.. index:: single: quadrature single: numerical integration (quadrature) single: integration, numerical (quadrature) single: QUADPACK ********************* Numerical Integration ********************* .. include:: include.rst This chapter describes routines for performing numerical integration (quadrature) of a function in one dimension. There are routines for adaptive and non-adaptive integration of general functions, with specialised routines for specific cases. These include integration over infinite and semi-infinite ranges, singular integrals, including logarithmic singularities, computation of Cauchy principal values and oscillatory integrals. The library reimplements the algorithms used in |quadpack|, a numerical integration package written by Piessens, de Doncker-Kapenga, Ueberhuber and Kahaner. Fortran code for |quadpack| is available on Netlib. Also included are non-adaptive, fixed-order Gauss-Legendre integration routines with high precision coefficients, as well as fixed-order quadrature rules for a variety of weighting functions from IQPACK. The functions described in this chapter are declared in the header file :file:`gsl_integration.h`. Introduction ============ Each algorithm computes an approximation to a definite integral of the form, .. math:: I = \int_a^b f(x) w(x) dx where :math:`w(x)` is a weight function (for general integrands :math:`w(x) = 1`). The user provides absolute and relative error bounds :math:`(epsabs, epsrel)` which specify the following accuracy requirement, .. only:: not texinfo .. math:: |RESULT - I| \leq \max{(epsabs, epsrel |I|)} .. only:: texinfo .. math:: |RESULT - I| <= max(epsabs, epsrel |I|) where :math:`RESULT` is the numerical approximation obtained by the algorithm. The algorithms attempt to estimate the absolute error :math:`ABSERR = |RESULT - I|` in such a way that the following inequality holds, .. only:: not texinfo .. math:: |RESULT - I| \leq ABSERR \leq \max{(epsabs, epsrel |I|)} .. only:: texinfo .. math:: |RESULT - I| <= ABSERR <= max(epsabs, epsrel |I|) In short, the routines return the first approximation which has an absolute error smaller than :math:`epsabs` or a relative error smaller than :math:`epsrel`. Note that this is an *either-or* constraint, not simultaneous. To compute to a specified absolute error, set :math:`epsrel` to zero. To compute to a specified relative error, set :math:`epsabs` to zero. The routines will fail to converge if the error bounds are too stringent, but always return the best approximation obtained up to that stage. The algorithms in |quadpack| use a naming convention based on the following letters:: Q - quadrature routine N - non-adaptive integrator A - adaptive integrator G - general integrand (user-defined) W - weight function with integrand S - singularities can be more readily integrated P - points of special difficulty can be supplied I - infinite range of integration O - oscillatory weight function, cos or sin F - Fourier integral C - Cauchy principal value The algorithms are built on pairs of quadrature rules, a higher order rule and a lower order rule. The higher order rule is used to compute the best approximation to an integral over a small range. The difference between the results of the higher order rule and the lower order rule gives an estimate of the error in the approximation. .. index:: Gauss-Kronrod quadrature Integrands without weight functions ----------------------------------- The algorithms for general functions (without a weight function) are based on Gauss-Kronrod rules. A Gauss-Kronrod rule begins with a classical Gaussian quadrature rule of order :math:`m`. This is extended with additional points between each of the abscissae to give a higher order Kronrod rule of order :math:`2m + 1`. The Kronrod rule is efficient because it reuses existing function evaluations from the Gaussian rule. The higher order Kronrod rule is used as the best approximation to the integral, and the difference between the two rules is used as an estimate of the error in the approximation. Integrands with weight functions -------------------------------- .. index:: single: Clenshaw-Curtis quadrature single: Modified Clenshaw-Curtis quadrature For