
GNU Parallel Examples

Page 1

GNU PARALLEL EXAMPLES
EXAMPLE: Working as xargs -n1. Argument appending

GNU parallel can work similar to xargs -n1.

To compress all html files using gzip run:

 find . -name '*.html' | parallel gzip --best

If the file names may contain a newline use -0. Substitute FOO BAR with
FUBAR in all files in this dir
and subdirs:

 find . -type f -print0 | \
 parallel -q0 perl -i -pe 's/FOO BAR/FUBAR/g'

Note -q is needed because of the space in 'FOO BAR'.

EXAMPLE: Reading arguments from command line
GNU parallel can take the arguments from command line instead of
stdin (standard input). To
compress all html files in the current dir
using gzip run:

 parallel gzip --best ::: *.html

To convert *.wav to *.mp3 using LAME running one process per CPU run:

 parallel lame {} -o {.}.mp3 ::: *.wav

EXAMPLE: Running full commands in parallel
If there is no command given to GNU parallel, then the arguments
are treated as a command line.

To run gzip foo and bzip2 bar in parallel run:

 parallel ::: "gzip foo" "bzip2 bar"

or:

 (echo "gzip foo"; echo "bzip2 bar") | parallel

EXAMPLE: Inserting multiple arguments
When moving a lot of files like this: mv *.log destdir you will
sometimes get the error:

 bash: /bin/mv: Argument list too long

because there are too many files. You can instead do:

 ls | grep -E '\.log$' | parallel mv {} destdir

This will run mv for each file. It can be done faster if mv gets
as many arguments that will fit on the
line:

 ls | grep -E '\.log$' | parallel -m mv {} destdir

In many shells you can also use printf:

 printf '%s\0' *.log | parallel -0 -m mv {} destdir

GNU Parallel Examples

Page 2

EXAMPLE: Context replace
To remove the files pict0000.jpg .. pict9999.jpg you could do:

 seq -w 0 9999 | parallel rm pict{}.jpg

You could also do:

 seq -w 0 9999 | perl -pe 's/(.*)/pict$1.jpg/' | parallel -m rm

The first will run rm 10000 times, while the last will only run rm as many times needed to keep the
command line length short
enough to avoid Argument list too long (it typically runs 1-2 times).

You could also run:

 seq -w 0 9999 | parallel -X rm pict{}.jpg

This will also only run rm as many times needed to keep the command
line length short enough.

EXAMPLE: Compute intensive jobs and substitution
If ImageMagick is installed this will generate a thumbnail of a jpg
file:

 convert -geometry 120 foo.jpg thumb_foo.jpg

This will run with number-of-cpus jobs in parallel for all jpg files
in a directory:

 ls *.jpg | parallel convert -geometry 120 {} thumb_{}

To do it recursively use find:

 find . -name '*.jpg' | \
 parallel convert -geometry 120 {} {}_thumb.jpg

Notice how the argument has to start with {} as {} will include path
(e.g. running convert -geometry
120 ./foo/bar.jpg
thumb_./foo/bar.jpg would clearly be wrong). The command will
generate files like
./foo/bar.jpg_thumb.jpg.

Use {.} to avoid the extra .jpg in the file name. This command will
make files like ./foo/bar_thumb.jpg:

 find . -name '*.jpg' | \
 parallel convert -geometry 120 {} {.}_thumb.jpg

EXAMPLE: Substitution and redirection
This will generate an uncompressed version of .gz-files next to the .gz-file:

 parallel zcat {} ">"{.} ::: *.gz

Quoting of > is necessary to postpone the redirection. Another
solution is to quote the whole
command:

 parallel "zcat {} >{.}" ::: *.gz

Other special shell characters (such as * ; $ > < | >> <<) also need
to be put in quotes, as they may
otherwise be interpreted by the shell
and not given to GNU parallel.

EXAMPLE: Composed commands
A job can consist of several commands. This will print the number of
files in each directory:

GNU Parallel Examples

Page 3

 ls | parallel 'echo -n {}" "; ls {}|wc -l'

To put the output in a file called <name>.dir:

 ls | parallel '(echo -n {}" "; ls {}|wc -l) >{}.dir'

Even small shell scripts can be run by GNU parallel:

 find . | parallel 'a={}; name=${a##*/};' \
 'upper=$(echo "$name" | tr "[:lower:]" "[:upper:]");'\
 'echo "$name - $upper"'

 ls | parallel 'mv {} "$(echo {} | tr "[:upper:]" "[:lower:]")"'

Given a list of URLs, list all URLs that fail to download. Print the
line number and the URL.

 cat urlfile | parallel "wget {} 2>/dev/null || grep -n {} urlfile"

Create a mirror directory with the same file names except all files and
symlinks are empty files.

 cp -rs /the/source/dir mirror_dir
 find mirror_dir -type l | parallel -m rm {} '&&' touch {}

Find the files in a list that do not exist

 cat file_list | parallel 'if [! -e {}] ; then echo {}; fi'

EXAMPLE: Composed command with perl replacement string
You have a bunch of file. You want them sorted into dirs. The dir of
each file should be named the first
letter of the file name.

 parallel 'mkdir -p {=s/(.).*/$1/=}; mv {} {=s/(.).*/$1/=}' ::: *

In practice you would probably not use a perl replacement string but
instead --match:

 parallel --match '(.)' 'mkdir -p {1.1} && mv {} {1.1}' ::: *

EXAMPLE: Composed command with multiple input sources
You have a dir with files named as 24 hours in 5 minute intervals:
00:00, 00:05, 00:10 .. 23:55. You
want to find the files missing:

 parallel [-f {1}:{2}] "||" echo {1}:{2} does not exist \
 ::: {00..23} ::: {00..55..5}

EXAMPLE: Match parts of input source
Match first initial and last name:

 parallel --match '(.).* (.*)' echo {1.1}. {1.2} \
 ::: "Arthur Dent" "Ford Prefect" "Tricia McMillan" "Zaphod Beeblebrox"

Re-arrange (stupid) US date format into (nice) ISO-8601:

 parallel --match '(.*)/(.*)/(.*)' echo {1.3}-{1.1:%02d}-{1.2:%02d} \
 ::: 12/31/1969 1/19/2038 6/1/2002

GNU Parallel Examples

Page 4

Match url into domain and path:

 parallel --match 'https://(.*?)/(.*)' echo Domain: {1.1} Path: {1.2} \
 ::: https://example.com/dir/page https://gnu.org/s/parallel

Get URLs into dirs named by 2nd level domain name,
e.g. https://www.gnu.org/s/parallel will be put
into the dir gnu.org.

 cat urls | parallel --match '//[^/]*?([^/.]+\.[^/.]+)/' \
 'mkdir -p {1.1} && cd {1.1} && wget {}'

Match host.domain:port from a log file:

 cat log |
 parallel --match '\b([a-z0-9.]+):(\d+)\b' echo host:{1.1} port:{1.2}

Reorder comma-separated values:

 parallel --match '(.*),(.*)' echo Second: {1.2}, First: {1.1} \
 ::: "Arthur,Babel fish" "Adams,Betelgeuse" "Arcturan,Bistro"

Capitalize word:

 parallel --match '([a-z])([a-z]*) ([a-z])([a-z]*)' \
 echo '{=1.1 $_=uc($_) =}{1.2} {=1.3 $_=uc($_) =}{1.4}' \
 ::: "pan galactic" "gargle blaster"

Make an international dialing prefix table:

 dial=(
 "DK(Denmark) 00,45"
 "US(United States) 011,1"
 "JP(Japan) 010,81"
 "AU(Australia) 0011,61"
 "CA(Canada) 011,1"
 "RU(Russia) 810,7"
 "TH(Thailand) 001,66"
 "TW(Taiwan) 002,886"
)
 parallel --match '(.*)\((.*)\) (.*),(.*)' --match +1 \
 echo From {1.1}/{1.2} to {2.1}/{2.2} dial {1.3}-{2.4} \
 ::: "${dial[@]}" ::: "${dial[@]}"

Note how input source 2 reuses the --match from input source 1.

