

 The GNU Prolog web site

 [image: The GNU Prolog logo]

Current stable version is gprolog-1.5.0

 [bookmark: TOChead]Table of contents

	 What is GNU Prolog ?
	 Features
	 How does GNU Prolog work ?
	 History
	 Supported Platforms & last changes
	 Manual
	 Download
	 Contributions and related developments
	 Mailing lists
	 Reporting bugs

 [bookmark: whatis]What is GNU Prolog

GNU Prolog is a free Prolog compiler with constraint solving
over finite domains developed by Daniel Diaz.

GNU Prolog accepts Prolog+constraint programs and produces native
 binaries (like gcc does from a C source). The obtained executable is then
 stand-alone. The size of this executable can be quite small since GNU Prolog
 can avoid to link the code of most unused built-in predicates. The performances
 of GNU Prolog are very encouraging (comparable to commercial systems).

 Beside the native-code compilation, GNU Prolog offers a classical interactive
 interpreter (top-level) with a debugger.

 The Prolog part conforms to the ISO standard for Prolog with many
 extensions very useful in practice (global variables, OS interface,
 sockets,...).

 GNU Prolog also includes an efficient constraint solver over Finite
Domains (FD). This opens contraint logic programming to the user combining
the power of constraint programming to the declarativity of logic programming.

 [bookmark: feature]Features

 	 Prolog system:

	 conforms to the ISO standard for Prolog (floating point numbers,
 streams, dynamic code,...).
	 a lot of extensions: global variables, definite clause grammars
 (DCG), sockets interface, operating system interface,...
	 more than 300 Prolog built-in predicates.
	 Prolog debugger and a low-level WAM debugger.
	 line editing facility under the interactive interpreter with
completion on atoms.
	 powerful bidirectional interface between Prolog and C.

 	 Compiler:

	 native-code compiler producing stand alone executables.
	 simple command-line compiler accepting a wide variety of files:
 Prolog files, C files, WAM files,...
	 direct generation of assembly code 15 times faster than wamcc
+ gcc.
	 most of unused built-in predicates are not linked (to reduce
the size of the executables).
	 compiled predicates (native-code) as fast as wamcc on average.
	 consulted predicates (byte-code) 5 times faster than wamcc.

 	 Constraint solver:

	 FD variables well integrated into the Prolog environment (full
compatibility with Prolog variables and integers). No need for explicit
FD declarations.
	 very efficient FD solver (comparable to commercial solvers).
	 high-level constraints can be described in terms of simple primitives.
	 a lot of predefined constraints: arithmetic constraints, boolean
 constraints, symbolic constraints, reified constraints,...
	 several predefined enumeration heuristics.
	 the user can define his own new constraints.
	 more than 50 FD built-in constraints/predicates.

 [bookmark: howdoes]How does GNU
 Prolog work ?

The GNU Prolog compiler is based on the Warren Abstract Machine
 (WAM). It first compiles a Prolog program to a WAM file which is then
translated to a low-level machine independent language called mini-assembly
specifically designed for GNU Prolog. The resulting file is then translated
to the assembly language of the target machine (from which an object is
obtained). This allows GNU Prolog to produce a native stand alone executable
from a Prolog source (similarly to what does a C compiler from a C program).
The main advantage of this compilation scheme is to produce native code
and to be fast. Another interesting feature is that executables are small.
Indeed, the code of most unused built-in predicates can be excluded from
the executables at link-time.
 GNU Prolog also includes an efficient constraint solver over Finite
Domains (FD). The key feature of the GNU Prolog solver is the use of a single
(low-level) primitive to define all (high-level) FD constraints. There are
many advantages of this approach: constraints can be compiled, the user can
define his own constraints (in terms of the primitive), the solver is open
and extensible (as opposed to black-box solvers like CHIP),...Moreover, the
GNU Prolog solver is rather efficient, often more than commercial solvers.