integrands with weight functions the algorithms use Clenshaw-Curtis quadrature rules. A Clenshaw-Curtis rule begins with an :math:`n`-th order Chebyshev polynomial approximation to the integrand. This polynomial can be integrated exactly to give an approximation to the integral of the original function. The Chebyshev expansion can be extended to higher orders to improve the approximation and provide an estimate of the error. Integrands with singular weight functions ----------------------------------------- The presence of singularities (or other behavior) in the integrand can cause slow convergence in the Chebyshev approximation. The modified Clenshaw-Curtis rules used in |quadpack| separate out several common weight functions which cause slow convergence. These weight functions are integrated analytically against the Chebyshev polynomials to precompute *modified Chebyshev moments*. Combining the moments with the Chebyshev approximation to the function gives the desired integral. The use of analytic integration for the singular part of the function allows exact cancellations and substantially improves the overall convergence behavior of the integration. QNG non-adaptive Gauss-Kronrod integration ========================================== .. index:: QNG quadrature algorithm The QNG algorithm is a non-adaptive procedure which uses fixed Gauss-Kronrod-Patterson abscissae to sample the integrand at a maximum of 87 points. It is provided for fast integration of smooth functions. .. function:: int gsl_integration_qng (const gsl_function * f, double a, double b, double epsabs, double epsrel, double * result, double * abserr, size_t * neval) This function applies the Gauss-Kronrod 10-point, 21-point, 43-point and 87-point integration rules in succession until an estimate of the integral of :math:`f` over :math:`(a,b)` is achieved within the desired absolute and relative error limits, :data:`epsabs` and :data:`epsrel`. The function returns the final approximation, :data:`result`, an estimate of the absolute error, :data:`abserr` and the number of function evaluations used, :data:`neval`. The Gauss-Kronrod rules are designed in such a way that each rule uses all the results of its predecessors, in order to minimize the total number of function evaluations. QAG adaptive integration ======================== .. index:: QAG quadrature algorithm The QAG algorithm is a simple adaptive integration procedure. The integration region is divided into subintervals, and on each iteration the subinterval with the largest estimated error is bisected. This reduces the overall error rapidly, as the subintervals become concentrated around local difficulties in the integrand. These subintervals are managed by the following struct, .. type:: gsl_integration_workspace This workspace handles the memory for the subinterval ranges, results and error estimates. .. index:: gsl_integration_workspace .. function:: gsl_integration_workspace * gsl_integration_workspace_alloc (size_t n) This function allocates a workspace sufficient to hold :data:`n` double precision intervals, their integration results and error estimates. One workspace may be used multiple times as all necessary reinitialization is performed automatically by the integration routines. .. function:: void gsl_integration_workspace_free (gsl_integration_workspace * w) This function frees the memory associated with the workspace :data:`w`. .. function:: int gsl_integration_qag (const gsl_function * f, double a, double b, double epsabs, double epsrel, size_t limit, int key, gsl_integration_workspace * workspace, double * result, double * abserr) This function applies an integration rule adaptively until an estimate of the integral of :math:`f` over :math:`(a,b)` is achieved within the desired absolute and relative error limits, :data:`epsabs` and :data:`epsrel`. The function returns the final approximation, :data:`result`, and an estimate of the absolute error, :data:`abserr`. The integration rule is determined by the value of :data:`key`, which should be chosen from the following symbolic names, ========================== === Symbolic Name Key ========================== === :macro:`GSL_INTEG_GAUSS15` 1 :macro:`GSL_INTEG_GAUSS21` 2 :macro:`GSL_INTEG_GAUSS31` 3 :macro:`GSL_INTEG_GAUSS41` 4 :macro:`GSL_INTEG_GAUSS51` 5 :macro:`GSL_INTEG_GAUSS61` 6 ========================== === corresponding to the 15, 21, 31, 41, 51 and 61 point Gauss-Kronrod rules. The higher-order rules give better accuracy for smooth functions, while lower-order rules save time when the function contains local difficulties, such as discontinuities. On each iteration the adaptive integration strategy bisects the interval with the largest error estimate. The subintervals and their results are stored in the memory provided by :data:`workspace`. The maximum number of subintervals is given by :data:`limit`, which may not exceed the allocated size of the workspace. QAGS adaptive integration with singularities ============================================ .. index:: QAGS quadrature algorithm The presence of an integrable singularity in the integration region causes an adaptive routine to concentrate new subintervals around the singularity. As the subintervals decrease in size the successive approximations to the integral converge in a limiting fashion. This approach to the limit can be accelerated using an extrapolation procedure. The QAGS algorithm combines adaptive bisection with the Wynn epsilon-algorithm to speed up the integration of many types of integrable singularities. .. function:: int gsl_integration_qags (const gsl_function * f, double a, double b, double epsabs, double epsrel, size_t limit, gsl_integration_workspace * workspace, double * result, double * abserr) This function applies the Gauss-Kronrod 21-point integration rule adaptively until an estimate of the integral of :math:`f` over :math:`(a,b)` is achieved within the desired absolute and relative error limits, :data:`epsabs` and :data:`epsrel`. The results are extrapolated using the epsilon-algorithm, which accelerates the convergence of the integral in the presence of discontinuities and integrable singularities. The function returns the final approximation from the extrapolation, :data:`result`, and an estimate of the absolute error, :data:`abserr`. The subintervals and their results are stored in the memory provided by :data:`workspace`. The maximum number of subintervals is given by :data:`limit`, which may not exceed the allocated size of the workspace. QAGP adaptive integration with known singular points ==================================================== .. index:: single: QAGP quadrature algorithm single: singular points, specifying positions in quadrature .. function:: int gsl_integration_qagp (const gsl_function * f, double * pts, size_t npts, double epsabs, double epsrel, size_t limit, gsl_integration_workspace * workspace, double * result, double * abserr) This function applies the adaptive integration algorithm QAGS taking account of the user-supplied locations of singular points. The array :data:`pts` of length :data:`npts` should contain the endpoints of the integration ranges defined by the integration region and locations of the singularities. For example, to integrate over the region :math:`(a,b)` with break-points at :math:`x_1, x_2, x_3` (where :math:`a < x_1 < x_2 < x_3 < b`) the following :data:`pts` array should be used:: pts[0] = a pts[1] = x_1 pts[2] = x_2 pts[3] = x_3 pts[4] = b with :data:`npts` = 5. If you know the locations of the singular points in the integration region then this routine will be faster than :func:`gsl_integration_qags`. QAGI adaptive integration on infinite intervals =============================================== .. index:: QAGI quadrature algorithm .. function:: int gsl_integration_qagi (gsl_function * f, double epsabs, double epsrel, size_t limit, gsl_integration_workspace * workspace, double * result, double * abserr) This function computes the integral of the function :data:`f` over the infinite interval :math:`(-\infty,+\infty)`. The integral is mapped onto the semi-open interval :math:`(0,1]` using the transformation :math:`x = (1-t)/t`, .. math:: \int_{-\infty}^{+\infty} dx f(x) = \int_0^1 dt (f((1-t)/t) + f(-(1-t)/t))/t^2. It is then integrated using the QAGS algorithm. The normal 21-point Gauss-Kronrod rule of QAGS is replaced by a 15-point rule, because