EXAMPLE: Replacement fields from CSV file with headers
This is an advanced example. You have:

 Date;Name;Location
 3/8/1978;"Beeblebrox; Zaphod";"Betelgeuse V"
 10/12/1979;"Dent; Arthur";Earth
 1/5/1981;Slartibartfast;Magrathea

You want:

 Z. Beeblebrox: 1978-03-08/BET
 A. Dent: 1979-10-12/EAR

GNU Parallel Examples

Page 5

 Slartibartfast: 1981-01-05/MAG

Run:

 parallel --csv --colsep ';' --header : --match "(\d+)/(\d+)/(\d+)" \
 --match "^([^;]+)(; (.))?" --match "(...)" \
 echo '{=Name.3 s/(.)/$1. /;=}'{Name.1}: \
 {Date.3}-{Date.1:%02d}-{Date.2:%02d}/'{=Location.1 $_=uc =}' \
 :::: people.csv

--csv parses the input as CSV with --colsep ; as the separator -
dealing correctly with quoted strings.
The input is split into 3
columns. --header : makes the columns available as {columnname}. Each
column has their corresponding --match
so each field can be accessed as {columnname.#}. s/(.)/$1. /
is a perl expression that
appends ". " if the name has an initial. :%02d formats single
digits as two
digits. uc upper cases the argument.

EXAMPLE: Calling Bash functions
If the composed command is longer than a line, it becomes hard to
read. In Bash you can use
functions. Just remember to export -f the
function.

 doit() {
 echo Doing it for $1
 sleep 2
 echo Done with $1
 }
 export -f doit
 parallel doit ::: 1 2 3

 doubleit() {
 echo Doing it for $1 $2
 sleep 2
 echo Done with $1 $2
 }
 export -f doubleit
 parallel doubleit ::: 1 2 3 ::: a b

To do this on remote servers you need to transfer the function using --env:

 parallel --env doit -S server doit ::: 1 2 3
 parallel --env doubleit -S server doubleit ::: 1 2 3 ::: a b

If your environment (aliases, variables, and functions) is small you
can copy the full environment
without having to export -f anything. See env_parallel.

EXAMPLE: Function tester
To test a program with different parameters:

 tester() {
 if (eval "$@") >&/dev/null; then
 perl -e 'printf "\033[30;102m[OK]\033[0m @ARGV\n"' "$@"
 else
 perl -e 'printf "\033[30;101m[FAIL]\033[0m @ARGV\n"' "$@"
 fi
 }
 export -f tester
 parallel tester my_program ::: arg1 arg2
 parallel tester exit ::: 1 0 2 0

GNU Parallel Examples

Page 6

If my_program fails a red FAIL will be printed followed by the failing
command; otherwise a green OK
will be printed followed by the command.

EXAMPLE: Identify few failing jobs
--bar works best if jobs have no output. If the failing jobs have
output you can identify the jobs like
this:

 job-with-few-failures() {
 # Force reproducibility
 RANDOM=$1
 # This fails 1% (328 of 32768)
 if [$RANDOM -lt 328] ; then
 echo Failed $1
 fi
 }
 export -f job-with-few-failures
 seq 1000 | parallel --bar --tag job-with-few-failures

EXAMPLE: Continously show the latest line of output
It can be useful to monitor the output of running jobs.

This shows the most recent output line until a job finishes. After
which the output of the job is printed
in full:

 parallel '{} | tee >(cat >&3)' ::: 'command 1' 'command 2' \
 3> >(perl -ne '$|=1;chomp;printf"%.'$COLUMNS's\r",$_." "x100')

EXAMPLE: Log rotate
Log rotation renames a logfile to an extension with a higher number:
log.1 becomes log.2, log.2
becomes log.3, and so on. The oldest log is
removed. To avoid overwriting files the process starts
backwards from
the high number to the low number. This will keep 10 old versions of
the log:

 seq 9 -1 1 | parallel -j1 mv log.{} log.'{= $_++ =}'
 mv log log.1

EXAMPLE: Simple network scanner
prips can generate IP-addresses from CIDR notation. With GNU parallel you can build a simple
network scanner to see which
addresses respond to ping:

 prips 130.229.16.0/20 | \
 parallel --timeout 2 -j0 \
 'ping -c 1 {} >/dev/null && echo {}' 2>/dev/null

EXAMPLE: Removing file extension when processing files
When processing files removing the file extension using {.} is
often useful.

Create a directory for each zip-file and unzip it in that dir:

 parallel 'mkdir {.}; cd {.}; unzip ../{}' ::: *.zip

Recompress all .gz files in current directory using bzip2 running 1
job per CPU in parallel:

 parallel "zcat {} | bzip2 >{.}.bz2 && rm {}" ::: *.gz

Convert all WAV files to MP3 using LAME:

 find sounddir -type f -name '*.wav' | parallel lame {} -o {.}.mp3

GNU Parallel Examples

Page 7

Put all converted in the same directory:

 find sounddir -type f -name '*.wav' | \
 parallel lame {} -o mydir/{/.}.mp3

EXAMPLE: Replacing parts of file names
If you deal with paired end reads, you will have files like
barcode1_R1.fq.gz, barcode1_R2.fq.gz,
barcode2_R1.fq.gz, and
barcode2_R2.fq.gz.

You want barcodeN_R1 to be processed with barcodeN_R2.

 parallel --plus myprocess {} {/_R1.fq.gz/_R2.fq.gz} ::: *_R1.fq.gz

If the barcode does not contain '_R1', you can do:

 parallel --plus myprocess {} {/_R1/_R2} ::: *_R1.fq.gz

Or you can use --match:

 parallel --match '(.*)_R1(.*)' myprocess {} {1.1}_R2{1.2} :::
*_R1.fq.gz

EXAMPLE: Removing strings from the argument
If you have directory with tar.gz files and want these extracted in
the corresponding dir (e.g foo.tar.gz
will be extracted in the dir
foo) you can do:

 parallel --plus 'mkdir {..}; tar -C {..} -xf {}' ::: *.tar.gz

If you want to remove a different ending, you can use {%string}:

 parallel --plus echo {%_demo} ::: mycode_demo keep_demo_here

You can also remove a starting string with {#string}

 parallel --plus echo {#demo_} ::: demo_mycode keep_demo_here

To remove a string anywhere you can use regular expressions with
{/regexp/replacement} and leave
the replacement empty:

 parallel --plus echo {/demo_/} ::: demo_mycode remove_demo_here

You can often also use --match:

 parallel --match '(.*)demo_(.*)' echo {1.1}{1.2} ::: demo_mycode
remove_demo_here

EXAMPLE: Download 24 images for each of the past 30 days
Let us assume a website stores images like:

 https://www.example.com/path/to/YYYYMMDD_##.jpg

where YYYYMMDD is the date and ## is the number 01-24. This will
download images for the past 30
days:

 getit() {
 date=$(date -d "today -$1 days" +%Y%m%d)
 num=$2

GNU Parallel Examples

Page 8

 echo wget https://www.example.com/path/to/${date}_${num}.jpg
 }
 export -f getit

 parallel getit ::: $(seq 30) ::: $(seq -w 24)

$(date -d "today -$1 days" +%Y%m%d) will give the dates in
YYYYMMDD with $1 days subtracted.

EXAMPLE: Download world map from NASA
NASA provides tiles to download on earthdata.nasa.gov. Download tiles
for Blue Marble world map
and create a 10240x20480 map.

 base=https://map1a.vis.earthdata.nasa.gov/wmts-geo/wmts.cgi
 service="SERVICE=WMTS&REQUEST=GetTile&VERSION=1.0.0"
 layer="LAYER=BlueMarble_ShadedRelief_Bathymetry"
 set="STYLE=&TILEMATRIXSET=EPSG4326_500m&TILEMATRIX=5"
 tile="TILEROW={1}&TILECOL={2}"
 format="FORMAT=image%2Fjpeg"
 url="$base?$service&$layer&$set&$tile&$format"

 parallel -j0 -q wget "$url" -O {1}_{2}.jpg ::: {0..19} ::: {0..39}
 parallel eval convert +append {}_{0..39}.jpg line{}.jpg ::: {0..19}
 convert -append line{0..19}.jpg world.jpg

EXAMPLE: Download Apollo-11 images from NASA using jq
Search NASA using their API to get JSON for images related to 'apollo
11' and has 'moon landing' in
the description.

