returns a pointer to the DBM structure describing the database. This
pointer is used to refer to this database in all operations described below.

Any error detected will cause a return value of NULL and an appropriate value will be
stored in gdbm_errno (see Chapter 20 [Variables|, page 41).

void dbm_close (DBM *dbf) [ndbm]
Closes the database. The dbf argument must be a pointer returned by an earlier call
to dbm_open.



Chapter 23: Compatibility with standard dbm and ndbm 50

datum dbm_fetch (DBM *dbf, datum key) [ndbm)]
Reads a record from the database with the matching key. The key argument supplies
the key that is being looked for.

If no matching record is found, the dptr member of the returned datum is NULL.
Otherwise, the dptr member of the returned datum points to the memory managed
by the compatibility library. The application should never free it.

int dbm_store (DBM *dbf, datum key, datum content, int mode) [ndbm]
Writes a key/value pair to the database. The argument dbf is a pointer to the DBM
structure returned from a call to dbm_open. The key and content provide the values
for the record key and content. The mode argument controls the behavior of dbm_
store in case a matching record already exists in the database. It can have one of
the following two values:

DBM_REPLACE
Replace existing record with the new one.

DBM_INSERT
The existing record is left unchanged, and the function returns 1.

If no matching record exists in the database, new record will be inserted no matter
what the value of the mode is.

int dbm_delete (DBM *dbf, datum key) [ndbm)]
Deletes the record with the matching key from the database. If the function succeeds,
0 is returned. Otherwise, if no matching record is found or if an error occurs, -1 is
returned.

datum dbm_firstkey (DBM *dbf) [ndbm)]
Initializes iteration over the keys from the database and returns the first key. Note,
that the word ‘first’ does not imply any specific ordering of the keys.

If there are no records in the database, the dptr member of the returned datum is
NULL. Otherwise, the dptr member of the returned datum points to the memory
managed by the compatibility library. The application should never free it.

datum dbm_nextkey (DBM *dbf) [ndbm]
Continues the iteration started by dbm_firstkey. Returns the next key in the data-
base. If the iteration covered all keys in the database, the dptr member of the
returned datum is NULL. Otherwise, the dptr member of the returned datum points
to the memory managed by the compatibility library. The application should never
free it.

The usual way of iterating over all the records in the database is:

for (key = dbm_firstkey (dbf); key.ptr; key = dbm_nextkey (dbf))
{
/* do something with the key */
}
The loop above should not try to delete any records from the database, otherwise the
iteration is not guaranteed to cover all the keys. See Chapter 9 [Sequential], page 14,
for a detailed discussion of this.



Chapter 23: Compatibility with standard dbm and ndbm 51

int dbm_error (DBM *dbf) [ndbm]
Returns the error condition of the database: 0 if no errors occurred so far while
manipulating the database, and a non-zero value otherwise.

void dbm_clearerr (DBM *dbf) [ndbm]
Clears the error condition of the database.

int dbm_dirfno (DBM *dbf) [ndbm)]
Returns the file descriptor of the ‘dir’ file of the database. It is guaranteed to be
different from the descriptor returned by the dbm_pagfno function (see below).

The application can lock this descriptor to serialize accesses to the database.

int dbm_pagfno (DBM *dbf) [ndbm)]
Returns the file descriptor of the ‘pag’ file of the database. See also dbm_dirfno.

int dbm_rdonly (DBM *dbf) [ndbm]
Returns 1 if the database dbf is open in a read-only mode and 0 otherwise.

23.2 DBM interface functions

The functions below are provided for compatibility with the old UNIX ‘DBM’ interface. Only
one database at a time can be manipulated using them.

int dbminit (char *file) [dbm)]
Opens a database. The file argument is the full name of the database file to be
opened. The function opens two files: file.pag and file.dir. If any of them does
not exist, the function fails. It never attempts to create the files.
The database is opened in the read-write mode, if its disk permissions permit.
The application must ensure that the functions described below in this section are
called only after a successful call to dbminit.

int dbmclose (void) [dbm]
Closes the database opened by an earlier call to dbminit.

datum fetch (datum key) [dbm]
Reads a record from the database with the matching key. The key argument supplies
the key that is being looked for.
If no matching record is found, the dptr member of the returned datum is NULL.
Otherwise, the dptr member of the returned datum points to the memory managed
by the compatibility library. The application should never free it.

int store (datum key, datum content) [dbm]
Stores the key/value pair in the database. If a record with the matching key already
exists, its content will be replaced with the new one.

Returns 0 on success and -1 on error.

int delete (datum key) [dbm]
Deletes a record with the matching key.

If the function succeeds, 0 is returned. Otherwise, if no matching record is found or
if an error occurs, -1 is returned.



Chapter 23: Compatibility with standard dbm and ndbm 52

datum firstkey (void) [dbm]
Initializes iteration over the keys from the database and returns the first key. Note,
that the word ‘first’ does not imply any specific ordering of the keys.

If there are no records in the database, the dptr member of the returned datum is
NULL. Otherwise, the dptr member of the returned datum points to the memory
managed by the compatibility library. The application should never free it.

datum nextkey (datum key) [dbm]
Continues the iteration started by a call to firstkey. Returns the next key in the
database. If the iteration covered all keys in the database, the dptr member of the
returned datum is NULL. Otherwise, the dptr member of the returned datum points
to the memory managed by the compatibility library. The application should never
free it.



Chapter 24: Examine and modify a GDBM database 53

24 Examine and modify a GDBM database

The gdbmtool utility allows you to view and modify an existing GDBM database or to create
a new one.

When invoked without arguments, it tries to open a database file called junk.gdbm,
located in the current working directory. You can change this default by supplying the
name of the database as argument to the program, e.g.:

$ gdbmtool file.db

The database will be opened in read-write mode, unless the -r (--read-only) option is
specified, in which case it will be opened only for reading.

If the database does not exist, gdbmtool will create it. There is a special option -n
(--newdb), which instructs the utility to create a new database. If it is used and if the
database already exists, it will be deleted, so use it sparingly.

24.1 gdbmtool invocation

When started without additional arguments, gdbmtool operates on the default database
junk.gdbm. Otherwise, the first argument supplies the name of the database to operate
upon. If neither any additional arguments nor the -f (--file) option are given, gdbmtool
opens starts interactive shell and receives commands directly from the human operator.

If more than one argument is given, all arguments past the database name are parsed
as gdbmtool commands (see Section 24.2 [shell], page 55, for a description of available
commands) and executed in turn. All commands, except the last one, should be terminated
with semicolons. Semicolon after the last command is optional. Note, that semicolons
should be escaped in order to prevent them from being interpreted by the shell.

Finally, if the -f (--file) option is supplied, its argument specifies the name of the disk
file with gdbmtool script. The program will open that file and read commands from it.

The following table summarizes all gdbmtool command line options:

-b size
—-block-size=size
Set block size.

-C size

—--cache-size=size
Set cache size.

-d fd

--db-descriptor=£fd
Use the database referred to by the file descriptor fd. This must be a valid open
file descriptor, obtained by a call to open (see Section “open a file” in open(2)
man page), creat or a similar function. The database will be opened using
gdbm_fd_open (see [gdbm_fd_open|, page 7).

