
Autoconf
Creating Automatic Configuration Scripts

for version 2.72, 4 December 2023

David MacKenzie
Ben Elliston
Akim Demaille

This manual (4 December 2023) is for GNU Autoconf (version 2.72), a package for creating
scripts to configure source code packages using templates and an M4 macro package.

Copyright c© 1992–1996, 1998–2017, 2020–2023 Free Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document under
the terms of the GNU Free Documentation License, Version 1.3 or any later
version published by the Free Software Foundation; with no Invariant Sections,
no Front-Cover texts, and no Back-Cover Texts. A copy of the license is included
in the section entitled “GNU Free Documentation License.”

i

Table of Contents

1 Introduction . 1

2 The GNU Build System . 3
2.1 Automake . 3
2.2 Gnulib . 3
2.3 Libtool . 4
2.4 Pointers . 4

3 Making configure Scripts . 7
3.1 Writing configure.ac . 8

3.1.1 A Shell Script Compiler . 8
3.1.2 The Autoconf Language . 9
3.1.3 Standard configure.ac Layout . 11

3.2 Using autoscan to Create configure.ac . 12
3.3 Using ifnames to List Conditionals . 13
3.4 Using autoconf to Create configure . 13
3.5 Using autoreconf to Update configure Scripts 15

4 Initialization and Output Files 19
4.1 Initializing configure . 19
4.2 Dealing with Autoconf versions . 21
4.3 Notices in configure . 21
4.4 Configure Input: Source Code, Macros, and Auxiliary Files 22
4.5 Outputting Files . 24
4.6 Performing Configuration Actions . 25
4.7 Creating Configuration Files . 27
4.8 Substitutions in Makefiles . 27

4.8.1 Preset Output Variables . 27
4.8.2 Installation Directory Variables . 31
4.8.3 Changed Directory Variables . 35
4.8.4 Build Directories . 36
4.8.5 Automatic Remaking . 36

4.9 Configuration Header Files . 37
4.9.1 Configuration Header Templates . 38
4.9.2 Using autoheader to Create config.h.in 39
4.9.3 Autoheader Macros . 41

4.10 Running Arbitrary Configuration Commands 41
4.11 Creating Configuration Links . 42
4.12 Configuring Other Packages in Subdirectories 43
4.13 Default Prefix . 43

ii

5 Existing Tests . 45
5.1 Common Behavior . 45

5.1.1 Standard Symbols . 45
5.1.2 Default Includes . 45

5.2 Alternative Programs . 47
5.2.1 Particular Program Checks . 47
5.2.2 Generic Program and File Checks . 51

5.3 Files . 53
5.4 Library Files . 54
5.5 Library Functions . 55

5.5.1 Portability of C Functions . 55
5.5.2 Particular Function Checks . 58
5.5.3 Generic Function Checks . 65

5.6 Header Files . 67
5.6.1 Portability of Headers . 67
5.6.2 Particular Header Checks . 69
5.6.3 Generic Header Checks . 72

5.7 Declarations . 74
5.7.1 Particular Declaration Checks . 74
5.7.2 Generic Declaration Checks . 74

5.8 Structures . 75
5.8.1 Particular Structure Checks . 75
5.8.2 Generic Structure Checks . 76

5.9 Types . 77
5.9.1 Particular Type Checks . 77
5.9.2 Generic Type Checks . 80

5.10 Compilers and Preprocessors . 80
5.10.1 Specific Compiler Characteristics . 81
5.10.2 Generic Compiler Characteristics . 81
5.10.3 C Compiler Characteristics . 83
5.10.4 C++ Compiler Characteristics . 88
5.10.5 Objective C Compiler Characteristics . 90
5.10.6 Objective C++ Compiler Characteristics 90
5.10.7 Erlang Compiler and Interpreter Characteristics 91
5.10.8 Fortran Compiler Characteristics . 91
5.10.9 Go Compiler Characteristics . 100

5.11 System Services . 100
5.12 C and Posix Variants . 102
5.13 Erlang Libraries . 104

6 Writing Tests . 107
6.1 Language Choice . 107
6.2 Writing Test Programs . 109

6.2.1 Guidelines for Test Programs . 109
6.2.2 Test Functions . 109
6.2.3 Generating Sources . 110

iii

6.3 Running the Preprocessor . 113
6.4 Running the Compiler . 115
6.5 Running the Linker . 115
6.6 Checking Runtime Behavior . 116
6.7 Systemology . 118
6.8 Multiple Cases . 118

7 Results of Tests . 121
7.1 Defining C Preprocessor Symbols . 121
7.2 Setting Output Variables . 122
7.3 Special Characters in Output Variables . 124
7.4 Caching Results . 125

7.4.1 Cache Variable Names . 126
7.4.2 Cache Files . 127
7.4.3 Cache Checkpointing . 127

7.5 Printing Messages . 128

8 Programming in M4 . 131
8.1 M4 Quotation . 131

8.1.1 Active Characters . 131
8.1.2 One Macro Call . 132
8.1.3 Quoting and Parameters . 133
8.1.4 Quotation and Nested Macros . 134
8.1.5 changequote is Evil . 135
8.1.6 Quadrigraphs . 136
8.1.7 Dealing with unbalanced parentheses . 137
8.1.8 Quotation Rule Of Thumb . 139

8.2 Using autom4te . 140
8.2.1 Invoking autom4te . 140
8.2.2 Customizing autom4te . 144

8.3 Programming in M4sugar . 145
8.3.1 Redefined M4 Macros . 145
8.3.2 Diagnostic messages from M4sugar . 148
8.3.3 Diversion support . 149
8.3.4 Conditional constructs . 152
8.3.5 Looping constructs . 155
8.3.6 Evaluation Macros . 159
8.3.7 String manipulation in M4 . 163
8.3.8 Arithmetic computation in M4 . 167
8.3.9 Set manipulation in M4 . 169
8.3.10 Forbidden Patterns . 172

8.4 Debugging via autom4te . 173

iv

9 Programming in M4sh . 175
9.1 Common Shell Constructs . 175
9.2 Support for indirect variable names . 178
9.3 Initialization Macros . 181
9.4 File Descriptor Macros . 183

10 Writing Autoconf Macros 185
10.1 Macro Definitions . 185
10.2 Macro Names . 186
10.3 Dependencies Between Macros . 187

10.3.1 Prerequisite Macros . 187
10.3.2 Suggested Ordering . 190
10.3.3 One-Shot Macros . 191

10.4 Obsoleting Macros . 191
10.5 Coding Style . 192

11 Portable Shell Programming 197
11.1 Shellology . 198
11.2 Invoking the Shell . 199
11.3 Here-Documents . 200
11.4 File Descriptors . 201
11.5 Signal Handling . 204
11.6 File System Conventions . 207
11.7 Shell Pattern Matching . 209
11.8 Shell Substitutions . 209
11.9 Assignments . 218
11.10 Parentheses in Shell Scripts . 218
11.11 Slashes in Shell Scripts . 219
11.12 Special Shell Variables . 219
11.13 Shell Functions . 226
11.14 Limitations of Shell Builtins . 227
11.15 Limitations of Usual Tools . 244

12 Portable Make Programming 263
12.1 $< in Ordinary Make Rules . 263
12.2 Failure in Make Rules . 263
12.3 Special Characters in Make Macro Names 263
12.4 Backslash-Newline Before Empty Lines . 264
12.5 Backslash-Newline in Make Comments . 264
12.6 Long Lines in Makefiles . 264
12.7 make macro=value and Submakes . 264
12.8 The Make Macro MAKEFLAGS . 266
12.9 The Make Macro SHELL . 266
12.10 Parallel Make . 267
12.11 Comments in Make Rules . 269

v

12.12 Newlines in Make Rules . 270
12.13 Comments in Make Macros . 270
12.14 Trailing whitespace in Make Macros . 270
12.15 Command-line Macros and whitespace . 271
12.16 The obj/ Subdirectory and Make . 271
12.17 Exit Status of make -k . 271
12.18 VPATH and Make . 272

12.18.1 Variables listed in VPATH . 272
12.18.2 VPATH and Double-colon Rules . 272
12.18.3 $< Not Supported in Explicit Rules . 272
12.18.4 Automatic Rule Rewriting . 272
12.18.5 Tru64 make Creates Prerequisite Directories Magically . . 275
12.18.6 Make Target Lookup . 276

12.19 Single Suffix Rules and Separated Dependencies 278
12.20 Timestamp Resolution and Make . 279

13 Portable C and C++ Programming 281
13.1 Varieties of Unportability . 281
13.2 Integer Overflow . 282

13.2.1 Basics of Integer Overflow . 282
13.2.2 Examples of Code Assuming Wraparound Overflow 282
13.2.3 Optimizations That Break Wraparound Arithmetic 283
13.2.4 Practical Advice for Signed Overflow Issues 285
13.2.5 Signed Integer Division and Integer Overflow 286

13.3 Preprocessor Arithmetic . 286
13.4 Properties of Null Pointers . 286
13.5 Buffer Overruns and Subscript Errors . 286
13.6 Volatile Objects . 287
13.7 Floating Point Portability . 289
13.8 Exiting Portably . 289

14 Manual Configuration . 291
14.1 Specifying target triplets . 291
14.2 Getting the Canonical System Type . 292
14.3 Using the System Type . 293

15 Site Configuration . 295
15.1 Controlling Help Output . 295
15.2 Working With External Software . 295
15.3 Choosing Package Options . 298
15.4 Making Your Help Strings Look Pretty . 299
15.5 Controlling Checking of configure Options 300
15.6 Configuring Site Details . 300
15.7 Transforming Program Names When Installing 300

15.7.1 Transformation Options . 301

vi

15.7.2 Transformation Examples . 301
15.7.3 Transformation Rules . 301

15.8 Setting Site Defaults . 302

16 Running configure Scripts 305
16.1 Basic Installation . 305
16.2 Compilers and Options . 306
16.3 Compiling For Multiple Architectures . 306
16.4 Installation Names . 307
16.5 Optional Features . 307
16.6 Specifying a System Type . 308
16.7 Sharing Defaults . 308
16.8 Defining Variables . 309
16.9 configure Invocation . 309

17 config.status Invocation . 311

18 Obsolete Constructs . 313
18.1 Obsolete config.status Invocation . 313
18.2 acconfig.h . 314
18.3 Using autoupdate to Modernize configure.ac 314
18.4 Obsolete Macros . 315
18.5 Upgrading From Version 1 . 328

18.5.1 Changed File Names . 328
18.5.2 Changed Makefiles . 329
18.5.3 Changed Macros . 329
18.5.4 Changed Results . 329
18.5.5 Changed Macro Writing . 330

18.6 Upgrading From Version 2.13 . 331
18.6.1 Changed Quotation . 331
18.6.2 New Macros . 332
18.6.3 Hosts and Cross-Compilation . 333
18.6.4 AC_LIBOBJ vs. LIBOBJS . 334
18.6.5 AC_ACT_IFELSE vs. AC_TRY_ACT . 335

19 Generating Test Suites with Autotest 337
19.1 Using an Autotest Test Suite . 337

19.1.1 testsuite Scripts . 337
19.1.2 Autotest Logs . 339

19.2 Writing testsuite.at . 339
19.3 Running testsuite Scripts . 346
19.4 Making testsuite Scripts . 348

vii

20 Frequent Autoconf Questions, with answers . . 351
20.1 Distributing configure Scripts . 351
20.2 Why Require GNU M4? . 351
20.3 How Can I Bootstrap? . 351
20.4 Why Not Imake? . 352
20.5 How Do I #define Installation Directories? 353
20.6 What is autom4te.cache? . 354
20.7 Header Present But Cannot Be Compiled . 354
20.8 Expanded Before Required . 356
20.9 Debugging configure scripts . 358

21 History of Autoconf . 361
21.1 Genesis . 361
21.2 Exodus . 361
21.3 Leviticus . 362
21.4 Numbers . 362
21.5 Deuteronomy . 363

Appendix A GNU Free Documentation License . . 365

Appendix B Indices . 373
B.1 Environment Variable Index . 373
B.2 Output Variable Index . 374
B.3 Preprocessor Symbol Index . 376
B.4 Cache Variable Index . 378
B.5 Autoconf Macro Index . 380
B.6 M4 Macro Index . 385
B.7 Autotest Macro Index . 387
B.8 Program and Function Index . 388
B.9 Concept Index . 390

1

1 Introduction

A physicist, an engineer, and a computer scientist were discussing the
nature of God. “Surely a Physicist,” said the physicist, “because
early in the Creation, God made Light; and you know, Maxwell’s

equations, the dual nature of electromagnetic waves, the relativistic
consequences. . . ” “An Engineer!,” said the engineer, “because

before making Light, God split the Chaos into Land and Water; it takes
a hell of an engineer to handle that big amount of mud, and orderly

separation of solids from liquids. . . ” The computer scientist
shouted: “And the Chaos, where do you think it was coming from, hmm?”

—Anonymous

Autoconf is a tool for producing shell scripts that automatically configure software source
code packages to adapt to many kinds of Posix-like systems. The configuration scripts
produced by Autoconf are independent of Autoconf when they are run, so their users do not
need to have Autoconf.

The configuration scripts produced by Autoconf require no manual user intervention
when run; they do not normally even need an argument specifying the system type. Instead,
they individually test for the presence of each feature that the software package they are
for might need. (Before each check, they print a one-line message stating what they are
checking for, so the user doesn’t get too bored while waiting for the script to finish.) As a
result, they deal well with systems that are hybrids or customized from the more common
Posix variants. There is no need to maintain files that list the features supported by each
release of each variant of Posix.

For each software package that Autoconf is used with, it creates a configuration script
from a template file that lists the system features that the package needs or can use. After
the shell code to recognize and respond to a system feature has been written, Autoconf
allows it to be shared by many software packages that can use (or need) that feature. If it
later turns out that the shell code needs adjustment for some reason, it needs to be changed
in only one place; all of the configuration scripts can be regenerated automatically to take
advantage of the updated code.

Those who do not understand Autoconf are condemned to reinvent it, poorly. The
primary goal of Autoconf is making the user’s life easier; making the maintainer’s life
easier is only a secondary goal. Put another way, the primary goal is not to make the
generation of configure automatic for package maintainers (although patches along that
front are welcome, since package maintainers form the user base of Autoconf); rather, the
goal is to make configure painless, portable, and predictable for the end user of each
autoconfiscated package. And to this degree, Autoconf is highly successful at its goal—
most complaints to the Autoconf list are about difficulties in writing Autoconf input, and
not in the behavior of the resulting configure. Even packages that don’t use Autoconf
will generally provide a configure script, and the most common complaint about these
alternative home-grown scripts is that they fail to meet one or more of the GNU Coding
Standards (see Section “Configuration” in The GNU Coding Standards) that users have
come to expect from Autoconf-generated configure scripts.

2 Autoconf

The Metaconfig package is similar in purpose to Autoconf, but the scripts it produces
require manual user intervention, which is quite inconvenient when configuring large source
trees. Unlike Metaconfig scripts, Autoconf scripts can support cross-compiling, if some care
is taken in writing them.

Autoconf does not solve all problems related to making portable software packages—for
a more complete solution, it should be used in concert with other GNU build tools like
Automake and Libtool. These other tools take on jobs like the creation of a portable,
recursive makefile with all of the standard targets, linking of shared libraries, and so on. See
Chapter 2 [The GNU Build System], page 3, for more information.

Autoconf imposes some restrictions on the names of macros used with #if in C programs
(see Section B.3 [Preprocessor Symbol Index], page 376).

Autoconf requires GNU M4 version 1.4.8 or later in order to generate the scripts. It uses
features that some versions of M4, including GNU M4 1.3, do not have. Autoconf works
better with GNU M4 version 1.4.16 or later, though this is not required.

See Section 18.5 [Autoconf 1], page 328, for information about upgrading from version 1.
See Chapter 21 [History], page 361, for the story of Autoconf’s development. See Chapter 20
[FAQ], page 351, for answers to some common questions about Autoconf.

See the Autoconf web page (https://www.gnu.org/software/autoconf/) for up-to-
date information, details on the mailing lists, pointers to a list of known bugs, etc.

Mail suggestions to the Autoconf mailing list. Past suggestions are archived (https://
lists.gnu.org/archive/html/autoconf/).

Mail bug reports to the Autoconf Bugs mailing list. Past bug reports are archived
(https://lists.gnu.org/archive/html/bug-autoconf/).

If possible, first check that your bug is not already solved in current development versions,
and that it has not been reported yet. Be sure to include all the needed information and a
short configure.ac that demonstrates the problem.

Autoconf’s development tree is accessible via git; see the Autoconf Summary (https://
savannah.gnu.org/projects/autoconf/) for details, or view the actual repository
(https://git.savannah.gnu.org/cgit/autoconf.git). Patches relative to the current
git version can be sent for review to the Autoconf Patches mailing list, with discussion
on prior patches archived (https://lists.gnu.org/archive/html/autoconf-patches/);
and all commits are posted in the read-only Autoconf Commit mailing list, which is also
archived (https://lists.gnu.org/archive/html/autoconf-commit/).

Because of its mission, the Autoconf package itself includes only a set of often-used
macros that have already demonstrated their usefulness. Nevertheless, if you wish to share
your macros, or find existing ones, see the Autoconf Macro Archive (https://www.gnu.
org/software/autoconf-archive/), which is kindly run by Peter Simons.

https://www.gnu.org/software/autoconf/
mailto:autoconf@gnu.org
https://lists.gnu.org/archive/html/autoconf/
https://lists.gnu.org/archive/html/autoconf/
mailto:bug-autoconf@gnu.org
https://lists.gnu.org/archive/html/bug-autoconf/
https://lists.gnu.org/archive/html/bug-autoconf/
https://savannah.gnu.org/projects/autoconf/
https://savannah.gnu.org/projects/autoconf/
https://git.savannah.gnu.org/cgit/autoconf.git
https://git.savannah.gnu.org/cgit/autoconf.git
mailto:autoconf-patches@gnu.org
https://lists.gnu.org/archive/html/autoconf-patches/
mailto:autoconf-commit@gnu.org
https://lists.gnu.org/archive/html/autoconf-commit/
https://www.gnu.org/software/autoconf-archive/
https://www.gnu.org/software/autoconf-archive/
mailto:simons@cryp.to

3

2 The GNU Build System

Autoconf solves an important problem—reliable discovery of system-specific build and
runtime information—but this is only one piece of the puzzle for the development of portable
software. To this end, the GNU project has developed a suite of integrated utilities to finish
the job Autoconf started: the GNU build system, whose most important components are
Autoconf, Automake, and Libtool. In this chapter, we introduce you to those tools, point
you to sources of more information, and try to convince you to use the entire GNU build
system for your software.

2.1 Automake

The ubiquity of make means that a makefile is almost the only viable way to distribute
automatic build rules for software, but one quickly runs into its numerous limitations. Its
lack of support for automatic dependency tracking, recursive builds in subdirectories, reliable
timestamps (e.g., for network file systems), and so on, mean that developers must painfully
(and often incorrectly) reinvent the wheel for each project. Portability is non-trivial, thanks
to the quirks of make on many systems. On top of all this is the manual labor required
to implement the many standard targets that users have come to expect (make install,
make distclean, make uninstall, etc.). Since you are, of course, using Autoconf, you also
have to insert repetitive code in your Makefile.in to recognize @CC@, @CFLAGS@, and other
substitutions provided by configure. Into this mess steps Automake.

Automake allows you to specify your build needs in a Makefile.am file with a vastly
simpler and more powerful syntax than that of a plain makefile, and then generates a
portable Makefile.in for use with Autoconf. For example, the Makefile.am to build and
install a simple “Hello world” program might look like:

bin_PROGRAMS = hello

hello_SOURCES = hello.c

The resulting Makefile.in (~400 lines) automatically supports all the standard targets, the
substitutions provided by Autoconf, automatic dependency tracking, VPATH building, and so
on. make builds the hello program, and make install installs it in /usr/local/bin (or
whatever prefix was given to configure, if not /usr/local).

The benefits of Automake increase for larger packages (especially ones with subdirectories),
but even for small programs the added convenience and portability can be substantial. And
that’s not all. . .

2.2 Gnulib

GNU software has a well-deserved reputation for running on many different types of systems.
While our primary goal is to write software for the GNU system, many users and developers
have been introduced to us through the systems that they were already using.

Gnulib is a central location for common GNU code, intended to be shared among free
software packages. Its components are typically shared at the source level, rather than being
a library that gets built, installed, and linked against. The idea is to copy files from Gnulib
into your own source tree. There is no distribution tarball; developers should just grab
source modules from the repository. The source files are available online, under various
licenses, mostly GNU GPL or GNU LGPL.

4 Autoconf

Gnulib modules typically contain C source code along with Autoconf macros used
to configure the source code. For example, the Gnulib stdckdint module implements a
stdckdint.h header that nearly conforms to C23, even on older hosts that lack stdckdint.h.
This module contains a source file for the replacement header, along with an Autoconf macro
that arranges to use the replacement header on older systems.

For more information, consult the Gnulib website, https://www.gnu.org/software/
gnulib/.

2.3 Libtool

Often, one wants to build not only programs, but libraries, so that other programs can
benefit from the fruits of your labor. Ideally, one would like to produce shared (dynamically
linked) libraries, which can be used by multiple programs without duplication on disk or
in memory and can be updated independently of the linked programs. Producing shared
libraries portably, however, is the stuff of nightmares—each system has its own incompatible
tools, compiler flags, and magic incantations. Fortunately, GNU provides a solution: Libtool.

Libtool handles all the requirements of building shared libraries for you, and at this time
seems to be the only way to do so with any portability. It also handles many other headaches,
such as: the interaction of Make rules with the variable suffixes of shared libraries, linking
reliably with shared libraries before they are installed by the superuser, and supplying
a consistent versioning system (so that different versions of a library can be installed or
upgraded without breaking binary compatibility). Although Libtool, like Autoconf, can be
used without Automake, it is most simply utilized in conjunction with Automake—there,
Libtool is used automatically whenever shared libraries are needed, and you need not know
its syntax.

2.4 Pointers

Developers who are used to the simplicity of make for small projects on a single system might
be daunted at the prospect of learning to use Automake and Autoconf. As your software is
distributed to more and more users, however, you otherwise quickly find yourself putting
lots of effort into reinventing the services that the GNU build tools provide, and making the
same mistakes that they once made and overcame. (Besides, since you’re already learning
Autoconf, Automake is a piece of cake.)

There are a number of places that you can go to for more information on the GNU build
tools.

− Web

The project home pages for Autoconf (https://www.gnu.org/software/autoconf/),
Automake (https://www.gnu.org/software/automake/), Gnulib (https://www.gnu
.org/software/gnulib/), and Libtool (https://www.gnu.org/software/libtool/
).

− Automake Manual

See Section “Automake” in GNU Automake, for more information on Automake.

https://www.gnu.org/software/gnulib/
https://www.gnu.org/software/gnulib/
https://www.gnu.org/software/autoconf/
https://www.gnu.org/software/automake/
https://www.gnu.org/software/gnulib/
https://www.gnu.org/software/gnulib/
https://www.gnu.org/software/libtool/
https://www.gnu.org/software/libtool/

Chapter 2: The GNU Build System 5

− Books

The book GNU Autoconf, Automake and Libtool1 describes the complete GNU build
environment. You can also find the entire book on-line (https://www.sourceware.
org/autobook/).

1 GNU Autoconf, Automake and Libtool, by G. V. Vaughan, B. Elliston, T. Tromey, and I. L. Taylor.
SAMS (originally New Riders), 2000, ISBN 1578701902.

https://www.sourceware.org/autobook/
https://www.sourceware.org/autobook/

7

3 Making configure Scripts

The configuration scripts that Autoconf produces are by convention called configure.
When run, configure creates several files, replacing configuration parameters in them with
appropriate values. The files that configure creates are:

− one or more Makefile files, usually one in each subdirectory of the package (see
Section 4.8 [Makefile Substitutions], page 27);

− optionally, a C header file, the name of which is configurable, containing #define

directives (see Section 4.9 [Configuration Headers], page 37);

− a shell script called config.status that, when run, recreates the files listed above (see
Chapter 17 [config.status Invocation], page 311);

− an optional shell script normally called config.cache (created when using ‘configure
--config-cache’) that saves the results of running many of the tests (see Section 7.4.2
[Cache Files], page 127);

− a file called config.log containing any messages produced by compilers, to help
debugging if configure makes a mistake.

To create a configure script with Autoconf, you need to write an Autoconf input file
configure.ac and run autoconf on it. If you write your own feature tests to supplement
those that come with Autoconf, you might also write files called aclocal.m4 and acsite.m4.
If you use a C header file to contain #define directives, you might also run autoheader,
and you can distribute the generated file config.h.in with the package.

Here is a diagram showing how the files that can be used in configuration are produced.
Programs that are executed are suffixed by ‘*’. Optional files are enclosed in square brackets
(‘[]’). autoconf and autoheader also read the installed Autoconf macro files (by reading
autoconf.m4).

Files used in preparing a software package for distribution, when using just Autoconf:

your source files --> [autoscan*] --> [configure.scan] --> configure.ac

configure.ac --.

| .------> autoconf* -----> configure

[aclocal.m4] --+---+

| `-----> [autoheader*] --> [config.h.in]

[acsite.m4] ---'

Makefile.in

Additionally, if you use Automake, the following additional productions come into play:

[acinclude.m4] --.

|

[local macros] --+--> aclocal* --> aclocal.m4

|

configure.ac ----'

configure.ac --.

+--> automake* --> Makefile.in

Makefile.am ---'

8 Autoconf

Files used in configuring a software package:

.-------------> [config.cache]

configure* ------------+-------------> config.log

|

[config.h.in] -. v .-> [config.h] -.

+--> config.status* -+ +--> make*

Makefile.in ---' `-> Makefile ---'

3.1 Writing configure.ac

To produce a configure script for a software package, create a file called configure.ac that
contains invocations of the Autoconf macros that test the system features your package needs
or can use. Autoconf macros already exist to check for many features; see Chapter 5 [Existing
Tests], page 45, for their descriptions. For most other features, you can use Autoconf template
macros to produce custom checks; see Chapter 6 [Writing Tests], page 107, for information
about them. For especially tricky or specialized features, configure.ac might need to
contain some hand-crafted shell commands; see Chapter 11 [Portable Shell Programming],
page 197. The autoscan program can give you a good start in writing configure.ac (see
Section 3.2 [autoscan Invocation], page 12, for more information).

Previous versions of Autoconf promoted the name configure.in, which is somewhat
ambiguous (the tool needed to process this file is not described by its extension), and
introduces a slight confusion with config.h.in and so on (for which ‘.in’ means “to
be processed by configure”). Using configure.ac is now preferred, while the use of
configure.in will cause warnings from autoconf.

3.1.1 A Shell Script Compiler

Just as for any other computer language, in order to properly program configure.ac in
Autoconf you must understand what problem the language tries to address and how it does
so.

The problem Autoconf addresses is that the world is a mess. After all, you are using
Autoconf in order to have your package compile easily on all sorts of different systems,
some of them being extremely hostile. Autoconf itself bears the price for these differences:
configure must run on all those systems, and thus configure must limit itself to their
lowest common denominator of features.

Naturally, you might then think of shell scripts; who needs autoconf? A set of properly
written shell functions is enough to make it easy to write configure scripts by hand. Sigh!
Unfortunately, even in 2008, where shells without any function support are far and few
between, there are pitfalls to avoid when making use of them. Also, finding a Bourne
shell that accepts shell functions is not trivial, even though there is almost always one on
interesting porting targets.

So, what is really needed is some kind of compiler, autoconf, that takes an Autoconf
program, configure.ac, and transforms it into a portable shell script, configure.

How does autoconf perform this task?

There are two obvious possibilities: creating a brand new language or extending an
existing one. The former option is attractive: all sorts of optimizations could easily be

Chapter 3: Making configure Scripts 9

implemented in the compiler and many rigorous checks could be performed on the Autoconf
program (e.g., rejecting any non-portable construct). Alternatively, you can extend an
existing language, such as the sh (Bourne shell) language.

Autoconf does the latter: it is a layer on top of sh. It was therefore most convenient
to implement autoconf as a macro expander: a program that repeatedly performs macro
expansions on text input, replacing macro calls with macro bodies and producing a pure
sh script in the end. Instead of implementing a dedicated Autoconf macro expander, it is
natural to use an existing general-purpose macro language, such as M4, and implement the
extensions as a set of M4 macros.

3.1.2 The Autoconf Language

The Autoconf language differs from many other computer languages because it treats actual
code the same as plain text. Whereas in C, for instance, data and instructions have different
syntactic status, in Autoconf their status is rigorously the same. Therefore, we need a means
to distinguish literal strings from text to be expanded: quotation.

When calling macros that take arguments, there must not be any white space between
the macro name and the open parenthesis.

AC_INIT ([oops], [1.0]) # incorrect

AC_INIT([hello], [1.0]) # good

Arguments should be enclosed within the quote characters ‘[’ and ‘]’, and be separated
by commas. Any leading blanks or newlines in arguments are ignored, unless they are
quoted. You should always quote an argument that might contain a macro name, comma,
parenthesis, or a leading blank or newline. This rule applies recursively for every macro call,
including macros called from other macros. For more details on quoting rules, see Chapter 8
[Programming in M4], page 131.

For instance:

AC_CHECK_HEADER([stdio.h],

[AC_DEFINE([HAVE_STDIO_H], [1],

[Define to 1 if you have <stdio.h>.])],

[AC_MSG_ERROR([sorry, can't do anything for you])])

is quoted properly. You may safely simplify its quotation to:

AC_CHECK_HEADER([stdio.h],

[AC_DEFINE([HAVE_STDIO_H], 1,

[Define to 1 if you have <stdio.h>.])],

[AC_MSG_ERROR([sorry, can't do anything for you])])

because ‘1’ cannot contain a macro call. Here, the argument of AC_MSG_ERROR must be
quoted; otherwise, its comma would be interpreted as an argument separator. Also, the
second and third arguments of ‘AC_CHECK_HEADER’ must be quoted, since they contain
macro calls. The three arguments ‘HAVE_STDIO_H’, ‘stdio.h’, and ‘Define to 1 if you

have <stdio.h>.’ do not need quoting, but if you unwisely defined a macro with a name
like ‘Define’ or ‘stdio’ then they would need quoting. Cautious Autoconf users would keep
the quotes, but many Autoconf users find such precautions annoying, and would rewrite the
example as follows:

AC_CHECK_HEADER(stdio.h,

10 Autoconf

[AC_DEFINE(HAVE_STDIO_H, 1,

[Define to 1 if you have <stdio.h>.])],

[AC_MSG_ERROR([sorry, can't do anything for you])])

This is safe, so long as you adopt good naming conventions and do not define macros with
names like ‘HAVE_STDIO_H’, ‘stdio’, or ‘h’. Though it is also safe here to omit the quotes
around ‘Define to 1 if you have <stdio.h>.’ this is not recommended, as message strings
are more likely to inadvertently contain commas.

The following example is wrong and dangerous, as it is underquoted:

AC_CHECK_HEADER(stdio.h,

AC_DEFINE(HAVE_STDIO_H, 1,

Define to 1 if you have <stdio.h>.),

AC_MSG_ERROR([sorry, can't do anything for you]))

In other cases, you may want to use text that also resembles a macro call. You must
quote that text (whether just the potential problem, or the entire line) even when it is
not passed as a macro argument; and you may also have to use m4_pattern_allow (see
Section 8.3.10 [Forbidden Patterns], page 172), to declare your intention that the resulting
configure file will have a literal that resembles what would otherwise be reserved for a macro
name. For example:

dnl Simulate a possible future autoconf macro

m4_define([AC_DC], [oops])

dnl Underquoted:

echo "Hard rock was here! --AC_DC"

dnl Correctly quoted:

m4_pattern_allow([AC_DC])

echo "Hard rock was here! --[AC_DC]"

[echo "Hard rock was here! --AC_DC"]

which results in this text in configure:

echo "Hard rock was here! --oops"

echo "Hard rock was here! --AC_DC"

echo "Hard rock was here! --AC_DC"

When you use the same text in a macro argument, you must therefore have an extra quotation
level (since one is stripped away by the macro substitution). In general, then, it is a good
idea to use double quoting for all literal string arguments, either around just the problematic
portions, or over the entire argument:

m4_pattern_allow([AC_DC])

AC_MSG_WARN([[AC_DC] stinks --Iron Maiden])

AC_MSG_WARN([[AC_DC stinks --Iron Maiden]])

It is also possible to avoid the problematic patterns in the first place, by the use of
additional escaping (either a quadrigraph, or creative shell constructs), in which case it is
no longer necessary to use m4_pattern_allow:

echo "Hard rock was here! --AC""_DC"

AC_MSG_WARN([[AC@&t@_DC stinks --Iron Maiden]])

You are now able to understand one of the constructs of Autoconf that has been continually
misunderstood. . . The rule of thumb is that whenever you expect macro expansion, expect
quote expansion; i.e., expect one level of quotes to be lost. For instance:

Chapter 3: Making configure Scripts 11

AC_COMPILE_IFELSE(AC_LANG_SOURCE([char b[10];]), [],

[AC_MSG_ERROR([you lose])])

is incorrect: here, the first argument of AC_LANG_SOURCE is ‘char b[10];’ and is expanded
once, which results in ‘char b10;’; and the AC_LANG_SOURCE is also expanded prior to being
passed to AC_COMPILE_IFELSE. (There was an idiom common in Autoconf’s past to address
this issue via the M4 changequote primitive, but do not use it!) Let’s take a closer look:
the author meant the first argument to be understood as a literal, and therefore it must be
quoted twice; likewise, the intermediate AC_LANG_SOURCE macro should be quoted once so
that it is only expanded after the rest of the body of AC_COMPILE_IFELSE is in place:

AC_COMPILE_IFELSE([AC_LANG_SOURCE([[char b[10];]])], [],

[AC_MSG_ERROR([you lose])])

Voilà, you actually produce ‘char b[10];’ this time!

On the other hand, descriptions (e.g., the last parameter of AC_DEFINE or AS_HELP_

STRING) are not literals—they are subject to line breaking, for example—and should not
be double quoted. Even if these descriptions are short and are not actually broken, double
quoting them yields weird results.

Some macros take optional arguments, which this documentation represents as [arg] (not
to be confused with the quote characters). You may just leave them empty, or use ‘[]’ to
make the emptiness of the argument explicit, or you may simply omit the trailing commas.
The three lines below are equivalent:

AC_CHECK_HEADERS([stdio.h], [], [], [])

AC_CHECK_HEADERS([stdio.h],,,)

AC_CHECK_HEADERS([stdio.h])

It is best to put each macro call on its own line in configure.ac. Most of the macros
don’t add extra newlines; they rely on the newline after the macro call to terminate the
commands. This approach makes the generated configure script a little easier to read by
not inserting lots of blank lines. It is generally safe to set shell variables on the same line as
a macro call, because the shell allows assignments without intervening newlines.

You can include comments in configure.ac files by starting them with the ‘#’. For
example, it is helpful to begin configure.ac files with a line like this:

Process this file with autoconf to produce a configure script.

3.1.3 Standard configure.ac Layout

The order in which configure.ac calls the Autoconf macros is not important, with a few
exceptions. Every configure.ac must contain a call to AC_INIT before the checks, and a
call to AC_OUTPUT at the end (see Section 4.5 [Output], page 24). Additionally, some macros
rely on other macros having been called first, because they check previously set values of
some variables to decide what to do. These macros are noted in the individual descriptions
(see Chapter 5 [Existing Tests], page 45), and they also warn you when configure is created
if they are called out of order.

To encourage consistency, here is a suggested order for calling the Autoconf macros.
Generally speaking, the things near the end of this list are those that could depend on things
earlier in it. For example, library functions could be affected by types and libraries.

12 Autoconf

Autoconf requirements
AC_INIT(package, version, bug-report-address)

information on the package
checks for programs
checks for libraries
checks for header files
checks for types
checks for structures
checks for compiler characteristics
checks for library functions
checks for system services
AC_CONFIG_FILES([file...])
AC_OUTPUT

3.2 Using autoscan to Create configure.ac

The autoscan program can help you create and/or maintain a configure.ac file for a
software package. autoscan examines source files in the directory tree rooted at a directory
given as a command line argument, or the current directory if none is given. It searches the
source files for common portability problems and creates a file configure.scan which is a
preliminary configure.ac for that package, and checks a possibly existing configure.ac

for completeness.

When using autoscan to create a configure.ac, you should manually examine
configure.scan before renaming it to configure.ac; it probably needs some adjustments.
Occasionally, autoscan outputs a macro in the wrong order relative to another macro,
so that autoconf produces a warning; you need to move such macros manually. Also,
if you want the package to use a configuration header file, you must add a call to
AC_CONFIG_HEADERS (see Section 4.9 [Configuration Headers], page 37). You might also
have to change or add some #if directives to your program in order to make it work with
Autoconf (see Section 3.3 [ifnames Invocation], page 13, for information about a program
that can help with that job).

When using autoscan to maintain a configure.ac, simply consider adding its sugges-
tions. The file autoscan.log contains detailed information on why a macro is requested.

autoscan uses several data files (installed along with Autoconf) to determine which
macros to output when it finds particular symbols in a package’s source files. These data
files all have the same format: each line consists of a symbol, one or more blanks, and
the Autoconf macro to output if that symbol is encountered. Lines starting with ‘#’ are
comments.

autoscan accepts the following options:

--help

-h Print a summary of the command line options and exit.

--version

-V Print the version number of Autoconf and exit.

Chapter 3: Making configure Scripts 13

--verbose

-v Print the names of the files it examines and the potentially interesting symbols
it finds in them. This output can be voluminous.

--debug

-d Don’t remove temporary files.

--include=dir

-I dir Append dir to the include path. Multiple invocations accumulate.

--prepend-include=dir

-B dir Prepend dir to the include path. Multiple invocations accumulate.

3.3 Using ifnames to List Conditionals

ifnames can help you write configure.ac for a software package. It prints the identifiers
that the package already uses in C preprocessor conditionals. If a package has already been
set up to have some portability, ifnames can thus help you figure out what its configure
needs to check for. It may help fill in some gaps in a configure.ac generated by autoscan

(see Section 3.2 [autoscan Invocation], page 12).

ifnames scans all of the C source files named on the command line (or the standard input,
if none are given) and writes to the standard output a sorted list of all the identifiers that
appear in those files in #if, #elif, #ifdef, or #ifndef directives. It prints each identifier
on a line, followed by a space-separated list of the files in which that identifier occurs.

ifnames accepts the following options:

--help

-h Print a summary of the command line options and exit.

--version

-V Print the version number of Autoconf and exit.

3.4 Using autoconf to Create configure

To create configure from configure.ac, run the autoconf program with no arguments.
autoconf processes configure.ac with the M4 macro processor, using the Autoconf macros.
If you give autoconf an argument, it reads that file instead of configure.ac and writes the
configuration script to the standard output instead of to configure. If you give autoconf
the argument -, it reads from the standard input instead of configure.ac and writes the
configuration script to the standard output.

The Autoconf macros are defined in several files. Some of the files are distributed with
Autoconf; autoconf reads them first. Then it looks for the optional file acsite.m4 in
the directory that contains the distributed Autoconf macro files, and for the optional file
aclocal.m4 in the current directory. Those files can contain your site’s or the package’s
own Autoconf macro definitions (see Chapter 10 [Writing Autoconf Macros], page 185, for
more information). If a macro is defined in more than one of the files that autoconf reads,
the last definition it reads overrides the earlier ones.

autoconf accepts the following options:

--help

-h Print a summary of the command line options and exit.

14 Autoconf

--version

-V Print the version number of Autoconf and exit.

--verbose

-v Report processing steps.

--debug

-d Don’t remove the temporary files.

--force

-f Remake configure even if newer than its input files.

--include=dir

-I dir Append dir to the include path. Multiple invocations accumulate.

--prepend-include=dir

-B dir Prepend dir to the include path. Multiple invocations accumulate.

--output=file

-o file Save output (script or trace) to file. The file - stands for the standard output.

--warnings=category[,category...]

-Wcategory[,category...]

Enable or disable warnings related to each category. See [m4 warn], page 149,
for a comprehensive list of categories. Special values include:

‘all’ Enable all categories of warnings.

‘none’ Disable all categories of warnings.

‘error’ Treat all warnings as errors.

‘no-category’
Disable warnings falling into category.

The environment variable WARNINGS may also be set to a comma-separated list of
warning categories to enable or disable. It is interpreted exactly the same way as
the argument of --warnings, but unknown categories are silently ignored. The
command line takes precedence; for instance, if WARNINGS is set to obsolete,
but -Wnone is given on the command line, no warnings will be issued.

Some categories of warnings are on by default. Again, for details see [m4 warn],
page 149.

--trace=macro[:format]

-t macro[:format]

Do not create the configure script, but list the calls to macro according to
the format. Multiple --trace arguments can be used to list several macros.
Multiple --trace arguments for a single macro are not cumulative; instead, you
should just make format as long as needed.

The format is a regular string, with newlines if desired, and several special escape
codes. It defaults to ‘$f:$l:$n:$%’; see Section 8.2.1 [autom4te Invocation],
page 140, for details on the format.

Chapter 3: Making configure Scripts 15

--initialization

-i By default, --trace does not trace the initialization of the Autoconf macros
(typically the AC_DEFUN definitions). This results in a noticeable speedup, but
can be disabled by this option.

It is often necessary to check the content of a configure.ac file, but parsing it yourself
is extremely fragile and error-prone. It is suggested that you rely upon --trace to scan
configure.ac. For instance, to find the list of variables that are substituted, use:

$ autoconf -t AC_SUBST

configure.ac:2:AC_SUBST:ECHO_C

configure.ac:2:AC_SUBST:ECHO_N

configure.ac:2:AC_SUBST:ECHO_T

More traces deleted

The example below highlights the difference between ‘$@’, ‘$*’, and ‘$%’.

$ cat configure.ac

AC_DEFINE(This, is, [an

[example]])

$ autoconf -t 'AC_DEFINE:@: $@
: $

%: $%'

@: [This],[is],[an

[example]]

*: This,is,an

[example]

%: This:is:an [example]

The format gives you a lot of freedom:

$ autoconf -t 'AC_SUBST:$$ac_subst{"$1"} = "$f:$l";'
$ac_subst{"ECHO_C"} = "configure.ac:2";

$ac_subst{"ECHO_N"} = "configure.ac:2";

$ac_subst{"ECHO_T"} = "configure.ac:2";

More traces deleted

A long separator can be used to improve the readability of complex structures, and to ease
their parsing (for instance when no single character is suitable as a separator):

$ autoconf -t 'AM_MISSING_PROG:${|:::::|}*'
ACLOCAL|:::::|aclocal|:::::|$missing_dir

AUTOCONF|:::::|autoconf|:::::|$missing_dir

AUTOMAKE|:::::|automake|:::::|$missing_dir

More traces deleted

3.5 Using autoreconf to Update configure Scripts

Installing the various components of the GNU Build System can be tedious: running
autopoint for Gettext, automake for Makefile.in etc. in each directory. It may be needed
either because some tools such as automake have been updated on your system, or because
some of the sources such as configure.ac have been updated, or finally, simply in order to
install the GNU Build System in a fresh tree.

16 Autoconf

autoreconf runs autoconf, autoheader, aclocal, automake, libtoolize,
intltoolize, gtkdocize, and autopoint (when appropriate) repeatedly to update the
GNU Build System in the specified directories and their subdirectories (see Section 4.12
[Subdirectories], page 43). By default, it only remakes those files that are older than their
sources. The environment variables AUTOM4TE, AUTOCONF, AUTOHEADER, AUTOMAKE, ACLOCAL,
AUTOPOINT, LIBTOOLIZE, INTLTOOLIZE, GTKDOCIZE, M4, and MAKE may be used to override
the invocation of the respective tools.

If you install a new version of some tool, you can make autoreconf remake all of the
files by giving it the --force option.

See Section 4.8.5 [Automatic Remaking], page 36, for Make rules to automatically rebuild
configure scripts when their source files change. That method handles the timestamps
of configuration header templates properly, but does not pass --autoconf-dir=dir or
--localdir=dir.

Gettext supplies the autopoint command to add translation infrastructure to a source
package. If you use autopoint, your configure.ac should invoke AM_GNU_GETTEXT

and one of AM_GNU_GETTEXT_VERSION(gettext-version) or AM_GNU_GETTEXT_REQUIRE_

VERSION(min-gettext-version). See Section “Invoking the autopoint Program” in GNU
gettext utilities, for further details.

autoreconf accepts the following options:

--help

-h Print a summary of the command line options and exit.

--version

-V Print the version number of Autoconf and exit.

--verbose

-v Print the name of each directory autoreconf examines and the commands it
runs. If given two or more times, pass --verbose to subordinate tools that
support it.

--debug

-d Don’t remove the temporary files.

--force

-f Consider all generated and standard auxiliary files to be obsolete. This remakes
even configure scripts and configuration headers that are newer than their
input files (configure.ac and, if present, aclocal.m4).

If deemed appropriate, this option triggers calls to ‘automake --force-missing’.
Passing both --force and --install to autoreconf will in turn undo any
customizations to standard files. Note that the macro AM_INIT_AUTOMAKE has
some options which change the set of files considered to be standard.

--install

-i Install any missing standard auxiliary files in the package. By default, files are
copied; this can be changed with --symlink.

If deemed appropriate, this option triggers calls to ‘automake --add-missing’,
‘libtoolize’, ‘autopoint’, etc.

Chapter 3: Making configure Scripts 17

--no-recursive

Do not rebuild files in subdirectories to configure (see Section 4.12 [Subdirecto-
ries], page 43, macro AC_CONFIG_SUBDIRS).

--symlink

-s When used with --install, install symbolic links to the missing auxiliary files
instead of copying them.

--make

-m When the directories were configured, update the configuration by running
‘./config.status --recheck && ./config.status’, and then run ‘make’.

--include=dir

-I dir Append dir to the include path. Multiple invocations accumulate. Passed on to
aclocal, autoconf and autoheader internally.

--prepend-include=dir

-B dir Prepend dir to the include path. Multiple invocations accumulate. Passed on
to autoconf and autoheader internally.

--warnings=category[,category...]

-Wcategory[,category...]

Enable or disable warnings related to each category. See [m4 warn], page 149,
for a comprehensive list of categories. Special values include:

‘all’ Enable all categories of warnings.

‘none’ Disable all categories of warnings.

‘error’ Treat all warnings as errors.

‘no-category’
Disable warnings falling into category.

The environment variable WARNINGS may also be set to a comma-separated list of
warning categories to enable or disable. It is interpreted exactly the same way as
the argument of --warnings, but unknown categories are silently ignored. The
command line takes precedence; for instance, if WARNINGS is set to obsolete,
but -Wnone is given on the command line, no warnings will be issued.

Some categories of warnings are on by default. Again, for details see [m4 warn],
page 149.

If you want autoreconf to pass flags that are not listed here on to aclocal, set ACLOCAL_
AMFLAGS in your Makefile.am. Due to a limitation in the Autoconf implementation these
flags currently must be set on a single line in Makefile.am, without any backslash-newlines.
Also, be aware that future Automake releases might start flagging ACLOCAL_AMFLAGS as
obsolescent, or even remove support for it.

19

4 Initialization and Output Files

Autoconf-generated configure scripts need some information about how to initialize, such
as how to find the package’s source files and about the output files to produce. The following
sections describe the initialization and the creation of output files.

4.1 Initializing configure

Every configure script must call AC_INIT before doing anything else that produces output.
Calls to silent macros, such as AC_DEFUN, may also occur prior to AC_INIT, although these
are generally used via aclocal.m4, since that is implicitly included before the start of
configure.ac. The only other required macro is AC_OUTPUT (see Section 4.5 [Output],
page 24).

[Macro]AC_INIT (package, version, [bug-report], [tarname], [url])
Process any command-line arguments and perform initialization and verification.

Set the name of the package and its version. These are typically used in --version

support, including that of configure. The optional argument bug-report should be
the email to which users should send bug reports. The package tarname differs from
package: the latter designates the full package name (e.g., ‘GNU Autoconf’), while
the former is meant for distribution tar ball names (e.g., ‘autoconf’). It defaults to
package with ‘GNU ’ stripped, lower-cased, and all characters other than alphanumerics
and underscores are changed to ‘-’. If provided, url should be the home page for the
package.

Leading and trailing whitespace is stripped from all the arguments to AC_INIT, and
interior whitespace is collapsed to a single space. This means that, for instance, if you
want to put several email addresses in bug-report, you can put each one on its own
line:

We keep having problems with the mail hosting for

gnomovision.example, so give people an alternative.

AC_INIT([Gnomovision], [17.0.1], [

bugs@gnomovision.example

or gnomo-bugs@reliable-email.example

])

The arguments to AC_INIT may be computed by M4, when autoconf is run. For
instance, if you want to include the package’s version number in the tarname, but you
don’t want to repeat it, you can use a helper macro:

m4_define([gnomo_VERSION], [17.0.1])

AC_INIT([Gnomovision],

m4_defn([gnomo_VERSION]),

[bugs@gnomovision.example],

[gnomo-]m4_defn([gnomo_VERSION]))

This uses m4_defn to produce the expansion of gnomo_VERSION as a quoted string, so
that if there happen to be any more M4 macro names in gnomo_VERSION, they will
not be expanded. See Section “Renaming Macros” in GNU m4 macro processor.

Continuing this example, if you don’t want to embed the version number in
configure.ac at all, you can use m4_esyscmd to look it up somewhere else when
autoconf is run:

20 Autoconf

m4_define([gnomo_VERSION],

m4_esyscmd([build-aux/git-version-gen .tarball-version]))

AC_INIT([Gnomovision],

m4_defn([gnomo_VERSION]),

[bugs@gnomovision.example],

[gnomo-]m4_defn([gnomo_VERSION]))

This uses the utility script git-version-gen to look up the package’s version in its
version control metadata. This script is part of Gnulib (see Section 2.2 [Gnulib],
page 3).

The arguments to AC_INIT are written into configure in several different places.
Therefore, we strongly recommend that you write any M4 logic in AC_INIT arguments
to be evaluated before AC_INIT itself is evaluated. For instance, in the above example,
the second argument to m4_define is not quoted, so the m4_esyscmd is evaluated
only once, and gnomo_VERSION is defined to the output of the command. If the second
argument to m4_define were quoted, m4_esyscmd would be evaluated each time the
version or tarname arguments were written to configure, and the command would
be run repeatedly.

In some of the places where the arguments to AC_INIT are used, within configure,
shell evaluation cannot happen. Therefore, the arguments to AC_INIT may not be
computed when configure is run. If they contain any construct that isn’t always
treated as literal by the shell (e.g. variable expansions), autoconf will issue an error.

The tarname argument is used to construct filenames. It should not contain wildcard
characters, white space, or anything else that could be troublesome as part of a file or
directory name.

Some of M4’s active characters (notably parentheses, square brackets, ‘,’ and ‘#’)
commonly appear in URLs and lists of email addresses. If any of these characters appear
in an argument to AC INIT, that argument will probably need to be double-quoted
to avoid errors and mistranscriptions. See Section 8.1 [M4 Quotation], page 131.

The following M4 macros (e.g., AC_PACKAGE_NAME), output variables (e.g., PACKAGE_
NAME), and preprocessor symbols (e.g., PACKAGE_NAME), are defined by AC_INIT:

AC_PACKAGE_NAME, PACKAGE_NAME
Exactly package.