the transformation can generate an integrable singularity at the origin. In this case a lower-order rule is more efficient. .. function:: int gsl_integration_qagiu (gsl_function * f, double a, double epsabs, double epsrel, size_t limit, gsl_integration_workspace * workspace, double * result, double * abserr) This function computes the integral of the function :data:`f` over the semi-infinite interval :math:`(a,+\infty)`. The integral is mapped onto the semi-open interval :math:`(0,1]` using the transformation :math:`x = a + (1-t)/t`, .. math:: \int_{a}^{+\infty} dx f(x) = \int_0^1 dt f(a + (1-t)/t)/t^2 and then integrated using the QAGS algorithm. .. function:: int gsl_integration_qagil (gsl_function * f, double b, double epsabs, double epsrel, size_t limit, gsl_integration_workspace * workspace, double * result, double * abserr) This function computes the integral of the function :data:`f` over the semi-infinite interval :math:`(-\infty,b)`. The integral is mapped onto the semi-open interval :math:`(0,1]` using the transformation :math:`x = b - (1-t)/t`, .. math:: \int_{-\infty}^{b} dx f(x) = \int_0^1 dt f(b - (1-t)/t)/t^2 and then integrated using the QAGS algorithm. QAWC adaptive integration for Cauchy principal values ===================================================== .. index:: single: QAWC quadrature algorithm single: Cauchy principal value, by numerical quadrature .. function:: int gsl_integration_qawc (gsl_function * f, double a, double b, double c, double epsabs, double epsrel, size_t limit, gsl_integration_workspace * workspace, double * result, double * abserr) This function computes the Cauchy principal value of the integral of :math:`f` over :math:`(a,b)`, with a singularity at :data:`c`, .. only:: not texinfo .. math:: I = \int_a^b dx\, {f(x) \over x - c} = \lim_{\epsilon \to 0} \left\{ \int_a^{c-\epsilon} dx\, {f(x) \over x - c} + \int_{c+\epsilon}^b dx\, {f(x) \over x - c} \right\} .. only:: texinfo .. math:: I = \int_a^b dx f(x) / (x - c) The adaptive bisection algorithm of QAG is used, with modifications to ensure that subdivisions do not occur at the singular point :math:`x = c`. When a subinterval contains the point :math:`x = c` or is close to it then a special 25-point modified Clenshaw-Curtis rule is used to control the singularity. Further away from the singularity the algorithm uses an ordinary 15-point Gauss-Kronrod integration rule. QAWS adaptive integration for singular functions ================================================ .. index:: single: QAWS quadrature algorithm single: singular functions, numerical integration of The QAWS algorithm is designed for integrands with algebraic-logarithmic singularities at the end-points of an integration region. In order to work efficiently the algorithm requires a precomputed table of Chebyshev moments. .. type:: gsl_integration_qaws_table This structure contains precomputed quantities for the QAWS algorithm. .. function:: gsl_integration_qaws_table * gsl_integration_qaws_table_alloc (double alpha, double beta, int mu, int nu) This function allocates space for a :type:`gsl_integration_qaws_table` struct describing a singular weight function :math:`w(x)` with the parameters :math:`(\alpha, \beta, \mu, \nu)`, .. math:: w(x) = (x - a)^\alpha (b - x)^\beta \log^\mu (x - a) \log^\nu (b - x) where :math:`\alpha > -1`, :math:`\beta > -1`, and :math:`\mu = 0, 1`, :math:`\nu = 0, 1`. The weight function can take four different forms depending on the values of :math:`\mu` and :math:`\nu`, ============================================================ ================= Weight function :math:`w(x)` :math:`(\mu,\nu)` ============================================================ ================= :math:`(x - a)^\alpha (b - x)^\beta` :math:`(0,0)` :math:`(x - a)^\alpha (b - x)^\beta \log{(x-a)}` :math:`(1,0)` :math:`(x - a)^\alpha (b - x)^\beta \log{(b-x)}` :math:`(0,1)` :math:`(x - a)^\alpha (b - x)^\beta \log{(x-a)} \log{(b-x)}` :math:`(1,1)` ============================================================ ================= The singular points :math:`(a,b)` do not have to be specified until the integral is computed, where they are the endpoints of the integration range. The function