This option is intended for use by automatic test suites.
-f file

-—file file
Read commands from file, instead of the standard input.



Chapter 24: Examine and modify a GDBM database 54

--help Print a concise help summary.

--norc Don’t read startup files (see Section 24.2.4 [startup files|, page 66).

--newdb Create the database.

--no-lock
Disable file locking.

-m
--no-mmap
Disable memory mapping.

-T
--timing Print time spent in each command. This is equivalent to setting the timing
variable. See Section 24.2.1 [variables], page 56.

--trace  Enable command tracing. This is equivalent to setting the trace variable. See
Section 24.2.1 [variables], page 56.

--quiet  Don’t print the usual welcome banner at startup. This is the same as setting
the variable quiet in the startup file. See [quiet], page 57.

--read-only
Open the database in read-only mode.

-s
--synchronize
Synchronize to the disk after each write.

-V
--version
Print program version and licensing information and exit.

--usage  Print a terse invocation syntax summary along with a list of available command
line options.

-X

-—extended

--numsync
Create new database in extended (numsync) format (see Section 17.8 [Num-
sync|, page 32). This option sets the format variable to ‘numsync’. See [format
variable|, page 58.



Chapter 24: Examine and modify a GDBM database 55

24.2 gdbmtool interactive mode

After successful startup, gdbmtool starts a loop, in which it reads commands from the
standard input, executes them and prints results on the standard output. If the standard
input is attached to a console, gdbmtool runs in interactive mode, which is indicated by its
prompt:

gdbmtool> _

The utility finishes when it reads the quit command (see below) or detects end-of-file
on its standard input, whichever occurs first.

A gdbmtool command consists of a command verb, optionally followed by arguments,
separated by any amount of white space and terminated with a newline or semicolon. A
command verb can be entered either in full or in an abbreviated form, as long as that
abbreviation does not match any other verb. For example, co can be used instead of count
and ca instead of cache.

Any sequence of non-whitespace characters appearing after the command verb forms
an argument. If the argument contains whitespace or unprintable characters it must be
enclosed in double quotes. Within double quotes the usual escape sequences are understood,
as shown in the table below:

Sequence Replaced with

\a Audible bell character (ASCII 7)

\b Backspace character (ASCII 8)

\f Form-feed character (ASCII 12)

\n Newline character (ASCII 10)

\r Carriage return character (ASCII 13)

\t Horizontal tabulation character (ASCII 9)
\v Vertical tabulation character (ASCII 11)
\\ Single slash

\" Double quote

Table 24.1: Backslash escapes

In addition, a backslash immediately followed by the end-of-line character effectively
removes that character, allowing to split long arguments over several input lines.

Command parameters may be optional or mandatory. If the number of actual arguments
is less than the number of mandatory parameters, gdbmtool will prompt you to supply
missing arguments. For example, the store command takes two mandatory parameters, so
if you invoked it with no arguments, you would be prompted twice to supply the necessary
data, as shown in example below:

gdbmtool> store
key? three
data? 3

However, such prompting is possible only in interactive mode. In non-interactive mode
(e.g. when running a script), all arguments must be supplied with each command, otherwise
gdbmtool will report an error and exit immediately.

If the package is compiled with GNU Readline, the input line can be edited (see Section
“Command Line Editing” in GNU Readline Library).



Chapter 24: Examine and modify a GDBM database 56

24.2.1 Shell Variables

A number of gdbmtool parameters is kept in its internal variables. To examine or modify
variables, use the set command (see [set], page 59).

bool confirm [gdbmtool variable]
Whether to ask for confirmation before certain destructive operations, such as trun-
cating the existing database.

Default is true.

string delimil [gdbmtool variable]
A string used to delimit fields of a structured datum on output (see Section 24.2.3
[definitions]|, page 64).

Default is ¢,” (a comma). This variable cannot be unset.

string delim?2 [gdbmtool variable]
A string used to delimit array items when printing a structured datum (see
Section 24.2.3 [definitions|, page 64).

Default is ¢,” (a comma). This variable cannot be unset.

string errorexit [gdbmtool variable]

bool errorexit [gdbmtool variable]
Comma-delimited list of GDBM error codes which cause program termination. Error
codes are specified via their canonical names (see Chapter 22 [Error codes|, page 44).
The GDBM_ prefix can be omitted. Code name comparison is case-insensitive. Each
error code can optionally be prefixed with minus sign, to indicate that it should be
removed from the resulting list, or with plus sign (which is allowed for symmetry). A
special code ‘all’ stands for all available error codes.

In boolean context, the true value is equivalent to ‘all’, and false (i.e. variable
unset) is equivalent to ‘-all’.

string errormask [gdbmtool variable]
bool errormask [gdbmtool variable]
Comma-delimited list of GDBM error codes which are masked, i.e. which won’t trigger a
diagnostic message if they occur. The syntax is the same as described for errorexit.

string pager [gdbmtool variable]
The name and command line of the pager program to pipe output to. This program
is used in interactive mode when the estimated number of output lines is greater then
the number of lines on your screen.

The default value is inherited from the environment variable PAGER. Unsetting this
variable disables paging.

string psl [gdbmtool variable]
Primary prompt string. Its value can contain conversion specifiers, consisting of the
‘%’ character followed by another character. These specifiers are expanded in the
resulting prompt as follows:

Sequence Expansion



Chapter 24: Examine and modify a GDBM database 57

%ot name of the current database file
%p program invocation name

%P package name (‘GDBM’)

%ov program version

Y- single space character

%% %

The default value is ‘%p>%_’, i.e. the program name, followed by a “greater than”
sign, followed by a single space.

string ps2 [gdbmtool variable]
Secondary prompt. See ps1l for a description of its value. This prompt is displayed
before reading the second and subsequent lines of a multi-line command.

The default value is ‘%_>%_’.

bool timing [gdbmtool variable]
When each command terminates, print an additional line listing times spent in that
command. The line is formatted as follows:
[reorganize r=0.070481 u=0.000200 s=0.000033]

Here, ‘reorganize’ is the name of the command that finished, the number after ‘r=’
is real time spent executing the command, the number after ‘u=" is the user CPU time
used and the number after ‘s=’ is the system CPU time used.

bool trace [gdbmtool variable]
Enable command tracing. This is similar to the shell -t option: before executing
each command, gdbmtool will print on standard error a line starting with a plus sign
and followed by the command name and its arguments.

bool quiet [gdbmtool variable]
Whether to display a welcome banner at startup. To affect gdbmtool, this variable
should be set in a startup script file (see Section 24.2.4 [startup files], page 66). See
[-q option], page 54.

The following variables control how the database is opened:

numeric blocksize [gdbmtool variable]
Sets the block size. See Chapter 3 [Open|, page 5. Unset by default.

numeric cachesize [gdbmtool variable]
Sets the cache size. See Chapter 18 [Options|, page 36.

This variable affects the currently opened database immediately. It is also used by
open command.