The search query returns JSON containing URLs to JSON containing
collections of pictures. One of
the pictures in each of these
collection is large.

wget is used to get the JSON for the search query. jq is then
used to extract the URLs of the
collections. parallel then calls wget to get each collection, which is passed to jq to extract
the URLs
of all images. grep filters out the large images, and parallel finally uses wget to fetch the images.

 base="https://images-api.nasa.gov/search"
 q="q=apollo 11"
 description="description=moon landing"
 media_type="media_type=image"
 wget -O - "$base?$q&$description&$media_type" |
 jq -r .collection.items[].href |
 parallel wget -O - |
 jq -r .[] |
 grep large |
 parallel wget

EXAMPLE: Download video playlist in parallel
youtube-dl is an excellent tool to download videos. It can,
however, not download videos in parallel.
This takes a playlist and
downloads 10 videos in parallel.

 url='youtu.be/watch?v=0wOf2Fgi3DE&list=UU_cznB5YZZmvAmeq7Y3EriQ'
 export url
 youtube-dl --flat-playlist "https://$url" |
 parallel --tagstring {#} --lb -j10 \
 youtube-dl --playlist-start {#} --playlist-end {#} '"https://$url"'

GNU Parallel Examples

Page 9

EXAMPLE: Prepend last modified date (ISO8601) to file name
 parallel mv {} '{= $a=pQ($_); $b=$_;' \
 '$_=qx{date -r "$a" +%FT%T}; chomp; $_="$_ $b" =}' ::: *

{= and =} mark a perl expression. pQ perl-quotes the
string. date +%FT%T is the date in ISO8601
with time.

EXAMPLE: Save output in ISO8601 dirs
Save output from ps aux every second into dirs named
yyyy-mm-ddThh:mm:ss+zz:zz.

 seq 1000 | parallel -N0 -j1 --delay 1 \
 --results '{= $_=`date -Isec`; chomp=}/' ps aux

EXAMPLE: Digital clock with "blinking" :
The : in a digital clock blinks. To make every other line have a ':'
and the rest a ' ' a perl expression is
used to look at the 3rd input
source. If the value modulo 2 is 1: Use ":" otherwise use " ":

 parallel -k echo {1}'{=3 $_=$_%2?":":" "=}'{2}{3} \
 ::: {0..23} ::: {0..5} ::: {0..9}

EXAMPLE: Aggregating content of files
This:

 parallel --header : echo x{X}y{Y}z{Z} \> x{X}y{Y}z{Z} \
 ::: X {1..5} ::: Y {01..10} ::: Z {1..5}

will generate the files x1y01z1 .. x5y10z5. If you want to aggregate
the output grouping on x and z
you can do this:

 parallel eval 'cat {=s/y01/y*/=} > {=s/y01//=}' ::: *y01*

For all values of x and z it runs commands like:

 cat x1y*z1 > x1z1

So you end up with x1z1 .. x5z5 each containing the content of all
values of y.

EXAMPLE: Breadth first parallel dir crawler
To process all files in dirs and subdirs you would normally run:

 find . -print | parallel do_stuff

But sometimes you want to parallelize each dir. Maybe doing a dir scan
is slow?

Then you can use a breadth first directory scan.

 process() {
 process_file() {
 echo "Do your processing of file here $1"
 }

 queue="$1"
 shift
 if [-d "$1"] ; then
 echo "queueing $1"
 find "$1" -mindepth 1 -maxdepth 1 > "$queue"

GNU Parallel Examples

Page 10

 if [! -s "$queue"] ; then
 # Ignore empty dirs
 rm "$queue"
 fi
 else
 process_file "$1"
 fi
 }
 export -f process

 # Queue lists
 queue=$(mktemp)
 queuenew=$(mktemp -d)

 # Start dir
 echo . > "$queue"

 while [-s "$queue"] ; do
 # Run one round for every directory level
 # (Breadth first)
 cat "$queue" |
 parallel process "$queuenew"/{#} {}
 # Each job may create a list in "$queuenew"/job_no
 cat "$queuenew"/* > "$queue" 2>/dev/null
 rm -f "$queuenew"/*
 done
 rmdir "$queuenew"
 rm "$queue"

This is not a perfect replacement (e.g. --halt is not respected,
and $? is not set correctly).

EXAMPLE: Breadth first parallel web crawler/mirrorer
This script below will crawl and mirror a URL in parallel. It
downloads first pages that are 1 click down,
then 2 clicks down, then
3; instead of the normal depth first, where the first link link on
each page is
fetched first.

Run like this:

 PARALLEL=-j100 ./parallel-crawl https://freenet.org/

Remove the wget part if you only want a web crawler.

It works by fetching a page from a list of URLs and looking for links
in that page that are within the
same starting URL and that have not
already been seen. These links are added to a new queue.
When all the
pages from the list is done, the new queue is moved to the list of
URLs and the process
is started over until no unseen links are found.

 #!/bin/bash

 # E.g. https://freenet.org/
 url=$1
 # Stay inside the start dir
 baseurl=$(echo "$url" | perl -pe 's:#.*::; s:(//.*/)[^/]*:$1:')
 urllist=$(mktemp -t urllist.XXXX)
 newurllist=$(mktemp -t urllist.XXXX)
 seen=$(mktemp -t seen.XXXX)

GNU Parallel Examples

Page 11

 # Add start url to the list
 echo "$url" >"$urllist"
 cp "$urllist" "$seen"

 process_single_url() {
 # Find all links in the url
 lynx -listonly -image_links -dump "$1"
 # Remove this line to get spider only
 wget -qm -l1 -Q1 "$1"
 echo
 echo Spidered: "$1" >&2
 }
 export -f process_single_url

 unique() {
 # Like `sort -u` but without the sorting
 perl -ne 's/#.*//; s/\s+\d+.\s(\S+)$/$1/ and do { $seen{$1}++ or
print }'
 }

 while [-s "$urllist"] ; do
 cat "$urllist" |
 parallel process_single_url |
 unique |
 # Ignore links outside $baseurl
 grep -a -F "$baseurl" |
 # Ignore links already seen
 grep -a -v -x -F -f "$seen" |
 tee -a "$seen" > "$newurllist"
 mv "$newurllist" "$urllist"
 done

 rm -f "$newurllist" "$urllist" "$seen"

EXAMPLE: Process files from a tar file while unpacking
If the files to be processed are in a tar file then unpacking one file
and processing it immediately may
be faster than first unpacking all
files.

 tar xvf foo.tgz | perl -ne 'print $l;$l=$_;END{print $l}' | \
 parallel echo

The Perl one-liner is needed to make sure the file is complete before
handing it to GNU parallel.

EXAMPLE: Rewriting a for-loop and a while-read-loop
for-loops like this:

 (for x in `cat list` ; do
 do_something $x
 done) | process_output

and while-read-loops like this:

 cat list | (while read x ; do
 do_something $x
 done) | process_output

GNU Parallel Examples

Page 12

can be written like this:

 cat list | parallel do_something | process_output

For example: Find which host name in a list has IP address 1.2.3 4:

 cat hosts.txt | parallel -P 100 host | grep 1.2.3.4

If the processing requires more steps the for-loop like this:

 (for x in `cat list` ; do
 no_extension=${x%.*};
 do_step1 $x scale $no_extension.jpg
 do_step2 <$x $no_extension
 done) | process_output

and while-loops like this:

 cat list | (while read x ; do
 no_extension=${x%.*};
 do_step1 $x scale $no_extension.jpg
 do_step2 <$x $no_extension
 done) | process_output

can be written like this:

 cat list | parallel "do_step1 {} scale {.}.jpg ; do_step2 <{} {.}" |\
 process_output

If the body of the loop is bigger, it improves readability to use a function:

 (for x in `cat list` ; do
 do_something $x
 [... 100 lines that do something with $x ...]
 done) | process_output

 cat list | (while read x ; do
 do_something $x
 [... 100 lines that do something with $x ...]
 done) | process_output

can both be rewritten as:

 doit() {
 x=$1
 do_something $x
 [... 100 lines that do something with $x ...]
 }
 export -f doit
 cat list | parallel doit

EXAMPLE: Rewriting nested for-loops
Nested for-loops like this:

 (for x in `cat xlist` ; do
 for y in `cat ylist` ; do
 do_something $x $y

GNU Parallel Examples

Page 13

 done
 done) | process_output

can be written like this:

 parallel do_something {1} {2} :::: xlist ylist | process_output

Nested for-loops like this:

 (for colour in red green blue ; do
 for size in S M L XL XXL ; do
 echo $colour $size
 done
 done) | sort

can be written like this:

 parallel echo {1} {2} ::: red green blue ::: S M L XL XXL | sort

EXAMPLE: Finding the lowest difference between files
diff is good for finding differences in text files. diff | wc -l
gives an indication of the size of the
difference. To find the
differences between all files in the current dir do:

 parallel --tag 'diff {1} {2} | wc -l' ::: * ::: * | sort -nk3

This way it is possible to see if some files are closer to other
files.

EXAMPLE: for-loops with column names
When doing multiple nested for-loops it can be easier to keep track of
the loop variable if is is named
instead of just having a number. Use --header : to let the first argument be an named alias for the

positional replacement string:

 parallel --header : echo {colour} {size} \
 ::: colour red green blue ::: size S M L XL XXL

This also works if the input file is a file with columns:

 cat addressbook.tsv | \
 parallel --colsep '\t' --header : echo {Name} {E-mail address}

EXAMPLE: All combinations in a list
GNU parallel makes all combinations when given two lists.