AC_PACKAGE_TARNAME, PACKAGE_TARNAME
Exactly tarname, possibly generated from package.

AC_PACKAGE_VERSION, PACKAGE_VERSION
Exactly version.

AC_PACKAGE_STRING, PACKAGE_STRING
Exactly ‘package version’.

AC_PACKAGE_BUGREPORT, PACKAGE_BUGREPORT
Exactly bug-report, if one was provided. Typically an email address, or
URL to a bug management web page.

AC_PACKAGE_URL, PACKAGE_URL
Exactly url, if one was provided. If url was empty, but package begins with
‘GNU ’, then this defaults to ‘https://www.gnu.org/software/tarname/’,
otherwise, no URL is assumed.

Chapter 4: Initialization and Output Files 21

If your configure script does its own option processing, it should inspect ‘$@’ or ‘$*’
immediately after calling AC_INIT, because other Autoconf macros liberally use the set

command to process strings, and this has the side effect of updating ‘$@’ and ‘$*’. However,
we suggest that you use standard macros like AC_ARG_ENABLE instead of attempting to
implement your own option processing. See Chapter 15 [Site Configuration], page 295.

4.2 Dealing with Autoconf versions

The following optional macros can be used to help choose the minimum version of Autoconf
that can successfully compile a given configure.ac.

[Macro]AC_PREREQ (version)
Ensure that a recent enough version of Autoconf is being used. If the version of
Autoconf being used to create configure is earlier than version, print an error
message to the standard error output and exit with failure (exit status is 63). For
example:

AC_PREREQ([2.72])

This macro may be used before AC_INIT.

[Macro]AC_AUTOCONF_VERSION
This macro was introduced in Autoconf 2.62. It identifies the version of Autoconf that
is currently parsing the input file, in a format suitable for m4_version_compare (see
[m4 version compare], page 168); in other words, for this release of Autoconf, its value
is ‘2.72’. One potential use of this macro is for writing conditional fallbacks based on
when a feature was added to Autoconf, rather than using AC_PREREQ to require the
newer version of Autoconf. However, remember that the Autoconf philosophy favors
feature checks over version checks.

You should not expand this macro directly; use ‘m4_defn([AC_AUTOCONF_VERSION])’
instead. This is because some users might have a beta version of Autoconf installed,
with arbitrary letters included in its version string. This means it is possible for
the version string to contain the name of a defined macro, such that expanding AC_

AUTOCONF_VERSION would trigger the expansion of that macro during rescanning, and
change the version string to be different than what you intended to check.

4.3 Notices in configure

The following macros manage version numbers for configure scripts. Using them is optional.

[Macro]AC_COPYRIGHT (copyright-notice)
State that, in addition to the Free Software Foundation’s copyright on the Autoconf
macros, parts of your configure are covered by the copyright-notice.

The copyright-notice shows up in both the head of configure and in ‘configure
--version’.

[Macro]AC_REVISION (revision-info)
Copy revision stamp revision-info into the configure script, with any dollar signs or
double-quotes removed. This macro lets you put a revision stamp from configure.ac

into configure without RCS or CVS changing it when you check in configure. That

22 Autoconf

way, you can determine easily which revision of configure.ac a particular configure
corresponds to.

For example, this line in configure.ac:

AC_REVISION([$Revision: 1.30 $])

produces this in configure:

#!/bin/sh

From configure.ac Revision: 1.30

4.4 Configure Input: Source Code, Macros, and Auxiliary
Files

The following macros help you manage the contents of your source tree.

[Macro]AC_CONFIG_SRCDIR (unique-file-in-source-dir)
Distinguish this package’s source directory from other source directories that might
happen to exist in the file system. unique-file-in-source-dir should name a file that is
unique to this package. configure will verify that this file exists in srcdir, before it
runs any other checks.

Use of this macro is strongly recommended. It protects against people accidentally
specifying the wrong directory with --srcdir. See Section 16.9 [configure Invocation],
page 309, for more information.

Packages that use aclocal to generate aclocal.m4 should declare where local macros
can be found using AC_CONFIG_MACRO_DIRS.

[Macro]AC_CONFIG_MACRO_DIRS (dir1 [dir2 ... dirN])
[Macro]AC_CONFIG_MACRO_DIR (dir)

Specify the given directories as the location of additional local Autoconf macros.
These macros are intended for use by commands like autoreconf or aclocal that
trace macro calls; they should be called directly from configure.ac so that tools
that install macros for aclocal can find the macros’ declarations. Tools that want to
learn which directories have been selected should trace AC_CONFIG_MACRO_DIR_TRACE,
which will be called once per directory.

AC CONFIG MACRO DIRS is the preferred form, and can be called multiple times
and with multiple arguments; in such cases, directories in earlier calls are expected
to be searched before directories in later calls, and directories appearing in the same
call are expected to be searched in the order in which they appear in the call. For
historical reasons, the macro AC CONFIG MACRO DIR can also be used once, if it
appears first, for tools such as older libtool that weren’t prepared to handle multiple
directories. For example, a usage like

AC_CONFIG_MACRO_DIR([dir1])

AC_CONFIG_MACRO_DIRS([dir2])

AC_CONFIG_MACRO_DIRS([dir3 dir4])

will cause the trace of AC CONFIG MACRO DIR TRACE to appear four times, and
should cause the directories to be searched in this order: ‘dir1 dir2 dir3 dir4’.

Note that if you use aclocal from an Automake release prior to 1.13 to generate
aclocal.m4, you must also set ACLOCAL_AMFLAGS = -I dir1 [-I dir2 ... -I dirN]

Chapter 4: Initialization and Output Files 23

in your top-level Makefile.am. Due to a limitation in the Autoconf implementation
of autoreconf, these include directives currently must be set on a single line in
Makefile.am, without any backslash-newlines.

Some Autoconf macros require auxiliary scripts. AC_PROG_INSTALL (see Section 5.2.1 [Par-
ticular Programs], page 47) requires a fallback implementation of install called install-sh,
and the AC_CANONICAL macros (see Chapter 14 [Manual Configuration], page 291) require
the system-identification scripts config.sub and config.guess. Third-party tools, such as
Automake and Libtool, may require additional auxiliary scripts.

By default, configure looks for these scripts next to itself, in srcdir. For convenience
when working with subdirectories with their own configure scripts (see Section 4.12 [Sub-
directories], page 43), if the scripts are not in srcdir it will also look in srcdir/.. and
srcdir/../... All of the scripts must be found in the same directory.

If these default locations are not adequate, or simply to reduce clutter at the top level of
the source tree, packages can use AC_CONFIG_AUX_DIR to declare where to look for auxiliary
scripts.

[Macro]AC_CONFIG_AUX_DIR (dir)
Look for auxiliary scripts in dir. Normally, dir should be a relative path, which is
taken as relative to srcdir. If dir is an absolute path or contains shell variables,
however, it is used as-is.

When the goal of using AC_CONFIG_AUX_DIR is to reduce clutter at the top level of the
source tree, the conventional name for dir is build-aux. If you need portability to
DOS variants, do not name the auxiliary directory aux. See Section 11.6 [File System
Conventions], page 207.

[Macro]AC_REQUIRE_AUX_FILE (file)
Declare that file is an auxiliary script needed by this configure script, and set the shell
variable ac_aux_dir to the directory where it can be found. The value of ac_aux_dir
is guaranteed to end with a ‘/’.

Macros that need auxiliary scripts must use this macro to register each script they
need.

configure checks for all the auxiliary scripts it needs on startup, and exits with an error
if any are missing.

autoreconf also detects missing auxiliary scripts. When used with the --install option,
autoreconf will try to add missing scripts to the directory specified by AC_CONFIG_AUX_DIR,
or to the top level of the source tree if AC_CONFIG_AUX_DIR was not used. It can always
do this for the scripts needed by Autoconf core macros: install-sh, config.sub, and
config.guess. Many other commonly-needed scripts are installed by the third-party tools
that autoreconf knows how to run, such as missing for Automake and ltmain.sh for
Libtool.

If you are using Automake, auxiliary scripts will automatically be included in the tarball
created by make dist. If you are not using Automake you will need to arrange for auxiliary
scripts to be included in tarballs yourself. Auxiliary scripts should normally not be checked
into a version control system, for the same reasons that configure shouldn’t be.

24 Autoconf

The scripts needed by Autoconf core macros can be found in $(datadir)/autoconf/build-aux
of the Autoconf installation (see Section 4.8.2 [Installation Directory Variables], page 31).
install-sh can be downloaded from https://git.savannah.gnu.org/cgit/automake.

git/plain/lib/install-sh. config.sub and config.guess can be downloaded from
https://git.savannah.gnu.org/cgit/config.git/tree/.

4.5 Outputting Files

Every Autoconf script, e.g., configure.ac, should finish by calling AC_OUTPUT. That is the
macro that generates and runs config.status, which in turn creates the makefiles and any
other files resulting from configuration. This is the only required macro besides AC_INIT
(see Section 4.4 [Input], page 22).

[Macro]AC_OUTPUT
Generate config.status and launch it. Call this macro once, at the end of
configure.ac.

config.status performs all the configuration actions: all the output files (see
Section 4.7 [Configuration Files], page 27, macro AC_CONFIG_FILES), header files (see
Section 4.9 [Configuration Headers], page 37, macro AC_CONFIG_HEADERS), commands
(see Section 4.10 [Configuration Commands], page 41, macro AC_CONFIG_COMMANDS),
links (see Section 4.11 [Configuration Links], page 42, macro AC_CONFIG_LINKS),
subdirectories to configure (see Section 4.12 [Subdirectories], page 43, macro AC_

CONFIG_SUBDIRS) are honored.

The location of your AC_OUTPUT invocation is the exact point where configuration
actions are taken: any code afterwards is executed by configure once config.status
was run. If you want to bind actions to config.status itself (independently of
whether configure is being run), see Section 4.10 [Running Arbitrary Configuration
Commands], page 41.

Historically, the usage of AC_OUTPUT was somewhat different. See Section 18.4 [Obsolete
Macros], page 315, for a description of the arguments that AC_OUTPUT used to support.

If you run make in subdirectories, you should run it using the make variable MAKE. Most
versions of make set MAKE to the name of the make program plus any options it was given.
(But many do not include in it the values of any variables set on the command line, so those
are not passed on automatically.) Some old versions of make do not set this variable. The
following macro allows you to use it even with those versions.

[Macro]AC_PROG_MAKE_SET
If the Make command, $MAKE if set or else ‘make’, predefines $(MAKE), define output
variable SET_MAKE to be empty. Otherwise, define SET_MAKE to a macro definition
that sets $(MAKE), such as ‘MAKE=make’. Calls AC_SUBST for SET_MAKE.

If you use this macro, place a line like this in each Makefile.in that runs MAKE on other
directories:

@SET_MAKE@

https://git.savannah.gnu.org/cgit/automake.git/plain/lib/install-sh
https://git.savannah.gnu.org/cgit/automake.git/plain/lib/install-sh
https://git.savannah.gnu.org/cgit/config.git/tree/

Chapter 4: Initialization and Output Files 25

4.6 Performing Configuration Actions

configure is designed so that it appears to do everything itself, but there is actually a
hidden slave: config.status. configure is in charge of examining your system, but it is
config.status that actually takes the proper actions based on the results of configure.
The most typical task of config.status is to instantiate files.

This section describes the common behavior of the four standard instantiating macros: AC_
CONFIG_FILES, AC_CONFIG_HEADERS, AC_CONFIG_COMMANDS and AC_CONFIG_LINKS. They
all have this prototype:

AC_CONFIG_ITEMS(tag..., [commands], [init-cmds])

where the arguments are:

tag. . . A blank-or-newline-separated list of tags, which are typically the names of the
files to instantiate.

You are encouraged to use literals as tags. In particular, you should avoid

AS_IF([...], [my_foos="$my_foos fooo"])

AS_IF([...], [my_foos="$my_foos foooo"])

AC_CONFIG_ITEMS([$my_foos])

and use this instead:

AS_IF([...], [AC_CONFIG_ITEMS([fooo])])

AS_IF([...], [AC_CONFIG_ITEMS([foooo])])

The macros AC_CONFIG_FILES and AC_CONFIG_HEADERS use special tag values:
they may have the form ‘output’ or ‘output:inputs’. The file output is
instantiated from its templates, inputs (defaulting to ‘output.in’).

‘AC_CONFIG_FILES([Makefile:boiler/top.mk:boiler/bot.mk])’, for exam-
ple, asks for the creation of the file Makefile that contains the expansion of the
output variables in the concatenation of boiler/top.mk and boiler/bot.mk.

The special value ‘-’ might be used to denote the standard output when used in
output, or the standard input when used in the inputs. You most probably don’t
need to use this in configure.ac, but it is convenient when using the command
line interface of ./config.status, see Chapter 17 [config.status Invocation],
page 311, for more details.

The inputs may be absolute or relative file names. In the latter case they are
first looked for in the build tree, and then in the source tree. Input files should
be text files, and a line length below 2000 bytes should be safe.

commands
Shell commands output literally into config.status, and associated with a
tag that the user can use to tell config.status which commands to run. The
commands are run each time a tag request is given to config.status, typically
each time the file tag is created.

The variables set during the execution of configure are not available here: you
first need to set them via the init-cmds. Nonetheless the following variables are
pre-computed:

26 Autoconf

srcdir The name of the top source directory, assuming that the working
directory is the top build directory. This is what configure’s
--srcdir option sets.

ac_top_srcdir

The name of the top source directory, assuming that the working
directory is the current build directory.

ac_top_build_prefix

The name of the top build directory, assuming that the working
directory is the current build directory. It can be empty, or else
ends with a slash, so that you may concatenate it.

ac_srcdir

The name of the corresponding source directory, assuming that the
working directory is the current build directory.

tmp The name of a temporary directory within the build tree, which
you can use if you need to create additional temporary files. The
directory is cleaned up when config.status is done or interrupted.
Please use package-specific file name prefixes to avoid clashing with
files that config.status may use internally.

The current directory refers to the directory (or pseudo-directory) containing
the input part of tags. For instance, running

AC_CONFIG_COMMANDS([deep/dir/out:in/in.in], [...], [...])

with --srcdir=../package produces the following values:

Argument of --srcdir

srcdir='../package'

Reversing deep/dir

ac_top_build_prefix='../../'

Concatenation of $ac_top_build_prefix and srcdir

ac_top_srcdir='../../../package'

Concatenation of $ac_top_srcdir and deep/dir

ac_srcdir='../../../package/deep/dir'

independently of ‘in/in.in’.

init-cmds Shell commands output unquoted near the beginning of config.status, and
executed each time config.status runs (regardless of the tag). Because they
are unquoted, for example, ‘$var’ is output as the value of var. init-cmds is
typically used by configure to give config.status some variables it needs to
run the commands.

You should be extremely cautious in your variable names: all the init-cmds
share the same name space and may overwrite each other in unpredictable ways.
Sorry. . .

All these macros can be called multiple times, with different tag values, of course!

Chapter 4: Initialization and Output Files 27

4.7 Creating Configuration Files

Be sure to read the previous section, Section 4.6 [Configuration Actions], page 25.

[Macro]AC_CONFIG_FILES (file. . . , [cmds], [init-cmds])
Make AC_OUTPUT create each file by copying an input file (by default file.in),
substituting the output variable values. This macro is one of the instantiating
macros; see Section 4.6 [Configuration Actions], page 25. See Section 4.8 [Makefile
Substitutions], page 27, for more information on using output variables. See Section 7.2
[Setting Output Variables], page 122, for more information on creating them. This
macro creates the directory that the file is in if it doesn’t exist. Usually, makefiles are
created this way, but other files, such as .gdbinit, can be specified as well.

Typical calls to AC_CONFIG_FILES look like this:

AC_CONFIG_FILES([Makefile src/Makefile man/Makefile X/Imakefile])

AC_CONFIG_FILES([autoconf], [chmod +x autoconf])

You can override an input file name by appending to file a colon-separated list of input
files. Examples:

AC_CONFIG_FILES([Makefile:boiler/top.mk:boiler/bot.mk]

[lib/Makefile:boiler/lib.mk])

Doing this allows you to keep your file names acceptable to DOS variants, or to
prepend and/or append boilerplate to the file.

The file names should not contain shell metacharacters. See Section 7.3 [Special Chars
in Variables], page 124.

4.8 Substitutions in Makefiles

Each subdirectory in a distribution that contains something to be compiled or installed
should come with a file Makefile.in, from which configure creates a file Makefile in
that directory. To create Makefile, configure performs a simple variable substitution,
replacing occurrences of ‘@variable@’ in Makefile.in with the value that configure has
determined for that variable. Variables that are substituted into output files in this way
are called output variables. They are ordinary shell variables that are set in configure. To
make configure substitute a particular variable into the output files, the macro AC_SUBST

must be called with that variable name as an argument. Any occurrences of ‘@variable@’
for other variables are left unchanged. See Section 7.2 [Setting Output Variables], page 122,
for more information on creating output variables with AC_SUBST.

A software package that uses a configure script should be distributed with a file
Makefile.in, but no makefile; that way, the user has to properly configure the package for
the local system before compiling it.

See Section “Makefile Conventions” in The GNU Coding Standards, for more information
on what to put in makefiles.

4.8.1 Preset Output Variables

Some output variables are preset by the Autoconf macros. Some of the Autoconf macros
set additional output variables, which are mentioned in the descriptions for those macros.
See Section B.2 [Output Variable Index], page 374, for a complete list of output variables.

28 Autoconf

See Section 4.8.2 [Installation Directory Variables], page 31, for the list of the preset ones
related to installation directories. Below are listed the other preset ones, many of which are
precious variables (see Section 7.2 [Setting Output Variables], page 122, AC_ARG_VAR).

The preset variables which are available during config.status (see Section 4.6 [Con-
figuration Actions], page 25) may also be used during configure tests. For example, it is
permissible to reference ‘$srcdir’ when constructing a list of directories to pass via the
-I option during a compiler feature check. When used in this manner, coupled with the
fact that configure is always run from the top build directory, it is sufficient to use just
‘$srcdir’ instead of ‘$top_srcdir’.

[Variable]CFLAGS
Debugging and optimization options for the C compiler. If it is not set in the
environment when configure runs, the default value is set when you call AC_PROG_CC
(or empty if you don’t). configure uses this variable when compiling or linking
programs to test for C features.

If a compiler option affects only the behavior of the preprocessor (e.g., -Dname), it
should be put into CPPFLAGS instead. If it affects only the linker (e.g., -Ldirectory),
it should be put into LDFLAGS instead. If it affects only the compiler proper, CFLAGS
is the natural home for it. If an option affects multiple phases of the compiler, though,
matters get tricky:

• If an option selects a 32-bit or 64-bit build on a bi-arch system, it must be put
direcly into CC, e.g., CC='gcc -m64'. This is necessary for config.guess to work
right.

• Otherwise one approach is to put the option into CC. Another is to put it into
both CPPFLAGS and LDFLAGS, but not into CFLAGS.

However, remember that some Makefile variables are reserved by the GNU Coding
Standards for the use of the “user”—the person building the package. For instance,
CFLAGS is one such variable.

Sometimes package developers are tempted to set user variables such as CFLAGS because
it appears to make their job easier. However, the package itself should never set a user
variable, particularly not to include switches that are required for proper compilation
of the package. Since these variables are documented as being for the package builder,
that person rightfully expects to be able to override any of these variables at build
time. If the package developer needs to add switches without interfering with the user,
the proper way to do that is to introduce an additional variable. Automake makes
this easy by introducing AM_CFLAGS (see Section “Flag Variables Ordering” in GNU
Automake), but the concept is the same even if Automake is not used.

[Variable]configure_input
A comment saying that the file was generated automatically by configure and giving
the name of the input file. AC_OUTPUT adds a comment line containing this variable to
the top of every makefile it creates. For other files, you should reference this variable
in a comment at the top of each input file. For example, an input shell script should
begin like this:

#!/bin/sh

@configure_input@

Chapter 4: Initialization and Output Files 29

The presence of that line also reminds people editing the file that it needs to be
processed by configure in order to be used.

[Variable]CPPFLAGS
Preprocessor options for the C, C++, Objective C, and Objective C++ preprocessors and
compilers. If it is not set in the environment when configure runs, the default value
is empty. configure uses this variable when preprocessing or compiling programs to
test for C, C++, Objective C, and Objective C++ features.

This variable’s contents should contain options like -I, -D, and -U that affect only the
behavior of the preprocessor. Please see the explanation of CFLAGS for what you can
do if an option affects other phases of the compiler as well.

Currently, configure always links as part of a single invocation of the compiler that
also preprocesses and compiles, so it uses this variable also when linking programs.
However, it is unwise to depend on this behavior because the GNU Coding Standards
do not require it and many packages do not use CPPFLAGS when linking programs.

See Section 7.3 [Special Chars in Variables], page 124, for limitations that CPPFLAGS
might run into.

[Variable]CXXFLAGS
Debugging and optimization options for the C++ compiler. It acts like CFLAGS, but
for C++ instead of C.

[Variable]DEFS
-D options to pass to the C compiler. If AC_CONFIG_HEADERS is called, configure
replaces ‘@DEFS@’ with -DHAVE_CONFIG_H instead (see Section 4.9 [Configuration Head-
ers], page 37). This variable is not defined while configure is performing its tests, only
when creating the output files. See Section 7.2 [Setting Output Variables], page 122,
for how to check the results of previous tests.

[Variable]ECHO_C
[Variable]ECHO_N
[Variable]ECHO_T

How does one suppress the trailing newline from echo for question-answer message
pairs? These variables provide a way:

echo $ECHO_N "And the winner is... $ECHO_C"

sleep 100000000000

echo "${ECHO_T}dead."

Some old and uncommon echo implementations offer no means to achieve this, in
which case ECHO_T is set to tab. You might not want to use it.

[Variable]ERLCFLAGS
Debugging and optimization options for the Erlang compiler. If it is not set in the
environment when configure runs, the default value is empty. configure uses this
variable when compiling programs to test for Erlang features.

[Variable]FCFLAGS
Debugging and optimization options for the Fortran compiler. If it is not set in the
environment when configure runs, the default value is set when you call AC_PROG_FC

30 Autoconf

(or empty if you don’t). configure uses this variable when compiling or linking
programs to test for Fortran features.

[Variable]FFLAGS
Debugging and optimization options for the Fortran 77 compiler. If it is not set
in the environment when configure runs, the default value is set when you call
AC_PROG_F77 (or empty if you don’t). configure uses this variable when compiling
or linking programs to test for Fortran 77 features.

[Variable]LDFLAGS
Options for the linker. If it is not set in the environment when configure runs, the
default value is empty. configure uses this variable when linking programs to test
for C, C++, Objective C, Objective C++, Fortran, and Go features.

This variable’s contents should contain options like -s and -L that affect only the
behavior of the linker. Please see the explanation of CFLAGS for what you can do if an
option also affects other phases of the compiler.

Don’t use this variable to pass library names (-l) to the linker; use LIBS instead.

[Variable]LIBS
-l options to pass to the linker. The default value is empty, but some Autoconf macros
may prepend extra libraries to this variable if those libraries are found and provide
necessary functions, see Section 5.4 [Libraries], page 54. configure uses this variable
when linking programs to test for C, C++, Objective C, Objective C++, Fortran, and
Go features.

[Variable]OBJCFLAGS
Debugging and optimization options for the Objective C compiler. It acts like CFLAGS,
but for Objective C instead of C.

[Variable]OBJCXXFLAGS
Debugging and optimization options for the Objective C++ compiler. It acts like
CXXFLAGS, but for Objective C++ instead of C++.

[Variable]GOFLAGS
Debugging and optimization options for the Go compiler. It acts like CFLAGS, but for
Go instead of C.

[Variable]builddir
Rigorously equal to ‘.’. Added for symmetry only.

[Variable]abs_builddir
Absolute name of builddir.

[Variable]top_builddir
The relative name of the top level of the current build tree. In the top-level directory,
this is the same as builddir.

[Variable]top_build_prefix
The relative name of the top level of the current build tree with final slash if nonempty.
This is the same as top_builddir, except that it contains zero or more runs of ../,

Chapter 4: Initialization and Output Files 31

so it should not be appended with a slash for concatenation. This helps for make

implementations that otherwise do not treat ./file and file as equal in the top-level
build directory.

[Variable]abs_top_builddir
Absolute name of top_builddir.

[Variable]srcdir
The name of the directory that contains the source code for that makefile.

[Variable]abs_srcdir
Absolute name of srcdir.

[Variable]top_srcdir
The name of the top-level source code directory for the package. In the top-level
directory, this is the same as srcdir.

[Variable]abs_top_srcdir
Absolute name of top_srcdir.

4.8.2 Installation Directory Variables

The following variables specify the directories for package installation, see Section “Variables
for Installation Directories” in The GNU Coding Standards, for more information. Each
variable corresponds to an argument of configure; trailing slashes are stripped so that
expressions such as ‘${prefix}/lib’ expand with only one slash between directory names.
See the end of this section for details on when and how to use these variables.

[Variable]bindir
The directory for installing executables that users run.

[Variable]datadir
The directory for installing idiosyncratic read-only architecture-independent data.

[Variable]datarootdir
The root of the directory tree for read-only architecture-independent data files.

[Variable]docdir
The directory for installing documentation files (other than Info and man).

[Variable]dvidir
The directory for installing documentation files in DVI format.

[Variable]exec_prefix
The installation prefix for architecture-dependent files. By default it’s the same as
prefix. You should avoid installing anything directly to exec_prefix. However, the
default value for directories containing architecture-dependent files should be relative
to exec_prefix.

[Variable]htmldir
The directory for installing HTML documentation.

32 Autoconf

[Variable]includedir
The directory for installing C header files.

[Variable]infodir
The directory for installing documentation in Info format.

[Variable]libdir
The directory for installing object code libraries.

[Variable]libexecdir
The directory for installing executables that other programs run.

[Variable]localedir
The directory for installing locale-dependent but architecture-independent data, such
as message catalogs. This directory usually has a subdirectory per locale.

[Variable]localstatedir
The directory for installing modifiable single-machine data. Content in this directory
typically survives a reboot.

[Variable]runstatedir
The directory for installing temporary modifiable single-machine data. Content in this
directory survives as long as the process is running (such as pid files), as contrasted
with /tmp that may be periodically cleaned. Conversely, this directory is typically
cleaned on a reboot. By default, this is a subdirectory of localstatedir.

[Variable]mandir
The top-level directory for installing documentation in man format.

[Variable]oldincludedir
The directory for installing C header files for non-GCC compilers.

[Variable]pdfdir
The directory for installing PDF documentation.

[Variable]prefix
The common installation prefix for all files. If exec_prefix is defined to a different
value, prefix is used only for architecture-independent files.

[Variable]psdir
The directory for installing PostScript documentation.

[Variable]sbindir
The directory for installing executables that system administrators run.

[Variable]sharedstatedir
The directory for installing modifiable architecture-independent data.

[Variable]sysconfdir
The directory for installing read-only single-machine data.

Chapter 4: Initialization and Output Files 33

Most of these variables have values that rely on prefix or exec_prefix. It is deliberate
that the directory output variables keep them unexpanded: typically ‘@datarootdir@’ is
replaced by ‘${prefix}/share’, not ‘/usr/local/share’, and ‘@datadir@’ is replaced by
‘${datarootdir}’.

This behavior is mandated by the GNU Coding Standards, so that when the user runs:

‘make’ she can still specify a different prefix from the one specified to configure, in
which case, if needed, the package should hard code dependencies corresponding
to the make-specified prefix.

‘make install’
she can specify a different installation location, in which case the package must
still depend on the location which was compiled in (i.e., never recompile when
‘make install’ is run). This is an extremely important feature, as many people
may decide to install all the files of a package grouped together, and then install
links from the final locations to there.

In order to support these features, it is essential that datarootdir remains defined as
‘${prefix}/share’, so that its value can be expanded based on the current value of prefix.

A corollary is that you should not use these variables except in makefiles. For instance,
instead of trying to evaluate datadir in configure and hard-coding it in makefiles using e.g.,
‘AC_DEFINE_UNQUOTED([DATADIR], ["$datadir"], [Data directory.])’, you should add
-DDATADIR='$(datadir)' to your makefile’s definition of CPPFLAGS (AM_CPPFLAGS if you
are also using Automake).

Similarly, you should not rely on AC_CONFIG_FILES to replace bindir and friends in
your shell scripts and other files; instead, let make manage their replacement. For instance
Autoconf ships templates of its shell scripts ending with ‘.in’, and uses a makefile snippet
similar to the following to build scripts like autoheader and autom4te:

edit = sed \

-e 's|@bindir[@]|$(bindir)|g' \

-e 's|@pkgdatadir[@]|$(pkgdatadir)|g' \

-e 's|@prefix[@]|$(prefix)|g'

autoheader autom4te: Makefile

rm -f $@ $@.tmp

srcdir=''; \

test -f ./$@.in || srcdir=$(srcdir)/; \

$(edit) $${srcdir}$@.in >$@.tmp

chmod +x $@.tmp

chmod a-w $@.tmp

mv $@.tmp $@

autoheader: $(srcdir)/autoheader.in

autom4te: $(srcdir)/autom4te.in

Some details are noteworthy:

34 Autoconf

‘@bindir[@]’
The brackets prevent configure from replacing ‘@bindir@’ in the Sed expression
itself. Brackets are preferable to a backslash here, since Posix says ‘\@’ is not
portable.

‘$(bindir)’
Don’t use ‘@bindir@’! Use the matching makefile variable instead.

‘$(pkgdatadir)’
The example takes advantage of the variable ‘$(pkgdatadir)’ provided by
Automake; it is equivalent to ‘$(datadir)/$(PACKAGE)’.

‘/’ Don’t use ‘/’ in the Sed expressions that replace file names since most likely the
variables you use, such as ‘$(bindir)’, contain ‘/’. Use a shell metacharacter
instead, such as ‘|’.

special characters
File names, file name components, and the value of VPATH should not contain
shell metacharacters or white space. See Section 7.3 [Special Chars in Variables],
page 124.

dependency on Makefile

Since edit uses values that depend on the configuration specific values (prefix,
etc.) and not only on VERSION and so forth, the output depends on Makefile,
not configure.ac.

‘$@’ The main rule is generic, and uses ‘$@’ extensively to avoid the need for multiple
copies of the rule.

Separated dependencies and single suffix rules
You can’t use them! The above snippet cannot be (portably) rewritten as:

autoconf autoheader: Makefile

.in:

rm -f $@ $@.tmp

$(edit) $< >$@.tmp

chmod +x $@.tmp

mv $@.tmp $@

See Section 12.19 [Single Suffix Rules], page 278, for details.

‘$(srcdir)’
Be sure to specify the name of the source directory, otherwise the package won’t
support separated builds.

For the more specific installation of Erlang libraries, the following variables are defined:

[Variable]ERLANG_INSTALL_LIB_DIR
The common parent directory of Erlang library installation directories. This variable
is set by calling the AC_ERLANG_SUBST_INSTALL_LIB_DIR macro in configure.ac.

[Variable]ERLANG_INSTALL_LIB_DIR_library
The installation directory for Erlang library library. This variable is set by using the
‘AC_ERLANG_SUBST_INSTALL_LIB_SUBDIR’ macro in configure.ac.

See Section 5.13 [Erlang Libraries], page 104, for details.

Chapter 4: Initialization and Output Files 35

4.8.3 Changed Directory Variables

In Autoconf 2.60, the set of directory variables has changed, and the defaults of some variables
have been adjusted (see Section 4.8.2 [Installation Directory Variables], page 31) to changes
in the GNU Coding Standards. Notably, datadir, infodir, and mandir are now expressed
in terms of datarootdir. If you are upgrading from an earlier Autoconf version, you may
need to adjust your files to ensure that the directory variables are substituted correctly (see
Section 20.5 [Defining Directories], page 353), and that a definition of datarootdir is in
place. For example, in a Makefile.in, adding

datarootdir = @datarootdir@

is usually sufficient. If you use Automake to create Makefile.in, it will add this for you.

To help with the transition, Autoconf warns about files that seem to use datarootdir

without defining it. In some cases, it then expands the value of $datarootdir in substitutions
of the directory variables. The following example shows such a warning:

$ cat configure.ac

AC_INIT

AC_CONFIG_FILES([Makefile])

AC_OUTPUT

$ cat Makefile.in

prefix = @prefix@

datadir = @datadir@

$ autoconf

$ configure

configure: creating ./config.status

config.status: creating Makefile

config.status: WARNING:

Makefile.in seems to ignore the --datarootdir setting

$ cat Makefile

prefix = /usr/local

datadir = ${prefix}/share

Usually one can easily change the file to accommodate both older and newer Autoconf
releases:

$ cat Makefile.in

prefix = @prefix@

datarootdir = @datarootdir@

datadir = @datadir@

$ configure

configure: creating ./config.status

config.status: creating Makefile

$ cat Makefile

prefix = /usr/local

datarootdir = ${prefix}/share

datadir = ${datarootdir}

In some cases, however, the checks may not be able to detect that a suitable initialization
of datarootdir is in place, or they may fail to detect that such an initialization is necessary

36 Autoconf

in the output file. If, after auditing your package, there are still spurious configure warnings
about datarootdir, you may add the line

AC_DEFUN([AC_DATAROOTDIR_CHECKED])

to your configure.ac to disable the warnings. This is an exception to the usual rule that
you should not define a macro whose name begins with AC_ (see Section 10.2 [Macro Names],
page 186).

4.8.4 Build Directories

You can support compiling a software package for several architectures simultaneously from
the same copy of the source code. The object files for each architecture are kept in their
own directory.

To support doing this, make uses the VPATH variable to find the files that are in the source
directory. GNU Make can do this. Most other recent make programs can do this as well,
though they may have difficulties and it is often simpler to recommend GNU make (see
Section 12.18 [VPATH and Make], page 272). Older make programs do not support VPATH;
when using them, the source code must be in the same directory as the object files.

If you are using GNU Automake, the remaining details in this section are already covered
for you, based on the contents of your Makefile.am. But if you are using Autoconf in
isolation, then supporting VPATH requires the following in your Makefile.in:

srcdir = @srcdir@

VPATH = @srcdir@

Do not set VPATH to the value of another variable (see Section 12.18.1 [Variables listed in
VPATH], page 272.

configure substitutes the correct value for srcdir when it produces Makefile.

Do not use the make variable $<, which expands to the file name of the file in the source
directory (found with VPATH), except in implicit rules. (An implicit rule is one such as ‘.c.o’,
which tells how to create a .o file from a .c file.) Some versions of make do not set $< in
explicit rules; they expand it to an empty value.

Instead, Make command lines should always refer to source files by prefixing them with
‘$(srcdir)/’. It’s safer to quote the source directory name, in case it contains characters
that are special to the shell. Because ‘$(srcdir)’ is expanded by Make, single-quoting
works and is safer than double-quoting. For example:

time.info: time.texinfo

$(MAKEINFO) '$(srcdir)/time.texinfo'

4.8.5 Automatic Remaking

You can put rules like the following in the top-level Makefile.in for a package to auto-
matically update the configuration information when you change the configuration files.
This example includes all of the optional files, such as aclocal.m4 and those related to
configuration header files. Omit from the Makefile.in rules for any of these files that your
package does not use.

The ‘$(srcdir)/’ prefix is included because of limitations in the VPATH mechanism.

The stamp- files are necessary because the timestamps of config.h.in and config.h are
not changed if remaking them does not change their contents. This feature avoids unnecessary

Chapter 4: Initialization and Output Files 37

recompilation. You should include the file stamp-h.in in your package’s distribution, so
that make considers config.h.in up to date. Don’t use touch (see [Limitations of Usual
Tools], page 260); instead, use echo (using date would cause needless differences, hence
CVS conflicts, etc.).

$(srcdir)/configure: configure.ac aclocal.m4

cd '$(srcdir)' && autoconf

autoheader might not change config.h.in, so touch a stamp file.

$(srcdir)/config.h.in: stamp-h.in ;

$(srcdir)/stamp-h.in: configure.ac aclocal.m4

cd '$(srcdir)' && autoheader

echo timestamp > '$(srcdir)/stamp-h.in'

config.h: stamp-h ;

stamp-h: config.h.in config.status

./config.status

Makefile: Makefile.in config.status

./config.status

config.status: configure

./config.status --recheck

(Be careful if you copy these lines directly into your makefile, as you need to convert the
indented lines to start with the tab character.)

In addition, you should use

AC_CONFIG_FILES([stamp-h], [echo timestamp > stamp-h])

so config.status ensures that config.h is considered up to date. See Section 4.5 [Output],
page 24, for more information about AC_OUTPUT.

See Chapter 17 [config.status Invocation], page 311, for more examples of handling
configuration-related dependencies.

4.9 Configuration Header Files

When a package contains more than a few tests that define C preprocessor symbols, the
command lines to pass -D options to the compiler can get quite long. This causes two
problems. One is that the make output is hard to visually scan for errors. More seriously, the
command lines can exceed the length limits of some operating systems. As an alternative to
passing -D options to the compiler, configure scripts can create a C header file containing
‘#define’ directives. The AC_CONFIG_HEADERS macro selects this kind of output. Though
it can be called anywhere between AC_INIT and AC_OUTPUT, it is customary to call it right
after AC_INIT.

The package should ‘#include’ the configuration header file before any other header files,
to prevent inconsistencies in declarations (for example, if it redefines const, or if it defines a
macro like _FILE_OFFSET_BITS that affects the behavior of system headers). Note that it
is okay to only include config.h from .c files; the project’s .h files can rely on config.h

already being included first by the corresponding .c file.

38 Autoconf

To provide for VPATH builds, remember to pass the C compiler a -I. option (or
-I..; whichever directory contains config.h). Even if you use ‘#include "config.h"’, the
preprocessor searches only the directory of the currently read file, i.e., the source directory,
not the build directory.

With the appropriate -I option, you can use ‘#include <config.h>’. Actually, it’s a
good habit to use it, because in the rare case when the source directory contains another
config.h, the build directory should be searched first.

[Macro]AC_CONFIG_HEADERS (header . . . , [cmds], [init-cmds])
This macro is one of the instantiating macros; see Section 4.6 [Configuration Actions],
page 25. Make AC_OUTPUT create the file(s) in the blank-or-newline-separated list
header containing C preprocessor #define statements, and replace ‘@DEFS@’ in gen-
erated files with -DHAVE_CONFIG_H instead of the value of DEFS. The usual name for
header is config.h; header should not contain shell metacharacters. See Section 7.3
[Special Chars in Variables], page 124.

If header already exists and its contents are identical to what AC_OUTPUT would put in
it, it is left alone. Doing this allows making some changes in the configuration without
needlessly causing object files that depend on the header file to be recompiled.

Usually the input file is named header.in; however, you can override the input file
name by appending to header a colon-separated list of input files. For example, you
might need to make the input file name acceptable to DOS variants:

AC_CONFIG_HEADERS([config.h:config.hin])

[Macro]AH_HEADER
This macro is defined as the name of the first declared config header and undefined if
no config headers have been declared up to this point. A third-party macro may, for
example, require use of a config header without invoking AC CONFIG HEADERS
twice, like this:

AC_CONFIG_COMMANDS_PRE(

[m4_ifndef([AH_HEADER], [AC_CONFIG_HEADERS([config.h])])])

See Section 4.6 [Configuration Actions], page 25, for more details on header.

4.9.1 Configuration Header Templates

Your distribution should contain a template file that looks as you want the final header file
to look, including comments, with #undef statements which are used as hooks. For example,
suppose your configure.ac makes these calls:

AC_CONFIG_HEADERS([conf.h])

AC_CHECK_HEADERS([unistd.h])

Then you could have code like the following in conf.h.in. The conf.h created by configure
defines ‘HAVE_UNISTD_H’ to 1, if and only if the system has unistd.h.

/* Define as 1 if you have unistd.h. */

#undef HAVE_UNISTD_H

The format of the template file is stricter than what the C preprocessor is required to
accept. A directive line should contain only whitespace, ‘#undef’, and ‘HAVE_UNISTD_H’.
The use of ‘#define’ instead of ‘#undef’, or of comments on the same line as ‘#undef’, is

Chapter 4: Initialization and Output Files 39

strongly discouraged. Each hook should only be listed once. Other preprocessor lines, such
as ‘#ifdef’ or ‘#include’, are copied verbatim from the template into the generated header.

Since it is a tedious task to keep a template header up to date, you may use autoheader
to generate it, see Section 4.9.2 [autoheader Invocation], page 39.

During the instantiation of the header, each ‘#undef’ line in the template file for each
symbol defined by ‘AC_DEFINE’ is changed to an appropriate ‘#define’. If the corresponding
‘AC_DEFINE’ has not been executed during the configure run, the ‘#undef’ line is commented
out. (This is important, e.g., for ‘_POSIX_SOURCE’: on many systems, it can be implicitly
defined by the compiler, and undefining it in the header would then break compilation of
subsequent headers.)

Currently, all remaining ‘#undef’ lines in the header template are commented out,
whether or not there was a corresponding ‘AC_DEFINE’ for the macro name; but this behavior
is not guaranteed for future releases of Autoconf.

Generally speaking, since you should not use ‘#define’, and you cannot guarantee
whether a ‘#undef’ directive in the header template will be converted to a ‘#define’ or
commented out in the generated header file, the template file cannot be used for conditional
definition effects. Consequently, if you need to use the construct

#ifdef THIS

define THAT

#endif

you must place it outside of the template. If you absolutely need to hook it to the config
header itself, please put the directives to a separate file, and ‘#include’ that file from the
config header template. If you are using autoheader, you would probably use ‘AH_BOTTOM’
to append the ‘#include’ directive.

4.9.2 Using autoheader to Create config.h.in

The autoheader program can create a template file of C ‘#define’ statements for configure
to use. It searches for the first invocation of AC_CONFIG_HEADERS in configure sources to
determine the name of the template. (If the first call of AC_CONFIG_HEADERS specifies more
than one input file name, autoheader uses the first one.)

It is recommended that only one input file is used. If you want to append a boilerplate
code, it is preferable to use ‘AH_BOTTOM([#include <conf_post.h>])’. File conf_post.h

is not processed during the configuration then, which make things clearer. Analogically,
AH_TOP can be used to prepend a boilerplate code.

In order to do its job, autoheader needs you to document all of the symbols that you
might use. Typically this is done via an AC_DEFINE or AC_DEFINE_UNQUOTED call whose
first argument is a literal symbol and whose third argument describes the symbol (see
Section 7.1 [Defining Symbols], page 121). Alternatively, you can use AH_TEMPLATE (see
Section 4.9.3 [Autoheader Macros], page 41), or you can supply a suitable input file for a
subsequent configuration header file. Symbols defined by Autoconf’s builtin tests are already
documented properly; you need to document only those that you define yourself.

You might wonder why autoheader is needed: after all, why would configure need
to “patch” a config.h.in to produce a config.h instead of just creating config.h from
scratch? Well, when everything rocks, the answer is just that we are wasting our time

40 Autoconf

maintaining autoheader: generating config.h directly is all that is needed. When things
go wrong, however, you’ll be thankful for the existence of autoheader.

The fact that the symbols are documented is important in order to check that config.h
makes sense. The fact that there is a well-defined list of symbols that should be defined (or
not) is also important for people who are porting packages to environments where configure
cannot be run: they just have to fill in the blanks.

But let’s come back to the point: the invocation of autoheader. . .

If you give autoheader an argument, it uses that file instead of configure.ac and writes
the header file to the standard output instead of to config.h.in. If you give autoheader an
argument of -, it reads the standard input instead of configure.ac and writes the header
file to the standard output.

autoheader accepts the following options:

--help

-h Print a summary of the command line options and exit.

--version

-V Print the version number of Autoconf and exit.

--verbose

-v Report processing steps.

--debug

-d Don’t remove the temporary files.

--force

-f Remake the template file even if newer than its input files.

--include=dir

-I dir Append dir to the include path. Multiple invocations accumulate.

--prepend-include=dir

-B dir Prepend dir to the include path. Multiple invocations accumulate.

--warnings=category[,category...]

-Wcategory[,category...]

Enable or disable warnings related to each category. See [m4 warn], page 149,
for a comprehensive list of categories. Special values include:

‘all’ Enable all categories of warnings.

‘none’ Disable all categories of warnings.

‘error’ Treat all warnings as errors.

‘no-category’
Disable warnings falling into category.

The environment variable WARNINGS may also be set to a comma-separated list of
warning categories to enable or disable. It is interpreted exactly the same way as
the argument of --warnings, but unknown categories are silently ignored. The
command line takes precedence; for instance, if WARNINGS is set to obsolete,
but -Wnone is given on the command line, no warnings will be issued.

Some categories of warnings are on by default. Again, for details see [m4 warn],
page 149.

Chapter 4: Initialization and Output Files 41

4.9.3 Autoheader Macros

autoheader scans configure.ac and figures out which C preprocessor symbols it might
define. It knows how to generate templates for symbols defined by AC_CHECK_HEADERS, AC_
CHECK_FUNCS etc., but if you AC_DEFINE any additional symbol, you must define a template
for it. If there are missing templates, autoheader fails with an error message.

The template for a symbol is created by autoheader from the description argument to
an AC_DEFINE; see Section 7.1 [Defining Symbols], page 121.

For special needs, you can use the following macros.

[Macro]AH_TEMPLATE (key, description)
Tell autoheader to generate a template for key. This macro generates standard
templates just like AC_DEFINE when a description is given.

For example:

AH_TEMPLATE([NULL_DEVICE],

[Name of the file to open to get

a null file, or a data sink.])

generates the following template, with the description properly justified.

/* Name of the file to open to get a null file, or a data sink. */

#undef NULL_DEVICE

[Macro]AH_VERBATIM (key, template)
Tell autoheader to include the template as-is in the header template file. This
template is associated with the key, which is used to sort all the different templates
and guarantee their uniqueness. It should be a symbol that can be defined via
AC_DEFINE.

[Macro]AH_TOP (text)
Include text at the top of the header template file.

[Macro]AH_BOTTOM (text)
Include text at the bottom of the header template file.

Please note that text gets included “verbatim” to the template file, not to the resulting
config header, so it can easily get mangled when the template is processed. There is rarely a
need for something other than

AH_BOTTOM([#include <custom.h>])

4.10 Running Arbitrary Configuration Commands

You can execute arbitrary commands before, during, and after config.status is run. The
three following macros accumulate the commands to run when they are called multiple times.
AC_CONFIG_COMMANDS replaces the obsolete macro AC_OUTPUT_COMMANDS; see Section 18.4
[Obsolete Macros], page 315, for details.

[Macro]AC_CONFIG_COMMANDS (tag. . . , [cmds], [init-cmds])
Specify additional shell commands to run at the end of config.status, and shell
commands to initialize any variables from configure. Associate the commands with

42 Autoconf

tag. Since typically the cmds create a file, tag should naturally be the name of that
file. If needed, the directory hosting tag is created. The tag should not contain shell
metacharacters. See Section 7.3 [Special Chars in Variables], page 124. This macro is
one of the instantiating macros; see Section 4.6 [Configuration Actions], page 25.

Here is an unrealistic example:

fubar=42

AC_CONFIG_COMMANDS([fubar],

[echo this is extra $fubar, and so on.],

[fubar=$fubar])

Here is a better one:

AC_CONFIG_COMMANDS([timestamp], [date >timestamp])

The following two macros look similar, but in fact they are not of the same breed: they
are executed directly by configure, so you cannot use config.status to rerun them.

[Macro]AC_CONFIG_COMMANDS_PRE (cmds)
Execute the cmds right before creating config.status.

This macro presents the last opportunity to call AC_SUBST, AC_DEFINE, or AC_CONFIG_
ITEMS macros.

[Macro]AC_CONFIG_COMMANDS_POST (cmds)
Execute the cmds right after creating config.status.

4.11 Creating Configuration Links

You may find it convenient to create links whose destinations depend upon results of tests.
One can use AC_CONFIG_COMMANDS but the creation of relative symbolic links can be delicate
when the package is built in a directory different from the source directory.

[Macro]AC_CONFIG_LINKS (dest:source. . . , [cmds], [init-cmds])
Make AC_OUTPUT link each of the existing files source to the corresponding link name
dest. Makes a symbolic link if possible, otherwise a hard link if possible, otherwise a
copy. The dest and source names should be relative to the top level source or build
directory, and should not contain shell metacharacters. See Section 7.3 [Special Chars
in Variables], page 124.

This macro is one of the instantiating macros; see Section 4.6 [Configuration Actions],
page 25.

For example, this call:

AC_CONFIG_LINKS([host.h:config/$machine.h

object.h:config/$obj_format.h])

creates in the current directory host.h as a link to srcdir/config/$machine.h, and
object.h as a link to srcdir/config/$obj_format.h.

The tempting value ‘.’ for dest is invalid: it makes it impossible for ‘config.status’
to guess the links to establish.

One can then run:

./config.status host.h object.h

to create the links.

Chapter 4: Initialization and Output Files 43

4.12 Configuring Other Packages in Subdirectories

In most situations, calling AC_OUTPUT is sufficient to produce makefiles in subdirectories.
However, configure scripts that control more than one independent package can use
AC_CONFIG_SUBDIRS to run configure scripts for other packages in subdirectories.

[Macro]AC_CONFIG_SUBDIRS (dir . . .)
Make AC_OUTPUT run configure in each subdirectory dir in the given blank-or-newline-
separated list. Each dir should be a literal, i.e., please do not use:

if test "x$package_foo_enabled" = xyes; then

my_subdirs="$my_subdirs foo"

fi

AC_CONFIG_SUBDIRS([$my_subdirs])

because this prevents ‘./configure --help=recursive’ from displaying the options
of the package foo. Instead, you should write:

AS_IF([test "x$package_foo_enabled" = xyes],

[AC_CONFIG_SUBDIRS([foo])])

If a given dir is not found at configure run time, a warning is reported; if the
subdirectory is optional, write:

AS_IF([test -d "$srcdir/foo"],

[AC_CONFIG_SUBDIRS([foo])])

These examples use AS_IF instead of ordinary shell if to avoid problems that Autoconf
has with macro calls in shell conditionals outside macro definitions. See Section 9.1
[Common Shell Constructs], page 175.

If a given dir contains configure.gnu, it is run instead of configure. This is for
packages that might use a non-Autoconf script Configure, which can’t be called
through a wrapper configure since it would be the same file on case-insensitive file
systems.

The subdirectory configure scripts are given the same command line options that
were given to this configure script, with minor changes if needed, which include:

− adjusting a relative name for the cache file;

− adjusting a relative name for the source directory;

− propagating the current value of $prefix, including if it was defaulted, and if
the default values of the top level and of the subdirectory configure differ.

This macro also sets the output variable subdirs to the list of directories ‘dir ...’.
Make rules can use this variable to determine which subdirectories to recurse into.

This macro may be called multiple times.

4.13 Default Prefix

By default, configure sets the prefix for files it installs to /usr/local. The user of
configure can select a different prefix using the --prefix and --exec-prefix options.
There are two ways to change the default: when creating configure, and when running it.

Some software packages might want to install in a directory other than /usr/local by
default. To accomplish that, use the AC_PREFIX_DEFAULT macro.

44 Autoconf

[Macro]AC_PREFIX_DEFAULT (prefix)
Set the default installation prefix to prefix instead of /usr/local.

It may be convenient for users to have configure guess the installation prefix from the
location of a related program that they have already installed. If you wish to do that, you
can call AC_PREFIX_PROGRAM.