To enable automatic cache size selection, unset this variable. This is the default.

string filename [gdbmtool variable]
Name of the database file. If the open command is called without argument (e.g.
called implicitly), this variable names the database file to open. If open is called with
file name argument, upon successful opening of the database the filename variable
is initialized with its file name.

This variable cannot be unset.



Chapter 24: Examine and modify a GDBM database 58

number fd [gdbmtool variable]
File descriptor of the database file to open. If this variable is set, its value must be
an open file descriptor referring to a GDBM database file. The open command will
use gdbm_fd_open function to use this file (see [gdbm_fd_open|, page 7). When this
database is closed, the descriptor will be closed as well and the fd variable will be
unset.

See also the -d (--db-descriptor) command line option in Section 24.1 [invocation],
page H3.

string format [gdbmtool variable]
Defines the format in which new databases will be created. Allowed values are:

‘standard’
Databases will be created in standard format. This is the format used by
all GDBM versions prior to 1.21. This value is the default.

‘numsync’ Extended format, best for crash-tolerant applications. See Section 17.8
[Numsync|, page 32, for a discussion of this format.

string open [gdbmtool variable]
Open mode. The following values are allowed:

newdb Truncate the database if it exists or create a new one. Open it in read-
write mode.

Technically, this sets the GDBM_NEWDB flag in call to gdbm_open. See
Chapter 3 [Open], page 5.

wrcreat

rw Open the database in read-write mode. Create it if it does not exist. This
is the default.
Technically speaking, it sets the GDBM_WRCREAT flag in call to gdbm_open.
See Chapter 3 [Open], page 5.

reader

readonly  Open the database in read-only mode. Signal an error if it does not exist.
This sets the GDBM_READER flag (see Chapter 3 [Open], page 5).

Attempting to set any other value or to unset this variable results in error.

number filemode [gdbmtool variable]
File mode (in octal) for creating new database files and database dumps.

bool lock [gdbmtool variable]
Lock the database. This is the default.

Setting this variable to false or unsetting it results in passing GDBM_NOLOCK flag to
gdbm_open (see Chapter 3 [Open], page 5).

bool mmap [gdbmtool variable]
Use memory mapping. This is the default.

Setting this variable to false or unsetting it results in passing GDBM_NOMMAP flag to
gdbm_open (see Chapter 3 [Open], page 5).



Chapter 24: Examine and modify a GDBM database 59

bool sync [gdbmtool variable]
Flush all database writes on disk immediately. Default is false. See Chapter 3 [Open],
page 5.

bool coalesce [gdbmtool variable]

Enables the coalesce mode, i.e. merging of the freed blocks of GDBM files with entries
in available block lists. This provides for effective memory management at the cost of
slight increase in execution time when calling gdbm_delete. See Chapter 18 [Options],
page 36.

This variable affects the currently opened database immediately and will be used by
open command, when it is invoked.

bool centfree [gdbmtool variable]
Set to true, enables the use of central free block pool in newly opened databases. See
Chapter 18 [Options], page 36.
This variable affects the currently opened database immediately and will be used by
open command, when it is invoked.

The following commands are used to list or modify the variables:

set [assignments] [command verb]
When used without arguments, lists all variables and their values. Unset variables
are shown after a comment sign (‘#’). For string and numeric variables, values are
shown after an equals sign. For boolean variables, only the variable name is displayed
if the variable is true. If it is false, its name is prefixed with ‘no’.

For example:

# blocksize is unset
# cachesize is unset
nocentfree
nocoalesce

confirm

delimi=","
delim2=","

# fd is unset
filemode=644
filename="junk.gdbm"
format="standard"
lock

mmap

open="wrcreat"
pager="less"
psi="%p>%_"
pS2="%_>%_"

# quiet is unset
nosync

If used with arguments, the set command alters the specified variables. In this case,
arguments are variable assignments in the form ‘name=value’. For boolean variables,



Chapter 24: Examine and modify a GDBM database 60

the value is interpreted as follows: if it is numeric, 0 stands for false, any non-zero
value stands for true. Otherwise, the values on, true, and yes denote true, and
off, false, no stand for false. Alternatively, only the name of a boolean variable
can be supplied to set it to true, and its name prefixed with no can be used to set it
to false. For example, the following command sets the delim2 variable to ‘;’ and the
confirm variable to false:

set delim2=";" noconfirm

unset variables [command verb]

Unsets the listed variables. The effect of unsetting depends on the variable. Unless
explicitly described in the discussion of the variables above, unsetting a boolean vari-
able is equivalent to setting it to false. Unsetting a string variable is equivalent to

assigning it an empty string.
24.2.2 Gdbmtool Commands

avail
Print the avail list.

bucket num

Print the bucket number num and set it as the current one.

cache
Print the bucket cache.

close
Close the currently open database.

count
Print the number of entries in the database.

current
Print the current bucket.

debug [[+-]token..]

[command verb)]

[command verb)]

[command verb)]

[command verb]

[command verb)]

[command verb]

[command verb]

If GDBM is configured with additional debugging, this statement queries or sets GDBM
internal debugging level. This is intended for debugging and testing purposes and
requires good knowledge of GDBM internals. The use of this command is not recom-
mended.

delete key [command verb]

Delete record with the given key

[command verb]
Print hash directory.

downgrade [command verb]

Downgrade the database from extended to the standard database format. See
Section 17.8 [Numsync|, page 32.



Chapter 24: Examine and modify a GDBM database 61

export file-name [truncate| [binary| ascii] [command verb]
Export the database to the flat file file-name. See Chapter 13 [Flat files], page 19, for a
description of the flat file format and its purposes. This command will not overwrite
an existing file, unless the ‘truncate’ parameter is also given. Another optional
argument determines the type of the dump (see Chapter 13 [Flat files|, page 19). By
default, ASCII dump is created.

The global variable filemode specifies the permissions to use for the created output

file.

fetch key [command verb]
Fetch and display the record with the given key.

first [command verb]
Fetch and display the first record in the database. Subsequent records can be fetched
using the next command (see below). See Chapter 9 [Sequential|, page 14, for more
information on sequential access.

hash key [command verb]
Compute and display the hash value for the given key.

header [command verb)]
Print file header.

help [command verb]

? [command verb]
Print a concise command summary, showing each command verb with its parameters
and a short description of what it does. Optional arguments are enclosed in square
brackets.

import file-name [replace| [nometal [command verb]
Import data from a flat dump file file-name (see Chapter 13 [Flat files], page 19).
If the word ‘replace’ is given as an argument, any records with the same keys as
the already existing ones will replace them. The word ‘nometa’ turns off restoring
meta-information from the dump file.

history [command verb]
history count [command verb)]
history n count [command verb)]

Shows the command history list with line numbers. When used without arguments,
shows entire history. When used with one argument, displays count last commands
from the history. With two arguments, displays count commands starting from nth
command. Command numbering starts with 1.

This command is available only if GDBM was compiled with GNU Readline. The
history is saved in file .gdbmtool_history in the user’s home directory. If this file
exists upon startup, it is read to populate the history. Thus, command history is
preserved between gdbmtool invocations.

list [command verb)]
List the contents of the database.