To make all combinations in a single list with unique values, you
repeat the list and use replacement
string {choose_k}:

 parallel --plus echo {choose_k} ::: A B C D ::: A B C D

 parallel --plus echo 2{2choose_k} 1{1choose_k} ::: A B C D ::: A B C D

{choose_k} works for any number of input sources:

 parallel --plus echo {choose_k} ::: A B C D ::: A B C D ::: A B C D

Where {choose_k} does not care about order, {uniq} cares about
order. It simply skips jobs where
values from different input sources
are the same:

GNU Parallel Examples

Page 14

 parallel --plus echo {uniq} ::: A B C ::: A B C ::: A B C
 parallel --plus echo {1uniq}+{2uniq}+{3uniq} \
 ::: A B C ::: A B C ::: A B C

The behaviour of {choose_k} is undefined, if the input values of each
source are different.

EXAMPLE: From a to b and b to c
Assume you have input like:

 aardvark
 babble
 cab
 dab
 each

and want to run combinations like:

 aardvark babble
 babble cab
 cab dab
 dab each

If the input is in the file in.txt:

 parallel echo {1} - {2} ::::+ <(head -n -1 in.txt) <(tail -n +2 in.txt)

If the input is in the array $a here are two solutions:

 seq $((${#a[@]}-1)) | \
 env_parallel --env a echo '${a[{=$_--=}]} - ${a[{}]}'
 parallel echo {1} - {2} ::: "${a[@]::${#a[@]}-1}" :::+ "${a[@]:1}"

EXAMPLE: Count the differences between all files in a dir
Using --results the results are saved in /tmp/diffcount*.

 parallel --results /tmp/diffcount "diff -U 0 {1} {2} | \
 tail -n +3 |grep -v '^@'|wc -l" ::: * ::: *

To see the difference between file A and file B look at the file
'/tmp/diffcount/1/A/2/B'.

EXAMPLE: Speeding up fast jobs
Starting a job on the local machine takes around 3-10 ms. This can be
a big overhead if the job takes
very few ms to run. Often you can
group small jobs together using -X which will make the overhead

less significant. Compare the speed of these:

 seq -w 0 9999 | parallel touch pict{}.jpg
 seq -w 0 9999 | parallel -X touch pict{}.jpg

If your program cannot take multiple arguments, then you can use GNU parallel to spawn multiple
GNU parallels:

 seq -w 0 9999999 | \
 parallel -j10 -q -I,, --pipe parallel -j0 touch pict{}.jpg

If -j0 normally spawns 252 jobs, then the above will try to spawn
2520 jobs. On a normal GNU/Linux
system you can spawn 32000 jobs using
this technique with no problems. To raise the 32000 jobs

GNU Parallel Examples

Page 15

limit raise
/proc/sys/kernel/pid_max to 4194303.

If you do not need GNU parallel to have control over each job (so
no need for --retries or --joblog or
similar), then it can be
even faster if you can generate the command lines and pipe those to a
shell.
So if you can do this:

 mygenerator | sh

Then that can be parallelized like this:

 mygenerator | parallel --pipe --block 10M sh

E.g.

 mygenerator() {
 seq 10000000 | perl -pe 'print "echo This is fast job number "';
 }
 mygenerator | parallel --pipe --block 10M sh

The overhead is 100000 times smaller namely around 100 nanoseconds per
job.

EXAMPLE: Using shell variables
When using shell variables you need to quote them correctly as they
may otherwise be interpreted by
the shell.

Notice the difference between:

 ARR=("My brother's 12\" records are worth <\$\$\$>"'!' Foo Bar)
 parallel echo ::: ${ARR[@]} # This is probably not what you want

and:

 ARR=("My brother's 12\" records are worth <\$\$\$>"'!' Foo Bar)
 parallel echo ::: "${ARR[@]}"

When using variables in the actual command that contains special
characters (e.g. space) you can
quote them using '"$VAR"' or using
"'s and -q:

 VAR="My brother's 12\" records are worth <\$\$\$>"
 parallel -q echo "$VAR" ::: '!'
 export VAR
 parallel echo '"$VAR"' ::: '!'

If $VAR does not contain ' then "'$VAR'" will also work
(and does not need export):

 VAR="My 12\" records are worth <\$\$\$>"
 parallel echo "'$VAR'" ::: '!'

If you use them in a function you just quote as you normally would do:

 VAR="My brother's 12\" records are worth <\$\$\$>"
 export VAR
 myfunc() { echo "$VAR" "$1"; }
 export -f myfunc
 parallel myfunc ::: '!'

GNU Parallel Examples

Page 16

EXAMPLE: Group output lines
When running jobs that output data, you often do not want the output
of multiple jobs to run together.
GNU parallel defaults to grouping
the output of each job, so the output is printed when the job

finishes. If you want full lines to be printed while the job is
running you can use --line-buffer. If you
want output to be
printed as soon as possible you can use -u.

Compare the output of:

 parallel wget --progress=dot --limit-rate=100k \
 https://ftpmirror.gnu.org/parallel/parallel-20{}0822.tar.bz2 \
 ::: {12..16}
 parallel --line-buffer wget --progress=dot --limit-rate=100k \
 https://ftpmirror.gnu.org/parallel/parallel-20{}0822.tar.bz2 \
 ::: {12..16}
 parallel --latest-line wget --progress=dot --limit-rate=100k \
 https://ftpmirror.gnu.org/parallel/parallel-20{}0822.tar.bz2 \
 ::: {12..16}
 parallel -u wget --progress=dot --limit-rate=100k \
 https://ftpmirror.gnu.org/parallel/parallel-20{}0822.tar.bz2 \
 ::: {12..16}

EXAMPLE: Tag output lines
GNU parallel groups the output lines, but it can be hard to see
where the different jobs begin. --tag
prepends the argument to make
that more visible:

 parallel --tag wget --limit-rate=100k \
 https://ftpmirror.gnu.org/parallel/parallel-20{}0822.tar.bz2 \
 ::: {12..16}

--tag works with --line-buffer but not with -u:

 parallel --tag --line-buffer wget --limit-rate=100k \
 https://ftpmirror.gnu.org/parallel/parallel-20{}0822.tar.bz2 \
 ::: {12..16}

Check the uptime of the servers in ~/.parallel/sshloginfile:

 parallel --tag -S .. --nonall uptime

EXAMPLE: Colorize output
Give each job a new color. Most terminals support ANSI colors with the
escape code "\033[30;3Xm"
where 0 <= X <= 7:

 seq 10 | \
 parallel --tagstring '\033[30;3{=$_=++$::color%8=}m' seq {}
 parallel --rpl '{color} $_="\033[30;3".(++$::color%8)."m"' \
 --tagstring {color} seq {} ::: {1..10}

To get rid of the initial \t (which comes from --tagstring):

 ... | perl -pe 's/\t//'

EXAMPLE: Keep order of output same as order of input
Normally the output of a job will be printed as soon as it
completes. Sometimes you want the order of
the output to remain the
same as the order of the input. This is often important, if the output
is used as
input for another system. -k will make sure the order of
output will be in the same order as input even

GNU Parallel Examples

Page 17

if later jobs end
before earlier jobs.

Append a string to every line in a text file:

 cat textfile | parallel -k echo {} append_string

If you remove -k some of the lines may come out in the wrong order.

Another example is traceroute:

 parallel traceroute ::: qubes-os.org debian.org freenetproject.org

will give traceroute of qubes-os.org, debian.org and
freenetproject.org, but it will be sorted according
to which job
completed first.

To keep the order the same as input run:

 parallel -k traceroute ::: qubes-os.org debian.org freenetproject.org

This will make sure the traceroute to qubes-os.org will be printed
first.

A bit more complex example is downloading a huge file in chunks in
parallel: Some internet
connections will deliver more data if you
download files in parallel. For downloading files in parallel
see:
"EXAMPLE: Download 10 images for each of the past 30 days". But if you
are downloading a big
file you can download the file in chunks in
parallel.

To download byte 10000000-19999999 you can use curl:

 curl -r 10000000-19999999 https://example.com/the/big/file >file.part

To download a 1 GB file we need 100 10MB chunks downloaded and
combined in the correct order.

 seq 0 99 | parallel -k curl -r \
 {}0000000-{}9999999 https://example.com/the/big/file > file

EXAMPLE: Keep order, but make job 1 output fast
If you want the output of job 1 unbuffered, but otherwise keep the
order, you can do this:

 doit() {
 echo "$@" ERR >&2
 echo "$@" out
 sleep 0.$1
 echo "$@" ERR >&2
 echo "$@" out
 }
 export -f doit
 parallel -k -u doit {= 'seq() > 1 and $opt::ungroup = 0' =} ::: 9 1 2 3

It will output job 1 with less overhead.