returns a pointer to the newly allocated table :type:`gsl_integration_qaws_table` if no errors were detected, and 0 in the case of error. .. function:: int gsl_integration_qaws_table_set (gsl_integration_qaws_table * t, double alpha, double beta, int mu, int nu) This function modifies the parameters :math:`(\alpha, \beta, \mu, \nu)` of an existing :type:`gsl_integration_qaws_table` struct :data:`t`. .. function:: void gsl_integration_qaws_table_free (gsl_integration_qaws_table * t) This function frees all the memory associated with the :type:`gsl_integration_qaws_table` struct :data:`t`. .. function:: int gsl_integration_qaws (gsl_function * f, const double a, const double b, gsl_integration_qaws_table * t, const double epsabs, const double epsrel, const size_t limit, gsl_integration_workspace * workspace, double * result, double * abserr) This function computes the integral of the function :math:`f(x)` over the interval :math:`(a,b)` with the singular weight function :math:`(x-a)^\alpha (b-x)^\beta \log^\mu (x-a) \log^\nu (b-x)`. The parameters of the weight function :math:`(\alpha, \beta, \mu, \nu)` are taken from the table :data:`t`. The integral is, .. math:: I = \int_a^b dx f(x) (x - a)^\alpha (b - x)^\beta \log^\mu (x - a) \log^\nu (b - x). The adaptive bisection algorithm of QAG is used. When a subinterval contains one of the endpoints then a special 25-point modified Clenshaw-Curtis rule is used to control the singularities. For subintervals which do not include the endpoints an ordinary 15-point Gauss-Kronrod integration rule is used. QAWO adaptive integration for oscillatory functions =================================================== .. index:: single: QAWO quadrature algorithm single: oscillatory functions, numerical integration of The QAWO algorithm is designed for integrands with an oscillatory factor, :math:`\sin(\omega x)` or :math:`\cos(\omega x)`. In order to work efficiently the algorithm requires a table of Chebyshev moments which must be pre-computed with calls to the functions below. .. index:: gsl_integration_qawo_table .. function:: gsl_integration_qawo_table * gsl_integration_qawo_table_alloc (double omega, double L, enum gsl_integration_qawo_enum sine, size_t n) This function allocates space for a :type:`gsl_integration_qawo_table` struct and its associated workspace describing a sine or cosine weight function :math:`w(x)` with the parameters :math:`(\omega, L)`, .. only:: not texinfo .. math:: w(x) = \left\{ \begin{array}{c} \sin{(\omega x)} \\ \cos{(\omega x)} \\ \end{array} \right\} .. only:: texinfo | w(x) = sin(\omega x) | w(x) = cos(\omega x) The parameter :data:`L` must be the length of the interval over which the function will be integrated :math:`L = b - a`. The choice of sine or cosine is made with the parameter :data:`sine` which should be chosen from one of the two following symbolic values: .. macro:: GSL_INTEG_COSINE .. macro:: GSL_INTEG_SINE The :type:`gsl_integration_qawo_table` is a table of the trigonometric coefficients required in the integration process. The parameter :data:`n` determines the number of levels of coefficients that are computed. Each level corresponds to one bisection of the interval :math:`L`, so that :data:`n` levels are sufficient for subintervals down to the length :math:`L/2^n`. The integration routine :func:`gsl_integration_qawo` returns the error :code:`GSL_ETABLE` if the number of levels is insufficient for the requested accuracy. .. function:: int gsl_integration_qawo_table_set (gsl_integration_qawo_table * t, double omega, double L, enum gsl_integration_qawo_enum sine) This function changes the parameters :data:`omega`, :data:`L` and :data:`sine` of the existing workspace :data:`t`. .. function:: int gsl_integration_qawo_table_set_length (gsl_integration_qawo_table * t, double L) This function allows the length parameter :data:`L` of the workspace :data:`t` to be changed. .. function:: void gsl_integration_qawo_table_free (gsl_integration_qawo_table * t) This function frees all the memory associated with the workspace :data:`t`. .. function:: int gsl_integration_qawo (gsl_function * f, const double a, const double epsabs, const double epsrel, const size_t