Chapter 24: Examine and modify a GDBM database 62

next [key] [command verb)]
Sequential access: fetch and display the next record. If the key is given, the record
following the one with this key will be fetched.

Issuing several next commands in row is rather common. A shortcut is provided
to facilitate such use: if the last entered command was next, hitting the Enter key
repeats it without arguments.

See also first, above.

See Chapter 9 [Sequential], page 14, for more information on sequential access.

open filename [command verb]

open [command verb]
Open the database file filename. If used without arguments, the database name is
taken from the variable filename.

If successful, any previously open database is closed and the filename variable is
updated. Otherwise, if the operation fails, the currently opened database remains
unchanged.

This command takes additional information from the following variables:
filename Name of the database to open, if no argument is given.

fd File descriptor to use. If set, this must be an open file descriptor referring
to a valid database file. The database will be opened using gdbm_fd_open
(see [gdbm_fd_open], page 7). The file descriptor will be closed and the
variable unset upon closing the database.

filemode Specifies the permissions to use in case a new file is created.

open The database access mode. See [The open variable|, page 58, for a list of
its values.

lock Whether or not to lock the database. Default is on.

mmap Use the memory mapping. Default is on.

sync Synchronize after each write. Default is off.

See [open parameters|, page 57, for a detailed description of these variables.

perror [code] [command verb]
Describe the given GDBM error code.

The description occupies one or two lines. The second line is present if the system
error number should be checked when handling this code. In this case, the second
line states ‘Examine errno’.

If code is omitted, the latest error that occurred in the current database is described.
Second line of the output (if present), contains description of the latest system error.

Example:

gdbmtool> perror 3
GDBM error code 3: "File open error"
Examine errno.



Chapter 24: Examine and modify a GDBM database 63

quit [command verb]
Close the database and quit the utility.

recover [options| [command verb]
Recover the database from structural inconsistencies. See Chapter 15 [Database con-
sistency], page 25.

The following options are understood:
backup Create a backup copy of the original database.

max-failed-buckets=n
Abort recovery process if n buckets could not be recovered.

max-failed-keys=n
Abort recovery process if n keys could not be recovered.

max-failures=n
Abort recovery process after n failures. A failure in this context is either
a key or a bucket that failed to be recovered.

summary  Print the recovery statistics at the end of the run. The statistics includes
number of successfully recovered, failed and duplicate keys and the num-
ber of recovered and failed buckets.

verbose  Verbosely list each error encountered.

reorganize [command verb]
Reorganize the database (see Chapter 10 [Reorganization|, page 16).

shell command [command verb]

! command [command verb]
Execute command via current shell. If command is empty, shell is started without
additional arguments. Otherwise, it is run as ‘$SHELL -c command’.

For convenience, command is not parsed as gdbmtool command line. It is passed
to the shell verbatim. It can include newline characters if these are preceded by a
backslash or appear within singly or doubly quoted strings.

When using ! form, be sure to separate it from command by whitespace, otherwise
it will be treated as readline event specifier.

snapshot filename filename [command verb)]
Analyze two snapshot files and select the most recent of them. In case of error, display
a detailed diagnostics and meta-information of both snapshots.

See Section 17.5 [Manual crash recovery|, page 31, for a detailed discussion.

source filename [command verb]
Read gdbmtool commands from the file filename.

status [command verb]
Print current program status. The following example shows the information displayed:



Chapter 24: Examine and modify a GDBM database 64

Database file: junk.gdbm
Database is open

define key string

define content string

The two define strings show the defined formats for key and content data. See
Section 24.2.3 [definitions]|, page 64, for a detailed discussion of their meaning.

store key data [command verb]
Store the data with key in the database. If key already exists, its data will be replaced.

sync [command verb)]
Synchronize the database with the disk storage (see Chapter 11 [Sync]|, page 17).

upgrade [command verb)]
Upgrade the database from standard to extended database format. See Section 17.8
[Numsync], page 32.

version [command verb]
Print the version of gdbm.

24.2.3 Data Definitions

GDBM databases are able to keep data of any type, both in the key and in the content part of
a record. Quite often these data are structured, i.e. they consist of several fields of various
types. Gdbmtool provides a mechanism for handling such kind of records.

The define command defines a record structure. The general syntax is:
define what definition

where what is key to defining the structure of key data and content to define the structure
of the content records.

The definition can be of two distinct formats. In the simplest case it is a single data
type. For example,

define content int

defines content records consisting of a single integer field. Supported data types are:

char Single byte (signed).
short Signed short integer.
ushort Unsigned short integer.
int Signed integer.

unsigned

uint Unsigned integer.

long Signed long integer.
ulong Unsigned long integer.
llong Signed long long integer.

ullong Unsigned long long integer.



Chapter 24: Examine and modify a GDBM database 65

float A floating point number.

double Double-precision floating point number.

string Array of bytes.

stringz Null-terminated string, trailing null being part of the string.

All numeric data types (integer as well as floating point) have the same respective widths
as in C language on the host where the database file resides.

The string and stringz are special. Both define a string of bytes, similar to ‘char
x[]7 in C. The former defines an array of bytes, the latter - a null-terminated string. This
makes a difference, in particular, when the string is the only part of datum. Consider the
following two definitions:

1. define key string
2. define key stringz

Now, suppose we want to store the string "ab" in the key. Using the definition (1), the
dptr member of GDBM datum will contain two bytes: ‘a’, and ‘b’. Consequently, the dsize
member will have the value 2. Using the definition (2), the dptr member will contain three
bytes: ‘a’, ‘b’, and ASCII 0. The dsize member will have the value 3.

The definition (1) is the default for both key and content.

The second form of the define statement is similar to the C struct statement and
allows for defining structural data. In this form, the definition part is a comma-separated
list of data types and variables enclosed in curly braces. In contrast to the rest of gdbm
commands, this command is inherently multiline and is terminated with the closing curly
brace. For example:

define content {
int status,
pad 8,
char id[3],
string name

¥

This defines a structure consisting of three members: an integer status, an array of 3
bytes id, and an array of bytes name. Notice the pad statement: it allows to introduce
padding between structure members. Another useful statement is offset: it specifies that
the member following it begins at the given offset in the structure. Assuming the size of
int is 8 bytes, the above definition can also be written as

define content {
int status,
offset 16,
char id[3],
string name

}

NOTE: The string type can reasonably be used only if it is the last or the only member
of the data structure. That’s because it provides no information about the number of
elements in the array, so it is interpreted to contain all bytes up to the end of the datum.