 [bookmark: history]History

GNU Prolog is inspired by two systems developed by the same author:

 	 wamcc: a Prolog to C compiler. the key point of wamcc
was its ability to produce stand alone executables using an original compilation
 scheme: the translation of Prolog to C via the WAM. Its drawback was the
 time needed by gcc to compile the produced sources. GNU Prolog can also
produce standalone executables but using a faster compilation scheme.

 	 clp(FD): a constraint programming language over FD. Its
 key feature was the use of a single primitive to define FD constraints.
GNU Prolog is based on the same idea but extends the power of primitive to
make it possible more complex constraint definitions. In comparison to clp(FD),
GNU Prolog offers new predefined constraints, new predefined heuristics, reified
constraints,...

 The development of GNU Prolog started in January 1996 under the name
 Calypso.

 [bookmark: platform]Supported Platforms
& Last Changes

Currently the following architectures are supported:

 	 ix86 / GNU/Linux
	 ix86 / Win32 using Cygwin (see file src/WINDOWS-OLD)
	 ix86 / Win32 using MinGW (see file src/WINDOWS-OLD)
	 ix86 / Win32 using MSVC++ (see file src/WINDOWS-OLD)
	 ix86 / SCO
	 ix86 / Solaris
	 ix86 / FreeBSD
	 ix86 / OpenBSD
	 ix86 / NetBSD
	 ix86 / Darwin (Mac OS X)
	 x86_64 / GNU/Linux
	 x86_64 / Solaris
	 x86_64 / Win64 using MinGW64 (see file src/WINDOWS)
	 x86_64 / Win64 using MSVC++ (see file src/WINDOWS)
	 x86_64 / Darwin (Mac OS X)
	 PowerPC / GNU/Linux
	 PowerPC / Darwin (Mac OS X)
	 PowerPC / NetBSD
	 sparc / SunOS (4.1.3 or higher)
	 sparc / Solaris
	 sparc / NetBSD
	 alpha / GNU/Linux
	 alpha / OSF1
	 mips / irix
	 arm 32bits / GNU/Linux (armv6, armv7)
	 arm 64bits (aarch64)/ GNU/Linux (armv8)
	 arm 64bits (aarch64) / Darwin (Mac OS X) (armv8)

 If you are interested in porting GNU Prolog to another architecture
read the PORTING file in src.
 You can consult the following files:

 	 the general README file.
	 the NEWS file.
	 the ChangeLog file.

 [bookmark: manual]Manual

This manual is available in the following formats:

 	 HTML entirely on one web page
	 HTML with one web page per chapter
	 HTML compressed entirely on one web page (gzipped tar file)
	 HTML compressed with one web page per chapter (gzipped tar file)
	 PDF
	 PostScript
	 Microsoft HTMLHelp (chm) version
	 TeX dvi (gzipped tar file)

 [bookmark: download]Download

We provide both source and binary distributions for GNU Prolog.

 Source distributions:

 	 the main source distribution gprolog-1.5.0.tar.gz.

 Binary distributions:
 	Mac OS X installer package created on Big Sur using MacPorts by Paulo Moura (installs GNU Prolog in /opt/local/ and /opt/local/bin).

	Windows intel 32 bits auto-install setup (compiled under ix86 / Windows 10 with MSVC++).
	Windows intel 32 bits auto-install setup (compiled under ix86 / Windows 10 with MinGW gcc under MSys2).

	Windows intel 64 bits auto-install setup (compiled under x86_64 / Windows 10 with MSVC++).
	Windows intel 64 bits auto-install setup (compiled under x86_64 / Windows 10 with MinGW64 gcc under MSys2).

 Other versions:
 	 Old versions can be found in
 this directory.
	 Unstable versions can be found in
 this directory.

 Some of these files can also be downloaded from the primary GNU ftp site or from any mirror.

The GIT repository is hosted by GitHub.