[Macro]AC_PREFIX_PROGRAM (program)
If the user did not specify an installation prefix (using the --prefix option), guess
a value for it by looking for program in PATH, the way the shell does. If program is
found, set the prefix to the parent of the directory containing program, else default
the prefix as described above (/usr/local or AC_PREFIX_DEFAULT). For example, if
program is gcc and the PATH contains /usr/local/gnu/bin/gcc, set the prefix to
/usr/local/gnu.

45

5 Existing Tests

These macros test for particular system features that packages might need or want to use. If
you need to test for a kind of feature that none of these macros check for, you can probably
do it by calling primitive test macros with appropriate arguments (see Chapter 6 [Writing
Tests], page 107).

These tests print messages telling the user which feature they’re checking for, and what
they find. They cache their results for future configure runs (see Section 7.4 [Caching
Results], page 125).

Some of these macros set output variables. See Section 4.8 [Makefile Substitutions],
page 27, for how to get their values. The phrase “define name” is used below as a shorthand
to mean “define the C preprocessor symbol name to the value 1”. See Section 7.1 [Defining
Symbols], page 121, for how to get those symbol definitions into your program.

5.1 Common Behavior

Much effort has been expended to make Autoconf easy to learn. The most obvious way to
reach this goal is simply to enforce standard interfaces and behaviors, avoiding exceptions
as much as possible. Because of history and inertia, unfortunately, there are still too many
exceptions in Autoconf; nevertheless, this section describes some of the common rules.

5.1.1 Standard Symbols

All the generic macros that AC_DEFINE a symbol as a result of their test transform their
argument values to a standard alphabet. First, argument is converted to upper case and any
asterisks (‘*’) are each converted to ‘P’. Any remaining characters that are not alphanumeric
are converted to underscores.

For instance,

AC_CHECK_TYPES([struct $Expensive*])

defines the symbol ‘HAVE_STRUCT__EXPENSIVEP’ if the check succeeds.

5.1.2 Default Includes

Test programs frequently need to include headers that may or may not be available on the
system whose features are being tested. Each test can use all the preprocessor macros that
have been AC_DEFINEd by previous tests, so for example one may write

#include <time.h>

#ifdef HAVE_SYS_TIME_H

include <sys/time.h>

#endif

if sys/time.h has already been tested for.

All hosted environments that are still of interest for portable code provide all of the
headers specified in C89 (as amended in 1995): assert.h, ctype.h, errno.h, float.h,
iso646.h, limits.h, locale.h, math.h, setjmp.h, signal.h, stdarg.h, stddef.h,
stdio.h, stdlib.h, string.h, time.h, wchar.h, and wctype.h. Most programs can safely
include these headers unconditionally. A program not intended to be portable to C89 can
also safely include the C99-specified header stdbool.h. Other headers, including headers

46 Autoconf

from C99 and later revisions of the C standard, might need to be tested for (see Section 5.6
[Header Files], page 67) or their bugs may need to be worked around (see Section 2.2
[Gnulib], page 3).

If your program needs to be portable to a freestanding environment, such as an embedded
OS that doesn’t provide all of the facilities of the C89 standard library, you may need to test
for some of the above headers as well. Note that many Autoconf macros internally assume
that the complete set of C89 headers are available.

Most generic macros use the following macro to provide a default set of includes:

[Macro]AC_INCLUDES_DEFAULT ([include-directives])
Expand to include-directives if present and nonempty, otherwise to:

#include <stddef.h>

#ifdef HAVE_STDIO_H

include <stdio.h>

#endif

#ifdef HAVE_STDLIB_H

include <stdlib.h>

#endif

#ifdef HAVE_STRING_H

include <string.h>

#endif

#ifdef HAVE_INTTYPES_H

include <inttypes.h>

#endif

#ifdef HAVE_STDINT_H

include <stdint.h>

#endif

#ifdef HAVE_STRINGS_H

include <strings.h>

#endif

#ifdef HAVE_SYS_TYPES_H

include <sys/types.h>

#endif

#ifdef HAVE_SYS_STAT_H

include <sys/stat.h>

#endif

#ifdef HAVE_UNISTD_H

include <unistd.h>

#endif

Using this macro without include-directives has the side effect of checking for stdio.h,
stdlib.h, string.h, inttypes.h, stdint.h, strings.h, sys/types.h, sys/stat.h,
and unistd.h, as if by AC_CHECK_HEADERS_ONCE. For backward compatibility, the
macro STDC_HEADERS will be defined when both stdlib.h and string.h are available.

Portability Note: It is safe for most programs to assume the presence of all of the
headers required by the original 1990 C standard. AC_INCLUDES_DEFAULT checks for
stdio.h, stdlib.h, and string.h, even though they are in that list, because they

Chapter 5: Existing Tests 47

might not be available when compiling for a “freestanding environment” (in which
most of the features of the C library are optional). You probably do not need to write
‘#ifdef HAVE_STDIO_H’ in your own code.

inttypes.h and stdint.h were added to C in the 1999 revision of the standard, and
strings.h, sys/types.h, sys/stat.h, and unistd.h are POSIX extensions. You
should guard uses of these headers with appropriate conditionals.

[Macro]AC_CHECK_INCLUDES_DEFAULT
Check for all the headers that AC_INCLUDES_DEFAULT would check for as a side-effect,
if this has not already happened.

This macro mainly exists so that autoupdate can replace certain obsolete constructs
with it. You should not need to use it yourself; in fact, it is likely to be safe to delete it
from any script in which it appears. (autoupdate does not know whether preprocessor
macros such as HAVE_STDINT_H are used in the program, nor whether they would get
defined as a side-effect of other checks.)

5.2 Alternative Programs

These macros check for the presence or behavior of particular programs. They are used to
choose between several alternative programs and to decide what to do once one has been
chosen. If there is no macro specifically defined to check for a program you need, and you
don’t need to check for any special properties of it, then you can use one of the general
program-check macros.

5.2.1 Particular Program Checks

These macros check for particular programs—whether they exist, and in some cases whether
they support certain features.

[Macro]AC_PROG_AR
Set output variable AR to ‘ar’ if ar is found, and otherwise to ‘:’ (do nothing).

[Macro]AC_PROG_AWK
Check for gawk, mawk, nawk, and awk, in that order, and set output variable AWK to
the first one that is found. It tries gawk first because that is reported to be the best
implementation. The result can be overridden by setting the variable AWK or the cache
variable ac_cv_prog_AWK.

Using this macro is sufficient to avoid the pitfalls of traditional awk (see [Limitations
of Usual Tools], page 244).

[Macro]AC_PROG_GREP
Look for the best available grep or ggrep that accepts the longest input lines possible,
and that supports multiple -e options. Set the output variable GREP to whatever
is chosen. See [Limitations of Usual Tools], page 251, for more information about
portability problems with the grep command family. The result can be overridden by
setting the GREP variable and is cached in the ac_cv_path_GREP variable.

[Macro]AC_PROG_EGREP
Check whether $GREP -E works, or else look for the best available egrep or gegrep
that accepts the longest input lines possible. Set the output variable EGREP to whatever

48 Autoconf

is chosen. The result can be overridden by setting the EGREP variable and is cached in
the ac_cv_path_EGREP variable.

[Macro]AC_PROG_FGREP
Check whether $GREP -F works, or else look for the best available fgrep or gfgrep
that accepts the longest input lines possible. Set the output variable FGREP to whatever
is chosen. The result can be overridden by setting the FGREP variable and is cached in
the ac_cv_path_FGREP variable.

[Macro]AC_PROG_INSTALL
Set output variable INSTALL to the name of a BSD-compatible install program, if
one is found in the current PATH. Otherwise, set INSTALL to ‘dir/install-sh -c’,
checking the directories specified to AC_CONFIG_AUX_DIR (or its default directories) to
determine dir (see Section 4.5 [Output], page 24). Also set the variables INSTALL_
PROGRAM and INSTALL_SCRIPT to ‘${INSTALL}’ and INSTALL_DATA to ‘${INSTALL}
-m 644’.

‘@INSTALL@’ is special, as its value may vary for different configuration files.

This macro screens out various instances of install known not to work. It prefers
to find a C program rather than a shell script, for speed. Instead of install-sh, it
can also use install.sh, but that name is obsolete because some make programs
have a rule that creates install from it if there is no makefile. Further, this macro
requires install to be able to install multiple files into a target directory in a single
invocation.

Autoconf comes with a copy of install-sh that you can use. If you use AC_PROG_

INSTALL, you must include install-sh in your distribution; otherwise autoreconf

and configure will produce an error message saying they can’t find it—even if the
system you’re on has a good install program. This check is a safety measure to
prevent you from accidentally leaving that file out, which would prevent your package
from installing on systems that don’t have a BSD-compatible install program.

If you need to use your own installation program because it has features not found in
standard install programs, there is no reason to use AC_PROG_INSTALL; just put the
file name of your program into your Makefile.in files.

The result of the test can be overridden by setting the variable INSTALL or the cache
variable ac_cv_path_install.

[Macro]AC_PROG_MKDIR_P
Set output variable MKDIR_P to a program that ensures that for each argument, a
directory named by this argument exists, creating it and its parent directories if needed,
and without race conditions when two instances of the program attempt to make the
same directory at nearly the same time.

This macro uses the equivalent of the ‘mkdir -p’ command. Ancient versions of mkdir
are vulnerable to race conditions, so if you want to support parallel installs from
different packages into the same directory you should use a non-ancient mkdir.

This macro is related to the AS_MKDIR_P macro (see Chapter 9 [Programming in
M4sh], page 175), but it sets an output variable intended for use in other files, whereas
AS_MKDIR_P is intended for use in scripts like configure. Also, AS_MKDIR_P does not

Chapter 5: Existing Tests 49

accept options, but MKDIR_P supports the -m option, e.g., a makefile might invoke
$(MKDIR_P) -m 0 dir to create an inaccessible directory, and conversely a makefile
should use $(MKDIR_P) -- $(FOO) if FOO might yield a value that begins with ‘-’.

The result of the test can be overridden by setting the variable MKDIR_P or the cache
variable ac_cv_path_mkdir.

[Macro]AC_PROG_LEX (options)
Search for a lexical analyzer generator, preferring flex to plain lex. Output variable
LEX is set to whichever program is available. If neither program is available, LEX is set
to ‘:’; for packages that ship the generated file.yy.c alongside the source file.l,
this default allows users without a lexer generator to still build the package even if
the timestamp for file.l is inadvertently changed.

The name of the program to use can be overridden by setting the output variable LEX
or the cache variable ac_cv_prog_LEX when running configure.

If a lexical analyzer generator is found, this macro performs additional checks for
common portability pitfalls. If these additional checks fail, LEX is reset to ‘:’; otherwise
the following additional macros and variables are provided.

Preprocessor macro YYTEXT_POINTER is defined if the lexer skeleton, by default, declares
yytext as a ‘char *’ rather than a ‘char []’.

Output variable LEX_OUTPUT_ROOT is set to the base of the file name that the lexer
generates; this is usually either lex.yy or lexyy.

If generated lexers need a library to work, output variable LEXLIB is set to a link
option for that library (e.g., -ll), otherwise it is set to empty.

The options argument modifies the behavior of AC_PROG_LEX. It should be a whitespace-
separated list of options. Currently there are only two options, and they are mutually
exclusive:

yywrap Indicate that the library in LEXLIB needs to define the function yywrap.
If a library that defines this function cannot be found, LEX will be reset
to ‘:’.

noyywrap Indicate that the library in LEXLIB does not need to define the function
yywrap. configure will not search for it at all.

Prior to Autoconf 2.70, AC_PROG_LEX did not take any arguments, and its behavior
was different from either of the above possibilities: it would search for a library that
defines yywrap, and would set LEXLIB to that library if it finds one. However, if a
library that defines this function could not be found, LEXLIB would be left empty and
LEX would not be reset. This behavior was due to a bug, but several packages came to
depend on it, so AC_PROG_LEX still does this if neither the yywrap nor the noyywrap
option is given.

Usage of AC_PROG_LEX without choosing one of the yywrap or noyywrap options is
deprecated. It is usually better to use noyywrap and define the yywrap function
yourself, as this almost always renders the LEXLIB unnecessary.

Caution: As a side-effect of the test, this macro may delete any file in the configure
script’s current working directory named lex.yy.c or lexyy.c.

50 Autoconf

Caution: Packages that ship a generated lex.yy.c cannot assume that the definition
of YYTEXT_POINTER matches the code in that file. They also cannot assume that
LEXLIB provides the library routines required by the code in that file.

If you use Flex to generate lex.yy.c, you can work around these limitations by
defining yywrap and main yourself (rendering -lfl unnecessary), and by using either
the --array or --pointer options to control how yytext is declared. The code
generated by Flex is also more portable than the code generated by historical versions
of Lex.

If you have used Flex to generate lex.yy.c, and especially if your scanner depends
on Flex features, we recommend you use this Autoconf snippet to prevent the scanner
being regenerated with historical Lex:

AC_PROG_LEX

AS_IF([test "x$LEX" != xflex],

[LEX="$SHELL $missing_dir/missing flex"

AC_SUBST([LEX_OUTPUT_ROOT], [lex.yy])

AC_SUBST([LEXLIB], [''])])

The shell script missing can be found in the Automake distribution.

Remember that the user may have supplied an alternate location in LEX, so if Flex is
required, it is better to check that the user provided something sufficient by parsing
the output of ‘$LEX --version’ than by simply relying on test "x$LEX" = xflex.

[Macro]AC_PROG_LN_S
If ‘ln -s’ works on the current file system (the operating system and file system
support symbolic links), set the output variable LN_S to ‘ln -s’; otherwise, if ‘ln’
works, set LN_S to ‘ln’, and otherwise set it to ‘cp -pR’.

If you make a link in a directory other than the current directory, its meaning depends
on whether ‘ln’ or ‘ln -s’ is used. To safely create links using ‘$(LN_S)’, either find
out which form is used and adjust the arguments, or always invoke ln in the directory
where the link is to be created.

In other words, it does not work to do:

$(LN_S) foo /x/bar

Instead, do:

(cd /x && $(LN_S) foo bar)

[Macro]AC_PROG_RANLIB
Set output variable RANLIB to ‘ranlib’ if ranlib is found, and otherwise to ‘:’ (do
nothing).

[Macro]AC_PROG_SED
Set output variable SED to a Sed implementation that conforms to Posix and does
not have arbitrary length limits. Report an error if no acceptable Sed is found. See
[Limitations of Usual Tools], page 255, for more information about portability problems
with Sed.

The result of this test can be overridden by setting the SED variable and is cached in
the ac_cv_path_SED variable.

Chapter 5: Existing Tests 51

[Macro]AC_PROG_YACC
If bison is found, set output variable YACC to ‘bison -y’. Otherwise, if byacc is found,
set YACC to ‘byacc’. Otherwise set YACC to ‘yacc’. The result of this test can be
influenced by setting the variable YACC or the cache variable ac_cv_prog_YACC.

5.2.2 Generic Program and File Checks

These macros are used to find programs not covered by the “particular” test macros. If you
need to check the behavior of a program as well as find out whether it is present, you have
to write your own test for it (see Chapter 6 [Writing Tests], page 107). By default, these
macros use the environment variable PATH. If you need to check for a program that might
not be in the user’s PATH, you can pass a modified path to use instead, like this:

AC_PATH_PROG([INETD], [inetd], [/usr/libexec/inetd],

[$PATH$PATH_SEPARATOR/usr/libexec$PATH_SEPARATOR]dnl

[/usr/sbin$PATH_SEPARATOR/usr/etc$PATH_SEPARATOR/etc])

You are strongly encouraged to declare the variable passed to AC_CHECK_PROG etc. as
precious. See Section 7.2 [Setting Output Variables], page 122, AC_ARG_VAR, for more details.

[Macro]AC_CHECK_PROG (variable, prog-to-check-for, value-if-found,
[value-if-not-found], [path = ‘$PATH’], [reject])

Check whether program prog-to-check-for exists in path. If it is found, set variable
to value-if-found, otherwise to value-if-not-found, if given. Always pass over reject
(an absolute file name) even if it is the first found in the search path; in that case,
set variable using the absolute file name of the prog-to-check-for found that is not
reject. If variable was already set, do nothing. Calls AC_SUBST for variable. The result
of this test can be overridden by setting the variable variable or the cache variable
ac_cv_prog_variable.

[Macro]AC_CHECK_PROGS (variable, progs-to-check-for,
[value-if-not-found], [path = ‘$PATH’])

Check for each program in the blank-separated list progs-to-check-for existing in the
path. If one is found, set variable to the name of that program. Otherwise, continue
checking the next program in the list. If none of the programs in the list are found, set
variable to value-if-not-found; if value-if-not-found is not specified, the value of variable
is not changed. Calls AC_SUBST for variable. The result of this test can be overridden
by setting the variable variable or the cache variable ac_cv_prog_variable.

[Macro]AC_CHECK_TARGET_TOOL (variable, prog-to-check-for,
[value-if-not-found], [path = ‘$PATH’])

Like AC_CHECK_PROG, but first looks for prog-to-check-for with a prefix of the target
type as determined by AC_CANONICAL_TARGET, followed by a dash (see Section 14.2
[Canonicalizing], page 292). If the tool cannot be found with a prefix, and if the build
and target types are equal, then it is also searched for without a prefix.

As noted in Section 14.1 [Specifying Target Triplets], page 291, the target is rarely
specified, because most of the time it is the same as the host: it is the type of system
for which any compiler tool in the package produces code. What this macro looks for
is, for example, a tool (assembler, linker, etc.) that the compiler driver (gcc for the
GNU C Compiler) uses to produce objects, archives or executables.

52 Autoconf

[Macro]AC_CHECK_TOOL (variable, prog-to-check-for,
[value-if-not-found], [path = ‘$PATH’])

Like AC_CHECK_PROG, but first looks for prog-to-check-for with a prefix of the host type
as specified by --host, followed by a dash. For example, if the user runs ‘configure
--build=x86_64-gnu --host=aarch64-linux-gnu’, then this call:

AC_CHECK_TOOL([RANLIB], [ranlib], [:])

sets RANLIB to aarch64-linux-gnu-ranlib if that program exists in path, or other-
wise to ‘ranlib’ if that program exists in path, or to ‘:’ if neither program exists.

When cross-compiling, this macro will issue a warning if no program prefixed with the
host type could be found. For more information, see Section 14.1 [Specifying Target
Triplets], page 291.

[Macro]AC_CHECK_TARGET_TOOLS (variable, progs-to-check-for,
[value-if-not-found], [path = ‘$PATH’])

Like AC_CHECK_TARGET_TOOL, each of the tools in the list progs-to-check-for are checked
with a prefix of the target type as determined by AC_CANONICAL_TARGET, followed by
a dash (see Section 14.2 [Canonicalizing], page 292). If none of the tools can be found
with a prefix, and if the build and target types are equal, then the first one without a
prefix is used. If a tool is found, set variable to the name of that program. If none of
the tools in the list are found, set variable to value-if-not-found; if value-if-not-found
is not specified, the value of variable is not changed. Calls AC_SUBST for variable.

[Macro]AC_CHECK_TOOLS (variable, progs-to-check-for,
[value-if-not-found], [path = ‘$PATH’])

Like AC_CHECK_TOOL, each of the tools in the list progs-to-check-for are checked with
a prefix of the host type as determined by AC_CANONICAL_HOST, followed by a dash
(see Section 14.2 [Canonicalizing], page 292). If none of the tools can be found with a
prefix, then the first one without a prefix is used. If a tool is found, set variable to
the name of that program. If none of the tools in the list are found, set variable to
value-if-not-found; if value-if-not-found is not specified, the value of variable is not
changed. Calls AC_SUBST for variable.

When cross-compiling, this macro will issue a warning if no program prefixed with the
host type could be found. For more information, see Section 14.1 [Specifying Target
Triplets], page 291.

[Macro]AC_PATH_PROG (variable, prog-to-check-for,
[value-if-not-found], [path = ‘$PATH’])

Like AC_CHECK_PROG, but set variable to the absolute name of prog-to-check-for if
found. The result of this test can be overridden by setting the variable variable. A
positive result of this test is cached in the ac_cv_path_variable variable.

[Macro]AC_PATH_PROGS (variable, progs-to-check-for,
[value-if-not-found], [path = ‘$PATH’])

Like AC_CHECK_PROGS, but if any of progs-to-check-for are found, set variable to the
absolute name of the program found. The result of this test can be overridden by
setting the variable variable. A positive result of this test is cached in the ac_cv_

path_variable variable.

Chapter 5: Existing Tests 53

[Macro]AC_PATH_PROGS_FEATURE_CHECK (variable, progs-to-check-for,
feature-test, [action-if-not-found], [path = ‘$PATH’])

This macro was introduced in Autoconf 2.62. If variable is not empty, then set the
cache variable ac_cv_path_variable to its value. Otherwise, check for each program
in the blank-separated list progs-to-check-for existing in path. For each program
found, execute feature-test with ac_path_variable set to the absolute name of the
candidate program. If no invocation of feature-test sets the shell variable ac_cv_path_
variable, then action-if-not-found is executed. feature-test will be run even when
ac_cv_path_variable is set, to provide the ability to choose a better candidate found
later in path; to accept the current setting and bypass all further checks, feature-test
can execute ac_path_variable_found=:.

Note that this macro has some subtle differences from AC_CHECK_PROGS. It is designed
to be run inside AC_CACHE_VAL, therefore, it should have no side effects. In particular,
variable is not set to the final value of ac_cv_path_variable, nor is AC_SUBST

automatically run. Also, on failure, any action can be performed, whereas AC_CHECK_
PROGS only performs variable=value-if-not-found.

Here is an example, similar to what Autoconf uses in its own configure script. It will
search for an implementation of m4 that supports the indir builtin, even if it goes by
the name gm4 or is not the first implementation on PATH.

AC_CACHE_CHECK([for m4 that supports indir], [ac_cv_path_M4],

[AC_PATH_PROGS_FEATURE_CHECK([M4], [m4 gm4],

[[m4out=`echo 'changequote([,])indir([divnum])' | $ac_path_M4`

test "x$m4out" = x0 \

&& ac_cv_path_M4=$ac_path_M4 ac_path_M4_found=:]],

[AC_MSG_ERROR([could not find m4 that supports indir])])])

AC_SUBST([M4], [$ac_cv_path_M4])

[Macro]AC_PATH_TARGET_TOOL (variable, prog-to-check-for,
[value-if-not-found], [path = ‘$PATH’])

Like AC_CHECK_TARGET_TOOL, but set variable to the absolute name of the program if
it is found.

[Macro]AC_PATH_TOOL (variable, prog-to-check-for,
[value-if-not-found], [path = ‘$PATH’])

Like AC_CHECK_TOOL, but set variable to the absolute name of the program if it is
found.

When cross-compiling, this macro will issue a warning if no program prefixed with the
host type could be found. For more information, see Section 14.1 [Specifying Target
Triplets], page 291.

5.3 Files

You might also need to check for the existence of files. Before using these macros, ask
yourself whether a runtime test might not be a better solution. Be aware that, like most
Autoconf macros, they test a feature of the host machine, and therefore, they die when
cross-compiling.

54 Autoconf

[Macro]AC_CHECK_FILE (file, [action-if-found], [action-if-not-found])
Check whether file file exists on the native system. If it is found, execute action-if-
found, otherwise do action-if-not-found, if given. Cache the result of this test in the
ac_cv_file_file variable, with characters not suitable for a variable name mapped
to underscores.

[Macro]AC_CHECK_FILES (files, [action-if-found], [action-if-not-found])
For each file listed in files, execute AC_CHECK_FILE and perform either action-if-found
or action-if-not-found. Like AC_CHECK_FILE, this defines ‘HAVE_file’ (see Section 5.1.1
[Standard Symbols], page 45) for each file found and caches the results of each test
in the ac_cv_file_file variable, with characters not suitable for a variable name
mapped to underscores.

5.4 Library Files

The following macros check for the presence of certain C, C++, Fortran, or Go library archive
files.

[Macro]AC_CHECK_LIB (library, function, [action-if-found],
[action-if-not-found], [other-libraries])

Test whether the library library is available by trying to link a test program that
calls function function with the library. function should be a function provided by
the library. Use the base name of the library; e.g., to check for -lmp, use ‘mp’ as the
library argument.

action-if-found is a list of shell commands to run if the link with the library succeeds;
action-if-not-found is a list of shell commands to run if the link fails. If action-if-
found is not specified, the default action prepends -llibrary to LIBS and defines
‘HAVE_LIBlibrary’ (in all capitals). This macro is intended to support building
LIBS in a right-to-left (least-dependent to most-dependent) fashion such that library
dependencies are satisfied as a natural side effect of consecutive tests. Linkers are
sensitive to library ordering so the order in which LIBS is generated is important to
reliable detection of libraries.

If linking with library results in unresolved symbols that would be resolved by linking
with additional libraries, give those libraries as the other-libraries argument, separated
by spaces: e.g., -lXt -lX11. Otherwise, this macro may fail to detect that library
is present, because linking the test program can fail with unresolved symbols. The
other-libraries argument should be limited to cases where it is desirable to test for
one library in the presence of another that is not already in LIBS.

AC_CHECK_LIB requires some care in usage, and should be avoided in some common
cases. Many standard functions like gethostbyname appear in the standard C library
on some hosts, and in special libraries like nsl on other hosts. On some hosts the
special libraries contain variant implementations that you may not want to use. These
days it is normally better to use AC_SEARCH_LIBS([gethostbyname], [nsl]) instead
of AC_CHECK_LIB([nsl], [gethostbyname]).

The result of this test is cached in the ac_cv_lib_library_function variable.

Chapter 5: Existing Tests 55

[Macro]AC_SEARCH_LIBS (function, search-libs, [action-if-found],
[action-if-not-found], [other-libraries])

Search for a library defining function if it’s not already available. This equates to
calling ‘AC_LINK_IFELSE([AC_LANG_CALL([], [function])])’ first with no libraries,
then for each library listed in search-libs.

Prepend -llibrary to LIBS for the first library found to contain function, and run
action-if-found. If the function is not found, run action-if-not-found.

If linking with library results in unresolved symbols that would be resolved by linking
with additional libraries, give those libraries as the other-libraries argument, separated
by spaces: e.g., -lXt -lX11. Otherwise, this macro fails to detect that function is
present, because linking the test program always fails with unresolved symbols.

The result of this test is cached in the ac_cv_search_function variable as ‘none
required’ if function is already available, as ‘no’ if no library containing function was
found, otherwise as the -llibrary option that needs to be prepended to LIBS.

5.5 Library Functions

The following macros check for particular C library functions. If there is no macro specifically
defined to check for a function you need, and you don’t need to check for any special properties
of it, then you can use one of the general function-check macros.

5.5.1 Portability of C Functions

Most usual functions can either be missing, or be buggy, or be limited on some architectures.
This section tries to make an inventory of these portability issues. By definition, this list
always requires additions. A much more complete list is maintained by the Gnulib project
(see Section 2.2 [Gnulib], page 3), covering Section “Current Posix Functions” in Gnulib,
Section “Legacy Functions” in Gnulib, and Section “Glibc Functions” in Gnulib. Please
help us keep the Gnulib list as complete as possible.

exit On ancient hosts, exit returned int. This is because exit predates void, and
there was a long tradition of it returning int.

On current hosts, the problem more likely is that exit is not declared, due to
C++ problems of some sort or another. For this reason we suggest that test
programs not invoke exit, but return from main instead.

isinf

isnan In C99 and later, isinf and isnan are macros. On some systems just macros
are available (e.g., HP-UX and Solaris 10), on some systems both macros and
functions (e.g., glibc 2.3.2), and on some systems only functions (e.g., IRIX
6). In some cases these functions are declared in nonstandard headers like
<sunmath.h> and defined in non-default libraries like -lm or -lsunmath.

In C99 and later, isinf and isnan macros work correctly with long double

arguments, but pre-C99 systems that use functions typically assume double

arguments. On such a system, isinf incorrectly returns true for a finite long
double argument that is outside the range of double.

56 Autoconf

The best workaround for these issues is to use Gnulib modules isinf and isnan

(see Section 2.2 [Gnulib], page 3). But a lighter weight solution involves code
like the following.

#include <math.h>

#ifndef isnan

define isnan(x) \

(sizeof (x) == sizeof (long double) ? isnan_ld (x) \

: sizeof (x) == sizeof (double) ? isnan_d (x) \

: isnan_f (x))

static int isnan_f (float x) { return x != x; }

static int isnan_d (double x) { return x != x; }

static int isnan_ld (long double x) { return x != x; }

#endif

#ifndef isinf

define isinf(x) \

(sizeof (x) == sizeof (long double) ? isinf_ld (x) \

: sizeof (x) == sizeof (double) ? isinf_d (x) \

: isinf_f (x))

static int isinf_f (float x)

{ return !isnan (x) && isnan (x - x); }

static int isinf_d (double x)

{ return !isnan (x) && isnan (x - x); }

static int isinf_ld (long double x)

{ return !isnan (x) && isnan (x - x); }

#endif

Some optimizing compilers mishandle these definitions, but systems with that
bug typically have many other floating point corner-case compliance problems
anyway, so it’s probably not worth worrying about.

malloc The C standard says a successful call malloc (0) is implementation dependent.
It can return either NULL or a new non-null pointer. The latter is more common
(e.g., the GNU C Library) but is by no means universal. AC_FUNC_MALLOC can
be used to insist on non-NULL (see Section 5.5.2 [Particular Functions], page 58).

putenv Posix prefers setenv to putenv; among other things, putenv is not required of
all Posix implementations, but setenv is.

Posix specifies that putenv puts the given string directly in environ, but some
systems make a copy of it instead (e.g., glibc 2.0, or BSD). And when a copy is
made, unsetenv might not free it, causing a memory leak (e.g., FreeBSD 4).

On some systems putenv ("FOO") removes ‘FOO’ from the environment, but this
is not standard usage and it dumps core on some systems (e.g., AIX).

On MinGW, a call putenv ("FOO=") removes ‘FOO’ from the environment, rather
than inserting it with an empty value.

realloc It is problematic to call realloc with a zero size. The C standard says realloc
(NULL, 0) is equivalent to malloc (0), which means one cannot portably tell
whether the call has succeeded if it returns a null pointer. If ptr is non-null,
the C standard says realloc (ptr, 0) has undefined behavior.

The AC_FUNC_REALLOC macro avoids some of these portability issues, and the
Gnulib module realloc-gnu avoids more of them. See Section 5.5.2 [Particular
Functions], page 58.

Chapter 5: Existing Tests 57

signal handler
In most cases, it is more robust to use sigaction when it is available, rather
than signal.

snprintf In C99 and later, if the output array isn’t big enough and if no other errors
occur, snprintf and vsnprintf truncate the output and return the number of
bytes that ought to have been produced. Some ancient systems returned the
truncated length (e.g., GNU C Library 2.0.x or IRIX 6.5), and some a negative
value (e.g., earlier GNU C Library versions).

strerror_r

Posix specifies that strerror_r returns an int, but many systems (e.g., GNU C
Library version 2.36) provide a different version returning a char *. AC_FUNC_
STRERROR_R can detect which is in use (see Section 5.5.2 [Particular Functions],
page 58).

strnlen AIX 4.3 provided a broken version which produces the following results:

strnlen ("foobar", 0) = 0

strnlen ("foobar", 1) = 3

strnlen ("foobar", 2) = 2

strnlen ("foobar", 3) = 1

strnlen ("foobar", 4) = 0

strnlen ("foobar", 5) = 6

strnlen ("foobar", 6) = 6

strnlen ("foobar", 7) = 6

strnlen ("foobar", 8) = 6

strnlen ("foobar", 9) = 6

sysconf _SC_PAGESIZE is standard, but some older systems (e.g., HP-UX 9) have _SC_
PAGE_SIZE instead. This can be tested with #ifdef.

unlink The Posix spec says that unlink causes the given file to be removed only after
there are no more open file handles for it. Some non-Posix hosts have trouble
with this requirement, though, and some DOS variants even corrupt the file
system.

unsetenv On MinGW, unsetenv is not available, but a variable ‘FOO’ can be removed
with a call putenv ("FOO="), as described under putenv above.

va_copy C99 and later provide va_copy for copying va_list variables. It may be
available in older environments too, though possibly as __va_copy (e.g., gcc in
strict pre-C99 mode). These can be tested with #ifdef. A fallback to memcpy

(&dst, &src, sizeof (va_list)) gives maximum portability.

va_list va_list is not necessarily just a pointer. It can be a struct (e.g., gcc on
Alpha), which means NULL is not portable. Or it can be an array (e.g., gcc in
some PowerPC configurations), which means as a function parameter it can be
effectively call-by-reference and library routines might modify the value back in
the caller (e.g., vsnprintf in the GNU C Library 2.1).

Signed >> Normally the C >> right shift of a signed type replicates the high bit, giving a
so-called “arithmetic” shift. But care should be taken since Standard C doesn’t

58 Autoconf

require that behavior. On a few platforms (e.g., Cray C by default) zero bits
are shifted in, the same as a shift of an unsigned type.

Integer / C divides signed integers by truncating their quotient toward zero, yielding
the same result as Fortran. However, before C99 the standard allowed C
implementations to take the floor or ceiling of the quotient in some cases.
Hardly any implementations took advantage of this freedom, though, and it’s
probably not worth worrying about this issue nowadays.

5.5.2 Particular Function Checks

These macros check for particular C functions—whether they exist, and in some cases how
they respond when given certain arguments.

[Macro]AC_FUNC_ALLOCA
Check for the alloca function. Define HAVE_ALLOCA_H if alloca.h defines a working
alloca. If not, look for a builtin alternative. If either method succeeds, define HAVE_
ALLOCA. Otherwise, set the output variable ALLOCA to ‘${LIBOBJDIR}alloca.o’ and
define C_ALLOCA (so programs can periodically call ‘alloca (0)’ to garbage collect).
This variable is separate from LIBOBJS so multiple programs can share the value of
ALLOCA without needing to create an actual library, in case only some of them use the
code in LIBOBJS. The ‘${LIBOBJDIR}’ prefix serves the same purpose as in LIBOBJS

(see Section 18.6.4 [AC LIBOBJ vs LIBOBJS], page 334).

Source files that use alloca should start with a piece of code like the following, to
declare it properly.

#include <stdlib.h>

#include <stddef.h>

#ifdef HAVE_ALLOCA_H

include <alloca.h>

#elif !defined alloca

ifdef __GNUC__

define alloca __builtin_alloca

elif defined _MSC_VER

include <malloc.h>

define alloca _alloca

elif !defined HAVE_ALLOCA

ifdef __cplusplus

extern "C"

endif

void *alloca (size_t);

endif

#endif

If you don’t want to maintain this piece of code in your package manually, you can
instead use the Gnulib module alloca-opt or alloca. See Section 2.2 [Gnulib],
page 3.

Chapter 5: Existing Tests 59

[Macro]AC_FUNC_CHOWN
If the chown function is available and works (in particular, it should accept -1 for uid
and gid), define HAVE_CHOWN. The result of this macro is cached in the ac_cv_func_
chown_works variable.

If you want a workaround, that is, a chown function that is available and works, you
can use the Gnulib module chown. See Section 2.2 [Gnulib], page 3.

[Macro]AC_FUNC_CLOSEDIR_VOID
If the closedir function does not return a meaningful value, define CLOSEDIR_VOID.
Otherwise, callers ought to check its return value for an error indicator.

Currently this test is implemented by running a test program. When cross compiling
the pessimistic assumption that closedir does not return a meaningful value is made.

The result of this macro is cached in the ac_cv_func_closedir_void variable.

This macro is obsolescent, as closedir returns a meaningful value on current systems.
New programs need not use this macro.

[Macro]AC_FUNC_ERROR_AT_LINE
If the error_at_line function is not found, require an AC_LIBOBJ replacement of
‘error’.

The result of this macro is cached in the ac_cv_lib_error_at_line variable.

The AC_FUNC_ERROR_AT_LINEmacro is obsolescent. New programs should use Gnulib’s
error module. See Section 2.2 [Gnulib], page 3.

[Macro]AC_FUNC_FNMATCH
If the fnmatch function conforms to Posix, define HAVE_FNMATCH.

Unlike the other specific AC_FUNC macros, AC_FUNC_FNMATCH does not replace a bro-
ken/missing fnmatch. This is for historical reasons. See AC_REPLACE_FNMATCH below.

The result of this macro is cached in the ac_cv_func_fnmatch_works variable.

This macro is obsolescent. New programs should use Gnulib’s fnmatch-posix module.
See Section 2.2 [Gnulib], page 3.

[Macro]AC_FUNC_FNMATCH_GNU
Behave like AC_REPLACE_FNMATCH (replace) but also test whether fnmatch supports
GNU extensions. Detect common implementation bugs, for example, the bugs in the
GNU C Library 2.1.

The result of this macro is cached in the ac_cv_func_fnmatch_gnu variable.

This macro is obsolescent. New programs should use Gnulib’s fnmatch-gnu module.
See Section 2.2 [Gnulib], page 3.

[Macro]AC_FUNC_FORK
This macro checks for the fork and vfork functions. If a working fork is found,
define HAVE_WORKING_FORK. This macro checks whether fork is just a stub by trying
to run it.

If vfork.h is found, define HAVE_VFORK_H. If a working vfork is found, define HAVE_
WORKING_VFORK. Otherwise, define vfork to be fork for backward compatibility
with previous versions of autoconf. This macro checks for several known errors in

60 Autoconf

implementations of vfork and considers the system to not have a working vfork if it
detects any of them.

Since this macro defines vfork only for backward compatibility with previous versions
of autoconf you’re encouraged to define it yourself in new code:

#ifndef HAVE_WORKING_VFORK

define vfork fork

#endif

The results of this macro are cached in the ac_cv_func_fork_works and ac_cv_

func_vfork_works variables. In order to override the test, you also need to set the
ac_cv_func_fork and ac_cv_func_vfork variables.

[Macro]AC_FUNC_FSEEKO
If the fseeko and ftello functions are available, define HAVE_FSEEKO. Define _

LARGEFILE_SOURCE if necessary to make the prototype visible.

Configure scripts that use AC_FUNC_FSEEKO should normally also use AC_SYS_

LARGEFILE to ensure that off_t can represent all supported file sizes. See
[AC SYS LARGEFILE], page 101.

The Gnulib module fseeko invokes AC_FUNC_FSEEKO and also contains workarounds
for other portability problems of fseeko. See Section 2.2 [Gnulib], page 3.

[Macro]AC_FUNC_GETGROUPS
Perform all the checks performed by AC_TYPE_GETGROUPS (see [AC TYPE GETGROUPS],
page 77). Then, if the getgroups function is available and known to work correctly,
define HAVE_GETGROUPS. Set the output variable GETGROUPS_LIB to any libraries
needed to get that function.

This macro relies on a list of systems with known, serious bugs in getgroups. If this
list mis-identifies your system’s getgroups as buggy, or as not buggy, you can override
it by setting the cache variable ac_cv_func_getgroups_works in a config.site file
(see Section 15.8 [Site Defaults], page 302). Please also report the error to the Autoconf
Bugs mailing list.

The Gnulib module getgroups provides workarounds for additional, less severe porta-
bility problems with this function.

[Macro]AC_FUNC_GETLOADAVG
Check how to get the system load averages. To perform its tests properly, this macro
needs the file getloadavg.c; therefore, be sure to set the AC_LIBOBJ replacement
directory properly (see Section 5.5.3 [Generic Functions], page 65, AC_CONFIG_LIBOBJ_
DIR).

If the system has the getloadavg function, define HAVE_GETLOADAVG, and set
GETLOADAVG_LIBS to any libraries necessary to get that function. Also add
GETLOADAVG_LIBS to LIBS. Otherwise, require an AC_LIBOBJ replacement for
‘getloadavg’ and possibly define several other C preprocessor macros and output
variables:

1. Define C_GETLOADAVG.

2. Define SVR4, DGUX, UMAX, or UMAX4_3 if on those systems.

mailto:bug-autoconf@gnu.org
mailto:bug-autoconf@gnu.org

Chapter 5: Existing Tests 61

3. If nlist.h is found, define HAVE_NLIST_H.

4. If ‘struct nlist’ has an ‘n_un.n_name’ member, define HAVE_STRUCT_NLIST_N_
UN_N_NAME. The obsolete symbol NLIST_NAME_UNION is still defined, but do not
depend upon it.

5. Programs may need to be installed set-group-ID (or set-user-ID) for getloadavg
to work. In this case, define GETLOADAVG_PRIVILEGED, set the output variable
NEED_SETGID to ‘true’ (and otherwise to ‘false’), and set KMEM_GROUP to the
name of the group that should own the installed program.

The AC_FUNC_GETLOADAVG macro is obsolescent. New programs should use Gnulib’s
getloadavg module. See Section 2.2 [Gnulib], page 3.

[Macro]AC_FUNC_GETMNTENT
Check for getmntent in the standard C library, and then in the sun, seq, and
gen libraries, for UNICOS, IRIX 4, PTX, and UnixWare, respectively. Then, if
getmntent is available, define HAVE_GETMNTENT and set ac_cv_func_getmntent to
yes. Otherwise set ac_cv_func_getmntent to no.

The result of this macro can be overridden by setting the cache variable ac_cv_

search_getmntent.

The AC_FUNC_GETMNTENT macro is obsolescent. New programs should use Gnulib’s
mountlist module. See Section 2.2 [Gnulib], page 3.

[Macro]AC_FUNC_GETPGRP
Define GETPGRP_VOID if it is an error to pass 0 to getpgrp; this is the Posix behavior.
On older BSD systems, you must pass 0 to getpgrp, as it takes an argument and
behaves like Posix’s getpgid.

#ifdef GETPGRP_VOID

pid = getpgrp ();

#else

pid = getpgrp (0);

#endif

This macro does not check whether getpgrp exists at all; if you need to work in that
situation, first call AC_CHECK_FUNC for getpgrp.

The result of this macro is cached in the ac_cv_func_getpgrp_void variable.

This macro is obsolescent, as current systems have a getpgrp whose signature conforms
to Posix. New programs need not use this macro.

[Macro]AC_FUNC_LSTAT_FOLLOWS_SLASHED_SYMLINK
If link is a symbolic link, then lstat should treat link/ the same as link/.. However,
many older lstat implementations incorrectly ignore trailing slashes.

It is safe to assume that if lstat incorrectly ignores trailing slashes, then other
symbolic-link-aware functions like unlink also incorrectly ignore trailing slashes.

If lstat behaves properly, define LSTAT_FOLLOWS_SLASHED_SYMLINK, otherwise re-
quire an AC_LIBOBJ replacement of lstat.

The result of this macro is cached in the ac_cv_func_lstat_dereferences_slashed_
symlink variable.

62 Autoconf

The AC_FUNC_LSTAT_FOLLOWS_SLASHED_SYMLINK macro is obsolescent. New programs
should use Gnulib’s lstat module. See Section 2.2 [Gnulib], page 3.

[Macro]AC_FUNC_MALLOC
If the malloc function is compatible with the GNU C library malloc (i.e., ‘malloc (0)’
returns a valid pointer), define HAVE_MALLOC to 1. Otherwise define HAVE_MALLOC to
0, ask for an AC_LIBOBJ replacement for ‘malloc’, and define malloc to rpl_malloc

so that the native malloc is not used in the main project.

Typically, the replacement file malloc.c should look like (note the ‘#undef malloc’):

#include <config.h>

#undef malloc

#include <stdlib.h>

/* Allocate an N-byte block of memory from the heap.

If N is zero, allocate a 1-byte block. */

void *

rpl_malloc (size_t n)

{

if (n == 0)

n = 1;

return malloc (n);

}

The result of this macro is cached in the ac_cv_func_malloc_0_nonnull variable.

If you don’t want to maintain a malloc.c file in your package manually, you can
instead use the Gnulib module malloc-gnu.

[Macro]AC_FUNC_MBRTOWC
Define HAVE_MBRTOWC to 1 if the function mbrtowc and the type mbstate_t are properly
declared.

The result of this macro is cached in the ac_cv_func_mbrtowc variable.

The Gnulib module mbrtowc not only ensures that the function is declared, but also
works around other portability problems of this function.

[Macro]AC_FUNC_MEMCMP
If the memcmp function is not available or does not work, require an AC_LIBOBJ

replacement for ‘memcmp’.

The result of this macro is cached in the ac_cv_func_memcmp_working variable.

This macro is obsolescent, as current systems have a working memcmp. New programs
need not use this macro.

[Macro]AC_FUNC_MKTIME
If the mktime function is not available, or does not work correctly, require an AC_

LIBOBJ replacement for ‘mktime’. For the purposes of this test, mktime should conform
to the Posix standard and should be the inverse of localtime.

Chapter 5: Existing Tests 63

The result of this macro is cached in the ac_cv_func_working_mktime variable.

The AC_FUNC_MKTIME macro is obsolescent. New programs should use Gnulib’s mktime
module. See Section 2.2 [Gnulib], page 3.

[Macro]AC_FUNC_MMAP
If the mmap function exists and works correctly, define HAVE_MMAP. This checks only
private fixed mapping of already-mapped memory.

The result of this macro is cached in the ac_cv_func_mmap_fixed_mapped variable.

Note: This macro asks for more than what an average program needs from mmap. In
particular, the use of MAP_FIXED fails on HP-UX 11, whereas mmap otherwise works
fine on this platform.

[Macro]AC_FUNC_OBSTACK
If the obstacks are found, define HAVE_OBSTACK, else require an AC_LIBOBJ replacement
for ‘obstack’.

The result of this macro is cached in the ac_cv_func_obstack variable.

The AC_FUNC_OBSTACK macro is obsolescent. New programs should use Gnulib’s
obstack module. See Section 2.2 [Gnulib], page 3.

[Macro]AC_FUNC_REALLOC
If the realloc function is compatible with the GNU C library realloc (i.e., ‘realloc
(NULL, 0)’ returns a valid pointer), define HAVE_REALLOC to 1. Otherwise define
HAVE_REALLOC to 0, ask for an AC_LIBOBJ replacement for ‘realloc’, and define
realloc to rpl_realloc so that the native realloc is not used in the main project.
See AC_FUNC_MALLOC for details.

The result of this macro is cached in the ac_cv_func_realloc_0_nonnull variable.

If you don’t want to maintain a realloc.c file in your package manually, you can
instead use the Gnulib module realloc-gnu.

[Macro]AC_FUNC_SELECT_ARGTYPES
Determines the correct type to be passed for each of the select function’s arguments,
and defines those types in SELECT_TYPE_ARG1, SELECT_TYPE_ARG234, and SELECT_

TYPE_ARG5 respectively. SELECT_TYPE_ARG1 defaults to ‘int’, SELECT_TYPE_ARG234
defaults to ‘int *’, and SELECT_TYPE_ARG5 defaults to ‘struct timeval *’.

This macro is obsolescent, as current systems have a select whose signature conforms
to Posix. New programs need not use this macro.

[Macro]AC_FUNC_SETPGRP
If setpgrp takes no argument (the Posix version), define SETPGRP_VOID. Otherwise,
it is the BSD version, which takes two process IDs as arguments. This macro does not
check whether setpgrp exists at all; if you need to work in that situation, first call
AC_CHECK_FUNC for setpgrp. This macro also does not check for the Solaris variant
of setpgrp, which returns a pid_t instead of an int; portable code should only use
the return value by comparing it against -1 to check for errors.

The result of this macro is cached in the ac_cv_func_setpgrp_void variable.

This macro is obsolescent, as all forms of setpgrp are also obsolescent. New programs
should use the Posix function setpgid, which takes two process IDs as arguments
(like the BSD setpgrp).

64 Autoconf

[Macro]AC_FUNC_STAT
[Macro]AC_FUNC_LSTAT

Determine whether stat or lstat have the bug that it succeeds when given the
zero-length file name as argument.

If it does, then define HAVE_STAT_EMPTY_STRING_BUG (or HAVE_LSTAT_EMPTY_STRING_
BUG) and ask for an AC_LIBOBJ replacement of it.

The results of these macros are cached in the ac_cv_func_stat_empty_string_bug
and the ac_cv_func_lstat_empty_string_bug variables, respectively.

These macros are obsolescent, as no current systems have the bug. New programs
need not use these macros.

[Macro]AC_FUNC_STRCOLL
If the strcoll function exists and works correctly, define HAVE_STRCOLL. This does
a bit more than ‘AC_CHECK_FUNCS(strcoll)’, because some systems have incorrect
definitions of strcoll that should not be used. But it does not check against a known
bug of this function on Solaris 10.

The result of this macro is cached in the ac_cv_func_strcoll_works variable.

[Macro]AC_FUNC_STRERROR_R
If strerror_r is available, define HAVE_STRERROR_R, and if it is declared, define
HAVE_DECL_STRERROR_R. If it returns a char * message, define STRERROR_R_CHAR_P;
otherwise it returns an int error number. The Thread-Safe Functions option of Posix
requires strerror_r to return int, but many systems (including, for example, version
2.2.4 of the GNU C Library) return a char * value that is not necessarily equal to
the buffer argument.

The result of this macro is cached in the ac_cv_func_strerror_r_char_p variable.

The Gnulib module strerror_r not only ensures that the function has the return type
specified by Posix, but also works around other portability problems of this function.

[Macro]AC_FUNC_STRFTIME
Check for strftime in the intl library, for SCO Unix. Then, if strftime is available,
define HAVE_STRFTIME.

This macro is obsolescent, as no current systems require the intl library for strftime.
New programs need not use this macro.

[Macro]AC_FUNC_STRTOD
If the strtod function does not exist or doesn’t work correctly, ask for an AC_LIBOBJ

replacement of ‘strtod’. In this case, because strtod.c is likely to need ‘pow’, set
the output variable POW_LIB to the extra library needed.

This macro caches its result in the ac_cv_func_strtod variable and depends upon
the result in the ac_cv_func_pow variable.

The AC_FUNC_STRTOD macro is obsolescent. New programs should use Gnulib’s strtod
module. See Section 2.2 [Gnulib], page 3.

[Macro]AC_FUNC_STRTOLD
If the strtold function exists and conforms to C99 or later, define HAVE_STRTOLD.

Chapter 5: Existing Tests 65

This macro caches its result in the ac_cv_func_strtold variable.

The Gnulib module strtold not only ensures that the function exists, but also works
around other portability problems of this function.

[Macro]AC_FUNC_STRNLEN
If the strnlen function is not available, or is buggy (like the one from AIX 4.3),
require an AC_LIBOBJ replacement for it.

This macro caches its result in the ac_cv_func_strnlen_working variable.

The AC_FUNC_STRNLEN macro is obsolescent. New programs should use Gnulib’s
strnlen module. See Section 2.2 [Gnulib], page 3.

[Macro]AC_FUNC_UTIME_NULL
If ‘utime (file, NULL)’ sets file’s timestamp to the present, define HAVE_UTIME_NULL.

This macro caches its result in the ac_cv_func_utime_null variable.

This macro is obsolescent, as all current systems have a utime that behaves this way.
New programs need not use this macro.

[Macro]AC_FUNC_VPRINTF
If vprintf is found, define HAVE_VPRINTF. Otherwise, if _doprnt is found, define
HAVE_DOPRNT. (If vprintf is available, you may assume that vfprintf and vsprintf

are also available.)

This macro is obsolescent, as all current systems have vprintf. New programs need
not use this macro.

[Macro]AC_REPLACE_FNMATCH
If the fnmatch function does not conform to Posix (see AC_FUNC_FNMATCH), ask for
its AC_LIBOBJ replacement.