Chapter 24: Examine and modify a GDBM database 66

When displaying the structured data, gdbmtool precedes each value with the correspond-
ing field name and delimits parts of the structure with the string defined in the deliml
variable (see Section 24.2.1 [variables], page 56). Array elements are delimited using the
string from delim2. For example:

gdbmtool> fetch foo
status=2,id={ a, u, x },name="quux"
To supply a structured datum as an argument to a gdbmtool command, use the same
notation, e.g.:

gdbmtool> store newkey { status=2, id={a,u,x}, name="quux" }

The order in which the fields are listed is not significant. The above command can as
well be written as:

gdbmtool> store newkey { id={a,u,x}, status=2, name="quux" }

You are not required to supply all defined fields. Any number of them can be omitted,
provided that at least one remains. The omitted fields are filled with 0:

gdbmtool> store newkey { name="bar" }
gdbmtool> fetch newkey
status=0,id={ ,, },name=bar
Yet another way to supply structured data to a command is by listing the value for each
field in the order they are defined, without field names:

gdbmtool> store newkey { 2, {a,u,x}, "quux" }

24.2.4 Startup Files

Upon startup gdbmtool looks for a file named .gdbmtoolrc first in the current working
directory and, if not found, in the home directory of the user who started the command.

If found, this file is read and interpreted as a list of gdbmtool commands. This allows
you to customize the program behavior.

Following is an example startup file which disables the welcome banner, sets command
line prompt to contain the name of the database file in parentheses and defines the structure
of the database content records:

set quiet
set psi="(%f) "
define key stringz
define content {
int time,
pad 4,
int status



Chapter 25: The gdbm_dump utility 67

25 The gdbm_dump utility

The gdbm_dump utility creates a flat file dump of a GDBM database (see Chapter 13 [Flat
files], page 19). It takes one mandatory argument: the name of the source database file.
The second argument, if given, specifies the name of the output file. If not given, gdbm_dump
will produce the dump on the standard output.

For example, the following invocation creates a dump of the database file.db in the
file file.dump:

$ gdbm_dump file.db file.dump

By default the utility creates dumps in ASCII format (see Chapter 13 [Flat files],

page 19). Another format can be requested using the --format (-H) option.

The gdbm_dump utility understands the following command line options:

-H fmt

-—format=£fmt
Select output format. Valid values for fmt are: binary or 0 to select binary
dump format, and ascii or 1 to select ASCII format.

-h

--help Print a concise help summary.

-V

--version
Print program version and licensing information and exit.

--usage Print a terse invocation syntax summary along with a list of available command
line options.



Chapter 26: The gdbm_load utility 68

26 The gdbm_load utility

The gdbm_load utility restores a GDBM database from a flat file. The utility requires at least
one argument: the name of the input flat file. If it is ‘=’, the standard input will be read.
The format of the input file is detected automatically.

By default the utility attempts to restore the database under its original name, as stored
in the input file. It will fail to do so if the input is in binary format. In that case, the name
of the database must be given as the second argument.

In general, if two arguments are given, the second one is treated as the name of the
database to create, overriding the file name specified in the flat file.

The utility understands the following command line arguments:

—-b num
--block-size=num
Sets block size. See Chapter 3 [Open]|, page 5.

-c num
—-—cache-size=num
Sets cache size. See Chapter 18 [Options|, page 36.

-M
—-mmap Use memory mapping.

-m mode

—--mode=mode
Sets the file mode. The argument is the desired file mode in octal.

-n
--no-meta
Do not restore file meta-data (ownership and mode) from the flat file.

-r
--replace
Replace existing keys.

-u user[: group]

--user=user|[: group]
Set file owner. The user can be either a valid user name or UID. Similarly,
the group is either a valid group name or GID. If group is not given, the main
group of user is used.

User and group parts can be separated by a dot, instead of the colon.
-h
--help Print a concise help summary.
-V
--version

Print program version and licensing information and exit.

--usage Print a terse invocation syntax summary along with a list of available command
line options.



Chapter 27: Exit codes

27 Exit codes

All GDBM utilities return uniform exit codes. These are summarized in the table below:

Code Meaning

0 Successful termination.

1 A fatal error occurred.

2 Program was unable to restore file ownership or mode.
3 Command line usage error.

69



Chapter 28: Problems and bugs 70

28 Problems and bugs

If you have problems with GNU dbm or think you’ve found a bug, please report it. Before
reporting a bug, make sure you’ve actually found a real bug. Carefully reread the documen-
tation and see if it really says you can do what you’re trying to do. If it’s not clear whether
you should be able to do something or not, report that too; it’s a bug in the documentation!

Before reporting a bug or trying to fix it yourself, try to isolate it to the smallest possible
input file that reproduces the problem. Then send us the input file and the exact results
GDBM gave you. Also say what you expected to occur; this will help us decide whether the
problem was really in the documentation.

Once you've got a precise problem, send e-mail to bug-gdbm@gnu.org.

Please include the version number of GNU dbm you are using. You can get this informa-
tion by printing the variable gdbm_version (see Chapter 20 [Variables|, page 41).

Non-bug suggestions are always welcome as well. If you have questions about things
that are unclear in the documentation or are just obscure features, please report them too.

You may contact the authors and maintainers by e-mail: Philip Nelson
phil@cs.wwu.edu, Jason Downs downsj@downsj.com, Sergey Poznyakoff gray@gnu.org
or gray@gnu.org.ua.

Crash  tolerance support written by  Terence Kelly tpkelly@acm.org,
tpkelly@cs.princeton.edu, or tpkelly@eecs.umich.edu.


mailto:bug-gdbm@gnu.org
mailto:phil@cs.wwu.edu
mailto:downsj@downsj.com
mailto:gray@gnu.org
mailto:gray@gnu.org.ua
mailto:tpkelly@acm.org
mailto:tpkelly@cs.princeton.edu
mailto:tpkelly@eecs.umich.edu

Chapter 29: Additional resources 71

29 Additional resources

For the latest updates and pointers to additional resources, visit http://www.gnu.org/
software/gdbm.

In particular, a copy of GDBM documentation in various formats is available online at
http://www.gnu.org/software/gdbm/manual . html.

Latest versions of GDBM can be downloaded from anonymous FTP: ftp://ftp.gnu.
org/gnu/gdbm, or via HTTP from http://ftp.gnu.org/gnu/gdbm, or via HTTPS from
https://ftp.gnu.org/gnu/gdbm, or from any GNU mirror worldwide. See http://www.
gnu.org/order/ftp.html, for a list of mirrors.

To track GDBM development, visit http://puszcza.gnu.org.ua/projects/gdbm.


http://www.gnu.org/software/gdbm
http://www.gnu.org/software/gdbm
http://www.gnu.org/software/gdbm/manual.html
ftp://ftp.gnu.org/gnu/gdbm
ftp://ftp.gnu.org/gnu/gdbm
http://ftp.gnu.org/gnu/gdbm
https://ftp.gnu.org/gnu/gdbm
http://www.gnu.org/order/ftp.html
http://www.gnu.org/order/ftp.html
http://puszcza.gnu.org.ua/projects/gdbm

Appendix A: GNU Free Documentation License 72

Appendix A GNU Free Documentation License

Version 1.3, 3 November 2008

Copyright (©) 2000-2002, 2007-2008, 2011, 2017-2022 Free
Software Foundation, Inc.
http://fsf.org/

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and
useful document free in the sense of freedom: to assure everyone the effective freedom
to copy and redistribute it, with or without modifying it, either commercially or non-
commercially. Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible for modifications
made by others.