EXAMPLE: Parallel grep
grep -r greps recursively through directories. GNU parallel can
often speed this up.

 find . -type f | parallel -k -j150% -n 1000 -m grep -H -n STRING {}

This will run 1.5 job per CPU, and give 1000 arguments to grep.

There are situations where the above will be slower than grep -r:

GNU Parallel Examples

Page 18

If data is already in RAM. The overhead of starting jobs and buffering
output may outweigh the
benefit of running in parallel.

If the files are big. If a file cannot be read in a single seek, the
disk may start thrashing.

The speedup is caused by two factors:

On rotating harddisks small files often require a seek for each
file. By searching for more files in
parallel, the arm may pass
another wanted file on its way.

NVMe drives often perform better by having multiple command running in
parallel.

EXAMPLE: Grepping n lines for m regular expressions.
The simplest solution to grep a big file for a lot of regexps is:

 grep -f regexps.txt bigfile

Or if the regexps are fixed strings:

 grep -F -f regexps.txt bigfile

There are 3 limiting factors: CPU, RAM, and disk I/O.

RAM is easy to measure: If the grep process takes up most of your
free memory (e.g. when running
top), then RAM is a limiting factor.

CPU is also easy to measure: If the grep takes >90% CPU in top,
then the CPU is a limiting factor,
and parallelization will speed this
up.

It is harder to see if disk I/O is the limiting factor, and depending
on the disk system it may be faster or
slower to parallelize. The only
way to know for certain is to test and measure.

Limiting factor: RAM

The normal grep -f regexps.txt bigfile works no matter the size of
bigfile, but if regexps.txt is so big it
cannot fit into memory, then
you need to split this.

grep -F takes around 100 bytes of RAM and grep takes about 500
bytes of RAM per 1 byte of
regexp. So if regexps.txt is 1% of your
RAM, then it may be too big.

If you can convert your regexps into fixed strings do that. E.g. if
the lines you are looking for in bigfile
all looks like:

 ID1 foo bar baz Identifier1 quux
 fubar ID2 foo bar baz Identifier2

then your regexps.txt can be converted from:

 ID1.*Identifier1
 ID2.*Identifier2

into:

 ID1 foo bar baz Identifier1
 ID2 foo bar baz Identifier2

This way you can use grep -F which takes around 80% less memory and
is much faster.

If it still does not fit in memory you can do this:

 parallel --pipe-part -a regexps.txt --block 1M grep -F -f - -n bigfile |
\

GNU Parallel Examples

Page 19

 sort -un | perl -pe 's/^\d+://'

The 1M should be your free memory divided by the number of CPU threads and
divided by 200 for
grep -F and by 1000 for normal grep. On
GNU/Linux you can do:

 free=$(awk '/^((Swap)?Cached|MemFree|Buffers):/ { sum += $2 }
 END { print sum }' /proc/meminfo)
 percpu=$((free / 200 / $(parallel --number-of-threads)))k

 parallel --pipe-part -a regexps.txt --block $percpu --compress \
 grep -F -f - -n bigfile | \
 sort -un | perl -pe 's/^\d+://'

If you can live with duplicated lines and wrong order, it is faster to do:

 parallel --pipe-part -a regexps.txt --block $percpu --compress \
 grep -F -f - bigfile

Limiting factor: CPU

If the CPU is the limiting factor parallelization should be done on
the regexps:

 cat regexps.txt | parallel --pipe -L1000 --round-robin --compress \
 grep -f - -n bigfile | \
 sort -un | perl -pe 's/^\d+://'

The command will start one grep per CPU and read bigfile one
time per CPU, but as that is done in
parallel, all reads except the
first will be cached in RAM. Depending on the size of regexps.txt it
may
be faster to use --block 10m instead of -L1000.

Some storage systems perform better when reading multiple chunks in
parallel. This is true for some
RAID systems and for some network file
systems. To parallelize the reading of bigfile:

 parallel --pipe-part --block 100M -a bigfile -k --compress \
 grep -f regexps.txt

This will split bigfile into 100MB chunks and run grep on each of
these chunks. To parallelize both
reading of bigfile and regexps.txt
combine the two using --cat:

 parallel --pipe-part --block 100M -a bigfile --cat cat regexps.txt \
 \| parallel --pipe -L1000 --round-robin grep -f - {}

If a line matches multiple regexps, the line may be duplicated.

Bigger problem

If the problem is too big to be solved by this, you are probably ready
for Lucene.

EXAMPLE: Using remote computers
To run commands on a remote computer SSH needs to be set up and you
must be able to login
without entering a password (The commands ssh-copy-id, ssh-agent, and sshpass may help you
do that).

If you need to login to a whole cluster, you typically do not want to
accept the host key for every host.
You want to accept them the first
time and be warned if they are ever changed. To do that:

 # Add the servers to the sshloginfile
 (echo servera; echo serverb) > .parallel/my_cluster
 # Make sure .ssh/config exist

GNU Parallel Examples

Page 20

 touch .ssh/config
 cp .ssh/config .ssh/config.backup
 # Disable StrictHostKeyChecking temporarily
 (echo 'Host *'; echo StrictHostKeyChecking no) >> .ssh/config
 parallel --slf my_cluster --nonall true
 # Remove the disabling of StrictHostKeyChecking
 mv .ssh/config.backup .ssh/config

The servers in .parallel/my_cluster are now added in .ssh/known_hosts.

To run echo on server.example.com:

 seq 10 | parallel --sshlogin server.example.com echo

To run commands on more than one remote computer run:

 seq 10 | parallel --sshlogin s1.example.com,s2.example.net echo

Or:

 seq 10 | parallel --sshlogin server.example.com \
 --sshlogin server2.example.net echo

If the login username is foo on server2.example.net use:

 seq 10 | parallel --sshlogin server.example.com \
 --sshlogin foo@server2.example.net echo

If your list of hosts is server1-88.example.net with login foo:

 seq 10 | parallel -Sfoo@server{1..88}.example.net echo

To distribute the commands to a list of computers, make a file mycomputers with all the computers:

 server.example.com
 foo@server2.example.com
 server3.example.com

Then run:

 seq 10 | parallel --sshloginfile mycomputers echo

To include the local computer add the special sshlogin ':' to the list:

 server.example.com
 foo@server2.example.com
 server3.example.com
 :

GNU parallel will try to determine the number of CPUs on each of
the remote computers, and run one
job per CPU - even if the remote
computers do not have the same number of CPUs.

If the number of CPUs on the remote computers is not identified
correctly the number of CPUs can be
added in front. Here the computer
has 8 CPUs.

 seq 10 | parallel --sshlogin 8/server.example.com echo

GNU Parallel Examples

Page 21

EXAMPLE: Transferring of files
To recompress gzipped files with bzip2 using a remote computer run:

 find logs/ -name '*.gz' | \
 parallel --sshlogin server.example.com \
 --transfer "zcat {} | bzip2 -9 >{.}.bz2"

This will list the .gz-files in the logs directory and all
directories below. Then it will transfer the files to
server.example.com to the corresponding directory in $HOME/logs. On server.example.com the file
will be recompressed
using zcat and bzip2 resulting in the corresponding file with .gz replaced with
.bz2.

If you want the resulting bz2-file to be transferred back to the local
computer add --return {.}.bz2:

 find logs/ -name '*.gz' | \
 parallel --sshlogin server.example.com \
 --transfer --return {.}.bz2 "zcat {} | bzip2 -9 >{.}.bz2"

After the recompressing is done the .bz2-file is transferred back to
the local computer and put next to
the original .gz-file.