The files fnmatch.c, fnmatch_loop.c, and fnmatch_.h in the AC_LIBOBJ replacement
directory are assumed to contain a copy of the source code of GNU fnmatch. If
necessary, this source code is compiled as an AC_LIBOBJ replacement, and the fnmatch_
.h file is linked to fnmatch.h so that it can be included in place of the system
<fnmatch.h>.

This macro caches its result in the ac_cv_func_fnmatch_works variable.

This macro is obsolescent, as it assumes the use of particular source files. New programs
should use Gnulib’s fnmatch-posix module, which provides this macro along with
the source files. See Section 2.2 [Gnulib], page 3.

5.5.3 Generic Function Checks

These macros are used to find functions not covered by the “particular” test macros. If the
functions might be in libraries other than the default C library, first call AC_CHECK_LIB for
those libraries. If you need to check the behavior of a function as well as find out whether it
is present, you have to write your own test for it (see Chapter 6 [Writing Tests], page 107).

[Macro]AC_CHECK_FUNC (function, [action-if-found],
[action-if-not-found])

If C function function is available, run shell commands action-if-found, otherwise
action-if-not-found. If you just want to define a symbol if the function is available,

66 Autoconf

consider using AC_CHECK_FUNCS instead. This macro checks for functions with C
linkage even when AC_LANG(C++) has been called, since C is more standardized than
C++. (see Section 6.1 [Language Choice], page 107, for more information about
selecting the language for checks.)

This macro caches its result in the ac_cv_func_function variable.

[Macro]AC_CHECK_FUNCS (function. . . , [action-if-found],
[action-if-not-found])

For each function enumerated in the blank-or-newline-separated argument list, define
HAVE_function (in all capitals) if it is available. If action-if-found is given, it is
additional shell code to execute when one of the functions is found. You can give it a
value of ‘break’ to break out of the loop on the first match. If action-if-not-found is
given, it is executed when one of the functions is not found.

Results are cached for each function as in AC_CHECK_FUNC.

[Macro]AC_CHECK_FUNCS_ONCE (function. . .)
For each function enumerated in the blank-or-newline-separated argument list, define
HAVE_function (in all capitals) if it is available. This is a once-only variant of AC_
CHECK_FUNCS. It generates the checking code at most once, so that configure is
smaller and faster; but the checks cannot be conditionalized and are always done once,
early during the configure run.

Autoconf follows a philosophy that was formed over the years by those who have struggled
for portability: isolate the portability issues in specific files, and then program as if you were
in a Posix environment. Some functions may be missing or unfixable, and your package
must be ready to replace them.

Suitable replacements for many such problem functions are available from Gnulib (see
Section 2.2 [Gnulib], page 3).

[Macro]AC_LIBOBJ (function)
Specify that ‘function.c’ must be included in the executables to replace a missing or
broken implementation of function.

Technically, it adds ‘function.$ac_objext’ to the output variable LIBOBJS if it is
not already in, and calls AC_LIBSOURCE for ‘function.c’. You should not directly
change LIBOBJS, since this is not traceable.

[Macro]AC_LIBSOURCE (file)
Specify that file might be needed to compile the project. If you need to know what
files might be needed by a configure.ac, you should trace AC_LIBSOURCE. file must
be a literal.

This macro is called automatically from AC_LIBOBJ, but you must call it explicitly
if you pass a shell variable to AC_LIBOBJ. In that case, since shell variables cannot
be traced statically, you must pass to AC_LIBSOURCE any possible files that the shell
variable might cause AC_LIBOBJ to need. For example, if you want to pass a variable
$foo_or_bar to AC_LIBOBJ that holds either "foo" or "bar", you should do:

AC_LIBSOURCE([foo.c])

Chapter 5: Existing Tests 67

AC_LIBSOURCE([bar.c])

AC_LIBOBJ([$foo_or_bar])

There is usually a way to avoid this, however, and you are encouraged to simply call
AC_LIBOBJ with literal arguments.

Note that this macro replaces the obsolete AC_LIBOBJ_DECL, with slightly different
semantics: the old macro took the function name, e.g., foo, as its argument rather
than the file name.

[Macro]AC_LIBSOURCES (files)
Like AC_LIBSOURCE, but accepts one or more files in a comma-separated M4 list. Thus,
the above example might be rewritten:

AC_LIBSOURCES([foo.c, bar.c])

AC_LIBOBJ([$foo_or_bar])

[Macro]AC_CONFIG_LIBOBJ_DIR (directory)
Specify that AC_LIBOBJ replacement files are to be found in directory, a name
relative to the top level of the source tree. The replacement directory defaults
to ., the top level directory, and the most typical value is lib, corresponding to
‘AC_CONFIG_LIBOBJ_DIR([lib])’.

configure might need to know the replacement directory for the following reasons:
(i) some checks use the replacement files, (ii) some macros bypass broken system
headers by installing links to the replacement headers (iii) when used in conjunction
with Automake, within each makefile, directory is used as a relative path from
$(top_srcdir) to each object named in LIBOBJS and LTLIBOBJS, etc.

It is common to merely check for the existence of a function, and ask for its AC_LIBOBJ
replacement if missing. The following macro is a convenient shorthand.

[Macro]AC_REPLACE_FUNCS (function. . .)
Like AC_CHECK_FUNCS, but uses ‘AC_LIBOBJ(function)’ as action-if-not-found. You
can declare your replacement function by enclosing the prototype in ‘#ifndef
HAVE_function’. If the system has the function, it probably declares it in a header
file you should be including, so you shouldn’t redeclare it lest your declaration conflict.

5.6 Header Files

The following macros check for the presence of certain C header files. If there is no macro
specifically defined to check for a header file you need, and you don’t need to check for any
special properties of it, then you can use one of the general header-file check macros.

5.6.1 Portability of Headers

This section documents some collected knowledge about common headers, and the problems
they cause. By definition, this list always requires additions. A much more complete list is
maintained by the Gnulib project (see Section 2.2 [Gnulib], page 3), covering Section “Posix
Headers” in Gnulib and Section “Glibc Headers” in Gnulib. Please help us keep the Gnulib
list as complete as possible.

68 Autoconf

When we say that a header “may require” some set of other headers, we mean that it
may be necessary for you to manually include those other headers first, or the contents of the
header under test will fail to compile. When checking for these headers, you must provide the
potentially-required headers in the includes argument to AC_CHECK_HEADER or AC_CHECK_
HEADERS, or the check will fail spuriously. AC_INCLUDES_DEFAULT (see Section 5.1.2 [Default
Includes], page 45) arranges to include a number of common requirements and should normally
come first in your includes. For example, net/if.hmay require sys/types.h, sys/socket.h,
or both, and AC_INCLUDES_DEFAULT handles sys/types.h but not sys/socket.h, so you
should check for it like this:

AC_CHECK_HEADERS([sys/socket.h])

AC_CHECK_HEADERS([net/if.h], [], [],

[AC_INCLUDES_DEFAULT[

#ifdef HAVE_SYS_SOCKET_H

include <sys/socket.h>

#endif

]])

Note that the example mixes single quoting (forAC_INCLUDES_DEFAULT, so that it gets
expanded) and double quoting (to ensure that each preprocessor # gets treated as a literal
string rather than a comment).

limits.h In C99 and later, limits.h defines LLONG_MIN, LLONG_MAX, and ULLONG_MAX,
but many almost-C99 environments (e.g., default GCC 4.0.2 + glibc 2.4) do not
define them.

memory.h This header file is obsolete; use string.h instead.

strings.h

On some systems, this is the only header that declares strcasecmp,
strncasecmp, and ffs.

This header may or may not include string.h for you. However, on all recent
systems it is safe to include both string.h and strings.h, in either order, in
the same source file.

inttypes.h vs. stdint.h
C99 specifies that inttypes.h includes stdint.h, so there’s no need to include
stdint.h separately in a standard environment. However, some implementations
have stdint.h but not inttypes.h (e.g. MSVC 2012). Therefore, it is necessary
to check for each and include each only if available.

linux/irda.h

This header may require linux/types.h and/or sys/socket.h.

linux/random.h

This header may require linux/types.h.

net/if.h This header may require sys/types.h and/or sys/socket.h.

netinet/if_ether.h

This header may require some combination of sys/types.h, sys/socket.h,
netinet/in.h, and net/if.h.

Chapter 5: Existing Tests 69

sys/mount.h

This header may require sys/params.h.

sys/ptem.h

This header may require sys/stream.h.

sys/socket.h

This header may require sys/types.h.

sys/ucred.h

This header may require sys/types.h.

X11/extensions/scrnsaver.h

Using XFree86, this header requires X11/Xlib.h, which is probably so required
that you might not even consider looking for it.

5.6.2 Particular Header Checks

These macros check for particular system header files—whether they exist, and in some
cases whether they declare certain symbols.

[Macro]AC_CHECK_HEADER_STDBOOL
Check whether stdbool.h exists and conforms to C99 or later, and cache the result
in the ac_cv_header_stdbool_h variable. If the type _Bool is defined, define HAVE_
_BOOL to 1.

This macro is obsolescent, as all current C compilers have stdbool.h, a header that
is itself obsolescent as of C23.

This macro is intended for use by Gnulib (see Section 2.2 [Gnulib], page 3) and other
packages that supply a substitute stdbool.h on platforms lacking a conforming one.
The AC_HEADER_STDBOOL macro is better for code that explicitly checks for stdbool.h.

[Macro]AC_HEADER_ASSERT
Check whether to enable assertions in the style of assert.h. Assertions are enabled
by default, but the user can override this by invoking configure with the --disable-
assert option.

[Macro]AC_HEADER_DIRENT
Check for the following header files. For the first one that is found and defines ‘DIR’,
define the listed C preprocessor macro:

dirent.h HAVE_DIRENT_H

sys/ndir.h HAVE_SYS_NDIR_H

sys/dir.h HAVE_SYS_DIR_H

ndir.h HAVE_NDIR_H

The directory-library declarations in your source code should look something like the
following:

70 Autoconf

#include <sys/types.h>

#ifdef HAVE_DIRENT_H

include <dirent.h>

define NAMLEN(dirent) strlen ((dirent)->d_name)

#else

define dirent direct

define NAMLEN(dirent) ((dirent)->d_namlen)

ifdef HAVE_SYS_NDIR_H

include <sys/ndir.h>

endif

ifdef HAVE_SYS_DIR_H

include <sys/dir.h>

endif

ifdef HAVE_NDIR_H

include <ndir.h>

endif

#endif

Using the above declarations, the program would declare variables to be of type
struct dirent, not struct direct, and would access the length of a directory entry
name by passing a pointer to a struct dirent to the NAMLEN macro.

This macro also checks for the SCO Xenix dir and x libraries.

This macro is obsolescent, as all current systems with directory libraries have
<dirent.h>. New programs need not use this macro.

Also see AC_STRUCT_DIRENT_D_INO and AC_STRUCT_DIRENT_D_TYPE (see Section 5.8.1
[Particular Structures], page 75).

[Macro]AC_HEADER_MAJOR
Detect the headers required to use makedev, major, and minor. These functions may
be defined by sys/mkdev.h, sys/sysmacros.h, or sys/types.h.

AC_HEADER_MAJOR defines MAJOR_IN_MKDEV if they are in sys/mkdev.h, or MAJOR_

IN_SYSMACROS if they are in sys/sysmacros.h. If neither macro is defined, they are
either in sys/types.h or unavailable.

To properly use these functions, your code should contain something like:

#include <sys/types.h>

#ifdef MAJOR_IN_MKDEV

include <sys/mkdev.h>

#elif defined MAJOR_IN_SYSMACROS

include <sys/sysmacros.h>

#endif

Note: Configure scripts built with Autoconf 2.69 or earlier will not detect a problem
if sys/types.h contains definitions of major, minor, and/or makedev that trigger
compiler warnings upon use. This is known to occur with GNU libc 2.25, where those
definitions are being deprecated to reduce namespace pollution. If it is not practical
to use Autoconf 2.70 to regenerate the configure script of affected software, you can
work around the problem by setting ‘ac_cv_header_sys_types_h_makedev=no’, as an

Chapter 5: Existing Tests 71

argument to configure or as part of a config.site site default file (see Section 15.8
[Site Defaults], page 302).

[Macro]AC_HEADER_RESOLV
Checks for header resolv.h, checking for prerequisites first. To properly use resolv.h,
your code should contain something like the following:

#ifdef HAVE_SYS_TYPES_H

include <sys/types.h>

#endif

#ifdef HAVE_NETINET_IN_H

include <netinet/in.h> /* inet_ functions / structs */

#endif

#ifdef HAVE_ARPA_NAMESER_H

include <arpa/nameser.h> /* DNS HEADER struct */

#endif

#ifdef HAVE_NETDB_H

include <netdb.h>

#endif

#include <resolv.h>

[Macro]AC_HEADER_STAT
If the macros S_ISDIR, S_ISREG, etc. defined in sys/stat.h do not work properly
(returning false positives), define STAT_MACROS_BROKEN. This is the case on Tektronix
UTekV, Amdahl UTS and Motorola System V/88.

This macro is obsolescent, as no current systems have the bug. New programs need
not use this macro.

[Macro]AC_HEADER_STDBOOL
If stdbool.h exists and conforms to C99 or later, define HAVE_STDBOOL_H to 1; if the
type _Bool is defined, define HAVE__BOOL to 1.

This macro is obsolescent, as all current C compilers have stdbool.h, a header that is
itself obsolescent as of C23. Nowadays programs that need bool, true and false can
include stdbool.h unconditionally, without using AC_HEADER_STDBOOL, and if such a
program needs to be portable only to C23 or later it need not even include stdbool.h.

This macro caches its result in the ac_cv_header_stdbool_h variable.

This macro differs from AC_CHECK_HEADER_STDBOOL only in that it defines HAVE_

STDBOOL_H whereas AC_CHECK_HEADER_STDBOOL does not.

[Macro]AC_HEADER_STDC
This macro is obsolescent. Its sole effect is to make sure that all the headers that are
included by AC_INCLUDES_DEFAULT (see Section 5.1.2 [Default Includes], page 45), but
not part of C89, have been checked for.

All hosted environments that are still of interest for portable code provide all of the
headers specified in C89 (as amended in 1995).

[Macro]AC_HEADER_SYS_WAIT
If sys/wait.h exists and is compatible with Posix, define HAVE_SYS_WAIT_H. Incom-
patibility can occur if sys/wait.h does not exist, or if it uses the old BSD union

72 Autoconf

wait instead of int to store a status value. If sys/wait.h is not Posix compatible,
then instead of including it, define the Posix macros with their usual interpretations.
Here is an example:

#include <sys/types.h>

#ifdef HAVE_SYS_WAIT_H

include <sys/wait.h>

#endif

#ifndef WEXITSTATUS

define WEXITSTATUS(stat_val) ((unsigned int) (stat_val) >> 8)

#endif

#ifndef WIFEXITED

define WIFEXITED(stat_val) (((stat_val) & 255) == 0)

#endif

This macro caches its result in the ac_cv_header_sys_wait_h variable.

This macro is obsolescent, as current systems are compatible with Posix. New programs
need not use this macro.

_POSIX_VERSION is defined when unistd.h is included on Posix systems. If there is no
unistd.h, it is definitely not a Posix system. However, some non-Posix systems do have
unistd.h.

The way to check whether the system supports Posix is:

#ifdef HAVE_UNISTD_H

include <sys/types.h>

include <unistd.h>

#endif

#ifdef _POSIX_VERSION

/* Code for Posix systems. */

#endif

[Macro]AC_HEADER_TIOCGWINSZ
If the use of TIOCGWINSZ requires <sys/ioctl.h>, then define GWINSZ_IN_SYS_IOCTL.
Otherwise TIOCGWINSZ can be found in <termios.h>.

Use:

#ifdef HAVE_TERMIOS_H

include <termios.h>

#endif

#ifdef GWINSZ_IN_SYS_IOCTL

include <sys/ioctl.h>

#endif

5.6.3 Generic Header Checks

These macros are used to find system header files not covered by the “particular” test macros.
If you need to check the contents of a header as well as find out whether it is present, you
have to write your own test for it (see Chapter 6 [Writing Tests], page 107).

Chapter 5: Existing Tests 73

[Macro]AC_CHECK_HEADER (header-file, [action-if-found],
[action-if-not-found], [includes])

If the system header file header-file is compilable, execute shell commands action-if-
found, otherwise execute action-if-not-found. If you just want to define a symbol if
the header file is available, consider using AC_CHECK_HEADERS instead.

includes should be the appropriate prerequisite code, i.e. whatever might be required to
appear above ‘#include <header-file>’ for it to compile without error. This can be
anything, but will normally be additional ‘#include’ directives. If includes is omitted
or empty, configure will use the contents of the macro AC_INCLUDES_DEFAULT. See
Section 5.1.2 [Default Includes], page 45.

This macro used to check only for the presence of a header, not whether its contents
were acceptable to the compiler. Some older configure scripts rely on this behavior,
so it is still available by specifying ‘-’ as includes. This mechanism is deprecated as
of Autoconf 2.70; situations where a preprocessor-only check is required should use
AC_PREPROC_IFELSE. See Section 6.3 [Running the Preprocessor], page 113.

This macro caches its result in the ac_cv_header_header-file variable, with charac-
ters not suitable for a variable name mapped to underscores.

[Macro]AC_CHECK_HEADERS (header-file. . . , [action-if-found],
[action-if-not-found], [includes])

For each given system header file header-file in the blank-separated argument list
that exists, define HAVE_header-file (in all capitals). If action-if-found is given, it is
additional shell code to execute when one of the header files is found. You can give it
a value of ‘break’ to break out of the loop on the first match. If action-if-not-found is
given, it is executed when one of the header files is not found.

includes is interpreted as in AC_CHECK_HEADER, in order to choose the set of prepro-
cessor directives supplied before the header under test.

This macro caches its result in the ac_cv_header_header-file variable, with charac-
ters not suitable for a variable name mapped to underscores.

[Macro]AC_CHECK_HEADERS_ONCE (header-file. . .)
For each given system header file header-file in the blank-separated argument list that
exists, define HAVE_header-file (in all capitals).

If you do not need the full power of AC_CHECK_HEADERS, this variant generates smaller,
faster configure files. All headers passed to AC_CHECK_HEADERS_ONCE are checked for
in one pass, early during the configure run. The checks cannot be conditionalized, you
cannot specify an action-if-found or action-if-not-found, and AC_INCLUDES_DEFAULT

is always used for the prerequisites.

In previous versions of Autoconf, these macros merely checked whether the header was
accepted by the preprocessor. This was changed because the old test was inappropriate
for typical uses. Headers are typically used to compile, not merely to preprocess, and the
old behavior sometimes accepted headers that clashed at compile-time (see Section 20.7
[Present But Cannot Be Compiled], page 354). If for some reason it is inappropriate to
check whether a header is compilable, you should use AC_PREPROC_IFELSE (see Section 6.3
[Running the Preprocessor], page 113) instead of these macros.

74 Autoconf

Requiring each header to compile improves the robustness of the test, but it also requires
you to make sure that the includes are correct. Most system headers nowadays make
sure to #include whatever they require, or else have their dependencies satisfied by AC_

INCLUDES_DEFAULT (see Section 5.1.2 [Default Includes], page 45), but see Section 5.6.1
[Header Portability], page 67, for known exceptions. In general, if you are looking for bar.h,
which requires that foo.h be included first if it exists, you should do something like this:

AC_CHECK_HEADERS([foo.h])

AC_CHECK_HEADERS([bar.h], [], [],

[#ifdef HAVE_FOO_H

include <foo.h>

#endif

])

5.7 Declarations

The following macros check for the declaration of variables and functions. If there is no
macro specifically defined to check for a symbol you need, then you can use the general
macros (see Section 5.7.2 [Generic Declarations], page 74) or, for more complex tests, you
may use AC_COMPILE_IFELSE (see Section 6.4 [Running the Compiler], page 115).

5.7.1 Particular Declaration Checks

There are no specific macros for declarations.

5.7.2 Generic Declaration Checks

These macros are used to find declarations not covered by the “particular” test macros.

[Macro]AC_CHECK_DECL (symbol, [action-if-found], [action-if-not-found],
[includes = ‘AC_INCLUDES_DEFAULT’])

If symbol (a function, variable, or constant) is not declared in includes and a declaration
is needed, run the shell commands action-if-not-found, otherwise action-if-found.
includes is a series of include directives, defaulting to AC_INCLUDES_DEFAULT (see
Section 5.1.2 [Default Includes], page 45), which are used prior to the declaration
under test.

This macro actually tests whether symbol is defined as a macro or can be used as an
r-value, not whether it is really declared, because it is much safer to avoid introducing
extra declarations when they are not needed. In order to facilitate use of C++ and
overloaded function declarations, it is possible to specify function argument types in
parentheses for types which can be zero-initialized:

AC_CHECK_DECL([basename(char *)])

This macro caches its result in the ac_cv_have_decl_symbol variable, with characters
not suitable for a variable name mapped to underscores.

[Macro]AC_CHECK_DECLS (symbols, [action-if-found],
[action-if-not-found], [includes = ‘AC_INCLUDES_DEFAULT’])

For each of the symbols (comma-separated list with optional function argument types
for C++ overloads), define HAVE_DECL_symbol (in all capitals) to ‘1’ if symbol is
declared, otherwise to ‘0’. If action-if-not-found is given, it is additional shell code to

Chapter 5: Existing Tests 75

execute when one of the function declarations is needed, otherwise action-if-found is
executed.

includes is a series of include directives, defaulting to AC_INCLUDES_DEFAULT (see
Section 5.1.2 [Default Includes], page 45), which are used prior to the declarations
under test.

This macro uses an M4 list as first argument:

AC_CHECK_DECLS([strdup])

AC_CHECK_DECLS([strlen])

AC_CHECK_DECLS([malloc, realloc, calloc, free])

AC_CHECK_DECLS([j0], [], [], [[#include <math.h>]])

AC_CHECK_DECLS([[basename(char *)], [dirname(char *)]])

Unlike the other ‘AC_CHECK_*S’ macros, when a symbol is not declared, HAVE_DECL_
symbol is defined to ‘0’ instead of leaving HAVE_DECL_symbol undeclared. When you
are sure that the check was performed, use HAVE_DECL_symbol in #if:

#if !HAVE_DECL_SYMBOL

extern char *symbol;

#endif

If the test may have not been performed, however, because it is safer not to declare a
symbol than to use a declaration that conflicts with the system’s one, you should use:

#if defined HAVE_DECL_MALLOC && !HAVE_DECL_MALLOC

void *malloc (size_t *s);

#endif

You fall into the second category only in extreme situations: either your files may be
used without being configured, or they are used during the configuration. In most
cases the traditional approach is enough.

This macro caches its results in ac_cv_have_decl_symbol variables, with characters
not suitable for a variable name mapped to underscores.

[Macro]AC_CHECK_DECLS_ONCE (symbols)
For each of the symbols (comma-separated list), define HAVE_DECL_symbol (in all
capitals) to ‘1’ if symbol is declared in the default include files, otherwise to ‘0’. This
is a once-only variant of AC_CHECK_DECLS. It generates the checking code at most once,
so that configure is smaller and faster; but the checks cannot be conditionalized and
are always done once, early during the configure run.

5.8 Structures

The following macros check for the presence of certain members in C structures. If there is
no macro specifically defined to check for a member you need, then you can use the general
structure-member macros (see Section 5.8.2 [Generic Structures], page 76) or, for more
complex tests, you may use AC_COMPILE_IFELSE (see Section 6.4 [Running the Compiler],
page 115).

5.8.1 Particular Structure Checks

The following macros check for certain structures or structure members.

76 Autoconf

[Macro]AC_STRUCT_DIRENT_D_INO
Perform all the actions of AC_HEADER_DIRENT (see Section 5.6.2 [Particular Headers],
page 69). Then, if struct dirent contains a d_ino member, define HAVE_STRUCT_

DIRENT_D_INO.

HAVE_STRUCT_DIRENT_D_INO indicates only the presence of d_ino, not whether its
contents are always reliable. Traditionally, a zero d_ino indicated a deleted directory
entry, though current systems hide this detail from the user and never return zero
d_ino values. Many current systems report an incorrect d_ino for a directory entry
that is a mount point.

[Macro]AC_STRUCT_DIRENT_D_TYPE
Perform all the actions of AC_HEADER_DIRENT (see Section 5.6.2 [Particular Headers],
page 69). Then, if struct dirent contains a d_type member, define HAVE_STRUCT_
DIRENT_D_TYPE.

[Macro]AC_STRUCT_ST_BLOCKS
If struct stat contains an st_blocks member, define HAVE_STRUCT_STAT_ST_

BLOCKS. Otherwise, require an AC_LIBOBJ replacement of ‘fileblocks’. The former
name, HAVE_ST_BLOCKS is to be avoided, as its support will cease in the future.

This macro caches its result in the ac_cv_member_struct_stat_st_blocks variable.

[Macro]AC_STRUCT_TM
If time.h does not define struct tm, define TM_IN_SYS_TIME, which means that
including sys/time.h had better define struct tm.

This macro is obsolescent, as time.h defines struct tm in current systems. New
programs need not use this macro.

[Macro]AC_STRUCT_TIMEZONE
Figure out how to get the current timezone. If struct tm has a tm_zone member,
define HAVE_STRUCT_TM_TM_ZONE (and the obsoleted HAVE_TM_ZONE). Otherwise, if
the external array tzname is found, define HAVE_TZNAME; if it is declared, define
HAVE_DECL_TZNAME.

5.8.2 Generic Structure Checks

These macros are used to find structure members not covered by the “particular” test
macros.

[Macro]AC_CHECK_MEMBER (aggregate.member, [action-if-found],
[action-if-not-found], [includes = ‘AC_INCLUDES_DEFAULT’])

Check whether member is a member of the aggregate aggregate. If no includes are
specified, the default includes are used (see Section 5.1.2 [Default Includes], page 45).

AC_CHECK_MEMBER([struct passwd.pw_gecos], [],

[AC_MSG_ERROR([we need 'passwd.pw_gecos'])],

[[#include <pwd.h>]])

You can use this macro for submembers:

AC_CHECK_MEMBER(struct top.middle.bot)

This macro caches its result in the ac_cv_member_aggregate_member variable, with
characters not suitable for a variable name mapped to underscores.

Chapter 5: Existing Tests 77

[Macro]AC_CHECK_MEMBERS (members, [action-if-found],
[action-if-not-found], [includes = ‘AC_INCLUDES_DEFAULT’])

Check for the existence of each ‘aggregate.member’ of members using the previous
macro. When member belongs to aggregate, define HAVE_aggregate_member (in all
capitals, with spaces and dots replaced by underscores). If action-if-found is given,
it is executed for each of the found members. If action-if-not-found is given, it is
executed for each of the members that could not be found.

includes is a series of include directives, defaulting to AC_INCLUDES_DEFAULT (see
Section 5.1.2 [Default Includes], page 45), which are used prior to the members under
test.

This macro uses M4 lists:

AC_CHECK_MEMBERS([struct stat.st_rdev, struct stat.st_blksize])

5.9 Types

The following macros check for C types, either builtin or typedefs. If there is no macro
specifically defined to check for a type you need, and you don’t need to check for any special
properties of it, then you can use a general type-check macro.

5.9.1 Particular Type Checks

These macros check for particular C types in sys/types.h, stdlib.h, stdint.h,
inttypes.h and others, if they exist.

The Gnulib stdint module is an alternate way to define many of these symbols; it is
useful if you prefer your code to assume a C99-or-better environment. See Section 2.2
[Gnulib], page 3.

[Macro]AC_TYPE_GETGROUPS
Define GETGROUPS_T to be whichever of gid_t or int is the base type of the array
argument to getgroups.

This macro caches the base type in the ac_cv_type_getgroups variable.

[Macro]AC_TYPE_INT8_T
If stdint.h or inttypes.h does not define the type int8_t, define int8_t to a signed
integer type that is exactly 8 bits wide and that uses two’s complement representation,
if such a type exists. If you are worried about porting to hosts that lack such a type,
you can use the results of this macro as follows:

#if HAVE_STDINT_H

include <stdint.h>

#endif

#if defined INT8_MAX || defined int8_t

code using int8_t

#else

complicated alternative using >8-bit 'signed char'

#endif

This macro caches the type in the ac_cv_c_int8_t variable.

78 Autoconf

[Macro]AC_TYPE_INT16_T
This is like AC_TYPE_INT8_T, except for 16-bit integers.

[Macro]AC_TYPE_INT32_T
This is like AC_TYPE_INT8_T, except for 32-bit integers.

[Macro]AC_TYPE_INT64_T
This is like AC_TYPE_INT8_T, except for 64-bit integers.

[Macro]AC_TYPE_INTMAX_T
If stdint.h or inttypes.h defines the type intmax_t, define HAVE_INTMAX_T. Oth-
erwise, define intmax_t to the widest signed integer type.

[Macro]AC_TYPE_INTPTR_T
If stdint.h or inttypes.h defines the type intptr_t, define HAVE_INTPTR_T. Other-
wise, define intptr_t to a signed integer type wide enough to hold a pointer, if such
a type exists.

[Macro]AC_TYPE_LONG_DOUBLE
If the C compiler supports a working long double type, define HAVE_LONG_DOUBLE.
The long double type might have the same range and precision as double.

This macro caches its result in the ac_cv_type_long_double variable.

This macro is obsolescent, as current C compilers support long double. New programs
need not use this macro.

[Macro]AC_TYPE_LONG_DOUBLE_WIDER
If the C compiler supports a working long double type with more range or precision
than the double type, define HAVE_LONG_DOUBLE_WIDER.

This macro caches its result in the ac_cv_type_long_double_wider variable.

[Macro]AC_TYPE_LONG_LONG_INT
If the C compiler supports a working long long int type, define HAVE_LONG_LONG_

INT. However, this test does not test long long int values in preprocessor #if

expressions, because too many compilers mishandle such expressions. See Section 13.3
[Preprocessor Arithmetic], page 286.

This macro caches its result in the ac_cv_type_long_long_int variable.

[Macro]AC_TYPE_MBSTATE_T
Define HAVE_MBSTATE_T if <wchar.h> declares the mbstate_t type. Also, define
mbstate_t to be a type if <wchar.h> does not declare it.

This macro caches its result in the ac_cv_type_mbstate_t variable.

[Macro]AC_TYPE_MODE_T
Define mode_t to a suitable type, if standard headers do not define it.

This macro caches its result in the ac_cv_type_mode_t variable.

[Macro]AC_TYPE_OFF_T
Define off_t to a suitable type, if standard headers do not define it.

This macro caches its result in the ac_cv_type_off_t variable.

Chapter 5: Existing Tests 79

[Macro]AC_TYPE_PID_T
Define pid_t to a suitable type, if standard headers do not define it.

This macro caches its result in the ac_cv_type_pid_t variable.

[Macro]AC_TYPE_SIZE_T
Define size_t to a suitable type, if standard headers do not define it.

This macro caches its result in the ac_cv_type_size_t variable.

[Macro]AC_TYPE_SSIZE_T
Define ssize_t to a suitable type, if standard headers do not define it.

This macro caches its result in the ac_cv_type_ssize_t variable.

[Macro]AC_TYPE_UID_T
Define uid_t and gid_t to suitable types, if standard headers do not define them.

This macro caches its result in the ac_cv_type_uid_t variable.

[Macro]AC_TYPE_UINT8_T
If stdint.h or inttypes.h does not define the type uint8_t, define uint8_t to an
unsigned integer type that is exactly 8 bits wide, if such a type exists. This is like
AC_TYPE_INT8_T, except for unsigned integers.

[Macro]AC_TYPE_UINT16_T
This is like AC_TYPE_UINT8_T, except for 16-bit integers.

[Macro]AC_TYPE_UINT32_T
This is like AC_TYPE_UINT8_T, except for 32-bit integers.

[Macro]AC_TYPE_UINT64_T
This is like AC_TYPE_UINT8_T, except for 64-bit integers.

[Macro]AC_TYPE_UINTMAX_T
If stdint.h or inttypes.h defines the type uintmax_t, define HAVE_UINTMAX_T.
Otherwise, define uintmax_t to the widest unsigned integer type.

[Macro]AC_TYPE_UINTPTR_T
If stdint.h or inttypes.h defines the type uintptr_t, define HAVE_UINTPTR_T.
Otherwise, define uintptr_t to an unsigned integer type wide enough to hold a
pointer, if such a type exists.

[Macro]AC_TYPE_UNSIGNED_LONG_LONG_INT
If the C compiler supports a working unsigned long long int type, define HAVE_

UNSIGNED_LONG_LONG_INT. However, this test does not test unsigned long long int

values in preprocessor #if expressions, because too many compilers mishandle such
expressions. See Section 13.3 [Preprocessor Arithmetic], page 286.

This macro caches its result in the ac_cv_type_unsigned_long_long_int variable.

80 Autoconf

5.9.2 Generic Type Checks

These macros are used to check for types not covered by the “particular” test macros.

[Macro]AC_CHECK_TYPE (type, [action-if-found], [action-if-not-found],
[includes = ‘AC_INCLUDES_DEFAULT’])

Check whether type is defined. It may be a compiler builtin type or defined by the
includes. includes is a series of include directives, defaulting to AC_INCLUDES_DEFAULT

(see Section 5.1.2 [Default Includes], page 45), which are used prior to the type under
test.

In C, type must be a type-name, so that the expression ‘sizeof (type)’ is valid (but
‘sizeof ((type))’ is not). The same test is applied when compiling for C++, which
means that in C++ type should be a type-id and should not be an anonymous ‘struct’
or ‘union’.

This macro caches its result in the ac_cv_type_type variable, with ‘*’ mapped to ‘p’
and other characters not suitable for a variable name mapped to underscores.

[Macro]AC_CHECK_TYPES (types, [action-if-found], [action-if-not-found],
[includes = ‘AC_INCLUDES_DEFAULT’])

For each type of the types that is defined, define HAVE_type (in all capitals). Each
type must follow the rules of AC_CHECK_TYPE. If no includes are specified, the default
includes are used (see Section 5.1.2 [Default Includes], page 45). If action-if-found
is given, it is additional shell code to execute when one of the types is found. If
action-if-not-found is given, it is executed when one of the types is not found.

This macro uses M4 lists:

AC_CHECK_TYPES([ptrdiff_t])

AC_CHECK_TYPES([unsigned long long int, uintmax_t])

AC_CHECK_TYPES([float_t], [], [], [[#include <math.h>]])

Autoconf, up to 2.13, used to provide to another version of AC_CHECK_TYPE, broken by
design. In order to keep backward compatibility, a simple heuristic, quite safe but not totally,
is implemented. In case of doubt, read the documentation of the former AC_CHECK_TYPE,
see Section 18.4 [Obsolete Macros], page 315.

5.10 Compilers and Preprocessors

All the tests for compilers (AC_PROG_CC, AC_PROG_CXX, AC_PROG_F77) define the output
variable EXEEXT based on the output of the compiler, typically to the empty string if Posix
and ‘.exe’ if a DOS variant.

They also define the output variable OBJEXT based on the output of the compiler, after
.c files have been excluded, typically to ‘o’ if Posix, ‘obj’ if a DOS variant.

If the compiler being used does not produce executables, the tests fail. If the executables
can’t be run, and cross-compilation is not enabled, they fail too. See Chapter 14 [Manual
Configuration], page 291, for more on support for cross compiling.

Chapter 5: Existing Tests 81

5.10.1 Specific Compiler Characteristics

Some compilers exhibit different behaviors.

Static/Dynamic Expressions
Autoconf relies on a trick to extract one bit of information from the C compiler:
using negative array sizes. For instance the following excerpt of a C source
demonstrates how to test whether ‘int’ objects are 4 bytes wide:

static int test_array[sizeof (int) == 4 ? 1 : -1];

To our knowledge, there is a single compiler that does not support this trick: the
HP C compilers (the real ones, not only the “bundled”) on HP-UX 11.00. They
incorrectly reject the above program with the diagnostic “Variable-length arrays
cannot have static storage.” This bug comes from HP compilers’ mishandling of
sizeof (int), not from the ? 1 : -1, and Autoconf works around this problem
by casting sizeof (int) to long int before comparing it.

5.10.2 Generic Compiler Characteristics

[Macro]AC_CHECK_SIZEOF (type-or-expr, [unused], [includes =
‘AC_INCLUDES_DEFAULT’])

Define SIZEOF_type-or-expr (see Section 5.1.1 [Standard Symbols], page 45) to be
the size in bytes of type-or-expr, which may be either a type or an expression returning
a value that has a size. If the expression ‘sizeof (type-or-expr)’ is invalid, the result
is 0. includes is a series of include directives, defaulting to AC_INCLUDES_DEFAULT

(see Section 5.1.2 [Default Includes], page 45), which are used prior to the expression
under test.

This macro now works even when cross-compiling. The unused argument was used
when cross-compiling.

For example, the call

AC_CHECK_SIZEOF([int *])

defines SIZEOF_INT_P to be 8 on DEC Alpha AXP systems.

This macro caches its result in the ac_cv_sizeof_type-or-expr variable, with ‘*’
mapped to ‘p’ and other characters not suitable for a variable name mapped to
underscores.

[Macro]AC_CHECK_ALIGNOF (type, [includes = ‘AC_INCLUDES_DEFAULT’])
Define ALIGNOF_type (see Section 5.1.1 [Standard Symbols], page 45) to be the
alignment in bytes of type. ‘type y;’ must be valid as a structure member declaration.
If ‘type’ is unknown, the result is 0. If no includes are specified, the default includes
are used (see Section 5.1.2 [Default Includes], page 45).

This macro caches its result in the ac_cv_alignof_type-or-expr variable, with ‘*’
mapped to ‘p’ and other characters not suitable for a variable name mapped to
underscores.

[Macro]AC_COMPUTE_INT (var, expression, [includes =
‘AC_INCLUDES_DEFAULT’], [action-if-fails])

Store into the shell variable var the value of the integer expression. The value should
fit in an initializer in a C variable of type signed long. To support cross compilation,

82 Autoconf

it should be possible to evaluate the expression at compile-time. If no includes are
specified, the default includes are used (see Section 5.1.2 [Default Includes], page 45).

Execute action-if-fails if the value cannot be determined correctly.

[Macro]AC_LANG_WERROR
Normally Autoconf ignores warnings generated by the compiler, linker, and prepro-
cessor. If this macro is used, warnings count as fatal errors for the current language.
This macro is useful when the results of configuration are used where warnings are
unacceptable; for instance, if parts of a program are built with the GCC -Werror

option. If the whole program is built using -Werror it is often simpler to put -Werror
in the compiler flags (CFLAGS, etc.).

[Macro]AC_OPENMP
OpenMP (http://www.openmp.org/) specifies extensions of C, C++, and Fortran that
simplify optimization of shared memory parallelism, which is a common problem on
multi-core CPUs.

If the current language is C, the macro AC_OPENMP sets the variable OPENMP_CFLAGS
to the C compiler flags needed for supporting OpenMP. OPENMP_CFLAGS is set to
empty if the compiler already supports OpenMP, if it has no way to activate OpenMP
support, or if the user rejects OpenMP support by invoking ‘configure’ with the
‘--disable-openmp’ option.

OPENMP_CFLAGS needs to be used when compiling programs, when preprocessing
program source, and when linking programs. Therefore you need to add $(OPENMP_

CFLAGS) to the CFLAGS of C programs that use OpenMP. If you preprocess OpenMP-
specific C code, you also need to add $(OPENMP_CFLAGS) to CPPFLAGS. The presence
of OpenMP support is revealed at compile time by the preprocessor macro _OPENMP.

Linking a program with OPENMP_CFLAGS typically adds one more shared library to the
program’s dependencies, so its use is recommended only on programs that actually
require OpenMP.

If the current language is C++, AC_OPENMP sets the variable OPENMP_CXXFLAGS, suitably
for the C++ compiler. The same remarks hold as for C.

If the current language is Fortran 77 or Fortran, AC_OPENMP sets the variable OPENMP_
FFLAGS or OPENMP_FCFLAGS, respectively. Similar remarks as for C hold, except that
CPPFLAGS is not used for Fortran, and no preprocessor macro signals OpenMP support.

For portability, it is best to avoid spaces between ‘#’ and ‘pragma omp’. That is, write
‘#pragma omp’, not ‘# pragma omp’. The Sun WorkShop 6.2 C compiler chokes on the
latter.

This macro caches its result in the ac_cv_prog_c_openmp, ac_cv_prog_cxx_openmp,
ac_cv_prog_f77_openmp, or ac_cv_prog_fc_openmp variable, depending on the cur-
rent language.

Caution: Some of the compiler options that AC_OPENMP tests, mean “enable OpenMP”
to one compiler, but “write output to a file named mp or penmp” to other compilers.
We cannot guarantee that the implementation of AC_OPENMP will not overwrite an
existing file with either of these names.

Therefore, as a defensive measure, a configure script that uses AC_OPENMP will issue
an error and stop (before doing any of the operations that might overwrite these files)

http://www.openmp.org/

Chapter 5: Existing Tests 83

upon encountering either of these files in its working directory. autoconf will also
issue an error if it finds either of these files in the same directory as a configure.ac

that uses AC_OPENMP.

If you have files with either of these names at the top level of your source tree, and
you need to use AC_OPENMP, we recommend you either change their names or move
them into a subdirectory.

5.10.3 C Compiler Characteristics

The following macros provide ways to find and exercise a C Compiler. There are a few
constructs that ought to be avoided, but do not deserve being checked for, since they can
easily be worked around.

Don’t use lines containing solitary backslashes
They tickle a bug in the HP-UX C compiler (checked on HP-UX 10.20, 11.00,
and 11i). When given the following source:

#ifdef __STDC__

/\

* A comment with backslash-newlines in it. %{ %} *\

\

/

char str[] = "\\

" A string with backslash-newlines in it %{ %} \\

"";

char apostrophe = '\\

\

'\

';

#endif

the compiler incorrectly fails with the diagnostics “Non-terminating comment
at end of file” and “Missing ‘#endif’ at end of file.” Removing the lines with
solitary backslashes solves the problem.

Don’t compile several files at once if output matters to you
Some compilers, such as HP’s, report names of files being compiled when given
more than one file operand. For instance:

$ cc a.c b.c

a.c:

b.c:

This can cause problems if you observe the output of the compiler to detect
failures. Invoking ‘cc -c a.c && cc -c b.c && cc -o c a.o b.o’ solves the issue.

Don’t rely on #error failing
The IRIX C compiler does not fail when #error is preprocessed; it simply emits
a diagnostic and continues, exiting successfully. So, instead of an error directive
like #error "Unsupported word size" it is more portable to use an invalid
directive like #Unsupported word size in Autoconf tests. In ordinary source
code, #error is OK, since installers with inadequate compilers like IRIX can
simply examine these compilers’ diagnostic output.

84 Autoconf

Don’t rely on correct #line support
On Solaris, c89 (at least through Oracle Developer Studio 12.6) diagnoses #line
directives whose line numbers are greater than 32767. Nothing in Posix makes
this invalid. That is why Autoconf stopped issuing #line directives.

[Macro]AC_PROG_CC ([compiler-search-list])
Determine a C compiler to use.

If the environment variable CC is set, its value will be taken as the name of the C
compiler to use. Otherwise, search for a C compiler under a series of likely names,
trying gcc and cc first. Regardless, the output variable CC is set to the chosen
compiler.

If the optional first argument to the macro is used, it must be a whitespace-separated
list of potential names for a C compiler, which overrides the built-in list.

If no C compiler can be found, configure will error out.

If the selected C compiler is found to be GNU C (regardless of its name), the shell
variable GCC will be set to ‘yes’. If the shell variable CFLAGS was not already set,
it is set to -g -O2 for the GNU C compiler (-O2 on systems where GCC does not
accept -g), or -g for other compilers. CFLAGS is then made an output variable. You
can override the default for CFLAGS by inserting a shell default assignment between
AC_INIT and AC_PROG_CC:

: ${CFLAGS="options"}

where options are the appropriate set of options to use by default. (It is important
to use this construct rather than a normal assignment, so that CFLAGS can still be
overridden by the person building the package. See Section 4.8.1 [Preset Output
Variables], page 27.)

If necessary, options are added to CC to enable support for ISO Standard C features
with extensions, preferring the newest edition of the C standard for which detection
is supported. Currently the newest edition Autoconf knows how to detect support
for is C11, as there is little reason to prefer C17 to C11, and C23 is still too new.
After calling this macro you can check whether the C compiler has been set to accept
standard C by inspecting the shell variable ac_prog_cc_stdc. Its value will be ‘c11’,
‘c99’, or ‘c89’, respectively, if the C compiler has been set to use the 2011, 1999, or
1990 edition of the C standard, and ‘no’ if the compiler does not support compiling
standard C at all.

The tests for standard conformance are not comprehensive. They test the values of __
STDC__ and __STDC_VERSION__, and a representative sample of the language features
added in each version of the C standard. They do not test the C standard library,
because the C compiler might be generating code for a “freestanding environment”
(in which most of the standard library is optional). If you need to know whether a
particular C standard header exists, use AC_CHECK_HEADER.

None of the options that may be added to CC by this macro enable strict conformance
to the C standard. In particular, system-specific extensions are not disabled. (For
example, for GNU C, the -std=gnunn options may be used, but not the -std=cnn

options.)

Chapter 5: Existing Tests 85

Many Autoconf macros use a compiler, and thus call ‘AC_REQUIRE([AC_PROG_CC])’
to ensure that the compiler has been determined before the body of the outermost
AC_DEFUN macro. Although AC_PROG_CC is safe to directly expand multiple times, it
performs certain checks (such as the proper value of EXEEXT) only on the first invocation.
Therefore, care must be used when invoking this macro from within another macro
rather than at the top level (see Section 20.8 [Expanded Before Required], page 356).

[Macro]AC_PROG_CC_C_O
If the C compiler does not accept the -c and -o options simultaneously, define NO_

MINUS_C_MINUS_O. This macro actually tests both the compiler found by AC_PROG_CC,
and, if different, the first cc in the path. The test fails if one fails. This macro was
created for GNU Make to choose the default C compilation rule.

For the compiler compiler, this macro caches its result in the ac_cv_prog_cc_

compiler_c_o variable.

[Macro]AC_PROG_CPP
Set output variable CPP to a command that runs the C preprocessor. If ‘$CC -E’
doesn’t work, tries cpp and /lib/cpp, in that order.

It is only portable to run CPP on files with a .c extension.

Some preprocessors don’t indicate missing include files by the error status. For such
preprocessors an internal variable is set that causes other macros to check the standard
error from the preprocessor and consider the test failed if any warnings have been
reported. For most preprocessors, though, warnings do not cause include-file tests to
fail unless AC_PROG_CPP_WERROR is also specified.

[Macro]AC_PROG_CPP_WERROR
This acts like AC_PROG_CPP, except it treats warnings from the preprocessor as errors
even if the preprocessor exit status indicates success. This is useful for avoiding
headers that generate mandatory warnings, such as deprecation notices.

The following macros check for C compiler or machine architecture features. To check
for characteristics not listed here, use AC_COMPILE_IFELSE (see Section 6.4 [Running the
Compiler], page 115) or AC_RUN_IFELSE (see Section 6.6 [Runtime], page 116).

[Macro]AC_C_BACKSLASH_A
Define ‘HAVE_C_BACKSLASH_A’ to 1 if the C compiler understands ‘\a’.

This macro is obsolescent, as current C compilers understand ‘\a’. New programs
need not use this macro.

[Macro]AC_C_BIGENDIAN ([action-if-true], [action-if-false],
[action-if-unknown], [action-if-universal])

If words are stored with the most significant byte first (like Motorola and SPARC
CPUs), execute action-if-true. If words are stored with the least significant byte first
(like Intel and VAX CPUs), execute action-if-false.

This macro runs a test-case if endianness cannot be determined from the system header
files. When cross-compiling, the test-case is not run but grep’ed for some magic values.
action-if-unknown is executed if the latter case fails to determine the byte sex of the
host system.

86 Autoconf

In some cases a single run of a compiler can generate code for multiple architectures.
This can happen, for example, when generating Mac OS X universal binary files, which
work on both PowerPC and Intel architectures. In this case, the different variants
might be for architectures with differing endianness. If configure detects this, it
executes action-if-universal instead of action-if-unknown.

The default for action-if-true is to define ‘WORDS_BIGENDIAN’. The default for action-if-
false is to do nothing. The default for action-if-unknown is to abort configure and tell
the installer how to bypass this test. And finally, the default for action-if-universal is
to ensure that ‘WORDS_BIGENDIAN’ is defined if and only if a universal build is detected
and the current code is big-endian; this default works only if autoheader is used (see
Section 4.9.2 [autoheader Invocation], page 39).

If you use this macro without specifying action-if-universal, you should also use AC_
CONFIG_HEADERS; otherwise ‘WORDS_BIGENDIAN’ may be set incorrectly for Mac OS X
universal binary files.

[Macro]AC_C_CONST
If the C compiler does not fully support the const keyword, define const to be empty.
Some C compilers that do not define __STDC__ do support const; some compilers that
define __STDC__ do not completely support const. Programs can simply use const

as if every C compiler supported it; for those that don’t, the makefile or configuration
header file defines it as empty.

Occasionally installers use a C++ compiler to compile C code, typically because they
lack a C compiler. This causes problems with const, because C and C++ treat const
differently. For example:

const int foo;

is valid in C but not in C++. These differences unfortunately cannot be papered over
by defining const to be empty.

If autoconf detects this situation, it leaves const alone, as this generally yields
better results in practice. However, using a C++ compiler to compile C code is not
recommended or supported, and installers who run into trouble in this area should
get a C compiler like GCC to compile their C code.

This macro caches its result in the ac_cv_c_const variable.

This macro is obsolescent, as current C compilers support const. New programs need
not use this macro.

[Macro]AC_C__GENERIC
If the C compiler supports C11-style generic selection using the _Generic keyword,
define HAVE_C__GENERIC.

[Macro]AC_C_RESTRICT
If the C compiler recognizes a variant spelling for the restrict keyword (__restrict,
__restrict__, or _Restrict), then define restrict to that; this is more likely to do
the right thing with compilers that support language variants where plain restrict is
not a keyword. Otherwise, if the C compiler recognizes the restrict keyword, don’t
do anything. Otherwise, define restrict to be empty. Thus, programs may simply

Chapter 5: Existing Tests 87

use restrict as if every C compiler supported it; for those that do not, the makefile
or configuration header defines it away.

Although support in C++ for the restrict keyword is not required, several C++
compilers do accept the keyword. This macro works for them, too.

This macro caches ‘no’ in the ac_cv_c_restrict variable if restrict is not supported,
and a supported spelling otherwise.

[Macro]AC_C_VOLATILE
If the C compiler does not understand the keyword volatile, define volatile to be
empty. Programs can simply use volatile as if every C compiler supported it; for
those that do not, the makefile or configuration header defines it as empty.

If the correctness of your program depends on the semantics of volatile, simply
defining it to be empty does, in a sense, break your code. However, given that
the compiler does not support volatile, you are at its mercy anyway. At least
your program compiles, when it wouldn’t before. See Section 13.6 [Volatile Objects],
page 287, for more about volatile.

In general, the volatile keyword is a standard C feature, so you might expect that
volatile is available only when __STDC__ is defined. However, Ultrix 4.3’s native
compiler does support volatile, but does not define __STDC__.

This macro is obsolescent, as current C compilers support volatile. New programs
need not use this macro.

[Macro]AC_C_INLINE
If the C compiler supports the keyword inline, do nothing. Otherwise define inline
to __inline__ or __inline if it accepts one of those, otherwise define inline to be
empty.