This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a
notice placed by the copyright holder saying it can be distributed under the terms
of this License. Such a notice grants a world-wide, royalty-free license, unlimited in
duration, to use that work under the conditions stated herein. The “Document”,
below, refers to any such manual or work. Any member of the public is a licensee, and
is addressed as “you”. You accept the license if you copy, modify or distribute the work
in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into
another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that
could fall directly within that overall subject. (Thus, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding
them.


http://fsf.org/

Appendix A: GNU Free Documentation License 73

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released
under this License. If a section does not fit the above definition of Secondary then it is
not allowed to be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may
be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, that is suitable for
revising the document straightforwardly with generic text editors or (for images com-
posed of pixels) generic paint programs or (for drawings) some widely available drawing
editor, and that is suitable for input to text formatters or for automatic translation to
a variety of formats suitable for input to text formatters. A copy made in an otherwise
Transparent file format whose markup, or absence of markup, has been arranged to
thwart or discourage subsequent modification by readers is not Transparent. An image
format is not Transparent if used for any substantial amount of text. A copy that is
not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without
markup, Texinfo input format, LaTEX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML, PostScript or PDF designed
for human modification. Examples of transparent image formats include PNG, XCF
and JPG. Opaque formats include proprietary formats that can be read and edited
only by proprietary word processors, SGML or XML for which the DTD and/or
processing tools are not generally available, and the machine-generated HTML,
PostScript or PDF produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

The “publisher” means any person or entity that distributes copies of the Document
to the public.

A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such
as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve
the Title” of such a section when you modify the Document means that it remains a
section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to
be included by reference in this License, but only as regards disclaiming warranties:
any other implication that these Warranty Disclaimers may have is void and has no
effect on the meaning of this License.



Appendix A: GNU Free Documentation License 74

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and
that you add no other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for copies.
If you distribute a large enough number of copies you must also follow the conditions
in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of
the Document, numbering more than 100, and the Document’s license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify you as the publisher
of these copies. The front cover must present the full title with all words of the title
equally prominent and visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verbatim copying in other
respects.

If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a computer-network location from which
the general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material. If
you use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will
remain thus accessible at the stated location until at least one year after the last time
you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of
it. In addition, you must do these things in the Modified Version:



Appendix A: GNU Free Documentation License 75

N.

0.

Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any,
be listed in the History section of the Document). You may use the same title as
a previous version if the original publisher of that version gives permission.

List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has fewer
than five), unless they release you from this requirement.

State on the Title page the name of the publisher of the Modified Version, as the
publisher.

Preserve all the copyright notices of the Document.

Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

Include an unaltered copy of this License.

Preserve the section Entitled “History”, Preserve its Title, and add to it an item
stating at least the title, year, new authors, and publisher of the Modified Version
as given on the Title Page. If there is no section Entitled “History” in the Docu-
ment, create one stating the title, year, authors, and publisher of the Document
as given on its Title Page, then add an item describing the Modified Version as
stated in the previous sentence.

Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
“History” section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

Delete any section Entitled “Endorsements”. Such a section may not be included
in the Modified Version.

Do not retitle any existing section to be Entitled “Endorsements” or to conflict in
title with any Invariant Section.

Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at



Appendix A: GNU Free Documentation License 76

your option designate some or all of these sections as invariant. To do this, add their
titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties—for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but
you may replace the old one, on explicit permission from the previous publisher that
added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections Entitled “History” in the vari-
ous original documents, forming one section Entitled “History”; likewise combine any
sections Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You
must delete all sections Entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.

You may extract a single document from such a collection, and distribute it individu-
ally under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.



Appendix A: GNU Free Documentation License 7

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called
an “aggregate” if the copyright resulting from the compilation is not used to limit the
legal rights of the compilation’s users beyond what the individual works permit. When
the Document is included in an aggregate, this License does not apply to the other
works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they
must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original versions
of these Invariant Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warranty Disclaimers, provided that you
also include the original English version of this License and the original versions of
those notices and disclaimers. In case of a disagreement between the translation and
the original version of this License or a notice or disclaimer, the original version will
prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “His-
tory”, the requirement (section 4) to Preserve its Title (section 1) will typically require
changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense, or
distribute it is void, and will automatically terminate your rights under this License.

However, if you cease all violation of this License, then your license from a particular
copyright holder is reinstated (a) provisionally, unless and until the copyright holder
explicitly and finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means prior to 60 days
after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if
the copyright holder notifies you of the violation by some reasonable means, this is the
first time you have received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after your receipt of the
notice.

Termination of your rights under this section does not terminate the licenses of parties
who have received copies or rights from you under this License. If your rights have
been terminated and not permanently reinstated, receipt of a copy of some or all of the
same material does not give you any rights to use it.



Appendix A: GNU Free Documentation License 78

10.

11.

FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of
this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation. If the Document specifies that a proxy can decide which future
versions of this License can be used, that proxy’s public statement of acceptance of a
version permanently authorizes you to choose that version for the Document.

RELICENSING

“Massive Multiauthor Collaboration Site” (or “MMC Site”) means any World Wide
Web server that publishes copyrightable works and also provides prominent facilities
for anybody to edit those works. A public wiki that anybody can edit is an example of
such a server. A “Massive Multiauthor Collaboration” (or “MMC”) contained in the
site means any set of copyrightable works thus published on the MMC site.

“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0 license pub-
lished by Creative Commons Corporation, a not-for-profit corporation with a principal
place of business in San Francisco, California, as well as future copyleft versions of that
license published by that same organization.

“Incorporate” means to publish or republish a Document, in whole or in part, as part
of another Document.

An MMC is “eligible for relicensing” if it is licensed under this License, and if all works
that were first published under this License somewhere other than this MMC, and
subsequently incorporated in whole or in part into the MMC, (1) had no cover texts
or invariant sections, and (2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site under
CC-BY-SA on the same site at any time before August 1, 2009, provided the MMC is
eligible for relicensing.


http://www.gnu.org/copyleft/

Appendix A: GNU Free Documentation License 79

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover
Texts. A copy of the license is included in the section entitled ‘‘GNU
Free Documentation License’’.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with. . . Texts.” line with this:

with the Invariant Sections being list their titles, with
the Front-Cover Texts being list, and with the Back-Cover Texts
being list.
If you have Invariant Sections without Cover Texts, or some other combination of the
three, merge those two alternatives to suit the situation.
If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.



Index

Index

!

P 63
(*errfun) of gdbm_recovery .................. 26
—--newdb, gdbmtool option ..................... 53
--read-only, gdbmtool option................. 53
-n, gdbmtool option .............. ... ... ... 53
-r, gdbmtool option .............. ... ... ..., 53
.gdbmtoolrc ...l 66
?