limit, gsl_integration_workspace * workspace, gsl_integration_qawo_table * wf, double * result, double * abserr) This function uses an adaptive algorithm to compute the integral of :math:`f` over :math:`(a,b)` with the weight function :math:`\sin(\omega x)` or :math:`\cos(\omega x)` defined by the table :data:`wf`, .. only:: not texinfo .. math:: I = \int_a^b dx f(x) \left\{ \begin{array}{c} \sin{(\omega x)} \\ \cos{(\omega x)} \end{array} \right\} .. only:: texinfo | I = \int_a^b dx f(x) sin(omega x) | I = \int_a^b dx f(x) cos(omega x) The results are extrapolated using the epsilon-algorithm to accelerate the convergence of the integral. The function returns the final approximation from the extrapolation, :data:`result`, and an estimate of the absolute error, :data:`abserr`. The subintervals and their results are stored in the memory provided by :data:`workspace`. The maximum number of subintervals is given by :data:`limit`, which may not exceed the allocated size of the workspace. Those subintervals with "large" widths :math:`d` where :math:`d\omega > 4` are computed using a 25-point Clenshaw-Curtis integration rule, which handles the oscillatory behavior. Subintervals with a "small" widths where :math:`d\omega < 4` are computed using a 15-point Gauss-Kronrod integration. QAWF adaptive integration for Fourier integrals =============================================== .. index:: single: QAWF quadrature algorithm single: Fourier integrals, numerical .. function:: int gsl_integration_qawf (gsl_function * f, const double a, const double epsabs, const size_t limit, gsl_integration_workspace * workspace, gsl_integration_workspace * cycle_workspace, gsl_integration_qawo_table * wf, double * result, double * abserr) This function attempts to compute a Fourier integral of the function :data:`f` over the semi-infinite interval :math:`[a,+\infty)` .. only:: not texinfo .. math:: I = \int_a^{+\infty} dx f(x) \left\{ \begin{array}{c} \sin{(\omega x)} \\ \cos{(\omega x)} \end{array} \right\} .. only:: texinfo :: I = \int_a^{+\infty} dx f(x) sin(omega x) I = \int_a^{+\infty} dx f(x) cos(omega x) The parameter :math:`\omega` and choice of :math:`\sin` or :math:`\cos` is taken from the table :data:`wf` (the length :data:`L` can take any value, since it is overridden by this function to a value appropriate for the Fourier integration). The integral is computed using the QAWO algorithm over each of the subintervals, .. only:: not texinfo .. math:: C_1 &= [a,a+c] \\ C_2 &= [a+c,a+2c] \\ \dots &= \dots \\ C_k &= [a+(k-1)c,a+kc] .. only:: texinfo :: C_1 = [a, a + c] C_2 = [a + c, a + 2 c] ... = ... C_k = [a + (k-1) c, a + k c] where :math:`c = (2 floor(|\omega|) + 1) \pi/|\omega|`. The width :math:`c` is chosen to cover an odd number of periods so that the contributions from the intervals alternate in sign and are monotonically decreasing when :data:`f` is positive and monotonically decreasing. The sum of this sequence of contributions is accelerated using the epsilon-algorithm. This function works to an overall absolute tolerance of :data:`abserr`. The following strategy is used: on each interval :math:`C_k` the algorithm tries to achieve the tolerance .. math:: TOL_k = u_k abserr where :math:`u_k = (1 - p)p^{k-1}` and :math:`p = 9/10`. The sum of the geometric series of contributions from each interval gives an overall tolerance of :data:`abserr`. If the integration of a subinterval leads to difficulties then the accuracy requirement for subsequent intervals is relaxed, .. only:: not texinfo .. math:: TOL_k = u_k \max{(abserr, \max_{i a` Chebyshev Type 1 :math:`(a,b)` :math:`1 / \sqrt{(b - x) (x - a)}` :math:`b > a` Gegenbauer :math:`(a,b)` :math:`((b - x) (x - a))^{\alpha}` :math:`\alpha > -1, b > a` Jacobi :math:`(a,b)` :math:`(b - x)^{\alpha} (x - a)^{\beta}` :math:`\alpha,\beta > -1, b > a` Laguerre :math:`(a,\infty)` :math:`(x-a)^{\alpha} \exp{( -b (x - a) )}` :math:`\alpha > -1, b > 0` Hermite :math:`(-\infty,\infty)` :math:`|x-a|^{\alpha} \exp{( -b (x-a)^2 )}` :math:`\alpha > -1, b > 0` Exponential :math:`(a,b)` :math:`|x - (a + b)/2|^{\alpha}` :math:`\alpha > -1, b > a` Rational :math:`(a,\infty)` :math:`(x - a)^{\alpha} (x + b)^{\beta}` :math:`\alpha > -1, \alpha + \beta + 2n < 0, a + b > 0` Chebyshev Type 2 :math:`(a,b)` :math:`\sqrt{(b - x) (x - a)}` :math:`b > a` ================ ======================== =========================================== ======================================================= The fixed point quadrature routines use the following workspace to store the nodes and weights, as well as additional variables for intermediate calculations: .. type:: gsl_integration_fixed_workspace This workspace is used for fixed point quadrature rules and looks like this:: typedef struct { size_t n; /* number of nodes/weights */ double *weights; /* quadrature weights */ double *x; /* quadrature nodes */ double *diag; /* diagonal of Jacobi matrix */ double *subdiag; /* subdiagonal of Jacobi matrix */ const gsl_integration_fixed_type * type; } gsl_integration_fixed_workspace; .. function:: gsl_integration_fixed_workspace * gsl_integration_fixed_alloc(const gsl_integration_fixed_type * T, const size_t n, const double a, const double b, const double alpha, const double beta) This function allocates a workspace for computing integrals with interpolating quadratures using :data:`n` quadrature nodes. The parameters :data:`a`, :data:`b`, :data:`alpha`, and :data:`beta` specify the integration interval and/or weighting function for the various quadrature types. See the :ref:`table ` above for constraints on these parameters. The size of the workspace is :math:`O(4n)`. .. type:: gsl_integration_fixed_type The type of quadrature used is specified by :data:`T` which can be set to the following choices: .. var:: gsl_integration_fixed_type * gsl_integration_fixed_legendre This specifies Legendre quadrature integration. The parameters :data:`alpha` and :data:`beta` are ignored for this type. .. var:: gsl_integration_fixed_type * gsl_integration_fixed_chebyshev This specifies Chebyshev type 1 quadrature integration. The parameters :data:`alpha` and :data:`beta` are ignored for this type. .. var:: gsl_integration_fixed_type * gsl_integration_fixed_gegenbauer This specifies Gegenbauer quadrature integration. The parameter :data:`beta` is ignored for this type. .. var:: gsl_integration_fixed_type * gsl_integration_fixed_jacobi This specifies Jacobi quadrature integration. .. var:: gsl_integration_fixed_type * gsl_integration_fixed_laguerre This specifies Laguerre quadrature integration. The parameter :data:`beta` is ignored for this type. .. var:: gsl_integration_fixed_type * gsl_integration_fixed_hermite This specifies Hermite quadrature integration. The parameter :data:`beta` is ignored for this type. .. var:: gsl_integration_fixed_type * gsl_integration_fixed_exponential This specifies exponential quadrature integration. The parameter :data:`beta` is ignored for this type. .. var:: gsl_integration_fixed_type * gsl_integration_fixed_rational This specifies rational quadrature integration. .. var:: gsl_integration_fixed_type * gsl_integration_fixed_chebyshev2 This specifies Chebyshev type 2 quadrature integration. The parameters :data:`alpha` and :data:`beta` are ignored for this type. .. function:: void gsl_integration_fixed_free(gsl_integration_fixed_workspace * w) This function frees the memory assocated with the workspace :data:`w` .. function:: size_t gsl_integration_fixed_n(const gsl_integration_fixed_workspace * w) This function returns the number of quadrature nodes and weights. .. function:: double * gsl_integration_fixed_nodes(const gsl_integration_fixed_workspace * w) This function returns a pointer to an array of size :data:`n` containing the quadrature nodes :math:`x_i`. .. function:: double * gsl_integration_fixed_weights(const gsl_integration_fixed_workspace * w) This function returns a pointer to an array of size :data:`n` containing the quadrature weights :math:`w_i`. .. function:: int gsl_integration_fixed(const gsl_function * func, double * result, const gsl_integration_fixed_workspace * w) This function integrates the function :math:`f(x)` provided in :data:`func` using previously computed fixed quadrature rules. The integral is approximated as .. math:: \sum_{i=1}^n w_i f(x_i) where :math:`w_i` are the quadrature weights and :math:`x_i` are the quadrature nodes computed