[Macro]AC_C_CHAR_UNSIGNED
If the C type char is unsigned, define __CHAR_UNSIGNED__, unless the C compiler
predefines it.

These days, using this macro is not necessary. The same information can be determined
by this portable alternative, thus avoiding the use of preprocessor macros in the
namespace reserved for the implementation.

#include <limits.h>

#if CHAR_MIN == 0

define CHAR_UNSIGNED 1

#endif

[Macro]AC_C_STRINGIZE
If the C preprocessor supports the stringizing operator, define HAVE_STRINGIZE. The
stringizing operator is ‘#’ and is found in macros such as this:

#define x(y) #y

This macro is obsolescent, as current C compilers support the stringizing operator.
New programs need not use this macro.

88 Autoconf

[Macro]AC_C_FLEXIBLE_ARRAY_MEMBER
If the C compiler supports flexible array members, define FLEXIBLE_ARRAY_MEMBER to
nothing; otherwise define it to 1. That way, a declaration like this:

struct s

{

size_t n_vals;

double val[FLEXIBLE_ARRAY_MEMBER];

};

will let applications use the “struct hack” even with compilers that do not support
flexible array members. To allocate and use such an object, you can use code like this:

size_t i;

size_t n = compute_value_count ();

struct s *p =

malloc (offsetof (struct s, val)

+ n * sizeof (double));

p->n_vals = n;

for (i = 0; i < n; i++)

p->val[i] = compute_value (i);

[Macro]AC_C_VARARRAYS
If the C compiler does not support variable-length arrays, define the macro __STDC_

NO_VLA__ to be 1 if it is not already defined. A variable-length array is an array of
automatic storage duration whose length is determined at run time, when the array is
declared. For backward compatibility this macro also defines HAVE_C_VARARRAYS if
the C compiler supports variable-length arrays, but this usage is obsolescent and new
programs should use __STDC_NO_VLA__.

[Macro]AC_C_TYPEOF
If the C compiler supports GNU C’s typeof syntax either directly or through a different
spelling of the keyword (e.g., __typeof__), define HAVE_TYPEOF. If the support is
available only through a different spelling, define typeof to that spelling.

[Macro]AC_C_PROTOTYPES
If function prototypes are understood by the compiler (as determined by AC_PROG_CC),
define PROTOTYPES and __PROTOTYPES. Defining __PROTOTYPES is for the benefit of
header files that cannot use macros that infringe on user name space.

This macro is obsolescent, as current C compilers support prototypes. New programs
need not use this macro.

5.10.4 C++ Compiler Characteristics

[Macro]AC_PROG_CXX ([compiler-search-list])
Determine a C++ compiler to use.

If either the environment variable CXX or the environment variable CCC is set, its value
will be taken as the name of a C++ compiler. If both are set, CXX is preferred. If
neither are set, search for a C++ compiler under a series of likely names, trying g++

and c++ first. Regardless, the output variable CXX is set to the chosen compiler.

Chapter 5: Existing Tests 89

If the optional first argument to the macro is used, it must be a whitespace-separated
list of potential names for a C++ compiler, which overrides the built-in list.

If no C++ compiler can be found, as a last resort CXX is set to g++ (and subsequent
tests will probably fail).

If the selected C++ compiler is found to be GNU C++ (regardless of its name), the
shell variable GXX will be set to ‘yes’. If the shell variable CXXFLAGS was not already
set, it is set to -g -O2 for the GNU C++ compiler (-O2 on systems where G++ does not
accept -g), or -g for other compilers. CXXFLAGS is then made an output variable. You
can override the default for CXXFLAGS by inserting a shell default assignment between
AC_INIT and AC_PROG_CXX:

: ${CXXFLAGS="options"}

where options are the appropriate set of options to use by default. (It is important
to use this construct rather than a normal assignment, so that CXXFLAGS can still
be overridden by the person building the package. See Section 4.8.1 [Preset Output
Variables], page 27.)

If necessary, options are added to CXX to enable support for ISO Standard C++ features
with extensions, preferring the newest edition of the C++ standard that is supported.
Currently the newest edition Autoconf knows how to detect support for is C++11.
After calling this macro, you can check whether the C++ compiler has been set to
accept standard C++ by inspecting the shell variable ac_prog_cxx_stdcxx. Its value
will be ‘cxx11’ or ‘cxx98’, respectively, if the C++ compiler has been set to use the
2011 or 1990 edition of the C++ standard, and ‘no’ if the compiler does not support
compiling standard C++ at all.

The tests for standard conformance are not comprehensive. They test the value of
__cplusplus and a representative sample of the language features added in each
version of the C++ standard. They do not test the C++ standard library, because
this can be extremely slow, and because the C++ compiler might be generating code
for a “freestanding environment” (in which most of the C++ standard library is
optional). If you need to know whether a particular C++ standard header exists, use
AC_CHECK_HEADER.

None of the options that may be added to CXX by this macro enable strict conformance
to the C++ standard. In particular, system-specific extensions are not disabled.
(For example, for GNU C++, the -std=gnu++nn options may be used, but not the
-std=c++nn options.)

[Macro]AC_PROG_CXXCPP
Set output variable CXXCPP to a command that runs the C++ preprocessor. If ‘$CXX
-E’ doesn’t work, tries cpp and /lib/cpp, in that order. Because of this fallback,
CXXCPP may or may not set C++-specific predefined macros (such as __cplusplus).

It is portable to run CXXCPP only on files with a .c, .C, .cc, or .cpp extension.

Some preprocessors don’t indicate missing include files by the error status. For such
preprocessors an internal variable is set that causes other macros to check the standard
error from the preprocessor and consider the test failed if any warnings have been
reported. However, it is not known whether such broken preprocessors exist for C++.

90 Autoconf

[Macro]AC_PROG_CXX_C_O
Test whether the C++ compiler accepts the options -c and -o simultaneously, and
define CXX_NO_MINUS_C_MINUS_O, if it does not.

5.10.5 Objective C Compiler Characteristics

[Macro]AC_PROG_OBJC ([compiler-search-list])
Determine an Objective C compiler to use. If OBJC is not already set in the environment,
check for Objective C compilers. Set output variable OBJC to the name of the compiler
found.

This macro may, however, be invoked with an optional first argument which, if specified,
must be a blank-separated list of Objective C compilers to search for. This just gives
the user an opportunity to specify an alternative search list for the Objective C
compiler. For example, if you didn’t like the default order, then you could invoke
AC_PROG_OBJC like this:

AC_PROG_OBJC([gcc objcc objc])

If using a compiler that supports GNU Objective C, set shell variable GOBJC to ‘yes’.
If output variable OBJCFLAGS was not already set, set it to -g -O2 for a GNU Objective
C compiler (-O2 on systems where the compiler does not accept -g), or -g for other
compilers.

[Macro]AC_PROG_OBJCPP
Set output variable OBJCPP to a command that runs the Objective C preprocessor.
If ‘$OBJC -E’ doesn’t work, tries cpp and /lib/cpp, in that order. Because of this
fallback, CXXCPP may or may not set Objective-C-specific predefined macros (such as
__OBJC__).

5.10.6 Objective C++ Compiler Characteristics

[Macro]AC_PROG_OBJCXX ([compiler-search-list])
Determine an Objective C++ compiler to use. If OBJCXX is not already set in the
environment, check for Objective C++ compilers. Set output variable OBJCXX to the
name of the compiler found.

This macro may, however, be invoked with an optional first argument which, if specified,
must be a blank-separated list of Objective C++ compilers to search for. This just
gives the user an opportunity to specify an alternative search list for the Objective
C++ compiler. For example, if you didn’t like the default order, then you could invoke
AC_PROG_OBJCXX like this:

AC_PROG_OBJCXX([gcc g++ objcc++ objcxx])

If using a compiler that supports GNU Objective C++, set shell variable GOBJCXX to
‘yes’. If output variable OBJCXXFLAGS was not already set, set it to -g -O2 for a GNU
Objective C++ compiler (-O2 on systems where the compiler does not accept -g), or
-g for other compilers.

[Macro]AC_PROG_OBJCXXCPP
Set output variable OBJCXXCPP to a command that runs the Objective C++ preprocessor.
If ‘$OBJCXX -E’ doesn’t work, tries cpp and /lib/cpp, in that order. Because of this

Chapter 5: Existing Tests 91

fallback, CXXCPP may or may not set Objective-C++-specific predefined macros (such
as __cplusplus and __OBJC__).

5.10.7 Erlang Compiler and Interpreter Characteristics

Autoconf defines the following macros for determining paths to the essential Erlang/OTP
programs:

[Macro]AC_ERLANG_PATH_ERLC ([value-if-not-found], [path = ‘$PATH’])
Determine an Erlang compiler to use. If ERLC is not already set in the environment,
check for erlc. Set output variable ERLC to the complete path of the compiler
command found. In addition, if ERLCFLAGS is not set in the environment, set it to an
empty value.

The two optional arguments have the same meaning as the two last arguments of
macro AC_PATH_PROG for looking for the erlc program. For example, to look for erlc
only in the /usr/lib/erlang/bin directory:

AC_ERLANG_PATH_ERLC([not found], [/usr/lib/erlang/bin])

[Macro]AC_ERLANG_NEED_ERLC ([path = ‘$PATH’])
A simplified variant of the AC_ERLANG_PATH_ERLC macro, that prints an error message
and exits the configure script if the erlc program is not found.

[Macro]AC_ERLANG_PATH_ERL ([value-if-not-found], [path = ‘$PATH’])
Determine an Erlang interpreter to use. If ERL is not already set in the environment,
check for erl. Set output variable ERL to the complete path of the interpreter command
found.

The two optional arguments have the same meaning as the two last arguments of
macro AC_PATH_PROG for looking for the erl program. For example, to look for erl
only in the /usr/lib/erlang/bin directory:

AC_ERLANG_PATH_ERL([not found], [/usr/lib/erlang/bin])

[Macro]AC_ERLANG_NEED_ERL ([path = ‘$PATH’])
A simplified variant of the AC_ERLANG_PATH_ERL macro, that prints an error message
and exits the configure script if the erl program is not found.

5.10.8 Fortran Compiler Characteristics

The Autoconf Fortran support is divided into two categories: legacy Fortran 77 macros
(F77), and modern Fortran macros (FC). The former are intended for traditional Fortran
77 code, and have output variables like F77, FFLAGS, and FLIBS. The latter are for newer
programs that can (or must) compile under the newer Fortran standards, and have output
variables like FC, FCFLAGS, and FCLIBS.

Except for the macros AC_FC_SRCEXT, AC_FC_FREEFORM, AC_FC_FIXEDFORM, and AC_FC_

LINE_LENGTH (see below), the FC and F77 macros behave almost identically, and so they are
documented together in this section.

[Macro]AC_PROG_F77 ([compiler-search-list])
Determine a Fortran 77 compiler to use. If F77 is not already set in the environment,
then check for g77 and f77, and then some other names. Set the output variable F77
to the name of the compiler found.

92 Autoconf

This macro may, however, be invoked with an optional first argument which, if specified,
must be a blank-separated list of Fortran 77 compilers to search for. This just gives
the user an opportunity to specify an alternative search list for the Fortran 77 compiler.
For example, if you didn’t like the default order, then you could invoke AC_PROG_F77
like this:

AC_PROG_F77([fl32 f77 fort77 xlf g77 f90 xlf90])

If using a compiler that supports GNU Fortran 77, set the shell variable G77 to ‘yes’.
If the output variable FFLAGS was not already set in the environment, set it to -g -02

for g77 (or -O2 where the GNU Fortran 77 compiler does not accept -g), or -g for
other compilers.

The result of the GNU test is cached in the ac_cv_f77_compiler_gnu variable,
acceptance of -g in the ac_cv_prog_f77_g variable.

[Macro]AC_PROG_FC ([compiler-search-list], [dialect])
Determine a Fortran compiler to use. If FC is not already set in the environment,
then dialect is a hint to indicate what Fortran dialect to search for; the default is to
search for the newest available dialect. Set the output variable FC to the name of the
compiler found.

By default, newer dialects are preferred over older dialects, but if dialect is specified
then older dialects are preferred starting with the specified dialect. dialect can
currently be one of Fortran 77, Fortran 90, or Fortran 95. However, this is only a
hint of which compiler name to prefer (e.g., f90 or f95), and no attempt is made
to guarantee that a particular language standard is actually supported. Thus, it is
preferable that you avoid the dialect option, and use AC PROG FC only for code
compatible with the latest Fortran standard.

This macro may, alternatively, be invoked with an optional first argument which, if
specified, must be a blank-separated list of Fortran compilers to search for, just as in
AC_PROG_F77.

If using a compiler that supports GNU Fortran, set the shell variable GFC to ‘yes’. If
the output variable FCFLAGS was not already set in the environment, then set it to -g

-02 for a GNU Fortran compiler (or -O2 where the compiler does not accept -g), or
-g for other compilers.

The result of the GNU test is cached in the ac_cv_fc_compiler_gnu variable, accep-
tance of -g in the ac_cv_prog_fc_g variable.

[Macro]AC_PROG_F77_C_O
[Macro]AC_PROG_FC_C_O

Test whether the Fortran compiler accepts the options -c and -o simultaneously, and
define F77_NO_MINUS_C_MINUS_O or FC_NO_MINUS_C_MINUS_O, respectively, if it does
not.

The result of the test is cached in the ac_cv_prog_f77_c_o or ac_cv_prog_fc_c_o
variable, respectively.

The following macros check for Fortran compiler characteristics. To check for charac-
teristics not listed here, use AC_COMPILE_IFELSE (see Section 6.4 [Running the Compiler],
page 115) or AC_RUN_IFELSE (see Section 6.6 [Runtime], page 116), making sure to first

Chapter 5: Existing Tests 93

set the current language to Fortran 77 or Fortran via AC_LANG([Fortran 77]) or AC_

LANG(Fortran) (see Section 6.1 [Language Choice], page 107).

[Macro]AC_F77_LIBRARY_LDFLAGS
[Macro]AC_FC_LIBRARY_LDFLAGS

Determine the linker flags (e.g., -L and -l) for the Fortran intrinsic and runtime
libraries that are required to successfully link a Fortran program or shared library.
The output variable FLIBS or FCLIBS is set to these flags (which should be included
after LIBS when linking).

This macro is intended to be used in those situations when it is necessary to mix,
e.g., C++ and Fortran source code in a single program or shared library (see Section
“Mixing Fortran 77 With C and C++” in GNU Automake).

For example, if object files from a C++ and Fortran compiler must be linked together,
then the C++ compiler/linker must be used for linking (since special C++-ish things
need to happen at link time like calling global constructors, instantiating templates,
enabling exception support, etc.).

However, the Fortran intrinsic and runtime libraries must be linked in as well, but the
C++ compiler/linker doesn’t know by default how to add these Fortran 77 libraries.
Hence, this macro was created to determine these Fortran libraries.

The macros AC_F77_DUMMY_MAIN and AC_FC_DUMMY_MAIN or AC_F77_MAIN and AC_FC_

MAIN are probably also necessary to link C/C++ with Fortran; see below. Further, it is
highly recommended that you use AC_CONFIG_HEADERS (see Section 4.9 [Configuration
Headers], page 37) because the complex defines that the function wrapper macros
create may not work with C/C++ compiler drivers.

These macros internally compute the flag needed to verbose linking output and cache
it in ac_cv_prog_f77_v or ac_cv_prog_fc_v variables, respectively. The computed
linker flags are cached in ac_cv_f77_libs or ac_cv_fc_libs, respectively.

[Macro]AC_F77_DUMMY_MAIN ([action-if-found], [action-if-not-found =
‘AC_MSG_FAILURE’])

[Macro]AC_FC_DUMMY_MAIN ([action-if-found], [action-if-not-found =
‘AC_MSG_FAILURE’])

With many compilers, the Fortran libraries detected by AC_F77_LIBRARY_LDFLAGS or
AC_FC_LIBRARY_LDFLAGS provide their own main entry function that initializes things
like Fortran I/O, and which then calls a user-provided entry function named (say)
MAIN__ to run the user’s program. The AC_F77_DUMMY_MAIN and AC_FC_DUMMY_MAIN

or AC_F77_MAIN and AC_FC_MAIN macros figure out how to deal with this interaction.

When using Fortran for purely numerical functions (no I/O, etc.) often one prefers
to provide one’s own main and skip the Fortran library initializations. In this case,
however, one may still need to provide a dummy MAIN__ routine in order to prevent
linking errors on some systems. AC_F77_DUMMY_MAIN or AC_FC_DUMMY_MAIN detects
whether any such routine is required for linking, and what its name is; the shell variable
F77_DUMMY_MAIN or FC_DUMMY_MAIN holds this name, unknown when no solution was
found, and none when no such dummy main is needed.

By default, action-if-found defines F77_DUMMY_MAIN or FC_DUMMY_MAIN to the name
of this routine (e.g., MAIN__) if it is required. action-if-not-found defaults to exiting
with an error.

94 Autoconf

In order to link with Fortran routines, the user’s C/C++ program should then include
the following code to define the dummy main if it is needed:

#ifdef F77_DUMMY_MAIN

ifdef __cplusplus

extern "C"

endif

int F77_DUMMY_MAIN (void) { return 1; }

#endif

(Replace F77 with FC for Fortran instead of Fortran 77.)

Note that this macro is called automatically from AC_F77_WRAPPERS or AC_FC_

WRAPPERS; there is generally no need to call it explicitly unless one wants to change
the default actions.

The result of this macro is cached in the ac_cv_f77_dummy_main or ac_cv_fc_dummy_
main variable, respectively.

[Macro]AC_F77_MAIN
[Macro]AC_FC_MAIN

As discussed above, many Fortran libraries allow you to provide an entry point called
(say) MAIN__ instead of the usual main, which is then called by a main function in
the Fortran libraries that initializes things like Fortran I/O. The AC_F77_MAIN and
AC_FC_MAIN macros detect whether it is possible to utilize such an alternate main
function, and defines F77_MAIN and FC_MAIN to the name of the function. (If no
alternate main function name is found, F77_MAIN and FC_MAIN are simply defined to
main.)

Thus, when calling Fortran routines from C that perform things like I/O, one should
use this macro and declare the "main" function like so:

#ifdef __cplusplus

extern "C"

#endif

int F77_MAIN (int argc, char *argv[]);

(Again, replace F77 with FC for Fortran instead of Fortran 77.)

The result of this macro is cached in the ac_cv_f77_main or ac_cv_fc_main variable,
respectively.

[Macro]AC_F77_WRAPPERS
[Macro]AC_FC_WRAPPERS

Defines C macros F77_FUNC (name, NAME), FC_FUNC (name, NAME), F77_FUNC_

(name, NAME), and FC_FUNC_(name, NAME) to properly mangle the names of C/C++
identifiers, and identifiers with underscores, respectively, so that they match the
name-mangling scheme used by the Fortran compiler.

Fortran is case-insensitive, and in order to achieve this the Fortran compiler converts
all identifiers into a canonical case and format. To call a Fortran subroutine from C or
to write a C function that is callable from Fortran, the C program must explicitly use
identifiers in the format expected by the Fortran compiler. In order to do this, one

Chapter 5: Existing Tests 95

simply wraps all C identifiers in one of the macros provided by AC_F77_WRAPPERS or
AC_FC_WRAPPERS. For example, suppose you have the following Fortran 77 subroutine:

subroutine foobar (x, y)

double precision x, y

y = 3.14159 * x

return

end

You would then declare its prototype in C or C++ as:

#define FOOBAR_F77 F77_FUNC (foobar, FOOBAR)

#ifdef __cplusplus

extern "C" /* prevent C++ name mangling */

#endif

void FOOBAR_F77 (double *x, double *y);

Note that we pass both the lowercase and uppercase versions of the function name to
F77_FUNC so that it can select the right one. Note also that all parameters to Fortran
77 routines are passed as pointers (see Section “Mixing Fortran 77 With C and C++”
in GNU Automake).

(Replace F77 with FC for Fortran instead of Fortran 77.)

Although Autoconf tries to be intelligent about detecting the name-mangling scheme
of the Fortran compiler, there may be Fortran compilers that it doesn’t support yet. In
this case, the above code generates a compile-time error, but some other behavior (e.g.,
disabling Fortran-related features) can be induced by checking whether F77_FUNC or
FC_FUNC is defined.

Now, to call that routine from a C program, we would do something like:

{

double x = 2.7183, y;

FOOBAR_F77 (&x, &y);

}

If the Fortran identifier contains an underscore (e.g., foo_bar), you should use F77_
FUNC_ or FC_FUNC_ instead of F77_FUNC or FC_FUNC (with the same arguments).
This is because some Fortran compilers mangle names differently if they contain an
underscore.

The name mangling scheme is encoded in the ac_cv_f77_mangling or ac_cv_fc_

mangling cache variable, respectively, and also used for the AC_F77_FUNC and AC_FC_

FUNC macros described below.

[Macro]AC_F77_FUNC (name, [shellvar])
[Macro]AC_FC_FUNC (name, [shellvar])

Given an identifier name, set the shell variable shellvar to hold the mangled version
name according to the rules of the Fortran linker (see also AC_F77_WRAPPERS or AC_FC_
WRAPPERS). shellvar is optional; if it is not supplied, the shell variable is simply name.
The purpose of this macro is to give the caller a way to access the name-mangling
information other than through the C preprocessor as above, for example, to call
Fortran routines from some language other than C/C++.

96 Autoconf

[Macro]AC_FC_SRCEXT (ext, [action-if-success], [action-if-failure =
‘AC_MSG_FAILURE’])

[Macro]AC_FC_PP_SRCEXT (ext, [action-if-success], [action-if-failure =
‘AC_MSG_FAILURE’])

By default, the FC macros perform their tests using a .f extension for source-code
files. Some compilers, however, only enable newer language features for appropriately
named files, e.g., Fortran 90 features only for .f90 files, or preprocessing only with .F

files or maybe other upper-case extensions. On the other hand, some other compilers
expect all source files to end in .f and require special flags to support other file name
extensions. The AC_FC_SRCEXT and AC_FC_PP_SRCEXT macros deal with these issues.

The AC_FC_SRCEXT macro tries to get the FC compiler to accept files ending with the
extension .ext (i.e., ext does not contain the dot). If any special compiler flags are
needed for this, it stores them in the output variable FCFLAGS_ext. This extension
and these flags are then used for all subsequent FC tests (until AC_FC_SRCEXT or
AC_FC_PP_SRCEXT is called another time).

For example, you would use AC_FC_SRCEXT(f90) to employ the .f90 extension in
future tests, and it would set the FCFLAGS_f90 output variable with any extra flags
that are needed to compile such files.

Similarly, the AC_FC_PP_SRCEXT macro tries to get the FC compiler to preprocess and
compile files with the extension .ext. When both fpp and cpp style preprocessing are
provided, the former is preferred, as the latter may treat continuation lines, // tokens,
and white space differently from what some Fortran dialects expect. Conversely, if
you do not want files to be preprocessed, use only lower-case characters in the file
name extension. Like with AC_FC_SRCEXT(f90), any needed flags are stored in the
FCFLAGS_ext variable.

The FCFLAGS_ext flags can not be simply absorbed into FCFLAGS, for two reasons based
on the limitations of some compilers. First, only one FCFLAGS_ext can be used at a
time, so files with different extensions must be compiled separately. Second, FCFLAGS_
ext must appear immediately before the source-code file name when compiling. So,
continuing the example above, you might compile a foo.f90 file in your makefile with
the command:

foo.o: foo.f90

$(FC) -c $(FCFLAGS) $(FCFLAGS_f90) '$(srcdir)/foo.f90'

If AC_FC_SRCEXT or AC_FC_PP_SRCEXT succeeds in compiling files with the ext exten-
sion, it calls action-if-success (defaults to nothing). If it fails, and cannot find a way
to make the FC compiler accept such files, it calls action-if-failure (defaults to exiting
with an error message).

The AC_FC_SRCEXT and AC_FC_PP_SRCEXT macros cache their results in ac_cv_fc_

srcext_ext and ac_cv_fc_pp_srcext_ext variables, respectively.

[Macro]AC_FC_PP_DEFINE ([action-if-success], [action-if-failure =
‘AC_MSG_FAILURE’])

Find a flag to specify defines for preprocessed Fortran. Not all Fortran compilers
use -D. Substitute FC_DEFINE with the result and call action-if-success (defaults to
nothing) if successful, and action-if-failure (defaults to failing with an error message)
if not.

Chapter 5: Existing Tests 97

This macro calls AC_FC_PP_SRCEXT([F]) in order to learn how to preprocess a
conftest.F file, but restores a previously used Fortran source file extension afterwards
again.

The result of this test is cached in the ac_cv_fc_pp_define variable.

[Macro]AC_FC_FREEFORM ([action-if-success], [action-if-failure =
‘AC_MSG_FAILURE’])

Try to ensure that the Fortran compiler ($FC) allows free-format source code (as
opposed to the older fixed-format style from Fortran 77). If necessary, it may add
some additional flags to FCFLAGS.

This macro is most important if you are using the default .f extension, since many
compilers interpret this extension as indicating fixed-format source unless an additional
flag is supplied. If you specify a different extension with AC_FC_SRCEXT, such as .f90,
then AC_FC_FREEFORM ordinarily succeeds without modifying FCFLAGS. For extensions
which the compiler does not know about, the flag set by the AC_FC_SRCEXT macro
might let the compiler assume Fortran 77 by default, however.

If AC_FC_FREEFORM succeeds in compiling free-form source, it calls action-if-success
(defaults to nothing). If it fails, it calls action-if-failure (defaults to exiting with an
error message).

The result of this test, or ‘none’ or ‘unknown’, is cached in the ac_cv_fc_freeform

variable.

[Macro]AC_FC_FIXEDFORM ([action-if-success], [action-if-failure =
‘AC_MSG_FAILURE’])

Try to ensure that the Fortran compiler ($FC) allows the old fixed-format source code
(as opposed to free-format style). If necessary, it may add some additional flags to
FCFLAGS.

This macro is needed for some compilers alias names like xlf95 which assume free-form
source code by default, and in case you want to use fixed-form source with an extension
like .f90 which many compilers interpret as free-form by default. If you specify a
different extension with AC_FC_SRCEXT, such as .f, then AC_FC_FIXEDFORM ordinarily
succeeds without modifying FCFLAGS.

If AC_FC_FIXEDFORM succeeds in compiling fixed-form source, it calls action-if-success
(defaults to nothing). If it fails, it calls action-if-failure (defaults to exiting with an
error message).

The result of this test, or ‘none’ or ‘unknown’, is cached in the ac_cv_fc_fixedform
variable.

[Macro]AC_FC_LINE_LENGTH ([length], [action-if-success],
[action-if-failure = ‘AC_MSG_FAILURE’])

Try to ensure that the Fortran compiler ($FC) accepts long source code lines. The
length argument may be given as 80, 132, or unlimited, and defaults to 132. Note that
line lengths above 250 columns are not portable, and some compilers do not accept
more than 132 columns at least for fixed format source. If necessary, it may add some
additional flags to FCFLAGS.

98 Autoconf

If AC_FC_LINE_LENGTH succeeds in compiling fixed-form source, it calls action-if-
success (defaults to nothing). If it fails, it calls action-if-failure (defaults to exiting
with an error message).

The result of this test, or ‘none’ or ‘unknown’, is cached in the ac_cv_fc_line_length
variable.

[Macro]AC_FC_CHECK_BOUNDS ([action-if-success], [action-if-failure =
‘AC_MSG_FAILURE’])

The AC_FC_CHECK_BOUNDS macro tries to enable array bounds checking in the Fortran
compiler. If successful, the action-if-success is called and any needed flags are added
to FCFLAGS. Otherwise, action-if-failure is called, which defaults to failing with an
error message. The macro currently requires Fortran 90 or a newer dialect.

The result of the macro is cached in the ac_cv_fc_check_bounds variable.

[Macro]AC_F77_IMPLICIT_NONE ([action-if-success], [action-if-failure =
‘AC_MSG_FAILURE’])

[Macro]AC_FC_IMPLICIT_NONE ([action-if-success], [action-if-failure =
‘AC_MSG_FAILURE’])

Try to disallow implicit declarations in the Fortran compiler. If successful, action-if-
success is called and any needed flags are added to FFLAGS or FCFLAGS, respectively.
Otherwise, action-if-failure is called, which defaults to failing with an error message.

The result of these macros are cached in the ac_cv_f77_implicit_none and ac_cv_

fc_implicit_none variables, respectively.

[Macro]AC_FC_MODULE_EXTENSION
Find the Fortran 90 module file name extension. Most Fortran 90 compilers store
module information in files separate from the object files. The module files are usually
named after the name of the module rather than the source file name, with characters
possibly turned to upper case, plus an extension, often .mod.

Not all compilers use module files at all, or by default. The Cray Fortran compiler
requires -e m in order to store and search module information in .mod files rather than
in object files. Likewise, the Fujitsu Fortran compilers uses the -Am option to indicate
how module information is stored.

The AC_FC_MODULE_EXTENSION macro computes the module extension without the
leading dot, and stores that in the FC_MODEXT variable. If the compiler does not
produce module files, or the extension cannot be determined, FC_MODEXT is empty.
Typically, the result of this macro may be used in cleanup make rules as follows:

clean-modules:

-test -z "$(FC_MODEXT)" || rm -f *.$(FC_MODEXT)

The extension, or ‘unknown’, is cached in the ac_cv_fc_module_ext variable.

[Macro]AC_FC_MODULE_FLAG ([action-if-success], [action-if-failure =
‘AC_MSG_FAILURE’])

Find the compiler flag to include Fortran 90 module information from another directory,
and store that in the FC_MODINC variable. Call action-if-success (defaults to nothing)
if successful, and set FC_MODINC to empty and call action-if-failure (defaults to exiting
with an error message) if not.

Chapter 5: Existing Tests 99

Most Fortran 90 compilers provide a way to specify module directories. Some have
separate flags for the directory to write module files to, and directories to search them
in, whereas others only allow writing to the current directory or to the first directory
specified in the include path. Further, with some compilers, the module search path
and the preprocessor search path can only be modified with the same flag. Thus,
for portability, write module files to the current directory only and list that as first
directory in the search path.

There may be no whitespace between FC_MODINC and the following directory name,
but FC_MODINC may contain trailing white space. For example, if you use Automake
and would like to search ../lib for module files, you can use the following:

AM_FCFLAGS = $(FC_MODINC). $(FC_MODINC)../lib

Inside configure tests, you can use:

if test -n "$FC_MODINC"; then

FCFLAGS="$FCFLAGS $FC_MODINC. $FC_MODINC../lib"

fi

The flag is cached in the ac_cv_fc_module_flag variable. The substituted value of
FC_MODINC may refer to the ac_empty dummy placeholder empty variable, to avoid
losing the significant trailing whitespace in a Makefile.

[Macro]AC_FC_MODULE_OUTPUT_FLAG ([action-if-success],
[action-if-failure = ‘AC_MSG_FAILURE’])

Find the compiler flag to write Fortran 90 module information to another directory,
and store that in the FC_MODOUT variable. Call action-if-success (defaults to nothing)
if successful, and set FC_MODOUT to empty and call action-if-failure (defaults to exiting
with an error message) if not.

Not all Fortran 90 compilers write module files, and of those that do, not all allow
writing to a directory other than the current one, nor do all have separate flags for
writing and reading; see the description of AC_FC_MODULE_FLAG above. If you need to
be able to write to another directory, for maximum portability use FC_MODOUT before
any FC_MODINC and include both the current directory and the one you write to in
the search path:

AM_FCFLAGS = $(FC_MODOUT)../mod $(FC_MODINC)../mod $(FC_MODINC). ...

The flag is cached in the ac_cv_fc_module_output_flag variable. The substituted
value of FC_MODOUT may refer to the ac_empty dummy placeholder empty variable, to
avoid losing the significant trailing whitespace in a Makefile.

[Macro]AC_F77_CRAY_POINTERS ([action-if-success], [action-if-failure =
‘AC_MSG_FAILURE’])

[Macro]AC_FC_CRAY_POINTERS ([action-if-success], [action-if-failure =
‘AC_MSG_FAILURE’])

Try to ensure that the Fortran compiler ($F77 or $FC) accepts Cray pointers. If
successful, the action-if-success is called and any needed flags are added to FFLAGS or
FCFLAGS. Otherwise, action-if-failure is called, which defaults to failing with an error
message.

Cray pointers are a non-standard extension supported by many Fortran compilers
which allow an integer to be declared as C-like pointer to a target variable.

100 Autoconf

The result of this test, or ‘none’ or ‘unknown’, is cached in the ac_cv_f77_cray_ptr
or ac_cv_fc_cray_ptr variable.

5.10.9 Go Compiler Characteristics

Autoconf provides basic support for the Go programming language when using the gccgo
compiler (there is currently no support for the 6g and 8g compilers).

[Macro]AC_PROG_GO ([compiler-search-list])
Find the Go compiler to use. Check whether the environment variable GOC is set; if so,
then set output variable GOC to its value.

Otherwise, if the macro is invoked without an argument, then search for a Go compiler
named gccgo. If it is not found, then as a last resort set GOC to gccgo.

This macro may be invoked with an optional first argument which, if specified, must
be a blank-separated list of Go compilers to search for.

If output variable GOFLAGS was not already set, set it to -g -O2. If your package does
not like this default, GOFLAGS may be set before AC_PROG_GO.

5.11 System Services

The following macros check for operating system services or capabilities.

[Macro]AC_PATH_X
Try to locate the X Window System include files and libraries. If the user gave
the command line options --x-includes=dir and --x-libraries=dir, use those
directories.

If either or both were not given, get the missing values by running xmkmf (or an
executable pointed to by the XMKMF environment variable) on a trivial Imakefile
and examining the makefile that it produces. Setting XMKMF to ‘false’ disables this
method.

If this method fails to find the X Window System, configure looks for the files in
several directories where they often reside. If either method is successful, set the
shell variables x_includes and x_libraries to their locations, unless they are in
directories the compiler searches by default.

If both methods fail, or the user gave the command line option --without-x, set the
shell variable no_x to ‘yes’; otherwise set it to the empty string.

[Macro]AC_PATH_XTRA
An enhanced version of AC_PATH_X. It adds the C compiler flags that X needs to output
variable X_CFLAGS, and the X linker flags to X_LIBS. Define X_DISPLAY_MISSING if X
is not available.

This macro also checks for special libraries that some systems need in order to compile
X programs. It adds any that the system needs to output variable X_EXTRA_LIBS.
And it checks for special X11R6 libraries that need to be linked with before -lX11,
and adds any found to the output variable X_PRE_LIBS.

[Macro]AC_SYS_INTERPRETER
Check whether the system supports starting scripts with a line of the form ‘#!/bin/sh’
to select the interpreter to use for the script. After running this macro, shell code in

Chapter 5: Existing Tests 101

configure.ac can check the shell variable interpval; it is set to ‘yes’ if the system
supports ‘#!’, ‘no’ if not.

[Macro]AC_SYS_LARGEFILE
If the default off_t type is a 32-bit integer, and therefore cannot be used with files
2 GiB or larger, make a wider off_t available if the system supports it. Similarly,
widen other types related to sizes of files and file systems if possible. These types may
include blkcnt_t, dev_t, ino_t, fsblkcnt_t, fsfilcnt_t, and rlim_t.

Also, arrange for a configure option --enable-year2038 to request widening the
type time_t as needed to represent file wand other timestamps after mid-January
2038. This widening is possible only on 32-bit GNU/Linux x86 and ARM systems with
glibc 2.34 or later. If year-2038 support is requested but configure fails to find a way
to widen time_t and inspection of the system suggests that this feature is available
somehow, configure will error out. If you want the default to be --enable-year2038,
you can use AC_SYS_YEAR2038 or AC_SYS_YEAR2038_RECOMMENDED instead of AC_SYS_
LARGEFILE. In other words, older packages that have long used AC_SYS_LARGEFILE can
have year-2038 support on 32-bit GNU/Linux x86 and ARM systems either by regen-
erating configure with current Autoconf and configuring with --enable-year2038,
or by using AC_SYS_YEAR2038 or AC_SYS_YEAR2038_RECOMMENDED and configuring
without --disable-year2038. A future version of Autoconf might change the AC_

SYS_LARGEFILE default to --enable-year2038; if and when that happens, AC_SYS_
LARGEFILE and AC_SYS_YEAR2038 will become equivalent. See [AC SYS YEAR2038],
page 102.

Set the shell variable ac_have_largefile to ‘yes’ or no depending on whether a wide
off_t is available, regardless of whether arrangements were necessary. Similarly, set
the shell variable ac_have_year2038 to yes or no depending on whether a wide-enough
time_t is available.

Define preprocessor macros if necessary to make types wider; for example, on
GNU/Linux systems the macros _FILE_OFFSET_BITS and _TIME_BITS can be defined.
Some of these macros work only if defined before the first system header is included;
therefore, when using this macro in concert with AC_CONFIG_HEADERS, make sure
that config.h is included before any system headers.

On obsolete IRIX systems, also change the output variable CC to add compiler options
needed for wide off_t.

Large-file support can be disabled by configuring with the --disable-largefile

option, and year-2038 support can be enabled and disabled via the --enable-year2038
and --disable-year2038 options. These options have no effect on systems where
types are wide enough by default. Large-file support is required for year-2038 support:
if you configure with --disable-largefile on a platform with 32-bit time_t, then
year-2038 support is not available.

Disabling large-file or year-2038 support can have surprising effects, such as causing
functions like readdir and stat to fail even on a small file because its inode number
or timestamp is out of range.

Regardless of whether you use this macro, portable programs should not assume that
any of the types listed above fit into a long int. For example, it is not portable to
print an arbitrary off_t or time_t value X with printf ("%ld", (long int) X).

102 Autoconf

The standard C library functions fseek and ftell do not use off_t. If you need
to use either of these functions, you should use AC_FUNC_FSEEKO as well as AC_

SYS_LARGEFILE, and then use their Posix replacements fseeko and ftello. See
[AC FUNC FSEEKO], page 60.

When using AC_SYS_LARGEFILE in different packages that are linked together and
that have interfaces that depend on the width of off_t, time_t or related types,
the simplest thing is to configure all components the same way. For example, if
an application uses AC_SYS_LARGEFILE and is configured with --enable-year2038,
libraries it links to with an off_t- or time_t-dependent interface should be configured
equivalently. Alternatively, you can modify libraries to support both 32- and 64-bit
interfaces though this is more work and few libraries other than the C library itself
are modified in this way.

Applications and libraries should be configured compatibly. If off_t, time_t or
related types appear in a library’s public interface, enabling or disabling the library’s
large-file or year-2038 support may break binary compatibility with applications or
with other libraries. Similarly, if an application links to a such a library, enabling or
disabling the application’s large-file support may break binary compatibility with that
library.

[Macro]AC_SYS_LONG_FILE_NAMES
If the system supports file names longer than 14 characters, define HAVE_LONG_FILE_
NAMES.

[Macro]AC_SYS_POSIX_TERMIOS
Check to see if the Posix termios headers and functions are available on the system. If
so, set the shell variable ac_cv_sys_posix_termios to ‘yes’. If not, set the variable
to ‘no’.

[Macro]AC_SYS_YEAR2038
This is like AC_SYS_LARGEFILE except it defaults to enabling instead of disabling year-
2038 support. Year-2038 support for applications and libraries should be configured
compatibly. See [AC SYS LARGEFILE], page 101.

[Macro]AC_SYS_YEAR2038_RECOMMENDED
This macro has the same effect as AC_SYS_YEAR2038, but also declares that the
program being configured should support timestamps after mid-January 2038. If a
large time_t is unavailable, configure will error out unless the --disable-year2038
option is specified.

Year-2038 support for applications and libraries should be configured compatibly. See
[AC SYS YEAR2038], page 102.

5.12 C and Posix Variants

The following macro makes it possible to use C language and library extensions defined
by the C standards committee, features of Posix that are extensions to C, and platform
extensions not defined by Posix.

Chapter 5: Existing Tests 103

[Macro]AC_USE_SYSTEM_EXTENSIONS
If possible, enable extensions to C or Posix on hosts that normally disable the extensions,
typically due to standards-conformance namespace issues. This should be called before
any macros that run the C compiler. Also, when using this macro in concert with
AC_CONFIG_HEADERS, be sure that config.h is included before any system header.

The following preprocessor macros are defined unconditionally:

_ALL_SOURCE

Enable extensions on AIX 3 and Interix.

_DARWIN_C_SOURCE

Enable extensions on macOS.

_GNU_SOURCE

Enable extensions on GNU systems.

_NETBSD_SOURCE

Enable general extensions on NetBSD. Enable NetBSD compatibility
extensions on Minix.

_OPENBSD_SOURCE

Enable OpenBSD compatibility extensions on NetBSD. Oddly enough,
this does nothing on OpenBSD.

_POSIX_PTHREAD_SEMANTICS

Enable Posix-compatible threading on Solaris.

__STDC_WANT_IEC_60559_ATTRIBS_EXT__

Enable extensions specified by ISO/IEC TS 18661-5:2014.

__STDC_WANT_IEC_60559_BFP_EXT__

Enable extensions specified by ISO/IEC TS 18661-1:2014.

__STDC_WANT_IEC_60559_DFP_EXT__

Enable extensions specified by ISO/IEC TS 18661-2:2015.

__STDC_WANT_IEC_60559_EXT__

Enable extensions specified by C23 Annex F.

__STDC_WANT_IEC_60559_FUNCS_EXT__

Enable extensions specified by ISO/IEC TS 18661-4:2015.

__STDC_WANT_IEC_60559_TYPES_EXT__

Enable extensions specified by C23 Annex H and by ISO/IEC TS 18661-
3:2015.

__STDC_WANT_LIB_EXT2__

Enable extensions specified by ISO/IEC TR 24731-2:2010.

__STDC_WANT_MATH_SPEC_FUNCS__

Enable extensions specified by ISO/IEC 24747:2009.

_TANDEM_SOURCE

Enable extensions on HP NonStop systems.

104 Autoconf

The following preprocessor macros are defined only when necessary; they enable access
to extensions on some operating systems but disable extensions on other operating
systems.

__EXTENSIONS__

Enable general extensions on Solaris. This macro is defined only if the
headers included by AC_INCLUDES_DEFAULT (see Section 5.1.2 [Default
Includes], page 45) work correctly with it defined.

_MINIX

_POSIX_SOURCE

_POSIX_1_SOURCE

Defined only on MINIX. _POSIX_SOURCE and _POSIX_1_SOURCE are
needed to enable a number of POSIX features on this OS. _MINIX does
not affect the system headers’ behavior; future versions of Autoconf may
stop defining it. Programs that need to recognize Minix should use
AC_CANONICAL_HOST.

_XOPEN_SOURCE

Defined (with value 500) only if needed to make wchar.h declare mbstate_
t. This is known to be necessary on some versions of HP/UX.

The C preprocessor macro __STDC_WANT_DEC_FP__ is not defined. ISO/IEC TR
24732:2009 was superseded by ISO/IEC TS 18661-2:2015.

The C preprocessor macro __STDC_WANT_LIB_EXT1__ is not defined, as the C stan-
dard’s Annex K is problematic. See: O’Donell C, Sebor M. Field Experience With An-
nex K—Bounds Checking Interfaces (http://www.open-std.org/jtc1/sc22/wg14/
www/docs/n1967.htm).

The Autoconf macro AC_USE_SYSTEM_EXTENSIONS was introduced in Autoconf 2.60.

5.13 Erlang Libraries

The following macros check for an installation of Erlang/OTP, and for the presence of certain
Erlang libraries. All those macros require the configuration of an Erlang interpreter and an
Erlang compiler (see Section 5.10.7 [Erlang Compiler and Interpreter], page 91).

[Macro]AC_ERLANG_SUBST_ERTS_VER
Set the output variable ERLANG_ERTS_VER to the version of the Erlang runtime system
(as returned by Erlang’s erlang:system_info(version) function). The result of this
test is cached if caching is enabled when running configure. The ERLANG_ERTS_VER
variable is not intended to be used for testing for features of specific ERTS versions,
but to be used for substituting the ERTS version in Erlang/OTP release resource files
(.rel files), as shown below.

[Macro]AC_ERLANG_SUBST_ROOT_DIR
Set the output variable ERLANG_ROOT_DIR to the path to the base directory in which
Erlang/OTP is installed (as returned by Erlang’s code:root_dir/0 function). The
result of this test is cached if caching is enabled when running configure.

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1967.htm
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1967.htm
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1967.htm

Chapter 5: Existing Tests 105

[Macro]AC_ERLANG_SUBST_LIB_DIR
Set the output variable ERLANG_LIB_DIR to the path of the library directory of
Erlang/OTP (as returned by Erlang’s code:lib_dir/0 function), which subdirectories
each contain an installed Erlang/OTP library. The result of this test is cached if
caching is enabled when running configure.

[Macro]AC_ERLANG_CHECK_LIB (library, [action-if-found],
[action-if-not-found])

Test whether the Erlang/OTP library library is installed by calling Erlang’s code:lib_
dir/1 function. The result of this test is cached if caching is enabled when running
configure. action-if-found is a list of shell commands to run if the library is installed;
action-if-not-found is a list of shell commands to run if it is not. Additionally, if the
library is installed, the output variable ‘ERLANG_LIB_DIR_library’ is set to the path to
the library installation directory, and the output variable ‘ERLANG_LIB_VER_library’
is set to the version number that is part of the subdirectory name, if it is in the
standard form (library-version). If the directory name does not have a version part,
‘ERLANG_LIB_VER_library’ is set to the empty string. If the library is not installed,
‘ERLANG_LIB_DIR_library’ and ‘ERLANG_LIB_VER_library’ are set to "not found".
For example, to check if library stdlib is installed:

AC_ERLANG_CHECK_LIB([stdlib],

[echo "stdlib version \"$ERLANG_LIB_VER_stdlib\""

echo "is installed in \"$ERLANG_LIB_DIR_stdlib\""],

[AC_MSG_ERROR([stdlib was not found!])])

The ‘ERLANG_LIB_VER_library’ variables (set by AC_ERLANG_CHECK_LIB) and the
ERLANG_ERTS_VER variable (set by AC_ERLANG_SUBST_ERTS_VER) are not intended to
be used for testing for features of specific versions of libraries or of the Erlang runtime
system. Those variables are intended to be substituted in Erlang release resource files
(.rel files). For instance, to generate a example.rel file for an application depending
on the stdlib library, configure.ac could contain:

AC_ERLANG_SUBST_ERTS_VER

AC_ERLANG_CHECK_LIB([stdlib],

[],

[AC_MSG_ERROR([stdlib was not found!])])

AC_CONFIG_FILES([example.rel])

The example.rel.in file used to generate example.rel should contain:

{release,

{"@PACKAGE@", "@VERSION@"},

{erts, "@ERLANG_ERTS_VER@"},

[{stdlib, "@ERLANG_LIB_VER_stdlib@"},

{@PACKAGE@, "@VERSION@"}]}.

In addition to the above macros, which test installed Erlang libraries, the following
macros determine the paths to the directories into which newly built Erlang libraries are to
be installed:

106 Autoconf

[Macro]AC_ERLANG_SUBST_INSTALL_LIB_DIR
Set the ERLANG_INSTALL_LIB_DIR output variable to the directory into which ev-
ery built Erlang library should be installed in a separate subdirectory. If this
variable is not set in the environment when configure runs, its default value is
${libdir}/erlang/lib.

[Macro]AC_ERLANG_SUBST_INSTALL_LIB_SUBDIR (library, version)
Set the ‘ERLANG_INSTALL_LIB_DIR_library’ output variable to the directory into
which the built Erlang library library version version should be installed. If this
variable is not set in the environment when configure runs, its default value is
‘$ERLANG_INSTALL_LIB_DIR/library-version’, the value of the ERLANG_INSTALL_

LIB_DIR variable being set by the AC_ERLANG_SUBST_INSTALL_LIB_DIR macro.

107

6 Writing Tests

If the existing feature tests don’t do something you need, you have to write new ones. These
macros are the building blocks. They provide ways for other macros to check whether various
kinds of features are available and report the results.

This chapter contains some suggestions and some of the reasons why the existing tests
are written the way they are. You can also learn a lot about how to write Autoconf tests by
looking at the existing ones. If something goes wrong in one or more of the Autoconf tests,
this information can help you understand the assumptions behind them, which might help
you figure out how to best solve the problem.

These macros check the output of the compiler system of the current language (see
Section 6.1 [Language Choice], page 107). They do not cache the results of their tests for
future use (see Section 7.4 [Caching Results], page 125), because they don’t know enough
about the information they are checking for to generate a cache variable name. They also do
not print any messages, for the same reason. The checks for particular kinds of features call
these macros and do cache their results and print messages about what they’re checking for.

When you write a feature test that could be applicable to more than one software package,
the best thing to do is encapsulate it in a new macro. See Chapter 10 [Writing Autoconf
Macros], page 185, for how to do that.

6.1 Language Choice

Autoconf-generated configure scripts check for the C compiler and its features by default.
Packages that use other programming languages (maybe more than one, e.g., C and C++)
need to test features of the compilers for the respective languages. The following macros
determine which programming language is used in the subsequent tests in configure.ac.

[Macro]AC_LANG (language)
Do compilation tests using the compiler, preprocessor, and file extensions for the
specified language.

Supported languages are:

‘C’ Do compilation tests using CC and CPP and use extension .c for test
programs. Use compilation flags: CPPFLAGS with CPP, and both CPPFLAGS

and CFLAGS with CC.

‘C++’ Do compilation tests using CXX and CXXCPP and use extension .C for
test programs. Use compilation flags: CPPFLAGS with CXXCPP, and both
CPPFLAGS and CXXFLAGS with CXX.

‘Fortran 77’
Do compilation tests using F77 and use extension .f for test programs.
Use compilation flags: FFLAGS.

‘Fortran’ Do compilation tests using FC and use extension .f (or whatever has been
set by AC_FC_SRCEXT) for test programs. Use compilation flags: FCFLAGS.

‘Erlang’ Compile and execute tests using ERLC and ERL and use extension .erl for
test Erlang modules. Use compilation flags: ERLCFLAGS.

108 Autoconf

‘Objective C’
Do compilation tests using OBJC and OBJCPP and use extension .m for
test programs. Use compilation flags: CPPFLAGS with OBJCPP, and both
CPPFLAGS and OBJCFLAGS with OBJC.

‘Objective C++’
Do compilation tests using OBJCXX and OBJCXXCPP and use extension .mm

for test programs. Use compilation flags: CPPFLAGS with OBJCXXCPP, and
both CPPFLAGS and OBJCXXFLAGS with OBJCXX.

‘Go’ Do compilation tests using GOC and use extension .go for test programs.
Use compilation flags GOFLAGS.

[Macro]AC_LANG_PUSH (language)
Remember the current language (as set by AC_LANG) on a stack, and then select the
language. Use this macro and AC_LANG_POP in macros that need to temporarily switch
to a particular language.

[Macro]AC_LANG_POP ([language])
Select the language that is saved on the top of the stack, as set by AC_LANG_PUSH, and
remove it from the stack.

If given, language specifies the language we just quit. It is a good idea to specify it
when it’s known (which should be the case. . .), since Autoconf detects inconsistencies.

AC_LANG_PUSH([Fortran 77])

Perform some tests on Fortran 77.

...

AC_LANG_POP([Fortran 77])

[Macro]AC_LANG_ASSERT (language)
Check statically that the current language is language. You should use this in your
language specific macros to avoid that they be called with an inappropriate language.