P 61
_GDBM_MAX_ERRNO......... ..., 41
_GDBM_MIN_ERRNO...........cooiiiiiiiiiinn. 41

backup_name of gdbm_recovery................ 27
blocksize.........ooiiiiiiiii i 57
bucket ... 60

cache ... 60
CachesSizZe. . .ottt 57
centfree..... ... .. 59
ClOS t ittt 60
ClOSE-ON-EXEC ...ttt 5
closing database ........... ... ... i 8
COLESCE . ottt 59
command line options, gdbmtool............... 53
compatibility layer.......... ... ... L 49
confirm.....ooonnii 56
consistency, database .............. ... ..ol 25
COUNT « .ttt e e e 60
creating a database, gdbmtool ................. 53
CUTTENT - .ottt ettt et 60

80
D
data of gdbm_recovery .................o..... 27
database options............ ... ool 36
database reorganization................. ... ... 16
database synchronization ...................... 17
database, closing. ... 8
database, opening or creating ................... 5
datum ...t 2
dbm.h ... ... .. 49
dbm_clearerr ..., 51
AbM_CLOSE . .ttt ittt 49
dbm_delete......... ... .. il 50
dom_dirfno........ ... ... . 51
fo10)11J =% ol ) 0 UOPP 51
dbm_fetch....... ... ... ... 50
dbm_firstkey ............ ... 50
dbm_nextkey .......... ... il 50
dbm_open............ ..l 49
dbm_pagfno.......... ...l 51
dbm_rdonly...... ..o 51
Abm_Store. ...t e 50
DBM functions ...t 51
DBM_INSERT. ... .0ttt 50
DBM_REPLACE . ... .ot 50
dbmclosSe . ..ot 51
dbminit ....... .. 51
debug .............. 60
default database, gdbmtool .................... 53
delete...... ..ot 51, 60
deleting records. ...........oo i 13
deletion in iteration loops...................... 14
deliml ... 56
delim2 ... 56
o T oA 60
dir’file. ..o 49
downgrade. ...t 60
E
error code, most recent ........... ... 23
EITOT COAES « v vttt ettt e e e 44
error strings............. .o i 23
errorexit......... ... ... il 56
errormask........... . il 56
exitcode ... 69
15 0 19, 61
F
failed_buckets of gdbm_recovery............. 27
failed_keys of gdbm_recovery................ 27
A 58
fetch.. ... .o 51, 61



Index

filemode.......... .. i 58
filename............coiiiiiiiiiiiii 57
first . ... 61
firstkey........ ...l 52
Flat file format.......... ... ... . oL 19
format ....... ... 58
G

gdbm.h .. ... 2
gdbm_avail_verify................ ... ... 43
gdbm_bucket_count............ ... ...l 9
gdbm_check_sSyserr...................coovnn... 23
gdbm_clear_error...........c.cuuuuuunnnnnnnnnnn 24
gdbm_close. ... 8
gdbm_convert .......... ... ...l 18
gdbm_copy_meta.............. ...l 7
gdbm_count.............o il 9
gdbm_db_Strerror......... ..o, 24
gdbm_delete ..., 13
gdbm_delete and sequential access............. 14
gdbm_dump.............. ...l 19, 67
gdbm_dump_to_file.............. ... ... ... 21
gdbm_errlist[] .......ccooo i 41
gdbm_errno.......... ... .ol 23, 41
gdbm_exists ......... ... oo 12
gdbm_eXport ...t 21
gdbm_export_to_file................... ... ... 21
gdbm_failure_atomic................ ... ... 33
gdbm_fd_open ......... ... 7
gdbm_fdesc.................ooooooooi 40
gdbm_fetch.......... .. ... i 12
gdbm_firstkey............. ... ...l 14
gdbm_import ........ ... 21
gdbm_import_from_file....................... 22
gdbm_last_errno............. .. ..o, 23
gdbm_last_SySerr...........coiuiviiiiiiiiiiiin. 23
gdbm_latest_snapshot ........................ 34
gdbm_load............ ... ...l 20, 68
gdbm_load_from_file..................... ..., 21
gdbm_needs_TeCOVeIY .........ovveeeeeeeennnnn 24
gdbm_nextkey ... 14
gdbm_open................ i 5
gdbm_recover .......... .. ... i 26
gdbm_reorganize............... ... ...l 16
gdbm_setopt ... 36
gdbm_store............... ..., 10
gdbm_Strerror...... ..o 23
gdbm_sync......... ... 17
gdbm_syserr[] ....... ... .. it 41
gdbm_version ........... ... ..o i il 41
gdbm_Version_CHp. .........c.c.ueuuuunnnnnnnnnn. 42
gdbm_version_number[3].......... ... ... ... 41
GDBM_BACKUP_FAILED ............coiiiiniinnn... 46
GDBM_BAD_AVAIL .. ..ottt 47
GDBM_BAD_BUCKET ..........cciiiiiiiiiinnn.. 47
GDBM_BAD_DIR_ENTRY ............. ..., 47
GDBM_BAD_FILE OFFSET...............cooun... 46

81
GDBM_BAD_HASH_ENTRY ......................... 47
GDBM_BAD_HASH_TABLE ......................... 47
GDBM_BAD_HEADER.............. .. ..., 47
GDBM_BAD_MAGIC_NUMBER....................... 44
GDBM_BAD_OPEN_FLAGS ............. ..., 46
GDBM_BLOCK_SIZE_ERROR....................... 44
GDBM_BSEXACT ..... ..ot 6, 44
GDBM_BUCKET_CACHE_CORRUPTED................ 47
GDBM_BYTE_SWAPPED............. ..., 45
GDBM_CACHESIZE......... ...ttt 36
GDBM_CANNOT_REPLACE ................ ... ...... 45
GDBM_CANT_BE_READER ......................... 44
GDBM_CANT_BE_WRITER.................connn. 44
GDBM_CENTFREE .. ...... ... 38
GDBM_CLOERROR ......... ... .o, 7
GDBM_CLOEXEC . ... .o 5
GDBM_COALESCEBLKS...........cooiiiiiiin. 38
GDBM_DIR_OVERFLOW............................ 46
GDBM_EMPTY _DATABASE .......... ... 44
GDBM_ERR_FILE_MODE....................... 21, 46
GDBM_ERR_FILE_OWNER...................... 21, 46
GDBM_ERR_REALPATH............. ... ... oot 48
GDBM_ERR_SNAPSHOT_CLONE..................... 48
GDBM_ERR_USAGE ........... .. ... oot 48
GDBM_FAST ... .o 6
GDBM_FASTMODE .. ... ..ot 37
GDBM_FILE..... .o 2
GDBM_FILE_CLOSE_ERROR....................... 47
GDBM_FILE_EOF ......... ..., 46
GDBM_FILE_OPEN_ERROR........................ 44
GDBM_FILE_READ_ERROR........................ 44
GDBM_FILE_SEEK_ERROR........................ 44
GDBM_FILE_STAT_ERROR........................ 46
GDBM_FILE_SYNC_ERROR........................ 47
GDBM_FILE_TRUNCATE_ERROR ................... 47
GDBM_FILE_WRITE_ERROR....................... 44
GDBM_GETBLOCKSIZE...............cooiiiiiiin. 39
GDBM_GETBUCKETSIZE .......................... 37
GDBM_GETCACHEAUTO..............coiiiiiiiin.. 37
GDBM_GETCACHESIZE.............coviiiiin.... 36
GDBM_GETCOALESCEBLKS ..................o.... 38
GDBM_GETDBFORMAT . ........... .. ..., 37
GDBM_GETDBNAME . .......... ... ..., 39
GDBM_GETDIRDEPTH........... ... ..., 37
GDBM_GETFLAGS .......... ..o 37
GDBM_GETMAXMAPSIZE ...........ciiiiiiiinn... 38
GDBM_GETMMAP ....... ... .. i 38
GDBM_GETSYNCMODE. .............ooiiiiii... 38
GDBM_ILLEGAL_DATA......... ... ... it 45
GDBM_INSERT ... 10
GDBM_ITEM_NOT_FOUND ..................oonn.. 45
GDBM_MALFORMED_DATA ................ ... ...... 45
GDBM_MALLOC_ERROR...............coooiiiiin.. 44
GDBM_NEED_RECOVERY .......................... 46
GDBM_NEWDB. ... .o 5
GDBM_NO_DBNAME ........... .. .ot 46
GDBM_NO_ERROR ........... ..., 44