previously by :func:`gsl_integration_fixed_alloc`. The sum is stored in :data:`result` on output. Error codes =========== In addition to the standard error codes for invalid arguments the functions can return the following values, ===================== ============================================================================================================ :macro:`GSL_EMAXITER` the maximum number of subdivisions was exceeded. :macro:`GSL_EROUND` cannot reach tolerance because of roundoff error, or roundoff error was detected in the extrapolation table. :macro:`GSL_ESING` a non-integrable singularity or other bad integrand behavior was found in the integration interval. :macro:`GSL_EDIVERGE` the integral is divergent, or too slowly convergent to be integrated numerically. :macro:`GSL_EDOM` error in the values of the input arguments ===================== ============================================================================================================ Examples ======== Adaptive integration example ---------------------------- The integrator :code:`QAGS` will handle a large class of definite integrals. For example, consider the following integral, which has an algebraic-logarithmic singularity at the origin, .. math:: \int_0^1 x^{-1/2} \log(x) dx = -4 The program below computes this integral to a relative accuracy bound of :code:`1e-7`. .. include:: examples/integration.c :code: The results below show that the desired accuracy is achieved after 8 subdivisions. .. include:: examples/integration.txt :code: In fact, the extrapolation procedure used by :code:`QAGS` produces an accuracy of almost twice as many digits. The error estimate returned by the extrapolation procedure is larger than the actual error, giving a margin of safety of one order of magnitude. Fixed-point quadrature example ------------------------------ In this example, we use a fixed-point quadrature rule to integrate the integral .. math:: \int_{-\infty}^{\infty} e^{-x^2} \left( x^m + 1 \right) dx = \left\{ \begin{array}{cc} \sqrt{\pi} + \Gamma{\left( \frac{m+1}{2} \right)}, & m \textrm{ even} \\ \sqrt{\pi}, & m \textrm{ odd} \end{array} \right. for integer :math:`m`. Consulting our :ref:`table ` of fixed point quadratures, we see that this integral can be evaluated with a Hermite quadrature rule, setting :math:`\alpha = 0, a = 0, b = 1`. Since we are integrating a polynomial of degree :math:`m`, we need to choose the number of nodes :math:`n \ge (m+1)/2` to achieve the best results. First we will try integrating for :math:`m = 10, n = 5`, which does not satisfy our criteria above:: $ ./integration2 10 5 The output is, .. include:: examples/integration2a.txt :code: So, we find a large error. Now we try integrating for :math:`m = 10, n = 6` which does satisfy the criteria above:: $ ./integration2 10 6 The output is, .. include:: examples/integration2b.txt :code: The program is given below. .. include:: examples/integration2.c :code: References and Further Reading ============================== The following book is the definitive reference for |quadpack|, and was written by the original authors. It provides descriptions of the algorithms, program listings, test programs and examples. It also includes useful advice on numerical integration and many references to the numerical integration literature used in developing |quadpack|. * R. Piessens, E. de Doncker-Kapenga, C.W. Ueberhuber, D.K. Kahaner. |quadpack| A subroutine package for automatic integration Springer Verlag, 1983. The |cquad| integration algorithm is described in the following paper: * P. Gonnet, "Increasing the Reliability of Adaptive Quadrature Using Explicit Interpolants", ACM Transactions on Mathematical Software, Volume 37 (2010), Issue 3, Article 26. The fixed-point quadrature routines are based on IQPACK, described in the following papers: * S. Elhay, J. Kautsky, Algorithm 655: IQPACK, FORTRAN Subroutines for the Weights of Interpolatory Quadrature, ACM Transactions on Mathematical Software, Volume 13, Number 4, December 1987, pages 399-415. * J. Kautsky, S. Elhay, Calculation of the Weights of Interpolatory Quadratures, Numerische Mathematik, Volume 40, Number 3, October 1982, pages 407-422.