If you want to delete the transferred files on the remote computer add --cleanup. This will remove both
the file transferred to the remote
computer and the files transferred from the remote computer:

 find logs/ -name '*.gz' | \
 parallel --sshlogin server.example.com \
 --transfer --return {.}.bz2 --cleanup "zcat {} | bzip2 -9 >{.}.bz2"

If you want run on several computers add the computers to --sshlogin
either using ',' or multiple
--sshlogin:

 find logs/ -name '*.gz' | \
 parallel --sshlogin server.example.com,server2.example.com \
 --sshlogin server3.example.com \
 --transfer --return {.}.bz2 --cleanup "zcat {} | bzip2 -9 >{.}.bz2"

You can add the local computer using --sshlogin :. This will disable the
removing and transferring for
the local computer only:

 find logs/ -name '*.gz' | \
 parallel --sshlogin server.example.com,server2.example.com \
 --sshlogin server3.example.com \
 --sshlogin : \
 --transfer --return {.}.bz2 --cleanup "zcat {} | bzip2 -9 >{.}.bz2"

Often --transfer, --return and --cleanup are used together. They can be
shortened to --trc:

 find logs/ -name '*.gz' | \
 parallel --sshlogin server.example.com,server2.example.com \
 --sshlogin server3.example.com \
 --sshlogin : \
 --trc {.}.bz2 "zcat {} | bzip2 -9 >{.}.bz2"

With the file mycomputers containing the list of computers it becomes:

 find logs/ -name '*.gz' | parallel --sshloginfile mycomputers \
 --trc {.}.bz2 "zcat {} | bzip2 -9 >{.}.bz2"

GNU Parallel Examples

Page 22

If the file ~/.parallel/sshloginfile contains the list of computers
the special short hand -S .. can be used:

 find logs/ -name '*.gz' | parallel -S .. \
 --trc {.}.bz2 "zcat {} | bzip2 -9 >{.}.bz2"

EXAMPLE: Advanced file transfer
Assume you have files in in/*, want them processed on server,
and transferred back into /other/dir:

 parallel -S server --trc /other/dir/./{/}.out \
 cp {/} {/}.out ::: in/./*

EXAMPLE: Distributing work to local and remote computers
Convert *.mp3 to *.ogg running one process per CPU on local computer
and server2:

 parallel --trc {.}.ogg -S server2,: \
 'mpg321 -w - {} | oggenc -q0 - -o {.}.ogg' ::: *.mp3

EXAMPLE: Running the same command on remote computers
To run the command uptime on remote computers you can do:

 parallel --tag --nonall -S server1,server2 uptime

--nonall reads no arguments. If you have a list of jobs you want
to run on each computer you can do:

 parallel --tag --onall -S server1,server2 echo ::: 1 2 3

Remove --tag if you do not want the sshlogin added before the
output.

If you have a lot of hosts use '-j0' to access more hosts in parallel.

EXAMPLE: Running 'sudo' on remote computers
Put the password into passwordfile then run:

 parallel --ssh 'cat passwordfile | ssh' --nonall \
 -S user@server1,user@server2 sudo -S ls -l /root

EXAMPLE: Using remote computers behind NAT wall
If the workers are behind a NAT wall, you need some trickery to get to
them.

If you can ssh to a jumphost, and reach the workers from there,
then the obvious solution would be
this, but it does not work:

 parallel --ssh 'ssh jumphost ssh' -S host1 echo ::: DOES NOT WORK

It does not work because the command is dequoted by ssh twice where
as GNU parallel only
expects it to be dequoted once.

You can use a bash function and have GNU parallel quote the command:

 jumpssh() { ssh -A jumphost ssh $(parallel --shellquote ::: "$@"); }
 export -f jumpssh
 parallel --ssh jumpssh -S host1 echo ::: this works

Or you can instead put this in ~/.ssh/config:

 Host host1 host2 host3
 ProxyCommand ssh jumphost.domain nc -w 1 %h 22

GNU Parallel Examples

Page 23

It requires nc(netcat) to be installed on jumphost. With this you
can simply:

 parallel -S host1,host2,host3 echo ::: This does work

No jumphost, but port forwards

If there is no jumphost but each server has port 22 forwarded from the
firewall (e.g. the firewall's port
22001 = port 22 on host1, 22002 = host2,
22003 = host3) then you can use ~/.ssh/config:

 Host host1.v
 Port 22001
 Host host2.v
 Port 22002
 Host host3.v
 Port 22003
 Host *.v
 Hostname firewall

And then use host{1..3}.v as normal hosts:

 parallel -S host1.v,host2.v,host3.v echo ::: a b c

No jumphost, no port forwards

If ports cannot be forwarded, you need some sort of VPN to traverse
the NAT-wall. TOR is one
options for that, as it is very easy to get
working.

You need to install TOR and setup a hidden service. In torrc put:

 HiddenServiceDir /var/lib/tor/hidden_service/
 HiddenServicePort 22 127.0.0.1:22

Then start TOR: /etc/init.d/tor restart

The TOR hostname is now in /var/lib/tor/hidden_service/hostname and
is something similar to
izjafdceobowklhz.onion. Now you simply
prepend torsocks to ssh:

 parallel --ssh 'torsocks ssh' -S izjafdceobowklhz.onion \
 -S zfcdaeiojoklbwhz.onion,auclucjzobowklhi.onion echo ::: a b c

If not all hosts are accessible through TOR:

 parallel -S 'torsocks ssh izjafdceobowklhz.onion,host2,host3' \
 echo ::: a b c

See more ssh tricks on https://en.wikibooks.org/wiki/OpenSSH/Cookbook/Proxies_and_Jump_Hosts

EXAMPLE: Use sshpass with ssh
If you cannot use passwordless login, you may be able to use sshpass:

 seq 10 | parallel -S user-with-password:MyPassword@server echo

or:

 export SSHPASS='MyPa$$w0rd'
 seq 10 | parallel -S user-with-password:@server echo

GNU Parallel Examples

Page 24

EXAMPLE: Use outrun instead of ssh
outrun lets you run a command on a remote server. outrun sets up
a connection to access files at
the source server, and automatically
transfers files. outrun must be installed on the remote system.

You can use outrun in an sshlogin this way:

 parallel -S 'outrun user@server' command

or:

 parallel --ssh outrun -S server command

EXAMPLE: Slurm cluster
The Slurm Workload Manager is used in many clusters.

Here is a simple example of using GNU parallel to call srun:

 #!/bin/bash

 #SBATCH --time 00:02:00
 #SBATCH --ntasks=4
 #SBATCH --job-name GnuParallelDemo
 #SBATCH --output gnuparallel.out

 module purge
 module load gnu_parallel

 my_parallel="parallel --delay .2 -j $SLURM_NTASKS"
 my_srun="srun --export=all --exclusive -n1"
 my_srun="$my_srun --cpus-per-task=1 --cpu-bind=cores"
 $my_parallel "$my_srun" echo This is job {} ::: {1..20}

EXAMPLE: Parallelizing rsync
rsync is a great tool, but sometimes it will not fill up the
available bandwidth. Running multiple rsync
in parallel can fix
this.

 cd src-dir
 find . -type f |
 parallel -j10 -X rsync -zR -Ha ./{} fooserver:/dest-dir/

Adjust -j10 until you find the optimal number.

rsync -R will create the needed subdirectories, so all files are
not put into a single dir. The ./ is
needed so the resulting command
looks similar to:

 rsync -zR ././sub/dir/file fooserver:/dest-dir/

The /./ is what rsync -R works on.

If you are unable to push data, but need to pull them and the files
are called digits.png (e.g.
000000.png) you might be able to do:

 seq -w 0 99 | parallel rsync -Havessh fooserver:src/*{}.png destdir/

GNU Parallel Examples

Page 25

EXAMPLE: Use multiple inputs in one command
Copy files like foo.es.ext to foo.ext:

 ls *.es.* | perl -pe 'print; s/\.es//' | parallel -N2 cp {1} {2}

The perl command spits out 2 lines for each input. GNU parallel
takes 2 inputs (using -N2) and
replaces {1} and {2} with the inputs.

Count in binary:

 parallel -k echo ::: 0 1 ::: 0 1 ::: 0 1 ::: 0 1 ::: 0 1 ::: 0 1

Print the number on the opposing sides of a six sided die:

 parallel --link -a <(seq 6) -a <(seq 6 -1 1) echo
 parallel --link echo :::: <(seq 6) <(seq 6 -1 1)

Convert files from all subdirs to PNG-files with consecutive numbers
(useful for making input PNG's
for ffmpeg):

 parallel --link -a <(find . -type f | sort) \
 -a <(seq $(find . -type f|wc -l)) convert {1} {2}.png

Alternative version:

 find . -type f | sort | parallel convert {} {#}.png

EXAMPLE: Use a table as input
Content of table_file.tsv:

 foo<TAB>bar
 baz <TAB> quux

To run:

 cmd -o bar -i foo
 cmd -o quux -i baz

you can run:

 parallel -a table_file.tsv --colsep '\t' cmd -o {2} -i {1}

Note: The default for GNU parallel is to remove the spaces around
the columns. To keep the spaces:

 parallel -a table_file.tsv --trim n --colsep '\t' cmd -o {2} -i {1}

EXAMPLE: Output to database
GNU parallel can output to a database table and a CSV-file:

 dburl=csv:///%2Ftmp%2Fmydir
 dbtableurl=$dburl/mytable.csv
 parallel --sqlandworker $dbtableurl seq ::: {1..10}

It is rather slow and takes up a lot of CPU time because GNU parallel parses the whole CSV file for
each update.