This macro runs only at autoconf time, and incurs no cost at configure time. Sadly
enough and because Autoconf is a two layer language1, the macros AC_LANG_PUSH

and AC_LANG_POP cannot be “optimizing”, therefore as much as possible you ought to
avoid using them to wrap your code, rather, require from the user to run the macro
with a correct current language, and check it with AC_LANG_ASSERT. And anyway,
that may help the user understand she is running a Fortran macro while expecting a
result about her Fortran 77 compiler. . .

[Macro]AC_REQUIRE_CPP
Ensure that whichever preprocessor would currently be used for tests has been found.
Calls AC_REQUIRE (see Section 10.3.1 [Prerequisite Macros], page 187) with an argument
of either AC_PROG_CPP or AC_PROG_CXXCPP, depending on which language is current.

1 Because M4 is not aware of Sh code, especially conditionals, some optimizations that look nice statically
may produce incorrect results at runtime.

Chapter 6: Writing Tests 109

6.2 Writing Test Programs

Autoconf tests follow a common scheme: feed some program with some input, and most of
the time, feed a compiler with some source file. This section is dedicated to these source
samples.

6.2.1 Guidelines for Test Programs

The most important rule to follow when writing testing samples is:
Look for realism.

This motto means that testing samples must be written with the same strictness as real
programs are written. In particular, you should avoid “shortcuts” and simplifications.

Don’t just play with the preprocessor if you want to prepare a compilation. For instance,
using cpp to check whether a header is functional might let your configure accept a header
which causes some compiler error. Do not hesitate to check a header with other headers
included before, especially required headers.

Make sure the symbols you use are properly defined, i.e., refrain from simply declaring a
function yourself instead of including the proper header.

Test programs should not write to standard output. They should exit with status 0 if the
test succeeds, and with status 1 otherwise, so that success can be distinguished easily from
a core dump or other failure; segmentation violations and other failures produce a nonzero
exit status. Unless you arrange for exit to be declared, test programs should return, not
exit, from main, because on many systems exit is not declared by default.

Test programs can use #if or #ifdef to check the values of preprocessor macros defined
by tests that have already run. For example, if you call AC_HEADER_STDBOOL, then later on
in configure.ac you can have a test program that includes stdbool.h conditionally:

#ifdef HAVE_STDBOOL_H

include <stdbool.h>

#endif

Both #if HAVE_STDBOOL_H and #ifdef HAVE_STDBOOL_H will work with any standard C
compiler. Some developers prefer #if because it is easier to read, while others prefer #ifdef
because it avoids diagnostics with picky compilers like GCC with the -Wundef option.

If a test program needs to use or create a data file, give it a name that starts with
conftest, such as conftest.data. The configure script cleans up by running ‘rm -f -r

conftest*’ after running test programs and if the script is interrupted.

6.2.2 Test Functions

Functions in test code should use function prototypes, introduced in C89 and required in
C23.

Functions that test programs declare should also be conditionalized for C++, which
requires ‘extern "C"’ prototypes. Make sure to not include any header files containing
clashing prototypes.

#ifdef __cplusplus

extern "C"

#endif

void *valloc (size_t);

110 Autoconf

If a test program calls a function with invalid parameters (just to see whether it exists),
organize the program to ensure that it never invokes that function. You can do this by
calling it in another function that is never invoked. You can’t do it by putting it after a call
to exit, because GCC version 2 knows that exit never returns and optimizes out any code
that follows it in the same block.

If you include any header files, be sure to call the functions relevant to them with the
correct number of arguments, even if they are just 0, to avoid compilation errors due to
prototypes. GCC version 2 has internal prototypes for several functions that it automatically
inlines; for example, memcpy. To avoid errors when checking for them, either pass them the
correct number of arguments or redeclare them with a different return type (such as char).

6.2.3 Generating Sources

Autoconf provides a set of macros that can be used to generate test source files. They
are written to be language generic, i.e., they actually depend on the current language (see
Section 6.1 [Language Choice], page 107) to “format” the output properly.

[Macro]AC_LANG_CONFTEST (source)
Save the source text in the current test source file: conftest.extension where the
extension depends on the current language. As of Autoconf 2.63b, the source file also
contains the results of all of the AC_DEFINE performed so far.

Note that the source is evaluated exactly once, like regular Autoconf macro arguments,
and therefore (i) you may pass a macro invocation, (ii) if not, be sure to double quote
if needed.

The source text is expanded as an unquoted here-document, so ‘$’, ‘`’ and some ‘\’s
should be backslash-escaped. See Section 11.3 [Here-Documents], page 200.

This macro issues a warning during autoconf processing if source does not include an
expansion of the macro AC_LANG_DEFINES_PROVIDED (note that both AC_LANG_SOURCE

and AC_LANG_PROGRAM call this macro, and thus avoid the warning).

This macro is seldom called directly, but is used under the hood by more common
macros such as AC_COMPILE_IFELSE and AC_RUN_IFELSE.

[Macro]AC_LANG_DEFINES_PROVIDED
This macro is called as a witness that the file conftest.extension appropriate for
the current language is complete, including all previously determined results from
AC_DEFINE. This macro is seldom called directly, but exists if you have a compelling
reason to write a conftest file without using AC_LANG_SOURCE, yet still want to avoid
a syntax warning from AC_LANG_CONFTEST.

[Macro]AC_LANG_SOURCE (source)
Expands into the source, with the definition of all the AC_DEFINE performed so far.
This macro includes an expansion of AC_LANG_DEFINES_PROVIDED.

In many cases, you may find it more convenient to use the wrapper AC_LANG_PROGRAM.

For instance, executing (observe the double quotation!):

AC_INIT([Hello], [1.0], [bug-hello@example.org], [],

[https://www.example.org/])

Chapter 6: Writing Tests 111

AC_DEFINE([HELLO_WORLD], ["Hello, World\n"],

[Greetings string.])

AC_LANG([C])

AC_LANG_CONFTEST(

[AC_LANG_SOURCE([[const char hw[] = "Hello, World\n";]])])

gcc -E -dD conftest.c

on a system with gcc installed, results in:

...

1 "conftest.c"

#define PACKAGE_NAME "Hello"

#define PACKAGE_TARNAME "hello"

#define PACKAGE_VERSION "1.0"

#define PACKAGE_STRING "Hello 1.0"

#define PACKAGE_BUGREPORT "bug-hello@example.org"

#define PACKAGE_URL "https://www.example.org/"

#define HELLO_WORLD "Hello, World\n"

const char hw[] = "Hello, World\n";

When the test language is Fortran, Erlang, or Go, the AC_DEFINE definitions are not
automatically translated into constants in the source code by this macro.

[Macro]AC_LANG_PROGRAM (prologue, body)
Expands into a source file which consists of the prologue, and then body as body of
the main function (e.g., main in C). Since it uses AC_LANG_SOURCE, the features of the
latter are available.

For instance:

AC_INIT([Hello], [1.0], [bug-hello@example.org], [],

[https://www.example.org/])

AC_DEFINE([HELLO_WORLD], ["Hello, World\n"],

[Greetings string.])

AC_LANG_CONFTEST(

[AC_LANG_PROGRAM([[const char hw[] = "Hello, World\n";]],

[[fputs (hw, stdout);]])])

gcc -E -dD conftest.c

on a system with gcc installed, results in:

...

1 "conftest.c"

#define PACKAGE_NAME "Hello"

#define PACKAGE_TARNAME "hello"

#define PACKAGE_VERSION "1.0"

#define PACKAGE_STRING "Hello 1.0"

#define PACKAGE_BUGREPORT "bug-hello@example.org"

#define PACKAGE_URL "https://www.example.org/"

112 Autoconf

#define HELLO_WORLD "Hello, World\n"

const char hw[] = "Hello, World\n";

int

main (void)

{

fputs (hw, stdout);

;

return 0;

}

In Erlang tests, the created source file is that of an Erlang module called conftest

(conftest.erl). This module defines and exports at least one start/0 function, which is
called to perform the test. The prologue is optional code that is inserted between the module
header and the start/0 function definition. body is the body of the start/0 function
without the final period (see Section 6.6 [Runtime], page 116, about constraints on this
function’s behavior).

For instance:

AC_INIT([Hello], [1.0], [bug-hello@example.org])

AC_LANG(Erlang)

AC_LANG_CONFTEST(

[AC_LANG_PROGRAM([[-define(HELLO_WORLD, "Hello, world!").]],

[[io:format("~s~n", [?HELLO_WORLD])]])])

cat conftest.erl

results in:

-module(conftest).

-export([start/0]).

-define(HELLO_WORLD, "Hello, world!").

start() ->

io:format("~s~n", [?HELLO_WORLD])

.

[Macro]AC_LANG_CALL (prologue, function)
Expands into a source file which consists of the prologue, and then a call to the function
as body of the main function (e.g., main in C). Since it uses AC_LANG_PROGRAM, the
feature of the latter are available.

This function will probably be replaced in the future by a version which would enable
specifying the arguments. The use of this macro is not encouraged, as it violates
strongly the typing system.

This macro cannot be used for Erlang tests.

[Macro]AC_LANG_FUNC_LINK_TRY (function)
Expands into a source file which uses the function in the body of the main function (e.g.,
main in C). Since it uses AC_LANG_PROGRAM, the features of the latter are available.

As AC_LANG_CALL, this macro is documented only for completeness. It is considered
to be severely broken, and in the future will be removed in favor of actual function
calls (with properly typed arguments).

Chapter 6: Writing Tests 113

This macro cannot be used for Erlang tests.

6.3 Running the Preprocessor

Sometimes one might need to run the preprocessor on some source file. Usually it is a
bad idea, as you typically need to compile your project, not merely run the preprocessor
on it; therefore you certainly want to run the compiler, not the preprocessor. Resist the
temptation of following the easiest path.

Nevertheless, if you need to run the preprocessor, then use AC_PREPROC_IFELSE.

The macros described in this section cannot be used for tests in Erlang, Fortran, or Go,
since those languages require no preprocessor.

[Macro]AC_PREPROC_IFELSE (input, [action-if-true], [action-if-false])
Run the preprocessor of the current language (see Section 6.1 [Language Choice],
page 107) on the input, run the shell commands action-if-true on success, action-if-
false otherwise.

If input is nonempty use the equivalent of AC_LANG_CONFTEST(input) to generate
the current test source file; otherwise reuse the already-existing test source file. The
input can be made by AC_LANG_PROGRAM and friends. The input text is expanded as
an unquoted here-document, so ‘$’, ‘`’ and some ‘\’s should be backslash-escaped.
See Section 11.3 [Here-Documents], page 200.

This macro uses CPPFLAGS, but not CFLAGS, because -g, -O, etc. are not valid options
to many C preprocessors.

It is customary to report unexpected failures with AC_MSG_FAILURE. If needed, action-
if-true can further access the preprocessed output in the file conftest.i.

For instance:

AC_INIT([Hello], [1.0], [bug-hello@example.org])

AC_DEFINE([HELLO_WORLD], ["Hello, World\n"],

[Greetings string.])

AC_PREPROC_IFELSE(

[AC_LANG_PROGRAM([[const char hw[] = "Hello, World\n";]],

[[fputs (hw, stdout);]])],

[AC_MSG_RESULT([OK])],

[AC_MSG_FAILURE([unexpected preprocessor failure])])

might result in:

checking for gcc... gcc

checking whether the C compiler works... yes

checking for C compiler default output file name... a.out

checking for suffix of executables...

checking whether we are cross compiling... no

checking for suffix of object files... o

checking whether the compiler supports GNU C... yes

checking whether gcc accepts -g... yes

checking for gcc option to enable C11 features... -std=gnu11

checking how to run the C preprocessor... gcc -std=gnu11 -E

114 Autoconf

OK

The macro AC_TRY_CPP (see Section 18.4 [Obsolete Macros], page 315) used to play the
role of AC_PREPROC_IFELSE, but double quotes its argument, making it impossible to use it
to elaborate sources. You are encouraged to get rid of your old use of the macro AC_TRY_CPP

in favor of AC_PREPROC_IFELSE, but, in the first place, are you sure you need to run the
preprocessor and not the compiler?

[Macro]AC_EGREP_HEADER (pattern, header-file, action-if-found,
[action-if-not-found])

pattern, after being expanded as if in a double-quoted shell string, is an extended
regular expression. If the output of running the preprocessor on the system header file
header-file contains a line matching pattern, execute shell commands action-if-found,
otherwise execute action-if-not-found.

See below for some problems involving this macro.

[Macro]AC_EGREP_CPP (pattern, program, [action-if-found],
[action-if-not-found])

pattern, after being expanded as if in a double-quoted shell string, is an extended
regular expression. program is the text of a C or C++ program, which is expanded
as an unquoted here-document (see Section 11.3 [Here-Documents], page 200). If
the output of running the preprocessor on program contains a line matching pattern,
execute shell commands action-if-found, otherwise execute action-if-not-found.

See below for some problems involving this macro.

AC_EGREP_CPP and AC_EGREP_HEADER should be used with care, as preprocessors can
insert line breaks between output tokens. For example, the preprocessor might transform
this:

#define MAJOR 2

#define MINOR 23

Version MAJOR . MINOR

into this:

Version

2

.

23

Because preprocessors are allowed to insert white space, change escapes in string constants,
insert backlash-newline pairs, or do any of a number of things that do not change the
meaning of the preprocessed program, it is better to rely on AC_PREPROC_IFELSE than to
resort to AC_EGREP_CPP or AC_EGREP_HEADER.

For more information about what can appear in portable extended regular expressions,
see Section “Problematic Expressions” in GNU Grep.

Chapter 6: Writing Tests 115

6.4 Running the Compiler

To check for a syntax feature of the current language’s (see Section 6.1 [Language Choice],
page 107) compiler, such as whether it recognizes a certain keyword, or simply to try some
library feature, use AC_COMPILE_IFELSE to try to compile a small program that uses that
feature.

[Macro]AC_COMPILE_IFELSE (input, [action-if-true], [action-if-false])
Run the compiler and compilation flags of the current language (see Section 6.1
[Language Choice], page 107) on the input, run the shell commands action-if-true on
success, action-if-false otherwise.

If input is nonempty use the equivalent of AC_LANG_CONFTEST(input) to generate
the current test source file; otherwise reuse the already-existing test source file. The
input can be made by AC_LANG_PROGRAM and friends. The input text is expanded as
an unquoted here-document, so ‘$’, ‘`’ and some ‘\’s should be backslash-escaped.
See Section 11.3 [Here-Documents], page 200.

It is customary to report unexpected failures with AC_MSG_FAILURE. This macro does
not try to link; use AC_LINK_IFELSE if you need to do that (see Section 6.5 [Running
the Linker], page 115). If needed, action-if-true can further access the just-compiled
object file conftest.$OBJEXT.

This macro uses AC_REQUIRE for the compiler associated with the current language,
which means that if the compiler has not yet been determined, the compiler determina-
tion will be made prior to the body of the outermost AC_DEFUN macro that triggered
this macro to expand (see Section 20.8 [Expanded Before Required], page 356).

For tests in Erlang, the input must be the source code of a module named conftest.
AC_COMPILE_IFELSE generates a conftest.beam file that can be interpreted by the Erlang
virtual machine (ERL). It is recommended to use AC_LANG_PROGRAM to specify the test
program, to ensure that the Erlang module has the right name.

6.5 Running the Linker

To check for a library, a function, or a global variable, Autoconf configure scripts try to
compile and link a small program that uses it. This is unlike Metaconfig, which by default
uses nm or ar on the C library to try to figure out which functions are available. Trying to
link with the function is usually a more reliable approach because it avoids dealing with
the variations in the options and output formats of nm and ar and in the location of the
standard libraries. It also allows configuring for cross-compilation or checking a function’s
runtime behavior if needed. On the other hand, it can be slower than scanning the libraries
once, but accuracy is more important than speed.

AC_LINK_IFELSE is used to compile test programs to test for functions and global variables.
It is also used by AC_CHECK_LIB to check for libraries (see Section 5.4 [Libraries], page 54),
by adding the library being checked for to LIBS temporarily and trying to link a small
program.

[Macro]AC_LINK_IFELSE (input, [action-if-true], [action-if-false])
Run the compiler (and compilation flags) and the linker of the current language
(see Section 6.1 [Language Choice], page 107) on the input, run the shell commands

116 Autoconf

action-if-true on success, action-if-false otherwise. If needed, action-if-true can further
access the just-linked program file conftest$EXEEXT.

If input is nonempty use the equivalent of AC_LANG_CONFTEST(input) to generate
the current test source file; otherwise reuse the already-existing test source file. The
input can be made by AC_LANG_PROGRAM and friends. The input text is expanded as
an unquoted here-document, so ‘$’, ‘`’ and some ‘\’s should be backslash-escaped.
See Section 11.3 [Here-Documents], page 200.

LDFLAGS and LIBS are used for linking, in addition to the current compilation flags.

It is customary to report unexpected failures with AC_MSG_FAILURE. This macro
does not try to execute the program; use AC_RUN_IFELSE if you need to do that (see
Section 6.6 [Runtime], page 116).

The AC_LINK_IFELSE macro cannot be used for Erlang tests, since Erlang programs are
interpreted and do not require linking.

6.6 Checking Runtime Behavior

Sometimes you need to find out how a system performs at runtime, such as whether a given
function has a certain capability or bug. If you can, make such checks when your program
runs instead of when it is configured. You can check for things like the machine’s endianness
when your program initializes itself.

If you really need to test for a runtime behavior while configuring, you can write a
test program to determine the result, and compile and run it using AC_RUN_IFELSE. Avoid
running test programs if possible, because this prevents people from configuring your package
for cross-compiling.

[Macro]AC_RUN_IFELSE (input, [action-if-true], [action-if-false],
[action-if-cross-compiling = ‘AC_MSG_FAILURE’])

Run the compiler (and compilation flags) and the linker of the current language (see
Section 6.1 [Language Choice], page 107) on the input, then execute the resulting
program. If the program returns an exit status of 0 when executed, run shell commands
action-if-true. Otherwise, run shell commands action-if-false.

If input is nonempty use the equivalent of AC_LANG_CONFTEST(input) to generate
the current test source file; otherwise reuse the already-existing test source file. The
input can be made by AC_LANG_PROGRAM and friends. The input text is expanded as
an unquoted here-document, so ‘$’, ‘`’ and some ‘\’s should be backslash-escaped.
See Section 11.3 [Here-Documents], page 200.

LDFLAGS and LIBS are used for linking, in addition to the compilation flags of the
current language (see Section 6.1 [Language Choice], page 107). Additionally, action-
if-true can run ./conftest$EXEEXT for further testing.

In the action-if-false section, the failing exit status is available in the shell variable
‘$?’. This exit status might be that of a failed compilation, or it might be that of a
failed program execution.

If cross-compilation mode is enabled (this is the case if either the compiler being
used does not produce executables that run on the system where configure is being
run, or if the options --build and --host were both specified and their values are

Chapter 6: Writing Tests 117

different), then the test program is not run. If the optional shell commands action-if-
cross-compiling are given, those commands are run instead; typically these commands
provide pessimistic defaults that allow cross-compilation to work even if the guess
was wrong. If the fourth argument is empty or omitted, but cross-compilation is
detected, then configure prints an error message and exits. If you want your package
to be useful in a cross-compilation scenario, you should provide a non-empty action-
if-cross-compiling clause, as well as wrap the AC_RUN_IFELSE compilation inside an
AC_CACHE_CHECK (see Section 7.4 [Caching Results], page 125) which allows the user
to override the pessimistic default if needed.

It is customary to report unexpected failures with AC_MSG_FAILURE.

autoconf prints a warning message when creating configure each time it encounters
a call to AC_RUN_IFELSE with no action-if-cross-compiling argument given. If you are not
concerned about users configuring your package for cross-compilation, you may ignore the
warning. A few of the macros distributed with Autoconf produce this warning message; but
if this is a problem for you, please report it as a bug, along with an appropriate pessimistic
guess to use instead.

To configure for cross-compiling you can also choose a value for those parameters based on
the canonical system name (see Chapter 14 [Manual Configuration], page 291). Alternatively,
set up a test results cache file with the correct values for the host system (see Section 7.4
[Caching Results], page 125).

To provide a default for calls of AC_RUN_IFELSE that are embedded in other macros,
including a few of the ones that come with Autoconf, you can test whether the shell variable
cross_compiling is set to ‘yes’, and then use an alternate method to get the results instead
of calling the macros.

It is also permissible to temporarily assign to cross_compiling in order to force tests to
behave as though they are in a cross-compilation environment, particularly since this provides
a way to test your action-if-cross-compiling even when you are not using a cross-compiler.

We temporarily set cross-compile mode to force AC_COMPUTE_INT

to use the slow link-only method

save_cross_compiling=$cross_compiling

cross_compiling=yes

AC_COMPUTE_INT([...])

cross_compiling=$save_cross_compiling

A C or C++ runtime test should be portable. See Chapter 13 [Portable C and C++],
page 281.

Erlang tests must exit themselves the Erlang VM by calling the halt/1 function: the
given status code is used to determine the success of the test (status is 0) or its failure
(status is different than 0), as explained above. It must be noted that data output through
the standard output (e.g., using io:format/2) may be truncated when halting the VM.
Therefore, if a test must output configuration information, it is recommended to create and
to output data into the temporary file named conftest.out, using the functions of module
file. The conftest.out file is automatically deleted by the AC_RUN_IFELSE macro. For
instance, a simplified implementation of Autoconf’s AC_ERLANG_SUBST_LIB_DIR macro is:

AC_INIT([LibdirTest], [1.0], [bug-libdirtest@example.org])

118 Autoconf

AC_ERLANG_NEED_ERL

AC_LANG(Erlang)

AC_RUN_IFELSE(

[AC_LANG_PROGRAM([], [dnl

file:write_file("conftest.out", code:lib_dir()),

halt(0)])],

[echo "code:lib_dir() returned: `cat conftest.out`"],

[AC_MSG_FAILURE([test Erlang program execution failed])])

6.7 Systemology

This section aims at presenting some systems and pointers to documentation. It may help
you addressing particular problems reported by users.

Posix-conforming systems (https://en.wikipedia.org/wiki/POSIX) are derived from
the Unix operating system (https://en.wikipedia.org/wiki/Unix).

The Rosetta Stone for Unix (http://bhami.com/rosetta.html) contains a table cor-
relating the features of various Posix-conforming systems. Unix History (https://www.
levenez.com/unix/) is a simplified diagram of how many Unix systems were derived from
each other.

The Heirloom Project (http://heirloom.sourceforge.net/) provides some variants
of traditional implementations of Unix utilities.

Darwin Darwin is also known as Mac OS X. Beware that the file system can be
case-preserving, but case insensitive. This can cause nasty problems, since for
instance the installation attempt for a package having an INSTALL file can result
in ‘make install’ report that nothing was to be done!

That’s all dependent on whether the file system is a UFS (case sensitive) or
HFS+ (case preserving). By default Apple wants you to install the OS on HFS+.
Unfortunately, there are some pieces of software which really need to be built
on UFS. We may want to rebuild Darwin to have both UFS and HFS+ available
(and put the /local/build tree on the UFS).

QNX 4.25 QNX is a realtime operating system running on Intel architecture meant to
be scalable from the small embedded systems to the hundred processor super-
computer. It claims to be Posix certified. More information is available on the
QNX home page (https://blackberry.qnx.com/en).

Unix version 7
Officially this was called the “Seventh Edition” of “the UNIX time-sharing
system” but we use the more-common name “Unix version 7”. Documenta-
tion is available in the Unix Seventh Edition Manual (https://s3.amazonaws.
com/plan9-bell-labs/7thEdMan/index.html). Previous versions of Unix are
called “Unix version 6”, etc., but they were not as widely used.

6.8 Multiple Cases

Some operations are accomplished in several possible ways, depending on the OS variant.
Checking for them essentially requires a “case statement”. Autoconf does not directly

https://en.wikipedia.org/wiki/POSIX
https://en.wikipedia.org/wiki/Unix
http://bhami.com/rosetta.html
https://www.levenez.com/unix/
https://www.levenez.com/unix/
http://heirloom.sourceforge.net/
https://blackberry.qnx.com/en
https://s3.amazonaws.com/plan9-bell-labs/7thEdMan/index.html
https://s3.amazonaws.com/plan9-bell-labs/7thEdMan/index.html

Chapter 6: Writing Tests 119

provide one; however, it is easy to simulate by using a shell variable to keep track of whether
a way to perform the operation has been found yet.

Here is an example that uses the shell variable fstype to keep track of whether the
remaining cases need to be checked. Note that since the value of fstype is under our control,
we don’t have to use the longer ‘test "x$fstype" = xno’.

AC_MSG_CHECKING([how to get file system type])

fstype=no

The order of these tests is important.

AC_COMPILE_IFELSE([AC_LANG_PROGRAM([[#include <sys/statvfs.h>

#include <sys/fstyp.h>

]])],

[AC_DEFINE([FSTYPE_STATVFS], [1],

[Define if statvfs exists.])

fstype=SVR4])

AS_IF([test $fstype = no],

[AC_COMPILE_IFELSE([AC_LANG_PROGRAM([[#include <sys/statfs.h>

#include <sys/fstyp.h>

]])],

[AC_DEFINE([FSTYPE_USG_STATFS], [1],

[Define if USG statfs.])

fstype=SVR3])])

AS_IF([test $fstype = no],

[AC_COMPILE_IFELSE([AC_LANG_PROGRAM([[#include <sys/statfs.h>

#include <sys/vmount.h>

]])],

[AC_DEFINE([FSTYPE_AIX_STATFS], [1],

[Define if AIX statfs.])

fstype=AIX])])

(more cases omitted here)

AC_MSG_RESULT([$fstype])

121

7 Results of Tests

Once configure has determined whether a feature exists, what can it do to record that
information? There are four sorts of things it can do: define a C preprocessor symbol, set a
variable in the output files, save the result in a cache file for future configure runs, and
print a message letting the user know the result of the test.

7.1 Defining C Preprocessor Symbols

A common action to take in response to a feature test is to define a C preprocessor symbol
indicating the results of the test. That is done by calling AC_DEFINE or AC_DEFINE_UNQUOTED.

By default, AC_OUTPUT places the symbols defined by these macros into the output
variable DEFS, which contains an option -Dsymbol=value for each symbol defined. Unlike in
Autoconf version 1, there is no variable DEFS defined while configure is running. To check
whether Autoconf macros have already defined a certain C preprocessor symbol, test the
value of the appropriate cache variable, as in this example:

AC_CHECK_FUNC([vprintf],

[AC_DEFINE([HAVE_VPRINTF], [1],

[Define if vprintf exists.])])

AS_IF([test "x$ac_cv_func_vprintf" != xyes],

[AC_CHECK_FUNC([_doprnt],

[AC_DEFINE([HAVE_DOPRNT], [1],

[Define if _doprnt exists.])])])

If AC_CONFIG_HEADERS has been called, then instead of creating DEFS, AC_OUTPUT creates
a header file by substituting the correct values into #define statements in a template file.
See Section 4.9 [Configuration Headers], page 37, for more information about this kind of
output.

[Macro]AC_DEFINE (variable, value, [description])
[Macro]AC_DEFINE (variable)

Define variable to value (verbatim), by defining a C preprocessor macro for variable.
variable should be a C identifier, optionally suffixed by a parenthesized argument
list to define a C preprocessor macro with arguments. The macro argument list, if
present, should be a comma-separated list of C identifiers, possibly terminated by an
ellipsis ‘...’ if C99-or-later syntax is employed. variable should not contain comments,
white space, trigraphs, backslash-newlines, universal character names, or non-ASCII
characters.

value may contain backslash-escaped newlines, which will be preserved if you use AC_
CONFIG_HEADERS but flattened if passed via @DEFS@ (with no effect on the compilation,
since the preprocessor sees only one line in the first place). value should not contain
raw newlines. If you are not using AC_CONFIG_HEADERS, value should not contain any
‘#’ characters, as make tends to eat them. To use a shell variable, use AC_DEFINE_

UNQUOTED instead.

description is only useful if you are using AC_CONFIG_HEADERS. In this case, description
is put into the generated config.h.in as the comment before the macro define. The

122 Autoconf

following example defines the C preprocessor variable EQUATION to be the string
constant ‘"$a > $b"’:

AC_DEFINE([EQUATION], ["$a > $b"],

[Equation string.])

If neither value nor description are given, then value defaults to 1 instead of to the
empty string. This is for backwards compatibility with older versions of Autoconf, but
this usage is obsolescent and may be withdrawn in future versions of Autoconf.

If the variable is a literal string, it is passed to m4_pattern_allow (see Section 8.3.10
[Forbidden Patterns], page 172).

If multiple AC_DEFINE statements are executed for the same variable name (not
counting any parenthesized argument list), the last one wins.

[Macro]AC_DEFINE_UNQUOTED (variable, value, [description])
[Macro]AC_DEFINE_UNQUOTED (variable)

Like AC_DEFINE, but three shell expansions are performed—once—on variable and
value: variable expansion (‘$’), command substitution (‘`’), and backslash escaping
(‘\’), as if in an unquoted here-document. Single and double quote characters in the
value have no special meaning. Use this macro instead of AC_DEFINE when variable or
value is a shell variable. Examples:

AC_DEFINE_UNQUOTED([config_machfile], ["$machfile"],

[Configuration machine file.])

AC_DEFINE_UNQUOTED([GETGROUPS_T], [$ac_cv_type_getgroups],

[getgroups return type.])

AC_DEFINE_UNQUOTED([$ac_tr_hdr], [1],

[Translated header name.])

Due to a syntactical oddity of the Bourne shell, do not use semicolons to separate
AC_DEFINE or AC_DEFINE_UNQUOTED calls from other macro calls or shell code; that can
cause syntax errors in the resulting configure script. Use either blanks or newlines. That
is, do this:

AC_CHECK_HEADER([elf.h],

[AC_DEFINE([SVR4], [1], [System V Release 4]) LIBS="-lelf $LIBS"])

or this:

AC_CHECK_HEADER([elf.h],

[AC_DEFINE([SVR4], [1], [System V Release 4])

LIBS="-lelf $LIBS"])

instead of this:

AC_CHECK_HEADER([elf.h],

[AC_DEFINE([SVR4], [1], [System V Release 4]); LIBS="-lelf $LIBS"])

7.2 Setting Output Variables

Another way to record the results of tests is to set output variables, which are shell variables
whose values are substituted into files that configure outputs. The two macros below
create new output variables. See Section 4.8.1 [Preset Output Variables], page 27, for a list
of output variables that are always available.

Chapter 7: Results of Tests 123

[Macro]AC_SUBST (variable, [value])
Create an output variable from a shell variable. Make AC_OUTPUT substitute the
variable variable into output files (typically one or more makefiles). This means that
AC_OUTPUT replaces instances of ‘@variable@’ in input files with the value that the
shell variable variable has when AC_OUTPUT is called. The value can contain any
non-NUL character, including newline. If you are using Automake 1.11 or newer, for
newlines in values you might want to consider using AM_SUBST_NOTMAKE to prevent
automake from adding a line variable = @variable@ to the Makefile.in files (see
Section “Automake” in Other things Automake recognizes).

Variable occurrences should not overlap: e.g., an input file should not contain
‘@var1@var2@’ if var1 and var2 are variable names. The substituted value is not
rescanned for more output variables; occurrences of ‘@variable@’ in the value are
inserted literally into the output file. (The algorithm uses the special marker |#_!!_#|
internally, so neither the substituted value nor the output file may contain |#_!!_#|.)

If value is given, in addition assign it to variable.

The string variable is passed to m4_pattern_allow (see Section 8.3.10 [Forbidden
Patterns], page 172). variable is not further expanded, even if there is another macro
by the same name.

[Macro]AC_SUBST_FILE (variable)
Another way to create an output variable from a shell variable. Make AC_OUTPUT

insert (without substitutions) the contents of the file named by shell variable variable
into output files. This means that AC_OUTPUT replaces instances of ‘@variable@’ in
output files (such as Makefile.in) with the contents of the file that the shell variable
variable names when AC_OUTPUT is called. Set the variable to /dev/null for cases
that do not have a file to insert. This substitution occurs only when the ‘@variable@’
is on a line by itself, optionally surrounded by spaces and tabs. The substitution
replaces the whole line, including the spaces, tabs, and the terminating newline.

This macro is useful for inserting makefile fragments containing special dependencies
or other make directives for particular host or target types into makefiles. For example,
configure.ac could contain:

AC_SUBST_FILE([host_frag])

host_frag=$srcdir/conf/sun4.mh

and then a Makefile.in could contain:

@host_frag@

The string variable is passed to m4_pattern_allow (see Section 8.3.10 [Forbidden
Patterns], page 172).

Running configure in varying environments can be extremely dangerous. If for instance
the user runs ‘CC=bizarre-cc ./configure’, then the cache, config.h, and many other
output files depend upon bizarre-cc being the C compiler. If for some reason the user runs
./configure again, or if it is run via ‘./config.status --recheck’, (See Section 4.8.5
[Automatic Remaking], page 36, and see Chapter 17 [config.status Invocation], page 311),
then the configuration can be inconsistent, composed of results depending upon two different
compilers.

124 Autoconf

Environment variables that affect this situation, such as ‘CC’ above, are called precious
variables, and can be declared as such by AC_ARG_VAR.

[Macro]AC_ARG_VAR (variable, description)
Declare variable is a precious variable, and include its description in the variable
section of ‘./configure --help’.

Being precious means that

− variable is substituted via AC_SUBST.

− The value of variable when configure was launched is saved in the cache, including
if it was not specified on the command line but via the environment. Indeed, while
configure can notice the definition of CC in ‘./configure CC=bizarre-cc’, it is
impossible to notice it in ‘CC=bizarre-cc ./configure’, which, unfortunately,
is what most users do.

We emphasize that it is the initial value of variable which is saved, not that found
during the execution of configure. Indeed, specifying ‘./configure FOO=foo’
and letting ‘./configure’ guess that FOO is foo can be two different things.

− variable is checked for consistency between two configure runs. For instance:

$./configure --silent --config-cache

$ CC=cc ./configure --silent --config-cache

configure: error: 'CC' was not set in the previous run

configure: error: changes in the environment can compromise \

the build

configure: error: run 'make distclean' and/or \

'rm config.cache' and start over

and similarly if the variable is unset, or if its content is changed. If the content
has white space changes only, then the error is degraded to a warning only, but
the old value is reused.

− variable is kept during automatic reconfiguration (see Chapter 17 [config.status
Invocation], page 311) as if it had been passed as a command line argument,
including when no cache is used:

$ CC=/usr/bin/cc ./configure var=raboof --silent

$./config.status --recheck

running CONFIG_SHELL=/bin/sh /bin/sh ./configure var=raboof \

CC=/usr/bin/cc --no-create --no-recursion

7.3 Special Characters in Output Variables

Many output variables are intended to be evaluated both by make and by the shell. Some
characters are expanded differently in these two contexts, so to avoid confusion these variables’
values should not contain any of the following characters:

" # $ & ' () * ; < > ? [\ ^ ` |

Also, these variables’ values should neither contain newlines, nor start with ‘~’, nor
contain white space or ‘:’ immediately followed by ‘~’. The values can contain nonempty
sequences of white space characters like tabs and spaces, but each such sequence might
arbitrarily be replaced by a single space during substitution.

Chapter 7: Results of Tests 125

These restrictions apply both to the values that configure computes, and to the values set
directly by the user. For example, the following invocations of configure are problematic,
since they attempt to use special characters within CPPFLAGS and white space within
$(srcdir):

CPPFLAGS='-DOUCH="&\"#$*?"' '../My Source/ouch-1.0/configure'

'../My Source/ouch-1.0/configure' CPPFLAGS='-DOUCH="&\"#$*?"'

7.4 Caching Results

To avoid checking for the same features repeatedly in various configure scripts (or in
repeated runs of one script), configure can optionally save the results of many checks in
a cache file (see Section 7.4.2 [Cache Files], page 127). If a configure script runs with
caching enabled and finds a cache file, it reads the results of previous runs from the cache
and avoids rerunning those checks. As a result, configure can then run much faster than if
it had to perform all of the checks every time.

[Macro]AC_CACHE_VAL (cache-id, commands-to-set-it)
Ensure that the results of the check identified by cache-id are available. If the results
of the check were in the cache file that was read, and configure was not given
the --quiet or --silent option, print a message saying that the result was cached;
otherwise, run the shell commands commands-to-set-it. If the shell commands are
run to determine the value, the value is saved in the cache file just before configure
creates its output files. See Section 7.4.1 [Cache Variable Names], page 126, for how
to choose the name of the cache-id variable.

The commands-to-set-it must have no side effects except for setting the variable
cache-id, see below.

[Macro]AC_CACHE_CHECK (message, cache-id, commands-to-set-it)
A wrapper for AC_CACHE_VAL that takes care of printing the messages. This macro
provides a convenient shorthand for the most common way to use these macros. It calls
AC_MSG_CHECKING for message, then AC_CACHE_VAL with the cache-id and commands
arguments, and AC_MSG_RESULT with cache-id.

The commands-to-set-it must have no side effects except for setting the variable
cache-id, see below.

It is common to find buggy macros using AC_CACHE_VAL or AC_CACHE_CHECK, because
people are tempted to call AC_DEFINE in the commands-to-set-it. Instead, the code that
follows the call to AC_CACHE_VAL should call AC_DEFINE, by examining the value of the
cache variable. For instance, the following macro is broken:

126 Autoconf

AC_DEFUN([AC_SHELL_TRUE],

[AC_CACHE_CHECK([whether true(1) works], [my_cv_shell_true_works],

[my_cv_shell_true_works=no

(true) 2>/dev/null && my_cv_shell_true_works=yes

if test "x$my_cv_shell_true_works" = xyes; then

AC_DEFINE([TRUE_WORKS], [1],

[Define if 'true(1)' works properly.])

fi])

])

This fails if the cache is enabled: the second time this macro is run, TRUE_WORKS will not be
defined. The proper implementation is:

AC_DEFUN([AC_SHELL_TRUE],

[AC_CACHE_CHECK([whether true(1) works], [my_cv_shell_true_works],

[my_cv_shell_true_works=no

(true) 2>/dev/null && my_cv_shell_true_works=yes])

if test "x$my_cv_shell_true_works" = xyes; then

AC_DEFINE([TRUE_WORKS], [1],

[Define if 'true(1)' works properly.])

fi

])

Also, commands-to-set-it should not print any messages, for example with AC_MSG_

CHECKING; do that before calling AC_CACHE_VAL, so the messages are printed regardless of
whether the results of the check are retrieved from the cache or determined by running the
shell commands.

7.4.1 Cache Variable Names

The names of cache variables should have the following format:

package-prefix_cv_value-type_specific-value_[additional-options]

for example, ‘ac_cv_header_stat_broken’ or ‘ac_cv_prog_gcc_traditional’. The parts
of the variable name are:

package-prefix
An abbreviation for your package or organization; the same prefix you begin
local Autoconf macros with, except lowercase by convention. For cache values
used by the distributed Autoconf macros, this value is ‘ac’.

cv Indicates that this shell variable is a cache value. This string must be present
in the variable name, including the leading underscore.

value-type A convention for classifying cache values, to produce a rational naming system.
The values used in Autoconf are listed in Section 10.2 [Macro Names], page 186.

specific-value
Which member of the class of cache values this test applies to. For example,
which function (‘alloca’), program (‘gcc’), or output variable (‘INSTALL’).

Chapter 7: Results of Tests 127

additional-options
Any particular behavior of the specific member that this test applies to. For
example, ‘broken’ or ‘set’. This part of the name may be omitted if it does
not apply.

The values assigned to cache variables may not contain newlines. Usually, their values
are Boolean (‘yes’ or ‘no’) or the names of files or functions; so this is not an important
restriction. Section B.4 [Cache Variable Index], page 378, for an index of cache variables
with documented semantics.

7.4.2 Cache Files

A cache file is a shell script that caches the results of configure tests run on one system so
they can be shared between configure scripts and configure runs. It is not useful on other
systems. If its contents are invalid for some reason, the user may delete or edit it, or override
documented cache variables on the configure command line.

By default, configure uses no cache file, to avoid problems caused by accidental use of
stale cache files.

To enable caching, configure accepts --config-cache (or -C) to cache results in the file
config.cache. Alternatively, --cache-file=file specifies that file be the cache file. The
cache file is created if it does not exist already. When configure calls configure scripts in
subdirectories, it uses the --cache-file argument so that they share the same cache. See
Section 4.12 [Subdirectories], page 43, for information on configuring subdirectories with the
AC_CONFIG_SUBDIRS macro.

config.status only pays attention to the cache file if it is given the --recheck option,
which makes it rerun configure.

It is wrong to try to distribute cache files for particular system types. There is too
much room for error in doing that, and too much administrative overhead in maintaining
them. For any features that can’t be guessed automatically, use the standard method of the
canonical system type and linking files (see Chapter 14 [Manual Configuration], page 291).

The site initialization script can specify a site-wide cache file to use, instead of the usual
per-program cache. In this case, the cache file gradually accumulates information whenever
someone runs a new configure script. (Running configure merges the new cache results
with the existing cache file.) This may cause problems, however, if the system configuration
(e.g., the installed libraries or compilers) changes and the stale cache file is not deleted.

If configure is interrupted at the right time when it updates a cache file outside of the
build directory where the configure script is run, it may leave behind a temporary file
named after the cache file with digits following it. You may safely delete such a file.

7.4.3 Cache Checkpointing

If your configure script, or a macro called from configure.ac, happens to abort the configure
process, it may be useful to checkpoint the cache a few times at key points using AC_CACHE_

SAVE. Doing so reduces the amount of time it takes to rerun the configure script with
(hopefully) the error that caused the previous abort corrected.

[Macro]AC_CACHE_LOAD
Loads values from existing cache file, or creates a new cache file if a cache file is not
found. Called automatically from AC_INIT.

128 Autoconf

[Macro]AC_CACHE_SAVE
Flushes all cached values to the cache file. Called automatically from AC_OUTPUT, but
it can be quite useful to call AC_CACHE_SAVE at key points in configure.ac.

For instance:

. . . AC INIT, etc. . . .
Checks for programs.

AC_PROG_CC

AC_PROG_AWK

. . . more program checks . . .
AC_CACHE_SAVE

Checks for libraries.

AC_CHECK_LIB([nsl], [gethostbyname])

AC_CHECK_LIB([socket], [connect])

. . . more lib checks . . .
AC_CACHE_SAVE

Might abort...

AM_PATH_GTK([1.0.2], [], [AC_MSG_ERROR([GTK not in path])])

AM_PATH_GTKMM([0.9.5], [], [AC_MSG_ERROR([GTK not in path])])

. . . AC OUTPUT, etc. . . .

7.5 Printing Messages

configure scripts need to give users running them several kinds of information. The
following macros print messages in ways appropriate for each kind. The arguments to all
of them get enclosed in shell double quotes, so the shell performs variable and back-quote
substitution on them.

These macros are all wrappers around the echo shell command. They direct output to the
appropriate file descriptor (see Section 9.4 [File Descriptor Macros], page 183). configure
scripts should rarely need to run echo directly to print messages for the user. Using these
macros makes it easy to change how and when each kind of message is printed; such changes
need only be made to the macro definitions and all the callers change automatically.

To diagnose static issues, i.e., when autoconf is run, see Section 8.3.2 [Diagnostic Macros],
page 148.

[Macro]AC_MSG_CHECKING (feature-description)
Notify the user that configure is checking for a particular feature. This macro prints
a message that starts with ‘checking ’ and ends with ‘...’ and no newline. It must be
followed by a call to AC_MSG_RESULT to print the result of the check and the newline.
The feature-description should be something like ‘whether the Fortran compiler

accepts C++ comments’ or ‘for _Alignof’.

This macro prints nothing if configure is run with the --quiet or --silent option.

[Macro]AC_MSG_RESULT (result-description)
Notify the user of the results of a check. result-description is almost always the value
of the cache variable for the check, typically ‘yes’, ‘no’, or a file name. This macro

Chapter 7: Results of Tests 129

should follow a call to AC_MSG_CHECKING, and the result-description should be the
completion of the message printed by the call to AC_MSG_CHECKING.

This macro prints nothing if configure is run with the --quiet or --silent option.

[Macro]AC_MSG_NOTICE (message)
Deliver the message to the user. It is useful mainly to print a general description of
the overall purpose of a group of feature checks, e.g.,

AC_MSG_NOTICE([checking if stack overflow is detectable])

This macro prints nothing if configure is run with the --quiet or --silent option.

[Macro]AC_MSG_ERROR (error-description, [exit-status = ‘$?/1’])
Notify the user of an error that prevents configure from completing. This macro
prints an error message to the standard error output and exits configure with exit-
status (‘$?’ by default, except that ‘0’ is converted to ‘1’). error-description should be
something like ‘invalid value $HOME for \$HOME’.

The error-description should start with a lower-case letter, and “cannot” is preferred
to “can’t”.

[Macro]AC_MSG_FAILURE (error-description, [exit-status])
This AC_MSG_ERROR wrapper notifies the user of an error that prevents configure

from completing and that additional details are provided in config.log. This is
typically used when abnormal results are found during a compilation.

[Macro]AC_MSG_WARN (problem-description)
Notify the configure user of a possible problem. This macro prints the message to
the standard error output; configure continues running afterward, so macros that
call AC_MSG_WARN should provide a default (back-up) behavior for the situations they
warn about. problem-description should be something like ‘ln -s seems to make hard

links’.

131

8 Programming in M4

Autoconf is written on top of two layers: M4sugar, which provides convenient macros for pure
M4 programming, and M4sh, which provides macros dedicated to shell script generation.

As of this version of Autoconf, these two layers still contain experimental macros, whose
interface might change in the future. As a matter of fact, anything that is not documented
must not be used.

8.1 M4 Quotation

The most common problem with existing macros is an improper quotation. This section,
which users of Autoconf can skip, but which macro writers must read, first justifies the
quotation scheme that was chosen for Autoconf and then ends with a rule of thumb.
Understanding the former helps one to follow the latter.

8.1.1 Active Characters

To fully understand where proper quotation is important, you first need to know what
the special characters are in Autoconf: ‘#’ introduces a comment inside which no macro
expansion is performed, ‘,’ separates arguments, ‘[’ and ‘]’ are the quotes themselves1, ‘(’
and ‘)’ (which M4 tries to match by pairs), and finally ‘$’ inside a macro definition.

In order to understand the delicate case of macro calls, we first have to present some
obvious failures. Below they are “obvious-ified”, but when you find them in real life, they
are usually in disguise.

Comments, introduced by a hash and running up to the newline, are opaque tokens to
the top level: active characters are turned off, and there is no macro expansion:

define([def], ine)

⇒# define([def], ine)

Each time there can be a macro expansion, there is a quotation expansion, i.e., one level
of quotes is stripped:

int tab[10];

⇒int tab10;

[int tab[10];]

⇒int tab[10];

Without this in mind, the reader might try hopelessly to use her macro array:

define([array], [int tab[10];])

array

⇒int tab10;

[array]

⇒array

How can you correctly output the intended results2?

1 By itself, M4 uses ‘`’ and ‘'’; it is the M4sugar layer that sets up the preferred quotes of ‘[’ and ‘]’.
2 Using defn.

132 Autoconf

8.1.2 One Macro Call

Let’s proceed on the interaction between active characters and macros with this small macro,
which just returns its first argument:

define([car], [$1])

The two pairs of quotes above are not part of the arguments of define; rather, they are
understood by the top level when it tries to find the arguments of define. Therefore,
assuming car is not already defined, it is equivalent to write:

define(car, $1)

But, while it is acceptable for a configure.ac to avoid unnecessary quotes, it is bad practice
for Autoconf macros which must both be more robust and also advocate perfect style.

At the top level, there are only two possibilities: either you quote or you don’t:

car(foo, bar, baz)

⇒foo

[car(foo, bar, baz)]

⇒car(foo, bar, baz)

Let’s pay attention to the special characters:

car(#)

error EOF in argument list

The closing parenthesis is hidden in the comment; with a hypothetical quoting, the top
level understood it this way:

car([#)]

Proper quotation, of course, fixes the problem:

car([#])

⇒#

Here are more examples:

car(foo, bar)

⇒foo

car([foo, bar])

⇒foo, bar

car((foo, bar))

⇒(foo, bar)

car([(foo], [bar)])

⇒(foo

define([a], [b])

⇒
car(a)

⇒b

car([a])

⇒b

car([[a]])

⇒a

car([[[a]]])

⇒[a]

Chapter 8: Programming in M4 133

8.1.3 Quoting and Parameters

When M4 encounters ‘$’ within a macro definition, followed immediately by a character it
recognizes (‘0’. . . ‘9’, ‘#’, ‘@’, or ‘*’), it will perform M4 parameter expansion. This happens
regardless of how many layers of quotes the parameter expansion is nested within, or even if
it occurs in text that will be rescanned as a comment.

define([none], [$1])

⇒
define([one], [[$1]])

⇒
define([two], [[[$1]]])

⇒
define([comment], [# $1])

⇒
define([active], [ACTIVE])

⇒
none([active])

⇒ACTIVE

one([active])

⇒active

two([active])

⇒[active]

comment([active])

⇒# active

On the other hand, since autoconf generates shell code, you often want to output shell
variable expansion, rather than performing M4 parameter expansion. To do this, you must
use M4 quoting to separate the ‘$’ from the next character in the definition of your macro.
If the macro definition occurs in single-quoted text, then insert another level of quoting; if
the usage is already inside a double-quoted string, then split it into concatenated strings.

define([foo], [a single-quoted $[]1 definition])

⇒
define([bar], [[a double-quoted $][1 definition]])

⇒
foo

⇒a single-quoted $1 definition

bar

⇒a double-quoted $1 definition

Posix states that M4 implementations are free to provide implementation extensions when
‘${’ is encountered in a macro definition. Autoconf reserves the longer sequence ‘${{’ for use
with planned extensions that will be available in the future GNU M4 2.0, but guarantees
that all other instances of ‘${’ will be output literally. Therefore, this idiom can also be
used to output shell code parameter references:

define([first], [${1}])first

⇒${1}

134 Autoconf

Posix also states that ‘$11’ should expand to the first parameter concatenated with a
literal ‘1’, although some versions of GNU M4 expand the eleventh parameter instead. For
portability, you should only use single-digit M4 parameter expansion.

With this in mind, we can explore the cases where macros invoke macros. . .

8.1.4 Quotation and Nested Macros

The examples below use the following macros:

define([car], [$1])

define([active], [ACT, IVE])

define([array], [int tab[10]])

Each additional embedded macro call introduces other possible interesting quotations:

car(active)

⇒ACT

car([active])

⇒ACT, IVE

car([[active]])

⇒active

In the first case, the top level looks for the arguments of car, and finds ‘active’. Because
M4 evaluates its arguments before applying the macro, ‘active’ is expanded, which results
in:

car(ACT, IVE)

⇒ACT

In the second case, the top level gives ‘active’ as first and only argument of car, which
results in:

active

⇒ACT, IVE

i.e., the argument is evaluated after the macro that invokes it. In the third case, car receives
‘[active]’, which results in:

[active]

⇒active

exactly as we already saw above.

The example above, applied to a more realistic example, gives:

car(int tab[10];)

⇒int tab10;

car([int tab[10];])

⇒int tab10;

car([[int tab[10];]])

⇒int tab[10];

Huh? The first case is easily understood, but why is the second wrong, and the third right?
To understand that, you must know that after M4 expands a macro, the resulting text is
immediately subjected to macro expansion and quote removal. This means that the quote
removal occurs twice—first before the argument is passed to the car macro, and second
after the car macro expands to the first argument.