For windows users, a Notepad++ User Defined Lanuage
(UDL) profile file for GNU Prolog (also
available from the
Notepad++
wiki about UDL). To install: launch Notepad++, in the "Language" menu,
chose "Define your own language", click on "Import" and select the downloaded .xml
file. Then close and restart Notepad++. Files suffixed with ".pl" and ".pro" should
be now recognized as Prolog files (else select "Prolog (GNU)" from the "Languages"
menu). For more information see
the Notepad++
wiki.

GNU Prolog is present on the Black Duck Open Hub site.

 [bookmark: contribs]Contributions
 and related developments

Contributions are welcome. If you want to include your contribution
 please post a mail to users-prolog@gnu.org
 (for more information on this list click here).
 Here is a list of available contributions:

 	 Bedevere - a SWIG wrapper
	 CLIP - a
CLP(Intervals) interpreter
	CLPGUI
- a graphical user interface for CLP
	 cTI - a constrained-based
 left Termination Inference tool for ISO-Prolog
	 GNU Prolog/CX - an extension of GNU Prolog for Contextual Logic Programming
	 gnuprolog-json - a GNU Prolog JSON library
	 gnuprolog-redisclient - a GNU Prolog redis client
	 gprolog-rh
- an extension of gprolog with attributed variables, coroutinings and CLP
over reals
	 Logtalk - Object Oriented
extension to Prolog
	 Muscle
 PS/SC - an interface to the Muscle PC/SC library
	 MySQL/Prolog
 - an interface to MySQL database
	 ODBC/Prolog -
a small ODBC interface module for gprolog
	 XGP - a Mac OS X IDE
 connecting gprolog and Cocoa
	 CGI programming - an introduction to CGI-Programming with GNU-Prolog

 [bookmark: maillist]Mailing lists

[bookmark: users-list-usage]The mailing list users-prolog@gnu.org: is for communicating
 with other GNU Prolog users and/or implementors:

 	 To inform other uses send a mail to users-prolog@gnu.org.
	 To (un)subscribe to this list send a mail to users-prolog-request@gnu.org
 with (un)subscribe in the subject line.
	 You can also (un)subscribe via the web at http://mail.gnu.org/mailman/listinfo/users-prolog.
	 From the same site you can also browse the archive.

 [bookmark: bug-list-usage]The mailing list bug-prolog@gnu.org: is for reporting
 bugs:
 	 To inform other uses send a mail to bug-prolog@gnu.org.
	 To (un)subscribe to this list send a mail to bug-prolog-request@gnu.org
with (un)subscribe in the subject line.
	 You can also (un)subscribe via the web at http://mail.gnu.org/mailman/listinfo/bug-prolog.

 From the same site you can also browse the archive.

 [bookmark: bug]Reporting Bugs

Bug reports are crucial for our work. If we don't know about
problems, we cannot fix them. On the other hand it is a waste of time to
read/check/answer for bugs which are not bugs ! Please consult the manual
(an on-line version is available). If you
can try to check if the bug occurs with the last unstable version (all
 unstable versions are here). If you already use the last unstable
version try the
 last stable version. When you are sure you have discovered a bug,
please report it to bug-prolog@gnu.org
 (for more information on this list click here).

 Your report should include all these things:

 	 The type of machine you are using (use uname -a under Unix).
	 GNU Prolog version (use gprolog --version).
	 The operands given to the `configure' and the output of the configuration
 if the bug concerns the compilation/installation phase.
	 The complete text of any files needed to reproduce the bug. Try
 to obtain a minimal example showing the bug.
	 The precise commands we need to type to reproduce the bug.
	 A description of what behavior you observe that you believe is
 incorrect.
	 If you wish to mention something in the GNU Prolog source, show
 the line of code with a few lines of context. Do not just give a line
 number.

 Copyright (C) 1999-2021 Daniel Diaz
Verbatim copying and distribution of this entire article is permitted
in any medium, provided this notice is preserved.