A better approach is to use an SQLite-base and then convert that to CSV:

GNU Parallel Examples

Page 26

 dburl=sqlite3:///%2Ftmp%2Fmy.sqlite
 dbtableurl=$dburl/mytable
 parallel --sqlandworker $dbtableurl seq ::: {1..10}
 sql $dburl '.headers on' '.mode csv' 'SELECT * FROM mytable;'

This takes around a second per job.

If you have access to a real database system, such as PostgreSQL, it
is even faster:

 dburl=pg://user:pass@host/mydb
 dbtableurl=$dburl/mytable
 parallel --sqlandworker $dbtableurl seq ::: {1..10}
 sql $dburl \
 "COPY (SELECT * FROM mytable) TO stdout DELIMITER ',' CSV HEADER;"

Or MySQL:

 dburl=mysql://user:pass@host/mydb
 dbtableurl=$dburl/mytable
 parallel --sqlandworker $dbtableurl seq ::: {1..10}
 sql -p -B $dburl "SELECT * FROM mytable;" > mytable.tsv
 perl -pe 's/"/""/g; s/\t/","/g; s/^/"/; s/$/"/;
 %s=("\\" => "\\", "t" => "\t", "n" => "\n");
 s/\\([\\tn])/$s{$1}/g;' mytable.tsv

EXAMPLE: Output to CSV-file for R
If you have no need for the advanced job distribution control that a
database provides, but you simply
want output into a CSV file that you
can read into R or LibreCalc, then you can use --results:

 parallel --results my.csv seq ::: 10 20 30
 R
 > mydf <- read.csv("my.csv");
 > print(mydf[2,])
 > write(as.character(mydf[2,c("Stdout")]),'')

EXAMPLE: Use XML as input
The show Aflyttet on Radio 24syv publishes an RSS feed with their audio
podcasts on:
http://arkiv.radio24syv.dk/audiopodcast/channel/4466232

Using xpath you can extract the URLs for 2019 and download them
using GNU parallel:

 wget -O - http://arkiv.radio24syv.dk/audiopodcast/channel/4466232 | \
 xpath -e "//pubDate[contains(text(),'2019')]/../enclosure/@url" | \
 parallel -u wget '{= s/ url="//; s/"//; =}'

EXAMPLE: Run the same command 10 times
If you want to run the same command with the same arguments 10 times
in parallel you can do:

 seq 10 | parallel -n0 my_command my_args

EXAMPLE: Working as cat | sh. Resource inexpensive jobs and evaluation
GNU parallel can work similar to cat | sh.

A resource inexpensive job is a job that takes very little CPU, disk
I/O and network I/O. Ping is an
example of a resource inexpensive
job. wget is too - if the webpages are small.

The content of the file jobs_to_run:

GNU Parallel Examples

Page 27

 ping -c 1 10.0.0.1
 wget http://example.com/status.cgi?ip=10.0.0.1
 ping -c 1 10.0.0.2
 wget http://example.com/status.cgi?ip=10.0.0.2
 ...
 ping -c 1 10.0.0.255
 wget http://example.com/status.cgi?ip=10.0.0.255

To run 100 processes simultaneously do:

 parallel -j 100 < jobs_to_run

As there is not a command the jobs will be evaluated by the shell.

EXAMPLE: Call program with FASTA sequence
FASTA files have the format:

 >Sequence name1
 sequence
 sequence continued
 >Sequence name2
 sequence
 sequence continued
 more sequence

To call myprog with the sequence as argument run:

 cat file.fasta |
 parallel --pipe -N1 --recstart '>' --rrs \
 'read a; echo Name: "$a"; myprog $(tr -d "\n")'

EXAMPLE: Call program with interleaved FASTQ records
FASTQ files have the format:

 @M10991:61:000000000-A7EML:1:1101:14011:1001 1:N:0:28
 CTCCTAGGTCGGCATGATGGGGGAAGGAGAGCATGGGAAGAAATGAGAGAGTAGCAAGG
 +
 #8BCCGGGGGFEFECFGGGGGGGGG@;FFGGGEG@FF<EE<@FFC,CEGCCGGFF<FGF

Interleaved FASTQ starts with a line like these:

 @HWUSI-EAS100R:6:73:941:1973#0/1
 @EAS139:136:FC706VJ:2:2104:15343:197393 1:Y:18:ATCACG
 @EAS139:136:FC706VJ:2:2104:15343:197393 1:N:18:1

where '/1' and ' 1:' determines this is read 1.

This will cut big.fq into one chunk per CPU thread and pass it on
stdin (standard input) to the program
fastq-reader:

 parallel --pipe-part -a big.fq --block -1 --regexp \
 --recend '\n' --recstart '@.*(/1| 1:.*)\n[A-Za-z\n\.~]' \
 fastq-reader

GNU Parallel Examples

Page 28

EXAMPLE: Processing a big file using more CPUs
To process a big file or some output you can use --pipe to split up
the data into blocks and pipe the
blocks into the processing program.

If the program is gzip -9 you can do:

 cat bigfile | parallel --pipe --recend '' -k gzip -9 > bigfile.gz

This will split bigfile into blocks of 1 MB and pass that to gzip
-9 in parallel. One gzip will be run per
CPU. The output of gzip
-9 will be kept in order and saved to bigfile.gz

gzip works fine if the output is appended, but some processing does
not work like that - for example
sorting. For this GNU parallel can
put the output of each command into a file. This will sort a big file
in
parallel:

 cat bigfile | parallel --pipe --files sort |\
 parallel -Xj1 sort -m {} ';' rm {} >bigfile.sort

Here bigfile is split into blocks of around 1MB, each block ending
in '\n' (which is the default for
--recend). Each block is passed
to sort and the output from sort is saved into files. These
files are
passed to the second parallel that runs sort -m on the
files before it removes the files. The output is
saved to bigfile.sort.

GNU parallel's --pipe maxes out at around 100 MB/s because every
byte has to be copied through
GNU parallel. But if bigfile is a
real (seekable) file GNU parallel can by-pass the copying and send

the parts directly to the program:

 parallel --pipe-part --block 100m -a bigfile --files sort |\
 parallel -Xj1 sort -m {} ';' rm {} >bigfile.sort

EXAMPLE: Grouping input lines
When processing with --pipe you may have lines grouped by a
value. Here is my.csv:

 Transaction Customer Item
	 1	 a	 53
	 2	 b	 65
	 3	 b	 82
	 4	 c	 96
	 5	 c	 67
	 6	 c	 13
	 7	 d	 90
	 8	 d	 43
	 9	 d	 91
	 10	 d	 84
	 11	 e	 72
	 12	 e	 102
	 13	 e	 63
	 14	 e	 56
	 15	 e	 74

Let us assume you want GNU parallel to process each customer. In
other words: You want all the
transactions for a single customer to be
treated as a single record.

To do this we preprocess the data with a program that inserts a record
separator before each
customer (column 2 = $F[1]). Here we first make
a 50 character random string, which we then use as
the separator:

 sep=`perl -e 'print map { ("a".."z","A".."Z")[rand(52)] } (1..50);'`

GNU Parallel Examples

Page 29

 cat my.csv | \
 perl -ape '$F[1] ne $l and print "'$sep'"; $l = $F[1]' | \
 parallel --recend $sep --rrs --pipe -N1 wc

If your program can process multiple customers replace -N1 with a
reasonable --blocksize.

EXAMPLE: Running more than 250 jobs workaround
If you need to run a massive amount of jobs in parallel, then you will
likely hit the filehandle limit which
is often around 250 jobs. If you
are super user you can raise the limit in /etc/security/limits.conf
but
you can also use this workaround. The filehandle limit is per
process. That means that if you just
spawn more GNU parallels then
each of them can run 250 jobs. This will spawn up to 2500 jobs:

 cat myinput |\
 parallel --pipe -N 50 --round-robin -j50 parallel -j50 your_prg

This will spawn up to 62500 jobs (use with caution - you need 64 GB
RAM to do this, and you may
need to increase /proc/sys/kernel/pid_max):

 cat myinput |\
 parallel --pipe -N 250 --round-robin -j250 parallel -j250 your_prg

EXAMPLE: Working as mutex and counting semaphore
The command sem is an alias for parallel --semaphore.