Chapter 8: Programming in M4 135

As the author of the Autoconf macro car, you then consider it to be incorrect that your
users have to double-quote the arguments of car, so you “fix” your macro. Let’s call it qar
for quoted car:

define([qar], [[$1]])

and check that qar is properly fixed:

qar([int tab[10];])

⇒int tab[10];

Ahhh! That’s much better.

But note what you’ve done: now that the result of qar is always a literal string, the only
time a user can use nested macros is if she relies on an unquoted macro call:

qar(active)

⇒ACT

qar([active])

⇒active

leaving no way for her to reproduce what she used to do with car:

car([active])

⇒ACT, IVE

Worse yet: she wants to use a macro that produces a set of cpp macros:

define([my_includes], [#include <stdio.h>])

car([my_includes])

⇒#include <stdio.h>

qar(my_includes)

error EOF in argument list

This macro, qar, because it double quotes its arguments, forces its users to leave their
macro calls unquoted, which is dangerous. Commas and other active symbols are interpreted
by M4 before they are given to the macro, often not in the way the users expect. Also,
because qar behaves differently from the other macros, it’s an exception that should be
avoided in Autoconf.

8.1.5 changequote is Evil

The temptation is often high to bypass proper quotation, in particular when it’s late at
night. Then, many experienced Autoconf hackers finally surrender to the dark side of the
force and use the ultimate weapon: changequote.

The M4 builtin changequote belongs to a set of primitives that allow one to adjust the
syntax of the language to adjust it to one’s needs. For instance, by default M4 uses ‘`’ and
‘'’ as quotes, but in the context of shell programming (and actually of most programming
languages), that’s about the worst choice one can make: because of strings and back-quoted
expressions in shell code (such as ‘'this'’ and ‘`that`’), and because of literal characters
in usual programming languages (as in ‘'0'’), there are many unbalanced ‘`’ and ‘'’. Proper
M4 quotation then becomes a nightmare, if not impossible. In order to make M4 useful in
such a context, its designers have equipped it with changequote, which makes it possible
to choose another pair of quotes. M4sugar, M4sh, Autoconf, and Autotest all have chosen
to use ‘[’ and ‘]’. Not especially because they are unlikely characters, but because they are
characters unlikely to be unbalanced.

136 Autoconf

There are other magic primitives, such as changecom to specify what syntactic forms
are comments (it is common to see ‘changecom(<!--, -->)’ when M4 is used to produce
HTML pages), changeword and changesyntax to change other syntactic details (such as
the character to denote the nth argument, ‘$’ by default, the parentheses around arguments,
etc.).

These primitives are really meant to make M4 more useful for specific domains: they
should be considered like command line options: --quotes, --comments, --words, and
--syntax. Nevertheless, they are implemented as M4 builtins, as it makes M4 libraries self
contained (no need for additional options).

There lies the problem. . .

The problem is that it is then tempting to use them in the middle of an M4 script, as
opposed to its initialization. This, if not carefully thought out, can lead to disastrous effects:
you are changing the language in the middle of the execution. Changing and restoring the
syntax is often not enough: if you happened to invoke macros in between, these macros are
lost, as the current syntax is probably not the one they were implemented with.

8.1.6 Quadrigraphs

When writing an Autoconf macro you may occasionally need to generate special characters
that are difficult to express with the standard Autoconf quoting rules. For example, you may
need to output the regular expression ‘[^[]’, which matches any character other than ‘[’.
This expression contains unbalanced brackets so it cannot be put easily into an M4 macro.

Additionally, there are a few m4sugar macros (such as m4_split and m4_expand) which
internally use special markers in addition to the regular quoting characters. If the arguments
to these macros contain the literal strings ‘-=<{(’ or ‘)}>=-’, the macros might behave
incorrectly.

You can work around these problems by using one of the following quadrigraphs:

‘@<:@’ ‘[’

‘@:>@’ ‘]’

‘@S|@’ ‘$’

‘@%:@’ ‘#’

‘@{:@’ ‘(’

‘@:}@’ ‘)’

‘@&t@’ Expands to nothing.

Quadrigraphs are replaced at a late stage of the translation process, after m4 is run, so
they do not get in the way of M4 quoting. For example, the string ‘^@<:@’, independently
of its quotation, appears as ‘^[’ in the output.

The empty quadrigraph can be used:

− to mark trailing spaces explicitly

Trailing spaces are smashed by autom4te. This is a feature.

Chapter 8: Programming in M4 137

− to produce quadrigraphs and other strings reserved by m4sugar

For instance ‘@<@&t@:@’ produces ‘@<:@’. For a more contrived example:

m4_define([a], [A])m4_define([b], [B])m4_define([c], [C])dnl

m4_split([a)}>=- b -=<{(c])

⇒[a], [], [B], [], [c]

m4_split([a)}@&t@>=- b -=<@&t@{(c])

⇒[a], [)}>=-], [b], [-=<{(], [c]

− to escape occurrences of forbidden patterns

For instance you might want to mention AC_FOO in a comment, while still being sure
that autom4te still catches unexpanded ‘AC_*’. Then write ‘AC@&t@_FOO’.

The name ‘@&t@’ was suggested by Paul Eggert:

I should give some credit to the ‘@&t@’ pun. The ‘&’ is my own invention, but
the ‘t’ came from the source code of the ALGOL68C compiler, written by Steve
Bourne (of Bourne shell fame), and which used ‘mt’ to denote the empty string.
In C, it would have looked like something like:

char const mt[] = "";

but of course the source code was written in Algol 68.

I don’t know where he got ‘mt’ from: it could have been his own invention, and
I suppose it could have been a common pun around the Cambridge University
computer lab at the time.

8.1.7 Dealing with unbalanced parentheses

One of the pitfalls of portable shell programming is that if you intend your script to run with
obsolescent shells, case statements require unbalanced parentheses. See [Limitations of Shell
Builtins], page 230. With syntax highlighting editors, the presence of unbalanced ‘)’ can
interfere with editors that perform syntax highlighting of macro contents based on finding
the matching ‘(’. Another concern is how much editing must be done when transferring code
snippets between shell scripts and macro definitions. But most importantly, the presence of
unbalanced parentheses can introduce expansion bugs.

For an example, here is an underquoted attempt to use the macro my_case, which
happens to expand to a portable case statement:

AC_DEFUN([my_case],

[case $file_name in

*.c) echo "C source code";;

esac])

AS_IF(:, my_case)

In the above example, the AS_IF call under-quotes its arguments. As a result, the unbalanced
‘)’ generated by the premature expansion of my_case results in expanding AS_IF with a
truncated parameter, and the expansion is syntactically invalid:

if :

then :

case $file_name in

*.c

fi echo "C source code";;

138 Autoconf

esac)

If nothing else, this should emphasize the importance of the quoting arguments to macro
calls. On the other hand, there are several variations for defining my_case to be more robust,
even when used without proper quoting, each with some benefits and some drawbacks.

Use left parenthesis before pattern

AC_DEFUN([my_case],

[case $file_name in

(*.c) echo "C source code";;

esac])

This is simple and provides balanced parentheses. Although this is not portable to
obsolescent shells (notably Solaris 10 /bin/sh), platforms with these shells invariably
have a more-modern shell available somewhere so this approach typically suffices
nowadays.

Creative literal shell comment

AC_DEFUN([my_case],

[case $file_name in #(

*.c) echo "C source code";;

esac])

This version provides balanced parentheses to several editors, and can be copied and
pasted into a terminal as is. Unfortunately, it is still unbalanced as an Autoconf
argument, since ‘#(’ is an M4 comment that masks the normal properties of ‘(’.

Quadrigraph shell comment

AC_DEFUN([my_case],

[case $file_name in @%:@(

*.c) echo "C source code";;

esac])

This version provides balanced parentheses to even more editors, and can be used as a
balanced Autoconf argument. Unfortunately, it requires some editing before it can be
copied and pasted into a terminal, and the use of the quadrigraph ‘@%:@’ for ‘#’ reduces
readability.

Quoting just the parenthesis

AC_DEFUN([my_case],

[case $file_name in

*.c[)] echo "C source code";;

esac])

This version quotes the ‘)’, so that it can be used as a balanced Autoconf argument.
As written, this is not balanced to an editor, but it can be coupled with ‘[#(]’ to meet
that need, too. However, it still requires some edits before it can be copied and pasted
into a terminal.

Double-quoting the entire statement

AC_DEFUN([my_case],

[[case $file_name in #(

*.c) echo "C source code";;

esac]])

Chapter 8: Programming in M4 139

Since the entire macro is double-quoted, there is no problem with using this as an
Autoconf argument; and since the double-quoting is over the entire statement, this code
can be easily copied and pasted into a terminal. However, the double quoting prevents
the expansion of any macros inside the case statement, which may cause its own set of
problems.

Using AS_CASE

AC_DEFUN([my_case],

[AS_CASE([$file_name],

[*.c], [echo "C source code"])])

This version avoids the balancing issue altogether, by relying on AS_CASE (see Section 9.1
[Common Shell Constructs], page 175); it also allows for the expansion of AC_REQUIRE
to occur prior to the entire case statement, rather than within a branch of the case
statement that might not be taken. However, the abstraction comes with a penalty
that it is no longer a quick copy, paste, and edit to get back to shell code.

8.1.8 Quotation Rule Of Thumb

To conclude, the quotation rule of thumb is:
One pair of quotes per pair of parentheses.

Never over-quote, never under-quote, in particular in the definition of macros. In the
few places where the macros need to use brackets (usually in C program text or regular
expressions), properly quote the arguments!

It is common to read Autoconf programs with snippets like:

AC_TRY_LINK(

changequote(<<, >>)dnl

<<#include <time.h>

#ifndef tzname /* For SGI. */

extern char *tzname[]; /* RS6000 and others reject char **tzname. */

#endif>>,

changequote([,])dnl

[atoi (*tzname);], ac_cv_var_tzname=yes, ac_cv_var_tzname=no)

which is incredibly useless since AC_TRY_LINK is already double quoting, so you just need:

AC_TRY_LINK(

[#include <time.h>

#ifndef tzname /* For SGI. */

extern char *tzname[]; /* RS6000 and others reject char **tzname. */

#endif],

[atoi (*tzname);],

[ac_cv_var_tzname=yes],

[ac_cv_var_tzname=no])

The M4-fluent reader might note that these two examples are rigorously equivalent, since
M4 swallows both the ‘changequote(<<, >>)’ and ‘<<’ ‘>>’ when it collects the arguments:
these quotes are not part of the arguments!

Simplified, the example above is just doing this:

changequote(<<, >>)dnl

140 Autoconf

<<[]>>

changequote([,])dnl

instead of simply:

[[]]

With macros that do not double quote their arguments (which is the rule), double-quote
the (risky) literals:

AC_LINK_IFELSE([AC_LANG_PROGRAM(

[[#include <time.h>

#ifndef tzname /* For SGI. */

extern char *tzname[]; /* RS6000 and others reject char **tzname. */

#endif]],

[atoi (*tzname);])],

[ac_cv_var_tzname=yes],

[ac_cv_var_tzname=no])

Please note that the macro AC_TRY_LINK is obsolete, so you really should be using
AC_LINK_IFELSE instead.

See Section 8.1.6 [Quadrigraphs], page 136, for what to do if you run into a hopeless case
where quoting does not suffice.

When you create a configure script using newly written macros, examine it carefully
to check whether you need to add more quotes in your macros. If one or more words have
disappeared in the M4 output, you need more quotes. When in doubt, quote.

However, it’s also possible to put on too many layers of quotes. If this happens, the
resulting configure script may contain unexpanded macros. The autoconf program checks
for this problem by looking for the string ‘AC_’ in configure. However, this heuristic does
not work in general: for example, it does not catch overquoting in AC_DEFINE descriptions.

8.2 Using autom4te

The Autoconf suite, including M4sugar, M4sh, and Autotest, in addition to Autoconf per se,
heavily rely on M4. All these different uses revealed common needs factored into a layer
over M4: autom4te3.

autom4te is a preprocessor that is like m4. It supports M4 extensions designed for use in
tools like Autoconf.

8.2.1 Invoking autom4te

The command line arguments are modeled after M4’s:

autom4te options files

where the files are directly passed to m4. By default, GNU M4 is found during configuration,
but the environment variable M4 can be set to tell autom4te where to look. In addition to
the regular expansion, it handles the replacement of the quadrigraphs (see Section 8.1.6
[Quadrigraphs], page 136), and of ‘__oline__’, the current line in the output. It supports
an extended syntax for the files:

3 Yet another great name from Lars J. Aas.

Chapter 8: Programming in M4 141

file.m4f This file is an M4 frozen file. Note that all the previous files are ignored. See
the --melt option for the rationale.

file? If found in the library path, the file is included for expansion, otherwise it is
ignored instead of triggering a failure.

Of course, it supports the Autoconf common subset of options:

--help

-h Print a summary of the command line options and exit.

--version

-V Print the version number of Autoconf and exit.

--verbose

-v Report processing steps.

--debug

-d Don’t remove the temporary files and be even more verbose.

--include=dir

-I dir Also look for input files in dir. Multiple invocations accumulate.

--output=file

-o file Save output (script or trace) to file. The file - stands for the standard output.

As an extension of m4, it includes the following options:

--warnings=category[,category...]

-Wcategory[,category...]

Enable or disable warnings related to each category. See [m4 warn], page 149,
for a comprehensive list of categories. Special values include:

‘all’ Enable all categories of warnings.

‘none’ Disable all categories of warnings.

‘error’ Treat all warnings as errors.

‘no-category’
Disable warnings falling into category.

The environment variable WARNINGS may also be set to a comma-separated list of
warning categories to enable or disable. It is interpreted exactly the same way as
the argument of --warnings, but unknown categories are silently ignored. The
command line takes precedence; for instance, if WARNINGS is set to obsolete,
but -Wnone is given on the command line, no warnings will be issued.

Some categories of warnings are on by default. Again, for details see [m4 warn],
page 149.

--melt

-M Do not use frozen files. Any argument file.m4f is replaced by file.m4. This
helps tracing the macros which are executed only when the files are frozen,
typically m4_define. For instance, running:

autom4te --melt 1.m4 2.m4f 3.m4 4.m4f input.m4

142 Autoconf

is roughly equivalent to running:

m4 1.m4 2.m4 3.m4 4.m4 input.m4

while

autom4te 1.m4 2.m4f 3.m4 4.m4f input.m4

is equivalent to:

m4 --reload-state=4.m4f input.m4

--freeze

-F Produce a frozen state file. autom4te freezing is stricter than M4’s: it must
produce no warnings, and no output other than empty lines (a line with white
space is not empty) and comments (starting with ‘#’). Unlike m4’s similarly-
named option, this option takes no argument:

autom4te 1.m4 2.m4 3.m4 --freeze --output=3.m4f

corresponds to

m4 1.m4 2.m4 3.m4 --freeze-state=3.m4f

--mode=octal-mode

-m octal-mode

Set the mode of the non-traces output to octal-mode; by default ‘0666’.

As another additional feature over m4, autom4te caches its results. GNU M4 is able to
produce a regular output and traces at the same time. Traces are heavily used in the GNU
Build System: autoheader uses them to build config.h.in, autoreconf to determine what
GNU Build System components are used, automake to “parse” configure.ac etc. To avoid
recomputation, traces are cached while performing regular expansion, and conversely. This
cache is (actually, the caches are) stored in the directory autom4te.cache. It can safely be
removed at any moment (especially if for some reason autom4te considers it trashed).

--cache=directory

-C directory

Specify the name of the directory where the result should be cached. Passing
an empty value disables caching. Be sure to pass a relative file name, as for the
time being, global caches are not supported.

--no-cache

Don’t cache the results.

--force

-f If a cache is used, consider it obsolete (but update it anyway).

Because traces are so important to the GNU Build System, autom4te provides high level
tracing features as compared to M4, and helps exploiting the cache:

--trace=macro[:format]

-t macro[:format]

Trace the invocations of macro according to the format. Multiple --trace

arguments can be used to list several macros. Multiple --trace arguments for

Chapter 8: Programming in M4 143

a single macro are not cumulative; instead, you should just make format as long
as needed.

The format is a regular string, with newlines if desired, and several special
escape codes. It defaults to ‘$f:$l:$n:$%’. It can use the following special
escapes:

‘$$’ The character ‘$’.

‘$f’ The file name from which macro is called.

‘$l’ The line number from which macro is called.

‘$d’ The depth of the macro call. This is an M4 technical detail that
you probably don’t want to know about.

‘$n’ The name of the macro.

‘$num’ The numth argument of the call to macro.

‘$@’
‘$sep@’
‘${separator}@’

All the arguments passed to macro, separated by the character sep
or the string separator (‘,’ by default). Each argument is quoted,
i.e., enclosed in a pair of square brackets.

‘$*’
‘$sep*’
‘${separator}*’

As above, but the arguments are not quoted.

‘$%’
‘$sep%’
‘${separator}%’

As above, but the arguments are not quoted, all new line characters
in the arguments are smashed, and the default separator is ‘:’.

The escape ‘$%’ produces single-line trace outputs (unless you put
newlines in the ‘separator’), while ‘$@’ and ‘$*’ do not.

See Section 3.4 [autoconf Invocation], page 13, for examples of trace uses.

--preselect=macro

-p macro Cache the traces of macro, but do not enable traces. This is especially important
to save CPU cycles in the future. For instance, when invoked, autoconf pre-
selects all the macros that autoheader, automake, autoreconf, etc., trace, so
that running m4 is not needed to trace them: the cache suffices. This results in
a huge speed-up.

Finally, autom4te introduces the concept of Autom4te libraries. They consists in a
powerful yet extremely simple feature: sets of combined command line arguments:

--language=language

-l language

Use the language Autom4te library. Current languages include:

144 Autoconf

M4sugar create M4sugar output.

M4sh create M4sh executable shell scripts.

Autotest create Autotest executable test suites.

Autoconf-without-aclocal-m4

create Autoconf executable configure scripts without reading
aclocal.m4.

Autoconf create Autoconf executable configure scripts. This language inher-
its all the characteristics of Autoconf-without-aclocal-m4 and
additionally reads aclocal.m4.

--prepend-include=dir

-B dir Prepend directory dir to the search path. This is used to include the language-
specific files before any third-party macros.

As an example, if Autoconf is installed in its default location, /usr/local, the command
‘autom4te -l m4sugar foo.m4’ is strictly equivalent to the command:

autom4te --prepend-include /usr/local/share/autoconf \

m4sugar/m4sugar.m4f foo.m4

Recursive expansion applies here: the command ‘autom4te -l m4sh foo.m4’ is the same as
‘autom4te --language M4sugar m4sugar/m4sh.m4f foo.m4’, i.e.:

autom4te --prepend-include /usr/local/share/autoconf \

m4sugar/m4sugar.m4f m4sugar/m4sh.m4f --mode 777 foo.m4

The definition of the languages is stored in autom4te.cfg.

8.2.2 Customizing autom4te

One can customize autom4te via ~/.autom4te.cfg (i.e., as found in the user home directory),
and ./.autom4te.cfg (i.e., as found in the directory from which autom4te is run). The
order is first reading autom4te.cfg, then ~/.autom4te.cfg, then ./.autom4te.cfg, and
finally the command line arguments.

In these text files, comments are introduced with #, and empty lines are ignored. Cus-
tomization is performed on a per-language basis, wrapped in between a ‘begin-language:
"language"’, ‘end-language: "language"’ pair.

Customizing a language stands for appending options (see Section 8.2.1 [autom4te
Invocation], page 140) to the current definition of the language. Options, and more generally
arguments, are introduced by ‘args: arguments’. You may use the traditional shell syntax
to quote the arguments.

As an example, to disable Autoconf caches (autom4te.cache) globally, include the
following lines in ~/.autom4te.cfg:

User Preferences.

begin-language: "Autoconf-without-aclocal-m4"

args: --no-cache

end-language: "Autoconf-without-aclocal-m4"

Chapter 8: Programming in M4 145

8.3 Programming in M4sugar

M4 by itself provides only a small, but sufficient, set of all-purpose macros. M4sugar
introduces additional generic macros. Its name was coined by Lars J. Aas: “Readability
And Greater Understanding Stands 4 M4sugar”.

M4sugar reserves the macro namespace ‘^_m4_’ for internal use, and the macro namespace
‘^m4_’ for M4sugar macros. You should not define your own macros into these namespaces.

8.3.1 Redefined M4 Macros

With a few exceptions, all the M4 native macros are moved in the ‘m4_’ pseudo-namespace,
e.g., M4sugar renames define as m4_define etc.

The list of macros unchanged from M4, except for their name, is:

− m4 builtin

− m4 changecom

− m4 changequote

− m4 debugfile

− m4 debugmode

− m4 decr

− m4 define

− m4 divnum

− m4 errprint

− m4 esyscmd

− m4 eval

− m4 format

− m4 ifdef

− m4 incr

− m4 index

− m4 indir

− m4 len

− m4 pushdef

− m4 shift

− m4 substr

− m4 syscmd

− m4 sysval

− m4 traceoff

− m4 traceon

− m4 translit

Some M4 macros are redefined, and are slightly incompatible with their native equivalent.

[Macro]__file__
[Macro]__line__

All M4 macros starting with ‘__’ retain their original name: for example, no m4__

file__ is defined.

146 Autoconf

[Macro]__oline__
This is not technically a macro, but a feature of Autom4te. The sequence __oline__
can be used similarly to the other m4sugar location macros, but rather than expanding
to the location of the input file, it is translated to the line number where it appears in
the output file after all other M4 expansions.

[Macro]dnl
This macro kept its original name: no m4_dnl is defined.

[Macro]m4_bpatsubst (string, regexp, [replacement])
This macro corresponds to patsubst. The name m4_patsubst is kept for future
versions of M4sugar, once GNU M4 2.0 is released and supports extended regular
expression syntax.

[Macro]m4_bregexp (string, regexp, [replacement])
This macro corresponds to regexp. The name m4_regexp is kept for future versions
of M4sugar, once GNU M4 2.0 is released and supports extended regular expression
syntax.

[Macro]m4_copy (source, dest)
[Macro]m4_copy_force (source, dest)
[Macro]m4_rename (source, dest)
[Macro]m4_rename_force (source, dest)

These macros aren’t directly builtins, but are closely related to m4_pushdef and m4_

defn. m4_copy and m4_rename ensure that dest is undefined, while m4_copy_force

and m4_rename_force overwrite any existing definition. All four macros then proceed
to copy the entire pushdef stack of definitions of source over to dest. m4_copy and
m4_copy_force preserve the source (including in the special case where source is
undefined), while m4_rename and m4_rename_force undefine the original macro name
(making it an error to rename an undefined source).

Note that attempting to invoke a renamed macro might not work, since the macro
may have a dependence on helper macros accessed via composition of ‘$0’ but that
were not also renamed; likewise, other macros may have a hard-coded dependence on
source and could break if source has been deleted. On the other hand, it is always
safe to rename a macro to temporarily move it out of the way, then rename it back
later to restore original semantics.

[Macro]m4_defn (macro. . .)
This macro fails if macro is not defined, even when using older versions of M4 that did
not warn. See m4_undefine. Unfortunately, in order to support these older versions
of M4, there are some situations involving unbalanced quotes where concatenating
multiple macros together will work in newer M4 but not in m4sugar; use quadrigraphs
to work around this.

[Macro]m4_divert (diversion)
M4sugar relies heavily on diversions, so rather than behaving as a primitive, m4_divert
behaves like:

m4_divert_pop()m4_divert_push([diversion])

Chapter 8: Programming in M4 147

See Section 8.3.3 [Diversion support], page 149, for more details about the use of the
diversion stack. In particular, this implies that diversion should be a named diversion
rather than a raw number. But be aware that it is seldom necessary to explicitly
change the diversion stack, and that when done incorrectly, it can lead to syntactically
invalid scripts.

[Macro]m4_dumpdef (name. . .)
[Macro]m4_dumpdefs (name. . .)

m4_dumpdef is like the M4 builtin, except that this version requires at least one
argument, output always goes to standard error rather than the current debug file, no
sorting is done on multiple arguments, and an error is issued if any name is undefined.
m4_dumpdefs is a convenience macro that calls m4_dumpdef for all of the m4_pushdef
stack of definitions, starting with the current, and silently does nothing if name is
undefined.

Unfortunately, due to a limitation in M4 1.4.x, any macro defined as a builtin is output
as the empty string. This behavior is rectified by using M4 1.6 or newer. However,
this behavior difference means that m4_dumpdef should only be used while developing
m4sugar macros, and never in the final published form of a macro.

[Macro]m4_esyscmd_s (command)
Like m4_esyscmd, this macro expands to the result of running command in a shell.
The difference is that any trailing newlines are removed, so that the output behaves
more like shell command substitution.

[Macro]m4_exit (exit-status)
This macro corresponds to m4exit.

[Macro]m4_if (comment)
[Macro]m4_if (string-1, string-2, equal, [not-equal])
[Macro]m4_if (string-1, string-2, equal-1, string-3, string-4, equal-2,

. . . , [not-equal])
This macro corresponds to ifelse. string-1 and string-2 are compared literally, so
usually one of the two arguments is passed unquoted. See Section 8.3.4 [Conditional
constructs], page 152, for more conditional idioms.

[Macro]m4_include (file)
[Macro]m4_sinclude (file)

Like the M4 builtins, but warn against multiple inclusions of file.

[Macro]m4_mkstemp (template)
[Macro]m4_maketemp (template)

Posix requires maketemp to replace the trailing ‘X’ characters in template with the
process id, without regards to the existence of a file by that name, but this a security
hole. When this was pointed out to the Posix folks, they agreed to invent a new macro
mkstemp that always creates a uniquely named file, but not all versions of GNU M4
support the new macro. In M4sugar, m4_maketemp and m4_mkstemp are synonyms
for each other, and both have the secure semantics regardless of which macro the
underlying M4 provides.

148 Autoconf

[Macro]m4_popdef (macro. . .)
This macro fails if macro is not defined, even when using older versions of M4 that
did not warn. See m4_undefine.

[Macro]m4_undefine (macro. . .)
This macro fails if macro is not defined, even when using older versions of M4 that
did not warn. Use

m4_ifdef([macro], [m4_undefine([macro])])

if you are not sure whether macro is defined.

[Macro]m4_undivert (diversion. . .)
Unlike the M4 builtin, at least one diversion must be specified. Also, since the M4sugar
diversion stack prefers named diversions, the use of m4_undivert to include files is
risky. See Section 8.3.3 [Diversion support], page 149, for more details about the use
of the diversion stack. But be aware that it is seldom necessary to explicitly change
the diversion stack, and that when done incorrectly, it can lead to syntactically invalid
scripts.

[Macro]m4_wrap (text)
[Macro]m4_wrap_lifo (text)

These macros correspond to m4wrap. Posix requires arguments of multiple wrap calls
to be reprocessed at EOF in the same order as the original calls (first-in, first-out).
GNU M4 versions through 1.4.10, however, reprocess them in reverse order (last-in,
first-out). Both orders are useful, therefore, you can rely on m4_wrap to provide FIFO
semantics and m4_wrap_lifo for LIFO semantics, regardless of the underlying GNU
M4 version.

Unlike the GNU M4 builtin, these macros only recognize one argument, and avoid
token pasting between consecutive invocations. On the other hand, nested calls to
m4_wrap from within wrapped text work just as in the builtin.

8.3.2 Diagnostic messages from M4sugar

When macros statically diagnose abnormal situations, benign or fatal, they should report
them using these macros. For issuing dynamic issues, i.e., when configure is run, see
Section 7.5 [Printing Messages], page 128.

[Macro]m4_assert (expression, [exit-status = ‘1’])
Assert that the arithmetic expression evaluates to non-zero. Otherwise, issue a fatal
error, and exit autom4te with exit-status.

[Macro]m4_errprintn (message)
Similar to the builtin m4_errprint, except that a newline is guaranteed after message.

[Macro]m4_fatal (message)
Report a severe error message prefixed with the current location, and have autom4te
die.

[Macro]m4_location
Useful as a prefix in a message line. Short for:

__file__:__line__

Chapter 8: Programming in M4 149

[Macro]m4_warn (category, message)
Report message as a warning (or as an error if requested by the user) if warnings of
the category are turned on. If the message is emitted, it is prefixed with the current
location, and followed by a call trace of all macros defined via AC_DEFUN used to get
to the current expansion.

The category must be one of:

‘cross’ Warnings about constructs that may interfere with cross-compilation, such
as using AC_RUN_IFELSE without a default.

‘gnu’ Warnings related to the GNU Coding Standards (see The GNU Coding
Standards). On by default.

‘obsolete’
Warnings about obsolete features. On by default.

‘override’
Warnings about redefinitions of Autoconf internals.

‘portability’
Warnings about non-portable constructs.

‘portability-recursive’
Warnings about recursive Make variable expansions ($(foo$(x))).

‘extra-portability’
Extra warnings about non-portable constructs, covering rarely-used tools.

‘syntax’ Warnings about questionable syntactic constructs, incorrectly ordered
macro calls, typos, etc. On by default.

‘unsupported’
Warnings about unsupported features. On by default.

Hacking Note: The set of categories is defined by code in autom4te, not by M4sugar
itself. Additions should be coordinated with Automake, so that both sets of tools
accept the same options.

8.3.3 Diversion support

M4sugar makes heavy use of diversions under the hood, because it is often the case that text
that must appear early in the output is not discovered until late in the input. Additionally,
some of the topological sorting algorithms used in resolving macro dependencies use diversions.
However, most macros should not need to change diversions directly, but rather rely on
higher-level M4sugar macros to manage diversions transparently. If you change diversions
improperly, you risk generating a syntactically invalid script, because an incorrect diversion
will violate assumptions made by many macros about whether prerequisite text has been
previously output. In short, if you manually change the diversion, you should not expect
any macros provided by the Autoconf package to work until you have restored the diversion
stack back to its original state.

In the rare case that it is necessary to write a macro that explicitly outputs text to a
different diversion, it is important to be aware of an M4 limitation regarding diversions: text
only goes to a diversion if it is not part of argument collection. Therefore, any macro that

150 Autoconf

changes the current diversion cannot be used as an unquoted argument to another macro,
but must be expanded at the top level. The macro m4_expand will diagnose any attempt to
change diversions, since it is generally useful only as an argument to another macro. The
following example shows what happens when diversion manipulation is attempted within
macro arguments:

m4_do([normal text]

m4_divert_push([KILL])unwanted[]m4_divert_pop([KILL])

[m4_divert_push([KILL])discarded[]m4_divert_pop([KILL])])dnl

⇒normal text

⇒unwanted

Notice that the unquoted text unwanted is output, even though it was processed while
the current diversion was KILL, because it was collected as part of the argument to m4_do.
However, the text discarded disappeared as desired, because the diversion changes were
single-quoted, and were not expanded until the top-level rescan of the output of m4_do.

To make diversion management easier, M4sugar uses the concept of named diversions.
Rather than using diversion numbers directly, it is nicer to associate a name with each
diversion. The diversion number associated with a particular diversion name is an imple-
mentation detail, and a syntax warning is issued if a diversion number is used instead of
a name. In general, you should not output text to a named diversion until after calling
the appropriate initialization routine for your language (m4_init, AS_INIT, AT_INIT, . . .),
although there are some exceptions documented below.

M4sugar defines two named diversions.

KILL Text written to this diversion is discarded. This is the default diversion once
M4sugar is initialized.

GROW This diversion is used behind the scenes by topological sorting macros, such as
AC_REQUIRE.

M4sh adds several more named diversions.

BINSH This diversion is reserved for the ‘#!’ interpreter line.

HEADER-REVISION

This diversion holds text from AC_REVISION.

HEADER-COMMENT

This diversion holds comments about the purpose of a file.

HEADER-COPYRIGHT

This diversion is managed by AC_COPYRIGHT.

M4SH-SANITIZE

This diversion contains M4sh sanitization code, used to ensure M4sh is executing
in a reasonable shell environment.

M4SH-INIT

This diversion contains M4sh initialization code, initializing variables that are
required by other M4sh macros.

BODY This diversion contains the body of the shell code, and is the default diversion
once M4sh is initialized.

Chapter 8: Programming in M4 151

Autotest inherits diversions from M4sh, and changes the default diversion from BODY

back to KILL. It also adds several more named diversions, with the following subset designed
for developer use.

PREPARE_TESTS

This diversion contains initialization sequences which are executed after
atconfig and atlocal, and after all command line arguments have been
parsed, but prior to running any tests. It can be used to set up state that is
required across all tests. This diversion will work even before AT_INIT.

Autoconf inherits diversions from M4sh, and adds the following named diversions which
developers can utilize.

DEFAULTS This diversion contains shell variable assignments to set defaults that must be
in place before arguments are parsed. This diversion is placed early enough in
configure that it is unsafe to expand any autoconf macros into this diversion.

HELP_ENABLE

If AC_PRESERVE_HELP_ORDER was used, then text placed in this diversion will
be included as part of a quoted here-doc providing all of the --help output of
configure related to options created by AC_ARG_WITH and AC_ARG_ENABLE.

INIT_PREPARE

This diversion occurs after all command line options have been parsed, but prior
to the main body of the configure script. This diversion is the last chance to
insert shell code such as variable assignments or shell function declarations that
will used by the expansion of other macros.

For now, the remaining named diversions of Autoconf, Autoheader, and Autotest are not
documented. In other words, intentionally outputting text into an undocumented diversion
is subject to breakage in a future release of Autoconf.

[Macro]m4_cleardivert (diversion. . .)
Permanently discard any text that has been diverted into diversion.

[Macro]m4_divert_once (diversion, [content])
Similar to m4_divert_text, except that content is only output to diversion if this is
the first time that m4_divert_once has been called with its particular arguments.

[Macro]m4_divert_pop ([diversion])
If provided, check that the current diversion is indeed diversion. Then change to the
diversion located earlier on the stack, giving an error if an attempt is made to pop
beyond the initial m4sugar diversion of KILL.

[Macro]m4_divert_push (diversion)
Remember the former diversion on the diversion stack, and output subsequent text
into diversion. M4sugar maintains a diversion stack, and issues an error if there is not
a matching pop for every push.

[Macro]m4_divert_text (diversion, [content])
Output content and a newline into diversion, without affecting the current diversion.
Shorthand for:

m4_divert_push([diversion])content

152 Autoconf

m4_divert_pop([diversion])dnl

One use of m4_divert_text is to develop two related macros, where macro ‘MY_A’ does
the work, but adjusts what work is performed based on whether the optional macro
‘MY_B’ has also been expanded. Of course, it is possible to use AC_BEFORE within MY_A

to require that ‘MY_B’ occurs first, if it occurs at all. But this imposes an ordering
restriction on the user; it would be nicer if macros ‘MY_A’ and ‘MY_B’ can be invoked
in either order. The trick is to let ‘MY_B’ leave a breadcrumb in an early diversion,
which ‘MY_A’ can then use to determine whether ‘MY_B’ has been expanded.

AC_DEFUN([MY_A],

[# various actions

if test -n "$b_was_used"; then

extra action

fi])

AC_DEFUN([MY_B],

[AC_REQUIRE([MY_A])dnl

m4_divert_text([INIT_PREPARE], [b_was_used=true])])

[Macro]m4_init
Initialize the M4sugar environment, setting up the default named diversion to be KILL.

8.3.4 Conditional constructs

The following macros provide additional conditional constructs as convenience wrappers
around m4_if.

[Macro]m4_bmatch (string, regex-1, value-1, [regex-2], [value-2], . . . ,
[default])

The string string is repeatedly compared against a series of regex arguments; if a
match is found, the expansion is the corresponding value, otherwise, the macro moves
on to the next regex. If no regex match, then the result is the optional default, or
nothing.

[Macro]m4_bpatsubsts (string, regex-1, subst-1, [regex-2], [subst-2], . . .)
The string string is altered by regex-1 and subst-1, as if by:

m4_bpatsubst([[string]], [regex], [subst])

The result of the substitution is then passed through the next set of regex and subst,
and so forth. An empty subst implies deletion of any matched portions in the current
string. Note that this macro over-quotes string ; this behavior is intentional, so that
the result of each step of the recursion remains as a quoted string. However, it means
that anchors (‘^’ and ‘$’ in the regex will line up with the extra quotations, and
not the characters of the original string. The overquoting is removed after the final
substitution.

[Macro]m4_case (string, value-1, if-value-1, [value-2], [if-value-2], . . . ,
[default])

Test string against multiple value possibilities, resulting in the first if-value for a
match, or in the optional default. This is shorthand for:

m4_if([string], [value-1], [if-value-1],

Chapter 8: Programming in M4 153

[string], [value-2], [if-value-2], ...,

[default])

[Macro]m4_cond (test-1, value-1, if-value-1, [test-2], [value-2],
[if-value-2], . . . , [default])

This macro was introduced in Autoconf 2.62. Similar to m4_if, except that each
test is expanded only when it is encountered. This is useful for short-circuiting
expensive tests; while m4_if requires all its strings to be expanded up front before
doing comparisons, m4_cond only expands a test when all earlier tests have failed.

For an example, these two sequences give the same result, but in the case where
‘$1’ does not contain a backslash, the m4_cond version only expands m4_index once,
instead of five times, for faster computation if this is a common case for ‘$1’. Notice
that every third argument is unquoted for m4_if, and quoted for m4_cond:

m4_if(m4_index([$1], [\]), [-1], [$2],

m4_eval(m4_index([$1], [\\]) >= 0), [1], [$2],

m4_eval(m4_index([$1], [\$]) >= 0), [1], [$2],

m4_eval(m4_index([$1], [\`]) >= 0), [1], [$3],

m4_eval(m4_index([$1], [\"]) >= 0), [1], [$3],

[$2])

m4_cond([m4_index([$1], [\])], [-1], [$2],

[m4_eval(m4_index([$1], [\\]) >= 0)], [1], [$2],

[m4_eval(m4_index([$1], [\$]) >= 0)], [1], [$2],

[m4_eval(m4_index([$1], [\`]) >= 0)], [1], [$3],

[m4_eval(m4_index([$1], [\"]) >= 0)], [1], [$3],

[$2])

[Macro]m4_default (expr-1, expr-2)
[Macro]m4_default_quoted (expr-1, expr-2)
[Macro]m4_default_nblank (expr-1, [expr-2])
[Macro]m4_default_nblank_quoted (expr-1, [expr-2])

If expr-1 contains text, use it. Otherwise, select expr-2. m4_default expands the
result, while m4_default_quoted does not. Useful for providing a fixed default if the
expression that results in expr-1 would otherwise be empty. The difference between
m4_default and m4_default_nblank is whether an argument consisting of just blanks
(space, tab, newline) is significant. When using the expanding versions, note that an
argument may contain text but still expand to an empty string.

m4_define([active], [ACTIVE])dnl

m4_define([empty], [])dnl

m4_define([demo1], [m4_default([$1], [$2])])dnl

m4_define([demo2], [m4_default_quoted([$1], [$2])])dnl

m4_define([demo3], [m4_default_nblank([$1], [$2])])dnl

m4_define([demo4], [m4_default_nblank_quoted([$1], [$2])])dnl

demo1([active], [default])

⇒ACTIVE

demo1([], [active])

⇒ACTIVE

demo1([empty], [text])

154 Autoconf

⇒
-demo1([], [active])-

⇒- -

demo2([active], [default])

⇒active

demo2([], [active])

⇒active

demo2([empty], [text])

⇒empty

-demo2([], [active])-

⇒- -

demo3([active], [default])

⇒ACTIVE

demo3([], [active])

⇒ACTIVE

demo3([empty], [text])

⇒
-demo3([], [active])-

⇒-ACTIVE-

demo4([active], [default])

⇒active

demo4([], [active])

⇒active

demo4([empty], [text])

⇒empty

-demo4([], [active])-

⇒-active-

[Macro]m4_define_default (macro, [default-definition])
If macro does not already have a definition, then define it to default-definition.

[Macro]m4_ifblank (cond, [if-blank], [if-text])
[Macro]m4_ifnblank (cond, [if-text], [if-blank])

If cond is empty or consists only of blanks (space, tab, newline), then expand if-blank;
otherwise, expand if-text. Two variants exist, in order to make it easier to select the
correct logical sense when using only two parameters. Note that this is more efficient
than the equivalent behavior of:

m4_ifval(m4_normalize([cond]), if-text, if-blank)

[Macro]m4_ifndef (macro, if-not-defined, [if-defined])
This is shorthand for:

m4_ifdef([macro], [if-defined], [if-not-defined])

[Macro]m4_ifset (macro, [if-true], [if-false])
If macro is undefined, or is defined as the empty string, expand to if-false. Otherwise,
expands to if-true. Similar to:

m4_ifval(m4_defn([macro]), [if-true], [if-false])

except that it is not an error if macro is undefined.

Chapter 8: Programming in M4 155

[Macro]m4_ifval (cond, [if-true], [if-false])
Expands to if-true if cond is not empty, otherwise to if-false. This is shorthand for:

m4_if([cond], [], [if-false], [if-true])

[Macro]m4_ifvaln (cond, [if-true], [if-false])
Similar to m4_ifval, except guarantee that a newline is present after any non-empty
expansion. Often followed by dnl.

[Macro]m4_n (text)
Expand to text, and add a newline if text is not empty. Often followed by dnl.

8.3.5 Looping constructs

The following macros are useful in implementing recursive algorithms in M4, including
loop operations. An M4 list is formed by quoting a list of quoted elements; generally the
lists are comma-separated, although m4_foreach_w is whitespace-separated. For example,
the list ‘[[a], [b,c]]’ contains two elements: ‘[a]’ and ‘[b,c]’. It is common to see
lists with unquoted elements when those elements are not likely to be macro names, as in
‘[fputc_unlocked, fgetc_unlocked]’.

Although not generally recommended, it is possible for quoted lists to have side effects;
all side effects are expanded only once, and prior to visiting any list element. On the other
hand, the fact that unquoted macros are expanded exactly once means that macros without
side effects can be used to generate lists. For example,

m4_foreach([i], [[1], [2], [3]m4_errprintn([hi])], [i])

error hi

⇒123

m4_define([list], [[1], [2], [3]])

⇒
m4_foreach([i], [list], [i])

⇒123

[Macro]m4_argn (n, [arg]. . .)
Extracts argument n (larger than 0) from the remaining arguments. If there are too
few arguments, the empty string is used. For any n besides 1, this is more efficient
than the similar ‘m4_car(m4_shiftn([n], [], [arg...]))’.

[Macro]m4_car (arg. . .)
Expands to the quoted first arg. Can be used with m4_cdr to recursively iterate
through a list. Generally, when using quoted lists of quoted elements, m4_car should
be called without any extra quotes.

[Macro]m4_cdr (arg. . .)
Expands to a quoted list of all but the first arg, or the empty string if there was only
one argument. Generally, when using quoted lists of quoted elements, m4_cdr should
be called without any extra quotes.

For example, this is a simple implementation of m4_map; note how each iteration checks
for the end of recursion, then merely applies the first argument to the first element of
the list, then repeats with the rest of the list. (The actual implementation in M4sugar

156 Autoconf

is a bit more involved, to gain some speed and share code with m4_map_sep, and also
to avoid expanding side effects in ‘$2’ twice).

m4_define([m4_map], [m4_ifval([$2],

[m4_apply([$1], m4_car($2))[]$0([$1], m4_cdr($2))])])dnl

m4_map([m4_eval], [[[1]], [[1+1]], [[10],[16]]])

⇒ 1 2 a

[Macro]m4_for (var, first, last, [step], expression)
Loop over the numeric values between first and last including bounds by increments of
step. For each iteration, expand expression with the numeric value assigned to var. If
step is omitted, it defaults to ‘1’ or ‘-1’ depending on the order of the limits. If given,
step has to match this order. The number of iterations is determined independently
from definition of var; iteration cannot be short-circuited or lengthened by modifying
var from within expression.

[Macro]m4_foreach (var, list, expression)
Loop over the comma-separated M4 list list, assigning each value to var, and expand
expression. The following example outputs two lines:

m4_foreach([myvar], [[foo], [bar, baz]],

[echo myvar

])dnl

⇒echo foo

⇒echo bar, baz

Note that for some forms of expression, it may be faster to use m4_map_args.

[Macro]m4_foreach_w (var, list, expression)
Loop over the white-space-separated list list, assigning each value to var, and expand
expression. If var is only referenced once in expression, it is more efficient to use
m4_map_args_w.

The deprecated macro AC_FOREACH is an alias of m4_foreach_w.

[Macro]m4_map (macro, list)
[Macro]m4_mapall (macro, list)
[Macro]m4_map_sep (macro, separator, list)
[Macro]m4_mapall_sep (macro, separator, list)

Loop over the comma separated quoted list of argument descriptions in list, and invoke
macro with the arguments. An argument description is in turn a comma-separated
quoted list of quoted elements, suitable for m4_apply. The macros m4_map and m4_map_

sep ignore empty argument descriptions, while m4_mapall and m4_mapall_sep invoke
macro with no arguments. The macros m4_map_sep and m4_mapall_sep additionally
expand separator between invocations of macro.

Note that separator is expanded, unlike in m4_join. When separating output with
commas, this means that the map result can be used as a series of arguments, by using
a single-quoted comma as separator, or as a single string, by using a double-quoted
comma.

m4_map([m4_count], [])

⇒

Chapter 8: Programming in M4 157

m4_map([m4_count], [[],

[[1]],

[[1], [2]]])

⇒ 1 2

m4_mapall([m4_count], [[],

[[1]],

[[1], [2]]])

⇒ 0 1 2

m4_map_sep([m4_eval], [,], [[[1+2]],

[[10], [16]]])

⇒3,a

m4_map_sep([m4_echo], [,], [[[a]], [[b]]])

⇒a,b

m4_count(m4_map_sep([m4_echo], [,], [[[a]], [[b]]]))

⇒2

m4_map_sep([m4_echo], [[,]], [[[a]], [[b]]])

⇒a,b

m4_count(m4_map_sep([m4_echo], [[,]], [[[a]], [[b]]]))

⇒1

[Macro]m4_map_args (macro, arg. . .)
Repeatedly invoke macro with each successive arg as its only argument. In the
following example, three solutions are presented with the same expansion; the solution
using m4_map_args is the most efficient.

m4_define([active], [ACTIVE])dnl

m4_foreach([var], [[plain], [active]], [m4_echo(m4_defn([var]))])

⇒ plain active

m4_map([m4_echo], [[[plain]], [[active]]])

⇒ plain active

m4_map_args([m4_echo], [plain], [active])

⇒ plain active

In cases where it is useful to operate on additional parameters besides the list elements,
the macro m4_curry can be used in macro to supply the argument currying necessary
to generate the desired argument list. In the following example, list_add_n is more
efficient than list_add_x. On the other hand, using m4_map_args_sep can be even
more efficient.

m4_define([list], [[1], [2], [3]])dnl

m4_define([add], [m4_eval(([$1]) + ([$2]))])dnl

dnl list_add_n(N, ARG...)

dnl Output a list consisting of each ARG added to N

m4_define([list_add_n],

[m4_shift(m4_map_args([,m4_curry([add], [$1])], m4_shift($@)))])dnl

list_add_n([1], list)

⇒2,3,4

list_add_n([2], list)

⇒3,4,5

m4_define([list_add_x],

158 Autoconf

[m4_shift(m4_foreach([var], m4_dquote(m4_shift($@)),

[,add([$1],m4_defn([var]))]))])dnl

list_add_x([1], list)

⇒2,3,4

[Macro]m4_map_args_pair (macro, [macro-end = macro], arg. . .)
For every pair of arguments arg, invoke macro with two arguments. If there is an odd
number of arguments, invoke macro-end, which defaults to macro, with the remaining
argument.

m4_map_args_pair([, m4_reverse], [], [1], [2], [3])

⇒, 2, 1, 3

m4_map_args_pair([, m4_reverse], [, m4_dquote], [1], [2], [3])

⇒, 2, 1, [3]

m4_map_args_pair([, m4_reverse], [, m4_dquote], [1], [2], [3], [4])

⇒, 2, 1, 4, 3

[Macro]m4_map_args_sep ([pre], [post], [sep], arg. . .)
Expand the sequence pre[arg]post for each argument, additionally expanding sep
between arguments. One common use of this macro is constructing a macro call, where
the opening and closing parentheses are split between pre and post; in particular, m4_
map_args([macro], [arg]) is equivalent to m4_map_args_sep([macro(], [)], [],

[arg]). This macro provides the most efficient means for iterating over an arbitrary
list of arguments, particularly when repeatedly constructing a macro call with more
arguments than arg.

[Macro]m4_map_args_w (string, [pre], [post], [sep])
Expand the sequence pre[word]post for each word in the whitespace-separated
string, additionally expanding sep between words. This macro provides the most
efficient means for iterating over a whitespace-separated string. In particular, m4_map_
args_w([string], [action(], [)]) is more efficient than m4_foreach_w([var],

[string], [action(m4_defn([var]))]).

[Macro]m4_shiftn (count, . . .)
[Macro]m4_shift2 (. . .)
[Macro]m4_shift3 (. . .)

m4_shiftn performs count iterations of m4_shift, along with validation that enough
arguments were passed in to match the shift count, and that the count is positive.
m4_shift2 and m4_shift3 are specializations of m4_shiftn, introduced in Autoconf
2.62, and are more efficient for two and three shifts, respectively.

[Macro]m4_stack_foreach (macro, action)
[Macro]m4_stack_foreach_lifo (macro, action)

For each of the m4_pushdef definitions of macro, expand action with the single
argument of a definition of macro. m4_stack_foreach starts with the oldest definition,
while m4_stack_foreach_lifo starts with the current definition. action should not
push or pop definitions of macro, nor is there any guarantee that the current definition
of macro matches the argument that was passed to action. The macro m4_curry can
be used if action needs more than one argument, although in that case it is more
efficient to use m4 stack foreach sep.

Chapter 8: Programming in M4 159

Due to technical limitations, there are a few low-level m4sugar functions, such as
m4_pushdef, that cannot be used as the macro argument.

m4_pushdef([a], [1])m4_pushdef([a], [2])dnl

m4_stack_foreach([a], [m4_incr])

⇒ 2 3

m4_stack_foreach_lifo([a], [m4_curry([m4_substr], [abcd])])

⇒ cd bcd

[Macro]m4_stack_foreach_sep (macro, [pre], [post], [sep])
[Macro]m4_stack_foreach_sep_lifo (macro, [pre], [post], [sep])

Expand the sequence pre[definition]post for each m4_pushdef definition of macro,
additionally expanding sep between definitions. m4_stack_foreach_sep visits the
oldest definition first, while m4_stack_foreach_sep_lifo visits the current definition
first. This macro provides the most efficient means for iterating over a pushdef
stack. In particular, m4_stack_foreach([macro], [action]) is short for m4_stack_
foreach_sep([macro], [action(], [)]).

8.3.6 Evaluation Macros

The following macros give some control over the order of the evaluation by adding or
removing levels of quotes.

[Macro]m4_apply (macro, list)
Apply the elements of the quoted, comma-separated list as the arguments to macro. If
list is empty, invoke macro without arguments. Note the difference between m4_indir,
which expects its first argument to be a macro name but can use names that are
otherwise invalid, and m4_apply, where macro can contain other text, but must end
in a valid macro name.

m4_apply([m4_count], [])

⇒0

m4_apply([m4_count], [[]])

⇒1

m4_apply([m4_count], [[1], [2]])

⇒2

m4_apply([m4_join], [[|], [1], [2]])

⇒1|2

[Macro]m4_count (arg, . . .)
This macro returns the number of arguments it was passed.