GDBM_NOLOCK . ......oiiiiiiii i 5, 40



Index

GDBM_NOMMAP. . ..o 5
GDBM_NUMSYNC........ciiiiiiiiii i 6, 18
GDBM_OPT_ALREADY _SET ..............c.ooiiun... 45
GDBM_OPT_BADVAL ........ ... 45
GDBM_OPT_ILLEGAL..................ooiiiiii... 45
GDBM_PREREAD ......... ..ot 5
GDBM_RCVR_BACKUP...........coiiiiiiiiin... 27
GDBM_RCVR_ERRFUN........... ... ..., 26
GDBM_RCVR_FORCE.............oooiiiiiiinnnn.. 27
GDBM_RCVR_MAX_FAILED_BUCKETS............... 27
GDBM_RCVR_MAX_FAILED KEYS .................. 27
GDBM_RCVR_MAX_FAILURES...................... 27
GDBM_READER. .........oiiiiiiiiiii i 5
GDBM_READER_CANT_DELETE..................... 45
GDBM_READER_CANT_REORGANIZE................ 45
GDBM_READER_CANT_STORE...................... 45
GDBM_REORGANIZE_FAILED...................... 45
GDBM_REPLACE ....... ... ... 10
GDBM_SETCACHEAUTO................ooiiiiiin.. 37
GDBM_SETCACHESIZE...........ciiiiiiiinennn. 36
GDBM_SETCENTFREE. .......... ... ..., 38
GDBM_SETCOALESCEBLKS .............cooviiun... 38
GDBM_SETMAXMAPSIZE ..., 38
GDBM_SETMMAP . ..... .. i 38
GDBM_SETSYNCMODE. . ........cooiiiiiiiiin... 37
GDBM_SNAPSHOT _BAD............cooiiuniinn. 30, 34
GDBM_SNAPSHOT_ERR........................ 30, 34
GDBM_SNAPSHOT_OK............oooiiiiiii... 34
GDBM_SNAPSHOT_SAME....................... 31, 34
GDBM_SNAPSHOT_SUSPICIOUS................ 31, 34
GDBM_SYNC ... 6, 17
GDBM_SYNCMODE . . ......ciiiiiii i 37
GDBM_VERSION_MAJOR ..., 41
GDBM_VERSION_MINOR ............ ..., 41
GDBM_VERSION_PATCH .............coiiiinnn... 41
GDBM_WRCREAT ....... ... ... oo 5
GDBM_WRITER...........ciiiiiiiiiiii i, 5
GDBM_XVERIFY ... ... . oo 6
gdbmtool............. il 53
global error state .............. ... ... il 23
GNU Readline. ... 55
H

hash ... o i 61
header ............ ..o i 61
help ... 61
history.............. ...l 61
I

IMPOTt . oo 19, 61
init file, gdbmtool ........... ... ... .. L 66
interactive mode, gdbmtool .................... 55
iterating over records . ............. oo L. 14
iteration and gdbm_delete..................... 14
iteration loop........ ... .o oo 14
iteration loop, using ‘NDBM’..................... 50

82
J
junk.gdbm....... ... o 53
L
libgdbm_compat .........ooviiiiniiiiiiennnnn... 49
list o 61
JOCK ot 58
locking . ... 40
logical consistency ............... ... ... ... 25
looking up records. ... 12
M
max_failed_buckets of gdbm_recovery........ 27
max_failed_keys of gdbm_recovery............ 27
max_failures of gdbm_recovery............... 27
1= o 58
most recent error code........... ... ol 23
N
ndbm.h..... .. ... 49
NDBM functions ...........ccooveiiieenienn... 49
NeXt ..o 62
nextkey............... . 52
number of records ............. o i 9
O
OPEIL. ..ottt 58, 62
opening the database ........................... 5
options, database.............................. 36
P
‘pag’ file. ..o 49
PABET oottt 56
POTTOT « it 62
PSl.. 56
PS2. . 57
Q
quiet ..o 57
QUIL 63
R
read-only mode, gdbmtool ..................... 53
readline .........o. . i 55
record, deleting............ ... ... oo 13
record, fetching................ ... ... ... ... 12
records, iterating over ........... ... o 14
records, storing........... ... i i 10
records, testing existence ...................... 12

B =Y oo 2= ol 63



Index

recovered_buckets of gdbm_recovery......... 27
recovered_keys of gdbm_recovery............. 27
reorganization, database............. ... ... ... 16
reorganize...................iii 63

S

sequential acCess. ... ..o 14
sequential access, using ‘NDBM’.................. 50
ST . 59
shell ... o 63
snapshot ... 63
SOUTCR ettt ettt ettt et et 63
startup file, gdbmtool.......................... 66
status ... 63
store..... ... 51, 64
storing records........... ... oL 10

structural consistency............... ... ... 25

83
SYIIC « o e 59, 64
synchronization, database...................... 17
T
timing ... 57
Brace ... 57
UNSET .« ottt et e e e e 60
upgrade . ... 64
variables, gdbmtool............................ 56
VerSIOm . oottt 64
version number . ... ... 41



	Copying Conditions
	Introduction to GNU dbm
	Opening the database
	Closing the database
	Number of Records
	Inserting and replacing records in the database
	Searching for records in the database
	Removing records from the database
	Sequential access to records
	Database reorganization
	Database Synchronization
	Changing database format
	Export and Import
	Error handling
	Database consistency
	Recovering structural consistency
	Crash Tolerance
	Using Proper Filesystem
	Enabling crash tolerance
	Synchronizing the Database
	Crash recovery
	Manual crash recovery
	Performance Impact
	Availability
	Numsync Extension
	Crash Tolerance API

	Setting options
	File Locking
	Useful global variables
	Additional functions
	Error codes
	Compatibility with standard dbm and ndbm
	NDBM interface functions
	DBM interface functions

	Examine and modify a GDBM database
	gdbmtool invocation
	gdbmtool interactive mode
	Shell Variables
	Gdbmtool Commands
	Data Definitions
	Startup Files


	The gdbm_dump utility
	The gdbm_load utility
	Exit codes
	Problems and bugs
	Additional resources
	GNU Free Documentation License
	Index