A counting semaphore will allow a given number of jobs to be started
in the background. When the
number of jobs are running in the
background, GNU sem will wait for one of these to complete before

starting another command. sem --wait will wait for all jobs to
complete.

Run 10 jobs concurrently in the background:

 for i in *.log ; do
 echo $i
 sem -j10 gzip $i ";" echo done
 done
 sem --wait

A mutex is a counting semaphore allowing only one job to run. This
will edit the file myfile and
prepends the file with lines with the
numbers 1 to 3.

 seq 3 | parallel sem sed -i -e '1i{}' myfile

As myfile can be very big it is important only one process edits
the file at the same time.

Name the semaphore to have multiple different semaphores active at the
same time:

 seq 3 | parallel sem --id mymutex sed -i -e '1i{}' myfile

EXAMPLE: Mutex for a script
Assume a script is called from cron or from a web service, but only
one instance can be run at a time.
With sem and --shebang-wrap
the script can be made to wait for other instances to finish. Here in
bash:

 #!/usr/bin/sem --shebang-wrap -u --id $0 --fg /bin/bash

 echo This will run
 sleep 5
 echo exclusively

GNU Parallel Examples

Page 30

Here perl:

 #!/usr/bin/sem --shebang-wrap -u --id $0 --fg /usr/bin/perl

 print "This will run ";
 sleep 5;
 print "exclusively\n";

Here python:

 #!/usr/local/bin/sem --shebang-wrap -u --id $0 --fg /usr/bin/python

 import time
 print "This will run ";
 time.sleep(5)
 print "exclusively";

EXAMPLE: Start editor with file names from stdin (standard input)
You can use GNU parallel to start interactive programs like emacs or vi:

 cat filelist | parallel --tty -X emacs
 cat filelist | parallel --tty -X vi

If there are more files than will fit on a single command line, the
editor will be started again with the
remaining files.

EXAMPLE: Running sudo
sudo requires a password to run a command as root. It caches the
access, so you only need to enter
the password again if you have not
used sudo for a while.

The command:

 parallel sudo echo ::: This is a bad idea

is no good, as you would be prompted for the sudo password for each of
the jobs. Instead do:

 sudo parallel echo ::: This is a good idea

This way you only have to enter the sudo password once.

EXAMPLE: Run ping in parallel
ping prints out statistics when killed with CTRL-C.

Unfortunately, CTRL-C will also normally kill GNU parallel.

But by using --open-tty and ignoring SIGINT you can get the wanted effect:

 parallel -j0 --open-tty --lb --tag ping '{= $SIG{INT}=sub {} =}' \
 ::: 1.1.1.1 8.8.8.8 9.9.9.9 21.21.21.21 80.80.80.80 88.88.88.88

--open-tty will make the pings receive SIGINT (from CTRL-C).
CTRL-C will not kill GNU parallel, so
that will only exit after ping is done.

EXAMPLE: GNU Parallel as queue system/batch manager
GNU parallel can work as a simple job queue system or batch manager.
The idea is to put the jobs
into a file and have GNU parallel read
from that continuously. As GNU parallel will stop at end of file
we
use tail to continue reading:

GNU Parallel Examples

Page 31

 true >jobqueue; tail -n+0 -f jobqueue | parallel

To submit your jobs to the queue:

 echo my_command my_arg >> jobqueue

You can of course use -S to distribute the jobs to remote
computers:

 true >jobqueue; tail -n+0 -f jobqueue | parallel -S ..

Output only will be printed when reading the next input after a job
has finished: So you need to submit
a job after the first has finished
to see the output from the first job.

If you keep this running for a long time, jobqueue will grow. A way of
removing the jobs already run is
by making GNU parallel stop when
it hits a special value and then restart. To use --eof to make GNU
parallel exit, tail also needs to be forced to exit:

 true >jobqueue;
 while true; do
 tail -n+0 -f jobqueue |
 (parallel -E StOpHeRe -S ..; echo GNU Parallel is now done;
 perl -e 'while(<>){/StOpHeRe/ and last};print <>' jobqueue > j2;
 (seq 1000 >> jobqueue &);
 echo Done appending dummy data forcing tail to exit)
 echo tail exited;
 mv j2 jobqueue
 done

In some cases you can run on more CPUs and computers during the night:

 # Day time
 echo 50% > jobfile
 cp day_server_list ~/.parallel/sshloginfile
 # Night time
 echo 100% > jobfile
 cp night_server_list ~/.parallel/sshloginfile
 tail -n+0 -f jobqueue | parallel --jobs jobfile -S ..

GNU parallel discovers if jobfile or ~/.parallel/sshloginfile
changes.

EXAMPLE: GNU Parallel as dir processor
If you have a dir in which users drop files that needs to be processed
you can do this on GNU/Linux
(If you know what inotifywait is
called on other platforms file a bug report):

 inotifywait -qmre MOVED_TO -e CLOSE_WRITE --format %w%f my_dir |\
 parallel -u echo

This will run the command echo on each file put into my_dir or
subdirs of my_dir.

You can of course use -S to distribute the jobs to remote
computers:

 inotifywait -qmre MOVED_TO -e CLOSE_WRITE --format %w%f my_dir |\
 parallel -S .. -u echo

If the files to be processed are in a tar file then unpacking one file
and processing it immediately may
be faster than first unpacking all
files. Set up the dir processor as above and unpack into the dir.

Using GNU parallel as dir processor has the same limitations as
using GNU parallel as queue

GNU Parallel Examples

Page 32

system/batch manager.

EXAMPLE: Locate the missing package
If you have downloaded source and tried compiling it, you may have seen:

 $./configure
 [...]
 checking for something.h... no
 configure: error: "libsomething not found"

Often it is not obvious which package you should install to get that
file. Debian has `apt-file` to search
for a file. `tracefile` from
https://codeberg.org/tange/tangetools can tell which files a program
tried to
access. In this case we are interested in one of the last
files:

 $ tracefile -un ./configure | tail | parallel -j0 apt-file search

AUTHOR
When using GNU parallel for a publication please cite:

O. Tange (2011): GNU Parallel - The Command-Line Power Tool, ;login:
The USENIX Magazine,
February 2011:42-47.

This helps funding further development; and it won't cost you a cent.
If you pay 10000 EUR you
should feel free to use GNU Parallel without citing.

Copyright (C) 2007-10-18 Ole Tange, http://ole.tange.dk

Copyright (C) 2008-2010 Ole Tange, http://ole.tange.dk

Copyright (C) 2010-2026 Ole Tange, http://ole.tange.dk and Free
Software Foundation, Inc.

Parts of the manual concerning xargs compatibility is inspired by
the manual of xargs from GNU
findutils 4.4.2.

LICENSE
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU
General Public License as published by
the Free Software Foundation; either version 3 of the
License, or
at your option any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without
even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program. If not,
see <https://www.gnu.org/licenses/>.

Documentation license I
Permission is granted to copy, distribute and/or modify this
documentation under the terms of the
GNU Free Documentation License,
Version 1.3 or any later version published by the Free Software

Foundation; with no Invariant Sections, with no Front-Cover Texts, and
with no Back-Cover Texts. A
copy of the license is included in the
file LICENSES/GFDL-1.3-or-later.txt.

Documentation license II
You are free:

to Share

to copy, distribute and transmit the work

to Remix

GNU Parallel Examples

Page 33

to adapt the work

Under the following conditions:

Attribution

You must attribute the work in the manner specified by the author or
licensor (but not
in any way that suggests that they endorse you or
your use of the work).

Share Alike

If you alter, transform, or build upon this work, you may distribute
the resulting work
only under the same, similar or a compatible
license.

With the understanding that:

Waiver

Any of the above conditions can be waived if you get permission from
the copyright
holder.

Public Domain

Where the work or any of its elements is in the public domain under
applicable law,
that status is in no way affected by the license.

Other Rights

In no way are any of the following rights affected by the license:

Your fair dealing or fair use rights, or other applicable
copyright exceptions and
limitations;

The author's moral rights;

Rights other persons may have either in the work itself or in
how the work is
used, such as publicity or privacy rights.

Notice

For any reuse or distribution, you must make clear to others the
license terms of this
work.

A copy of the full license is included in the file as
LICENCES/CC-BY-SA-4.0.txt

SEE ALSO
parallel(1), parallel_tutorial(7), env_parallel(1), parset(1), parsort(1), parallel_alternatives(7),
parallel_design(7), niceload(1), sql(1), ssh(1), ssh-agent(1), sshpass(1), ssh-copy-id(1), rsync
(1)

