Next: Syntax of numerical constants, Previous: Exactness, Up: Numbers [Contents][Index]

Implementations of Scheme are not required to implement the whole tower of subtypes given in section Numerical types, but they must implement a coherent subset consistent with both the purposes of the implementation and the spirit of the Scheme language. For example, an implementation in which all numbers are real may still be quite useful.

Implementations may also support only a limited range of numbers of any type, subject to the requirements of this section. The supported range for exact numbers of any type may be different from the supported range for inexact numbers of that type. For example, an implementation that uses flonums to represent all its inexact real numbers may support a practically unbounded range of exact integers and rationals while limiting the range of inexact reals (and therefore the range of inexact integers and rationals) to the dynamic range of the flonum format. Furthermore the gaps between the representable inexact integers and rationals are likely to be very large in such an implementation as the limits of this range are approached.

An implementation of Scheme must support exact integers
throughout the range of numbers that may be used for indexes of
lists, vectors, and strings or that may result from computing the length of a
list, vector, or string. The `length`

, `vector-length`

,
and `string-length`

procedures must return an exact
integer, and it is an error to use anything but an exact integer as an
index. Furthermore any integer constant within the index range, if
expressed by an exact integer syntax, will indeed be read as an exact
integer, regardless of any implementation restrictions that may apply
outside this range. Finally, the procedures listed below will always
return an exact integer result provided all their arguments are exact integers
and the mathematically expected result is representable as an exact integer
within the implementation:

+ - * quotient remainder modulo max min abs numerator denominator gcd lcm floor ceiling truncate round rationalize expt

Implementations are encouraged, but not required, to support
exact integers and exact rationals of
practically unlimited size and precision, and to implement the
above procedures and the ‘`/`’ procedure in
such a way that they always return exact results when given exact
arguments. If one of these procedures is unable to deliver an exact
result when given exact arguments, then it may either report a
violation of an
implementation restriction or it may silently coerce its result to an
inexact number. Such a coercion may cause an error later.

An implementation may use floating point and other approximate representation strategies for inexact numbers.

This report recommends, but does not require, that the IEEE 32-bit and 64-bit floating point standards be followed by implementations that use flonum representations, and that implementations using other representations should match or exceed the precision achievable using these floating point standards [IEEE].

In particular, implementations that use flonum representations
must follow these rules: A flonum result
must be represented with at least as much precision as is used to express any of
the inexact arguments to that operation. It is desirable (but not required) for
potentially inexact operations such as ‘`sqrt`’, when applied to exact
arguments, to produce exact answers whenever possible (for example the
square root of an exact 4 ought to be an exact 2).
If, however, an
exact number is operated upon so as to produce an inexact result
(as by ‘`sqrt`’), and if the result is represented as a flonum, then
the most precise flonum format available must be used; but if the result
is represented in some other way then the representation must have at least as
much precision as the most precise flonum format available.

Although Scheme allows a variety of written notations for numbers, any particular implementation may support only some of them. For example, an implementation in which all numbers are real need not support the rectangular and polar notations for complex numbers. If an implementation encounters an exact numerical constant that it cannot represent as an exact number, then it may either report a violation of an implementation restriction or it may silently represent the constant by an inexact number.

Next: Syntax of numerical constants, Previous: Exactness, Up: Numbers [Contents][Index]