[Macro]m4_curry (macro, arg. . .)
This macro performs argument currying. The expansion of this macro is another
macro name that expects exactly one argument; that argument is then appended to
the arg list, and then macro is expanded with the resulting argument list.

m4_curry([m4_curry], [m4_reverse], [1])([2])([3])

⇒3, 2, 1

Unfortunately, due to a limitation in M4 1.4.x, it is not possible to pass the definition
of a builtin macro as the argument to the output of m4_curry; the empty string is
used instead of the builtin token. This behavior is rectified by using M4 1.6 or newer.

160 Autoconf

[Macro]m4_do (arg, . . .)
This macro loops over its arguments and expands each arg in sequence. Its main
use is for readability; it allows the use of indentation and fewer dnl to result in
the same expansion. This macro guarantees that no expansion will be concatenated
with subsequent text; to achieve full concatenation, use m4_unquote(m4_join([],

arg...)).

m4_define([ab],[1])m4_define([bc],[2])m4_define([abc],[3])dnl

m4_do([a],[b])c

⇒abc

m4_unquote(m4_join([],[a],[b]))c

⇒3

m4_define([a],[A])m4_define([b],[B])m4_define([c],[C])dnl

m4_define([AB],[4])m4_define([BC],[5])m4_define([ABC],[6])dnl

m4_do([a],[b])c

⇒ABC

m4_unquote(m4_join([],[a],[b]))c

⇒3

[Macro]m4_dquote (arg, . . .)
Return the arguments as a quoted list of quoted arguments. Conveniently, if there is
just one arg, this effectively adds a level of quoting.

[Macro]m4_dquote_elt (arg, . . .)
Return the arguments as a series of double-quoted arguments. Whereas m4_dquote
returns a single argument, m4_dquote_elt returns as many arguments as it was
passed.

[Macro]m4_echo (arg, . . .)
Return the arguments, with the same level of quoting. Other than discarding white-
space after unquoted commas, this macro is a no-op.

[Macro]m4_expand (arg)
Return the expansion of arg as a quoted string. Whereas m4_quote is designed to
collect expanded text into a single argument, m4_expand is designed to perform one
level of expansion on quoted text. One distinction is in the treatment of whitespace
following a comma in the original arg. Any time multiple arguments are collected
into one with m4_quote, the M4 argument collection rules discard the whitespace.
However, with m4_expand, whitespace is preserved, even after the expansion of macros
contained in arg. Additionally, m4_expand is able to expand text that would involve
an unterminated comment, whereas expanding that same text as the argument to
m4_quote runs into difficulty in finding the end of the argument. Since manipulating
diversions during argument collection is inherently unsafe, m4_expand issues an error
if arg attempts to change the current diversion (see Section 8.3.3 [Diversion support],
page 149).

m4_define([active], [ACT, IVE])dnl

m4_define([active2], [[ACT, IVE]])dnl

m4_quote(active, active)

⇒ACT,IVE,ACT,IVE

Chapter 8: Programming in M4 161

m4_expand([active, active])

⇒ACT, IVE, ACT, IVE

m4_quote(active2, active2)

⇒ACT, IVE,ACT, IVE

m4_expand([active2, active2])

⇒ACT, IVE, ACT, IVE

m4_expand([# m4_echo])

⇒# m4_echo

m4_quote(# m4_echo)

)

⇒# m4_echo)

⇒
Note that m4_expand cannot handle an arg that expands to literal unbalanced quotes,
but that quadrigraphs can be used when unbalanced output is necessary. Likewise,
unbalanced parentheses should be supplied with double quoting or a quadrigraph.

m4_define([pattern], [[!@<:@]])dnl

m4_define([bar], [BAR])dnl

m4_expand([case $foo in

m4_defn([pattern])@:}@ bar ;;

*[)] blah ;;

esac])

⇒case $foo in

⇒ [![]) BAR ;;

⇒ *) blah ;;

⇒esac

[Macro]m4_ignore (. . .)
This macro was introduced in Autoconf 2.62. Expands to nothing, ignoring all of its
arguments. By itself, this isn’t very useful. However, it can be used to conditionally
ignore an arbitrary number of arguments, by deciding which macro name to apply to
a list of arguments.

dnl foo outputs a message only if [debug] is defined.

m4_define([foo],

[m4_ifdef([debug],[AC_MSG_NOTICE],[m4_ignore])([debug message])])

Note that for earlier versions of Autoconf, the macro __gnu__ can serve the same
purpose, although it is less readable.

[Macro]m4_make_list (arg, . . .)
This macro exists to aid debugging of M4sugar algorithms. Its net effect is similar to
m4_dquote—it produces a quoted list of quoted arguments, for each arg. The difference
is that this version uses a comma-newline separator instead of just comma, to improve
readability of the list; with the result that it is less efficient than m4_dquote.

m4_define([zero],[0])m4_define([one],[1])m4_define([two],[2])dnl

m4_dquote(zero, [one], [[two]])

⇒[0],[one],[[two]]

m4_make_list(zero, [one], [[two]])

162 Autoconf

⇒[0],

⇒[one],

⇒[[two]]

m4_foreach([number], m4_dquote(zero, [one], [[two]]), [number])

⇒ 0 1 two

m4_foreach([number], m4_make_list(zero, [one], [[two]]), [number])

⇒ 0 1 two

[Macro]m4_quote (arg, . . .)
Return the arguments as a single entity, i.e., wrap them into a pair of quotes. This
effectively collapses multiple arguments into one, although it loses whitespace after
unquoted commas in the process.

[Macro]m4_reverse (arg, . . .)
Outputs each argument with the same level of quoting, but in reverse order, and with
space following each comma for readability.

m4_define([active], [ACT,IVE])

⇒
m4_reverse(active, [active])

⇒active, IVE, ACT

[Macro]m4_unquote (arg, . . .)
This macro was introduced in Autoconf 2.62. Expand each argument, separated
by commas. For a single arg, this effectively removes a layer of quoting, and m4_

unquote([arg]) is more efficient than the equivalent m4_do([arg]). For multiple
arguments, this results in an unquoted list of expansions. This is commonly used with
m4_split, in order to convert a single quoted list into a series of quoted elements.

The following example aims at emphasizing the difference between several scenarios: not
using these macros, using m4_defn, using m4_quote, using m4_dquote, and using m4_expand.

$ cat example.m4

dnl Overquote, so that quotes are visible.

m4_define([show], [$[]1 = [$1], $[]@ = [$@]])

m4_define([a], [A])

m4_define([mkargs], [1, 2[,] 3])

m4_define([arg1], [[$1]])

m4_divert([0])dnl

show(a, b)

show([a, b])

show(m4_quote(a, b))

show(m4_dquote(a, b))

show(m4_expand([a, b]))

arg1(mkargs)

arg1([mkargs])

arg1(m4_defn([mkargs]))

arg1(m4_quote(mkargs))

arg1(m4_dquote(mkargs))

Chapter 8: Programming in M4 163

arg1(m4_expand([mkargs]))

$ autom4te -l m4sugar example.m4

$1 = A, $@ = [A],[b]

$1 = a, b, $@ = [a, b]

$1 = A,b, $@ = [A,b]

$1 = [A],[b], $@ = [[A],[b]]

$1 = A, b, $@ = [A, b]

1

mkargs

1, 2[,] 3

1,2, 3

[1],[2, 3]

1, 2, 3

8.3.7 String manipulation in M4

The following macros may be used to manipulate strings in M4. Many of the macros in this
section intentionally result in quoted strings as output, rather than subjecting the arguments
to further expansions. As a result, if you are manipulating text that contains active M4
characters, the arguments are passed with single quoting rather than double.

[Macro]m4_append (macro-name, string, [separator])
[Macro]m4_append_uniq (macro-name, string, [separator] [if-uniq],

[if-duplicate])
Redefine macro-name to its former contents with separator and string added at the
end. If macro-name was undefined before (but not if it was defined but empty), then
no separator is added. As of Autoconf 2.62, neither string nor separator are expanded
during this macro; instead, they are expanded when macro-name is invoked.

m4_append can be used to grow strings, and m4_append_uniq to grow strings without
duplicating substrings. Additionally, m4_append_uniq takes two optional parameters
as of Autoconf 2.62; if-uniq is expanded if string was appended, and if-duplicate is
expanded if string was already present. Also, m4_append_uniq warns if separator is
not empty, but occurs within string, since that can lead to duplicates.

Note that m4_append can scale linearly in the length of the final string, depending
on the quality of the underlying M4 implementation, while m4_append_uniq has
an inherent quadratic scaling factor. If an algorithm can tolerate duplicates in the
final string, use the former for speed. If duplicates must be avoided, consider using
m4_set_add instead (see Section 8.3.9 [Set manipulation Macros], page 169).

m4_define([active], [ACTIVE])dnl

m4_append([sentence], [This is an])dnl

m4_append([sentence], [active])dnl

m4_append([sentence], [symbol.])dnl

sentence

⇒This is an ACTIVE symbol.

m4_undefine([active])dnl

⇒This is an active symbol.

164 Autoconf

m4_append_uniq([list], [one], [,], [new], [existing])

⇒new

m4_append_uniq([list], [one], [,], [new], [existing])

⇒existing

m4_append_uniq([list], [two], [,], [new], [existing])

⇒new

m4_append_uniq([list], [three], [,], [new], [existing])

⇒new

m4_append_uniq([list], [two], [,], [new], [existing])

⇒existing

list

⇒one, two, three

m4_dquote(list)

⇒[one],[two],[three]

m4_append([list2], [one], [[,]])dnl

m4_append_uniq([list2], [two], [[,]])dnl

m4_append([list2], [three], [[,]])dnl

list2

⇒one, two, three

m4_dquote(list2)

⇒[one, two, three]

[Macro]m4_append_uniq_w (macro-name, strings)
This macro was introduced in Autoconf 2.62. It is similar to m4_append_uniq, but
treats strings as a whitespace separated list of words to append, and only appends
unique words. macro-name is updated with a single space between new words.

m4_append_uniq_w([numbers], [1 1 2])dnl

m4_append_uniq_w([numbers], [2 3])dnl

numbers

⇒1 2 3

[Macro]m4_chomp (string)
[Macro]m4_chomp_all (string)

Output string in quotes, but without a trailing newline. The macro m4_chomp is
slightly faster, and removes at most one newline; the macro m4_chomp_all removes all
consecutive trailing newlines. Unlike m4_flatten, embedded newlines are left intact,
and backslash does not influence the result.

[Macro]m4_combine ([separator], prefix-list, [infix], suffix-1,
[suffix-2], . . .)

This macro produces a quoted string containing the pairwise combination of every
element of the quoted, comma-separated prefix-list, and every element from the suffix
arguments. Each pairwise combination is joined with infix in the middle, and successive
pairs are joined by separator. No expansion occurs on any of the arguments. No
output occurs if either the prefix or suffix list is empty, but the lists can contain empty
elements.

m4_define([a], [oops])dnl

Chapter 8: Programming in M4 165

m4_combine([,], [[a], [b], [c]], [-], [1], [2], [3])

⇒a-1, a-2, a-3, b-1, b-2, b-3, c-1, c-2, c-3

m4_combine([,], [[a], [b]], [-])

⇒
m4_combine([,], [[a], [b]], [-], [])

⇒a-, b-

m4_combine([,], [], [-], [1], [2])

⇒
m4_combine([,], [[]], [-], [1], [2])

⇒-1, -2

[Macro]m4_escape (string)
Convert all instances of ‘[’, ‘]’, ‘#’, and ‘$’ within string into their respective quadri-
graphs. The result is still a quoted string.

[Macro]m4_flatten (string)
Flatten string into a single line. Delete all backslash-newline pairs, and replace all
remaining newlines with a space. The result is still a quoted string.

[Macro]m4_join ([separator], args. . .)
[Macro]m4_joinall ([separator], args. . .)

Concatenate each arg, separated by separator. joinall uses every argument, while
join omits empty arguments so that there are no back-to-back separators in the
output. The result is a quoted string.

m4_define([active], [ACTIVE])dnl

m4_join([|], [one], [], [active], [two])

⇒one|active|two

m4_joinall([|], [one], [], [active], [two])

⇒one||active|two

Note that if all you intend to do is join args with commas between them, to form a
quoted list suitable for m4_foreach, it is more efficient to use m4_dquote.

[Macro]m4_newline ([text])
This macro was introduced in Autoconf 2.62, and expands to a newline, followed by
any text. It is primarily useful for maintaining macro formatting, and ensuring that
M4 does not discard leading whitespace during argument collection.

[Macro]m4_normalize (string)
Remove leading and trailing spaces and tabs, sequences of backslash-then-newline, and
replace multiple spaces, tabs, and newlines with a single space. This is a combination
of m4_flatten and m4_strip. To determine if string consists only of bytes that would
be removed by m4_normalize, you can use m4_ifblank.

[Macro]m4_re_escape (string)
Backslash-escape all characters in string that are active in regexps.

[Macro]m4_split (string, [regexp = ‘[\t]+’])
Split string into an M4 list of elements quoted by ‘[’ and ‘]’, while keeping white
space at the beginning and at the end. If regexp is given, use it instead of ‘[\t]+’ for
splitting. If string is empty, the result is an empty list.

166 Autoconf

[Macro]m4_strip (string)
Strip whitespace from string. Sequences of spaces and tabs are reduced to a single
space, then leading and trailing spaces are removed. The result is still a quoted string.
Note that this does not interfere with newlines; if you want newlines stripped as well,
consider m4_flatten, or do it all at once with m4_normalize. To quickly test if string
has only whitespace, use m4_ifblank.

[Macro]m4_text_box (message, [frame = ‘-’])
Add a text box around message, using frame as the border character above and
below the message. The frame argument must be a single byte, and does not support
quadrigraphs. The frame correctly accounts for the subsequent expansion of message.
For example:

m4_define([macro], [abc])dnl

m4_text_box([macro])

⇒## --- ##

⇒## abc ##

⇒## --- ##

The message must contain balanced quotes and parentheses, although quadrigraphs
can be used to work around this.

[Macro]m4_text_wrap (string, [prefix], [prefix1 = prefix], [width = ‘79’])
Break string into a series of whitespace-separated words, then output those words
separated by spaces, and wrapping lines any time the output would exceed width
columns. If given, prefix1 begins the first line, and prefix begins all wrapped lines.
If prefix1 is longer than prefix, then the first line consists of just prefix1. If prefix is
longer than prefix1, padding is inserted so that the first word of string begins at the
same indentation as all wrapped lines. Note that using literal tab characters in any of
the arguments will interfere with the calculation of width. No expansions occur on
prefix, prefix1, or the words of string, although quadrigraphs are recognized.

For some examples:

m4_text_wrap([Short string */], [], [/*], [20])

⇒/* Short string */

m4_text_wrap([Much longer string */], [], [/*], [20])

⇒/* Much longer

⇒ string */

m4_text_wrap([Short doc.], [], [--short], [30])

⇒ --short Short doc.

m4_text_wrap([Short doc.], [], [--too-wide], [30])

⇒ --too-wide

⇒ Short doc.

m4_text_wrap([Super long documentation.], [],

[--too-wide], 30)

⇒ --too-wide

⇒ Super long

⇒ documentation.

Chapter 8: Programming in M4 167

[Macro]m4_tolower (string)
[Macro]m4_toupper (string)

Return string with letters converted to upper or lower case, respectively.

8.3.8 Arithmetic computation in M4

The following macros facilitate integer arithmetic operations.

Where a parameter is documented as taking an arithmetic expression, you can use
anything that can be parsed by m4_eval. Any other numeric parameter should consist of an
optional sign followed by one or more decimal digits; it is treated as a decimal integer.

Macros that expand to a number do so as either ‘0’, or an optional ‘-’ followed by a
nonzero decimal digit followed by zero or more decimal digits.

Due to m4 limitations, arithmetic expressions and numeric parameters should use only
numbers that fit into a 32-bit signed integer.

[Macro]m4_cmp (expr-1, expr-2)
Compare the arithmetic expressions expr-1 and expr-2, and expand to ‘-1’ if expr-1
is smaller, ‘0’ if they are equal, and ‘1’ if expr-1 is larger.

[Macro]m4_list_cmp (list-1, list-2)
Compare the two M4 lists consisting of comma-separated arithmetic expressions, left
to right. Expand to ‘-1’ for the first element pairing where the value from list-1 is
smaller, ‘1’ where the value from list-2 is smaller, or ‘0’ if both lists have the same
values. If one list is shorter than the other, the remaining elements of the longer list
are compared against zero.

m4_list_cmp([1, 0], [1])

⇒0

m4_list_cmp([1, [1 * 0]], [1, 0])

⇒0

m4_list_cmp([1, 2], [1, 0])

⇒1

m4_list_cmp([1, [1+1], 3],[1, 2])

⇒1

m4_list_cmp([1, 2, -3], [1, 2])

⇒-1

m4_list_cmp([1, 0], [1, 2])

⇒-1

m4_list_cmp([1], [1, 2])

⇒-1

[Macro]m4_max (arg, . . .)
This macro was introduced in Autoconf 2.62. Expand to the value of the maximum
arithmetic expression among all the arguments.

[Macro]m4_min (arg, . . .)
This macro was introduced in Autoconf 2.62. Expand to the value of the minimum
arithmetic expression among all the arguments.

168 Autoconf

[Macro]m4_sign (expr)
Expand to ‘-1’ if the arithmetic expression expr is negative, ‘1’ if it is positive, and ‘0’
if it is zero.

[Macro]m4_version_compare (version-1, version-2)
This macro was introduced in Autoconf 2.53, but had a number of usability limitations
that were not lifted until Autoconf 2.62. Compare the version strings version-1 and
version-2, and expand to ‘-1’ if version-1 is smaller, ‘0’ if they are the same, or ‘1’
version-2 is smaller. Version strings must be a list of elements separated by ‘.’, ‘,’
or ‘-’, where each element is a number along with optional case-insensitive letters
designating beta releases. The comparison stops at the leftmost element that contains
a difference, although a 0 element compares equal to a missing element.

It is permissible to include commit identifiers in version, such as an abbreviated SHA1
of the commit, provided there is still a monotonically increasing prefix to allow for
accurate version-based comparisons. For example, this paragraph was written when
the development snapshot of autoconf claimed to be at version ‘2.61a-248-dc51’, or
248 commits after the 2.61a release, with an abbreviated commit identification of
‘dc51’.

m4_version_compare([1.1], [2.0])

⇒-1

m4_version_compare([2.0b], [2.0a])

⇒1

m4_version_compare([1.1.1], [1.1.1a])

⇒-1

m4_version_compare([1.2], [1.1.1a])

⇒1

m4_version_compare([1.0], [1])

⇒0

m4_version_compare([1.1pre], [1.1PRE])

⇒0

m4_version_compare([1.1a], [1,10])

⇒-1

m4_version_compare([2.61a], [2.61a-248-dc51])

⇒-1

m4_version_compare([2.61b], [2.61a-248-dc51])

⇒1

[Macro]m4_version_prereq (version, [if-new-enough], [if-old =
‘m4_fatal’])

Compares version against the version of Autoconf currently running. If the running
version is at version or newer, expand if-new-enough, but if version is larger than the
version currently executing, expand if-old, which defaults to printing an error message
and exiting m4sugar with status 63. When given only one argument, this behaves
like AC_PREREQ (see Section 4.2 [Versioning], page 21). Remember that the autoconf
philosophy favors feature checks over version checks.

Chapter 8: Programming in M4 169

8.3.9 Set manipulation in M4

Sometimes, it is necessary to track a set of data, where the order does not matter and
where there are no duplicates in the set. The following macros facilitate set manipulations.
Each set is an opaque object, which can only be accessed via these basic operations. The
underlying implementation guarantees linear scaling for set creation, which is more efficient
than using the quadratic m4_append_uniq. Both set names and values can be arbitrary
strings, except for unbalanced quotes. This implementation ties up memory for removed
elements until the next operation that must traverse all the elements of a set; and although
that may slow down some operations until the memory for removed elements is pruned, it
still guarantees linear performance.

[Macro]m4_set_add (set, value, [if-uniq], [if-dup])
Adds the string value as a member of set set. Expand if-uniq if the element was added,
or if-dup if it was previously in the set. Operates in amortized constant time, so that
set creation scales linearly.

[Macro]m4_set_add_all (set, value. . .)
Adds each value to the set set. This is slightly more efficient than repeatedly invoking
m4_set_add.

[Macro]m4_set_contains (set, value, [if-present], [if-absent])
Expands if-present if the string value is a member of set, otherwise if-absent.

m4_set_contains([a], [1], [yes], [no])

⇒no

m4_set_add([a], [1], [added], [dup])

⇒added

m4_set_add([a], [1], [added], [dup])

⇒dup

m4_set_contains([a], [1], [yes], [no])

⇒yes

m4_set_remove([a], [1], [removed], [missing])

⇒removed

m4_set_contains([a], [1], [yes], [no])

⇒no

m4_set_remove([a], [1], [removed], [missing])

⇒missing

[Macro]m4_set_contents (set, [sep])
[Macro]m4_set_dump (set, [sep])

Expands to a single string consisting of all the members of the set set, each separated
by sep, which is not expanded. m4_set_contents leaves the elements in set but
reclaims any memory occupied by removed elements, while m4_set_dump is a faster
one-shot action that also deletes the set. No provision is made for disambiguating
members that contain a non-empty sep as a substring; use m4_set_empty to distinguish
between an empty set and the set containing only the empty string. The order of the
output is unspecified; in the current implementation, part of the speed of m4_set_dump
results from using a different output order than m4_set_contents. These macros scale

170 Autoconf

linearly in the size of the set before memory pruning, and m4_set_contents([set],

[sep]) is faster than m4_joinall([sep]m4_set_listc([set])).

m4_set_add_all([a], [1], [2], [3])

⇒
m4_set_contents([a], [-])

⇒1-2-3

m4_joinall([-]m4_set_listc([a]))

⇒1-2-3

m4_set_dump([a], [-])

⇒3-2-1

m4_set_contents([a])

⇒
m4_set_add([a], [])

⇒
m4_set_contents([a], [-])

⇒

[Macro]m4_set_delete (set)
Delete all elements and memory associated with set. This is linear in the set size, and
faster than removing one element at a time.

[Macro]m4_set_difference (seta, setb)
[Macro]m4_set_intersection (seta, setb)
[Macro]m4_set_union (seta, setb)

Compute the relation between seta and setb, and output the result as a list of quoted
arguments without duplicates and with a leading comma. Set difference selects the
elements in seta but not setb, intersection selects only elements in both sets, and
union selects elements in either set. These actions are linear in the sum of the set
sizes. The leading comma is necessary to distinguish between no elements and the
empty string as the only element.

m4_set_add_all([a], [1], [2], [3])

⇒
m4_set_add_all([b], [3], [], [4])

⇒
m4_set_difference([a], [b])

⇒,1,2

m4_set_difference([b], [a])

⇒,,4

m4_set_intersection([a], [b])

⇒,3

m4_set_union([a], [b])

⇒,1,2,3,,4

[Macro]m4_set_empty (set, [if-empty], [if-elements])
Expand if-empty if the set set has no elements, otherwise expand if-elements. This
macro operates in constant time. Using this macro can help disambiguate output from
m4_set_contents or m4_set_list.

Chapter 8: Programming in M4 171

[Macro]m4_set_foreach (set, variable, action)
For each element in the set set, expand action with the macro variable defined as
the set element. Behavior is unspecified if action recursively lists the contents of
set (although listing other sets is acceptable), or if it modifies the set in any way
other than removing the element currently contained in variable. This macro is faster
than the corresponding m4_foreach([variable], m4_indir([m4_dquote]m4_set_

listc([set])), [action]), although m4_set_map might be faster still.

m4_set_add_all([a]m4_for([i], [1], [5], [], [,i]))

⇒
m4_set_contents([a])

⇒12345

m4_set_foreach([a], [i],

[m4_if(m4_eval(i&1), [0], [m4_set_remove([a], i, [i])])])

⇒24

m4_set_contents([a])

⇒135

[Macro]m4_set_list (set)
[Macro]m4_set_listc (set)

Produce a list of arguments, where each argument is a quoted element from the set set.
The variant m4_set_listc is unambiguous, by adding a leading comma if there are any
set elements, whereas the variant m4_set_list cannot distinguish between an empty
set and a set containing only the empty string. These can be directly used in macros
that take multiple arguments, such as m4_join or m4_set_add_all, or wrapped by
m4_dquote for macros that take a quoted list, such as m4_map or m4_foreach. Any
memory occupied by removed elements is reclaimed during these macros.

m4_set_add_all([a], [1], [2], [3])

⇒
m4_set_list([a])

⇒1,2,3

m4_set_list([b])

⇒
m4_set_listc([b])

⇒
m4_count(m4_set_list([b]))

⇒1

m4_set_empty([b], [0], [m4_count(m4_set_list([b]))])

⇒0

m4_set_add([b], [])

⇒
m4_set_list([b])

⇒
m4_set_listc([b])

⇒,

m4_count(m4_set_list([b]))

⇒1

m4_set_empty([b], [0], [m4_count(m4_set_list([b]))])

172 Autoconf

⇒1

[Macro]m4_set_map (set, action)
For each element in the set set, expand action with a single argument of the set
element. Behavior is unspecified if action recursively lists the contents of set (although
listing other sets is acceptable), or if it modifies the set in any way other than
removing the element passed as an argument. This macro is faster than either
corresponding counterpart of m4_map_args([action]m4_set_listc([set])) or m4_
set_foreach([set], [var], [action(m4_defn([var]))]). It is possible to use m4_
curry if more than one argument is needed for action, although it is more efficient to
use m4_set_map_sep in that case.

[Macro]m4_set_map_sep (set, [pre], [post], [sep])
For each element in the set set, expand pre[element]post, additionally expanding
sep between elements. Behavior is unspecified if the expansion recursively lists the
contents of set (although listing other sets is acceptable), or if it modifies the set
in any way other than removing the element visited by the expansion. This macro
provides the most efficient means for non-destructively visiting the elements of a set; in
particular, m4_set_map([set], [action]) is equivalent to m4_set_map_sep([set],

[action(], [)]).

[Macro]m4_set_remove (set, value, [if-present], [if-absent])
If value is an element in the set set, then remove it and expand if-present. Otherwise
expand if-absent. This macro operates in constant time so that multiple removals will
scale linearly rather than quadratically; but when used outside of m4_set_foreach or
m4_set_map, it leaves memory occupied until the set is later compacted by m4_set_

contents or m4_set_list. Several other set operations are then less efficient between
the time of element removal and subsequent memory compaction, but still maintain
their guaranteed scaling performance.

[Macro]m4_set_size (set)
Expand to the size of the set set. This implementation operates in constant time, and
is thus more efficient than m4_eval(m4_count(m4_set_listc([set])) - 1).

8.3.10 Forbidden Patterns

M4sugar provides a means to define suspicious patterns, patterns describing tokens which
should not be found in the output. For instance, if an Autoconf configure script includes
tokens such as ‘AC_DEFINE’, or ‘dnl’, then most probably something went wrong (typically
a macro was not evaluated because of overquotation).

M4sugar forbids all the tokens matching ‘^_?m4_’ and ‘^dnl$’. Additional layers, such
as M4sh and Autoconf, add additional forbidden patterns to the list.

[Macro]m4_pattern_forbid (pattern)
Declare that no token matching pattern must be found in the output. The output file is
(temporarily) split into one word per line as part of the autom4te post-processing, with
each line (and therefore word) then being checked against the Perl regular expression
pattern. If the regular expression matches, and m4_pattern_allow does not also
match, then an error is raised.

Chapter 8: Programming in M4 173

Comments are not checked; this can be a problem if, for instance, you have some
macro left unexpanded after an ‘#include’. No consensus is currently found in the
Autoconf community, as some people consider it should be valid to name macros in
comments (which doesn’t make sense to the authors of this documentation: input,
such as macros, should be documented by ‘dnl’ comments; reserving ‘#’-comments to
document the output).

As an example, if you define your own macros that begin with ‘M_’ and are composed
from capital letters and underscores, the specification of m4_pattern_forbid([^M_
[A-Z_]+]) will ensure all your macros are expanded when not used in comments.

As an example of a common use of this macro, consider what happens in packages that
want to use the pkg-config script via the third-party PKG_CHECK_MODULES macro.
By default, if a developer checks out the development tree but has not yet installed
the pkg-config macros locally, they can manage to successfully run autoconf on the
package, but the resulting configure file will likely result in a confusing shell message
about a syntax error on the line mentioning the unexpanded PKG_CHECK_MODULES

macro. On the other hand, if configure.ac includes m4_pattern_forbid([^PKG_]),
the missing pkg-config macros will be detected immediately without allowing autoconf
to succeed.

Of course, you might encounter exceptions to these generic rules, for instance you might
have to refer to ‘$m4_flags’.

[Macro]m4_pattern_allow (pattern)
Any token matching pattern is allowed, including if it matches an m4_pattern_forbid

pattern.

For example, Gnulib uses m4_pattern_forbid([^gl_]) to reserve the gl_ namespace
for itself, but also uses m4_pattern_allow([^gl_ES$]) to avoid a false negative on
the valid locale name.

8.4 Debugging via autom4te

At times, it is desirable to see what was happening inside m4, to see why output was not
matching expectations. However, post-processing done by autom4te means that directly
using the m4 builtin m4_traceon is likely to interfere with operation. Also, frequent diversion
changes and the concept of forbidden tokens make it difficult to use m4_defn to generate
inline comments in the final output.

There are a couple of tools to help with this. One is the use of the --trace option provided
by autom4te (as well as each of the programs that wrap autom4te, such as autoconf), in
order to inspect when a macro is called and with which arguments. For example, when this
paragraph was written, the autoconf version could be found by:

$ autoconf --trace=AC_INIT

configure.ac:23:AC_INIT:GNU Autoconf:2.63b.95-3963:bug-autoconf@gnu.org

$ autoconf --trace='AC_INIT:version is $2'
version is 2.63b.95-3963

Another trick is to print out the expansion of various m4 expressions to standard error or
to an independent file, with no further m4 expansion, and without interfering with diversion

174 Autoconf

changes or the post-processing done to standard output. m4_errprintn shows a given
expression on standard error. For example, if you want to see the expansion of an autoconf
primitive or of one of your autoconf macros, you can do it like this:

$ cat <<\EOF > configure.ac

AC_INIT

m4_errprintn([The definition of AC_DEFINE_UNQUOTED:])

m4_errprintn(m4_defn([AC_DEFINE_UNQUOTED]))

AC_OUTPUT

EOF

$ autoconf

error The definition of AC_DEFINE_UNQUOTED:

error _AC_DEFINE_Q([], $@)

175

9 Programming in M4sh

M4sh, pronounced “mash”, is aiming at producing portable Bourne shell scripts. This name
was coined by Lars J. Aas, who notes that, according to the Webster’s Revised Unabridged
Dictionary (1913):

Mash \Mash\, n. [Akin to G. meisch, maisch, meische, maische, mash, wash,
and prob. to AS. miscian to mix. See “Mix”.]

1. A mass of mixed ingredients reduced to a soft pulpy state by beating or
pressure. . .

2. A mixture of meal or bran and water fed to animals.

3. A mess; trouble. [Obs.] –Beau. & Fl.

M4sh reserves the M4 macro namespace ‘^_AS_’ for internal use, and the namespace
‘^AS_’ for M4sh macros. It also reserves the shell and environment variable namespace ‘^as_’,
and the here-document delimiter namespace ‘^_AS[A-Z]’ in the output file. You should not
define your own macros or output shell code that conflicts with these namespaces.

9.1 Common Shell Constructs

M4sh provides portable alternatives for some common shell constructs that unfortunately
are not portable in practice.

[Macro]AS_BOX (text, [char = ‘-’])
Expand into shell code that will output text surrounded by a box with char in the
top and bottom border. text should not contain a newline, but may contain shell
expansions valid for unquoted here-documents. char defaults to ‘-’, but can be any
character except ‘/’, ‘'’, ‘"’, ‘\’, ‘&’, or ‘`’. This is useful for outputting a comment
box into log files to separate distinct phases of script operation.

[Macro]AS_CASE (word, [pattern1], [if-matched1], . . . , [default])
Expand into a shell ‘case’ statement, where word is matched against one or more
patterns. if-matched is run if the corresponding pattern matched word, else default is
run. See Section 10.3.1 [Prerequisite Macros], page 187, for why this macro should
be used instead of plain ‘case’ in code outside of an AC_DEFUN macro, when the
contents of the ‘case’ use AC_REQUIRE directly or indirectly. See [Limitations of
Shell Builtins], page 230, for how this macro avoids some portability issues. See
Section 8.1.7 [Balancing Parentheses], page 137, for how this macro lets you write
code with balanced parentheses even if your code must run on obsolescent shells.

[Macro]AS_DIRNAME (file-name)
Output the directory portion of file-name. For example, if $file is ‘/one/two/three’,
the command dir=`AS_DIRNAME(["$file"])` sets dir to ‘/one/two’.

AS_DIRNAME was designed long ago when the dirname command was not universally
supported. Nowadays one can safely use dir=`dirname -- "$file"` instead. This
interface may be improved in the future to avoid forks and losing trailing newlines.

[Macro]AS_ECHO (word)
Emits word to the standard output, followed by a newline. word must be a single
shell word (typically a quoted string). The bytes of word are output as-is, even if

176 Autoconf

it starts with "-" or contains "\". Redirections can be placed outside the macro
invocation. This is much more portable than using echo (see [Limitations of Shell
Builtins], page 232).

[Macro]AS_ECHO_N (word)
Emits word to the standard output, without a following newline. word must be a
single shell word (typically a quoted string) and, for portability, should not include
more than one newline. The bytes of word are output as-is, even if it starts with "-"
or contains "\". Redirections can be placed outside the macro invocation.

[Macro]AS_ESCAPE (string, [chars = ‘`\"$’])
Expands to string, with any characters in chars escaped with a backslash (‘\’). chars
should be at most four bytes long, and only contain characters from the set ‘`\"$’;
however, characters may be safely listed more than once in chars for the sake of syntax
highlighting editors. The current implementation expands string after adding escapes;
if string contains macro calls that in turn expand to text needing shell quoting, you
can use AS_ESCAPE(m4_dquote(m4_expand([string]))).

The default for chars (‘\"$`’) is the set of characters needing escapes when string will
be used literally within double quotes. One common variant is the set of characters
to protect when string will be used literally within back-ticks or an unquoted here-
document (‘\$`’). Another common variant is ‘""’, which can be used to form a
double-quoted string containing the same expansions that would have occurred if
string were expanded in an unquoted here-document; however, when using this variant,
care must be taken that string does not use double quotes within complex variable
expansions (such as ‘${foo-`echo "hi"`}’) that would be broken with improper
escapes.

This macro is often used with AS_ECHO. For an example, observe the output generated
by the shell code generated from this snippet:

foo=bar

AS_ECHO(["AS_ESCAPE(["$foo" =])AS_ESCAPE(["$foo"], [""])"])

⇒"$foo" = "bar"

m4_define([macro], [a, [\b]])

AS_ECHO(["AS_ESCAPE([[macro]])"])

⇒macro

AS_ECHO(["AS_ESCAPE([macro])"])

⇒a, b

AS_ECHO(["AS_ESCAPE(m4_dquote(m4_expand([macro])))"])

⇒a, \b

To escape a string that will be placed within single quotes, use:

m4_bpatsubst([[string]], ['], ['\\''])

[Macro]AS_EXECUTABLE_P (file)
Emit code to probe whether file is a regular file with executable permissions (and not
a directory with search permissions). The caller is responsible for quoting file.

Chapter 9: Programming in M4sh 177

[Macro]AS_EXIT ([status = ‘$?’])
Emit code to exit the shell with status, defaulting to ‘$?’. This macro works around
shells that see the exit status of the command prior to exit inside a ‘trap 0’ handler
(see [Limitations of Shell Builtins], page 242).

[Macro]AS_IF (test1, [run-if-true1], . . . , [run-if-false])
Run shell code test1. If test1 exits with a zero status then run shell code run-if-true1,
else examine further tests. If no test exits with a zero status, run shell code run-if-false,
with simplifications if either run-if-true1 or run-if-false is empty. For example,

AS_IF([test "x$foo" = xyes], [HANDLE_FOO([yes])],

[test "x$foo" != xno], [HANDLE_FOO([maybe])],

[echo foo not specified])

ensures any required macros of HANDLE_FOO are expanded before the first test.

This macro should be used instead of plain ‘if’ in code outside of an AC_DEFUN macro,
when the contents of the ‘if’ use AC_REQUIRE directly or indirectly (see Section 10.3.1
[Prerequisite Macros], page 187).

[Macro]AS_MKDIR_P (file-name)
Make the directory file-name, including intervening directories as necessary. This is
equivalent to ‘mkdir -p -- file-name’. If creation of file-name fails, exit the script.

Also see the AC_PROG_MKDIR_P macro (see Section 5.2.1 [Particular Programs],
page 47).

[Macro]AS_SET_STATUS (status)
Emit shell code to set the value of ‘$?’ to status, as efficiently as possible. However,
this is not guaranteed to abort a shell running with set -e (see [Limitations of Shell
Builtins], page 238). This should also be used at the end of a complex shell function
instead of ‘return’ (see Section 11.13 [Shell Functions], page 226) to avoid a DJGPP
shell bug.

[Macro]AS_TR_CPP (expression)
Transform expression into a valid right-hand side for a C #define. For example:

This outputs "#define HAVE_CHAR_P 1".

Notice the m4 quoting around #, to prevent an m4 comment

type="char *"

echo "[#]define AS_TR_CPP([HAVE_$type]) 1"

[Macro]AS_TR_SH (expression)
Transform expression into shell code that generates a valid shell variable name. The
result is literal when possible at m4 time, but must be used with eval if expression
causes shell indirections. For example:

This outputs "Have it!".

header="sys/some file.h"

eval AS_TR_SH([HAVE_$header])=yes

if test "x$HAVE_sys_some_file_h" = xyes; then echo "Have it!"; fi

[Macro]AS_SET_CATFILE (var, dir, file)
Set the polymorphic shell variable var to dir/file, but optimizing the common cases
(dir or file is ‘.’, file is absolute, etc.).

178 Autoconf

[Macro]AS_UNSET (var)
Unsets the shell variable var, working around bugs in older shells (see [Limitations of
Shell Builtins], page 244). var can be a literal or indirect variable name.

[Macro]AS_VERSION_COMPARE (version-1, version-2, [action-if-less],
[action-if-equal], [action-if-greater])

Compare two strings version-1 and version-2, possibly containing shell variables, as
version strings, and expand action-if-less, action-if-equal, or action-if-greater depending
upon the result. The algorithm to compare is similar to the one used by strverscmp
in glibc (see Section “String/Array Comparison” in The GNU C Library).

9.2 Support for indirect variable names

Often, it is convenient to write a macro that will emit shell code operating on a shell variable.
The simplest case is when the variable name is known. But a more powerful idiom is
writing shell code that can work through an indirection, where another variable or command
substitution produces the name of the variable to actually manipulate. M4sh supports the
notion of polymorphic shell variables, making it easy to write a macro that can deal with
either literal or indirect variable names and output shell code appropriate for both use cases.
Behavior is undefined if expansion of an indirect variable does not result in a literal variable
name.

[Macro]AS_LITERAL_IF (expression, [if-literal], [if-not], [if-simple-ref
= if-not])

[Macro]AS_LITERAL_WORD_IF (expression, [if-literal], [if-not],
[if-simple-ref = if-not])

If the expansion of expression is definitely a shell literal, expand if-literal. If the
expansion of expression looks like it might contain shell indirections (such as $var
or `expr`), then if-not is expanded. Sometimes, it is possible to output optimized
code if expression consists only of shell variable expansions (such as ${var}), in which
case if-simple-ref can be provided; but defaulting to if-not should always be safe.
AS_LITERAL_WORD_IF only expands if-literal if expression looks like a single shell word,
containing no whitespace; while AS_LITERAL_IF allows whitespace in expression.

In order to reduce the time spent recognizing whether an expression qualifies as a literal
or a simple indirection, the implementation is somewhat conservative: expression must
be a single shell word (possibly after stripping whitespace), consisting only of bytes
that would have the same meaning whether unquoted or enclosed in double quotes
(for example, ‘a.b’ results in if-literal, even though it is not a valid shell variable
name; while both ‘'a'’ and ‘[$]’ result in if-not, because they behave differently than
‘"'a'"’ and ‘"[$]"’). This macro can be used in contexts for recognizing portable
file names (such as in the implementation of AC_LIBSOURCE), or coupled with some
transliterations for forming valid variable names (such as in the implementation of
AS_TR_SH, which uses an additional m4_translit to convert ‘.’ to ‘_’).

This example shows how to read the contents of the shell variable bar, exercising all
three arguments to AS_LITERAL_IF. It results in a script that will output the line
‘hello’ three times.

AC_DEFUN([MY_ACTION],

Chapter 9: Programming in M4sh 179

[AS_LITERAL_IF([$1],

[echo "$$1"],

[AS_VAR_COPY([var], [$1])

echo "$var"],

[eval 'echo "$'"$1"\"])])

foo=bar bar=hello

MY_ACTION([bar])

MY_ACTION([`echo bar`])

MY_ACTION([$foo])

[Macro]AS_VAR_APPEND (var, text)
Emit shell code to append the shell expansion of text to the end of the current contents
of the polymorphic shell variable var, taking advantage of shells that provide the ‘+=’
extension for more efficient scaling.

For situations where the final contents of var are relatively short (less than 256
bytes), it is more efficient to use the simpler code sequence of var=${var}text (or
its polymorphic equivalent of AS_VAR_COPY([t], [var]) and AS_VAR_SET([var],

["$t"text])). But in the case when the script will be repeatedly appending text
into var, issues of scaling start to become apparent. A naive implementation requires
execution time linear to the length of the current contents of var as well as the length
of text for a single append, for an overall quadratic scaling with multiple appends.
This macro takes advantage of shells which provide the extension var+=text, which
can provide amortized constant time for a single append, for an overall linear scaling
with multiple appends. Note that unlike AS_VAR_SET, this macro requires that text
be quoted properly to avoid field splitting and file name expansion.

[Macro]AS_VAR_ARITH (var, expression)
Emit shell code to compute the arithmetic expansion of expression, assigning the result
as the contents of the polymorphic shell variable var. The code takes advantage of
shells that provide ‘$(())’ for fewer forks, but uses expr as a fallback. Therefore, the
syntax for a valid expression is rather limited: all operators must occur as separate
shell arguments and with proper quoting; the only operators supported are ‘*’, ‘/’,
‘%’, binary ‘+’, binary ‘-’, ‘>’, ‘>=’, ‘<’, ‘<=’, ‘!=’, ‘&’, and ‘|’; all variables containing
numbers must be expanded prior to the computation; the first shell argument must
not start with ‘-’; and each number must be an optional ‘-’ followed by one or more
decimal digits, where the first digit is nonzero if there is more than one digit. In the
following example, this snippet will print ‘(2+3)*4 == 20’.

bar=3

AS_VAR_ARITH([foo], [\(2 + $bar \) * 4])

echo "(2+$bar)*4 == $foo"

[Macro]AS_VAR_COPY (dest, source)
Emit shell code to assign the contents of the polymorphic shell variable source to the
polymorphic shell variable dest. For example, executing this M4sh snippet will output
‘bar hi’:

foo=bar bar=hi

AS_VAR_COPY([a], [foo])

180 Autoconf

AS_VAR_COPY([b], [$foo])

echo "$a $b"

When it is necessary to access the contents of an indirect variable inside a shell
double-quoted context, the recommended idiom is to first copy the contents into a
temporary literal shell variable.

for header in stdint_h inttypes_h ; do

AS_VAR_COPY([var], [ac_cv_header_$header])

echo "$header detected: $var"

done

[Macro]AS_VAR_IF (var, [word], [if-equal], [if-not-equal])
Output a shell conditional statement. If the contents of the polymorphic shell variable
var match the string word, execute if-equal; otherwise execute if-not-equal. word must
be a single shell word (typically a quoted string). Avoids shell bugs if an interrupt
signal arrives while a command substitution in var is being expanded.

[Macro]AS_VAR_PUSHDEF (m4-name, value)
[Macro]AS_VAR_POPDEF (m4-name)

A common M4sh idiom involves composing shell variable names from an m4 argument
(for example, writing a macro that uses a cache variable). value can be an arbitrary
string, which will be transliterated into a valid shell name by AS_TR_SH. In order to
access the composed variable name based on value, it is easier to declare a temporary
m4 macro m4-name with AS_VAR_PUSHDEF, then use that macro as the argument
to subsequent AS_VAR macros as a polymorphic variable name, and finally free the
temporary macro with AS_VAR_POPDEF. These macros are often followed with dnl, to
avoid excess newlines in the output.

Here is an involved example, that shows the power of writing macros that can handle
composed shell variable names:

m4_define([MY_CHECK_HEADER],

[AS_VAR_PUSHDEF([my_Header], [ac_cv_header_$1])dnl

AS_VAR_IF([my_Header], [yes], [echo "header $1 detected"])dnl

AS_VAR_POPDEF([my_Header])dnl

])

MY_CHECK_HEADER([stdint.h])

for header in inttypes.h stdlib.h ; do

MY_CHECK_HEADER([$header])

done

In the above example, MY_CHECK_HEADER can operate on polymorphic variable names.
In the first invocation, the m4 argument is stdint.h, which transliterates into a
literal stdint_h. As a result, the temporary macro my_Header expands to the
literal shell name ‘ac_cv_header_stdint_h’. In the second invocation, the m4 ar-
gument to MY_CHECK_HEADER is $header, and the temporary macro my_Header ex-
pands to the indirect shell name ‘$as_my_Header’. During the shell execution of
the for loop, when ‘$header’ contains ‘inttypes.h’, then ‘$as_my_Header’ contains
‘ac_cv_header_inttypes_h’. If this script is then run on a platform where all three
headers have been previously detected, the output of the script will include:

header stdint.h detected

Chapter 9: Programming in M4sh 181

header inttypes.h detected

header stdlib.h detected

[Macro]AS_VAR_SET (var, [value])
Emit shell code to assign the contents of the polymorphic shell variable var to the
shell expansion of value. value is not subject to field splitting or file name expansion,
so if command substitution is used, it may be done with ‘`""`’ rather than using
an intermediate variable (see Section 11.8 [Shell Substitutions], page 209). However,
value does undergo rescanning for additional macro names; behavior is unspecified if
late expansion results in any shell meta-characters.

[Macro]AS_VAR_SET_IF (var, [if-set], [if-undef])
Emit a shell conditional statement, which executes if-set if the polymorphic shell
variable var is set to any value, and if-undef otherwise.

[Macro]AS_VAR_TEST_SET (var)
Emit a shell statement that results in a successful exit status only if the polymorphic
shell variable var is set.

9.3 Initialization Macros

[Macro]AS_BOURNE_COMPATIBLE
Set up the shell to be more compatible with the Bourne shell as standardized by
Posix, if possible. This may involve setting environment variables, or setting options,
or similar implementation-specific actions. This macro is deprecated, since AS_INIT
already invokes it.

[Macro]AS_INIT
Initialize the M4sh environment. This macro calls m4_init, then outputs the #!

/bin/sh line, a notice about where the output was generated from, and code to
sanitize the environment for the rest of the script. Among other initializations, this
sets SHELL to the shell chosen to run the script (see [CONFIG SHELL], page 312),
and LC_ALL to ensure the C locale. Finally, it changes the current diversion to BODY.
AS_INIT is called automatically by AC_INIT and AT_INIT, so shell code in configure,
config.status, and testsuite all benefit from a sanitized shell environment.

[Macro]AS_INIT_GENERATED (file, [comment])
Emit shell code to start the creation of a subsidiary shell script in file, including
changing file to be executable. This macro populates the child script with information
learned from the parent (thus, the emitted code is equivalent in effect, but more
efficient, than the code output by AS_INIT, AS_BOURNE_COMPATIBLE, and AS_SHELL_

SANITIZE). If present, comment is output near the beginning of the child, prior to the
shell initialization code, and is subject to parameter expansion, command substitution,
and backslash quote removal. The parent script should check the exit status after this
macro, in case file could not be properly created (for example, if the disk was full). If
successfully created, the parent script can then proceed to append additional M4sh
constructs into the child script.

Note that the child script starts life without a log file open, so if the parent script uses
logging (see [AS MESSAGE LOG FD], page 183), you must temporarily disable any

182 Autoconf

attempts to use the log file until after emitting code to open a log within the child.
On the other hand, if the parent script has AS_MESSAGE_FD redirected somewhere
besides ‘1’, then the child script already has code that copies stdout to that descriptor.
Currently, the suggested idiom for writing a M4sh shell script from within another
script is:

AS_INIT_GENERATED([file], [[# My child script.

]]) || { AS_ECHO(["Failed to create child script"]); AS_EXIT; }

m4_pushdef([AS_MESSAGE_LOG_FD])dnl

cat >> "file" <<__EOF__

Code to initialize AS_MESSAGE_LOG_FD

m4_popdef([AS_MESSAGE_LOG_FD])dnl

Additional code

__EOF__

This, however, may change in the future as the M4sh interface is stabilized further.

Also, be aware that use of LINENO within the child script may report line numbers
relative to their location in the parent script, even when using AS_LINENO_PREPARE,
if the parent script was unable to locate a shell with working LINENO support.

[Macro]AS_LINENO_PREPARE
Find a shell that supports the special variable LINENO, which contains the number
of the currently executing line. This macro is automatically invoked by AC_INIT in
configure scripts.

[Macro]AS_ME_PREPARE
Set up variable as_me to be the basename of the currently executing script. This
macro is automatically invoked by AC_INIT in configure scripts.

[Macro]AS_TMPDIR (prefix, [dir = ‘${TMPDIR:=/tmp}’])
Create, as safely as possible, a temporary sub-directory within dir with a name starting
with prefix. prefix should be 2–4 characters, to make it slightly easier to identify
the owner of the directory. If dir is omitted, then the value of TMPDIR will be used
(defaulting to ‘/tmp’). On success, the name of the newly created directory is stored
in the shell variable tmp. On error, the script is aborted.

Typically, this macro is coupled with some exit traps to delete the created directory
and its contents on exit or interrupt. However, there is a slight window between when
the directory is created and when the name is actually known to the shell, so an
interrupt at the right moment might leave the temporary directory behind. Hence it
is important to use a prefix that makes it easier to determine if a leftover temporary
directory from an interrupted script is safe to delete.

If you set TMPDIR=$tmp after invoking this macro, you should reset TMPDIR before
deleting the created directory, to avoid breaking commands that rely on $TMPDIR.

The use of the output variable ‘$tmp’ rather than something in the ‘as_’ namespace
is historical; it has the unfortunate consequence that reusing this otherwise common
name for any other purpose inside your script has the potential to break any cleanup
traps designed to remove the temporary directory.

Chapter 9: Programming in M4sh 183

[Macro]AS_SHELL_SANITIZE
Initialize the shell suitably for configure scripts. This has the effect of AS_BOURNE_
COMPATIBLE, and sets some other environment variables for predictable results from
configuration tests. For example, it sets LC_ALL to change to the default C locale.
See Section 11.12 [Special Shell Variables], page 219. This macro is deprecated, since
AS_INIT already invokes it.

9.4 File Descriptor Macros

The following macros define file descriptors used to output messages (or input values) from
configure scripts. For example:

echo "$wombats found" >&AS_MESSAGE_LOG_FD

echo 'Enter desired kangaroo count:' >&AS_MESSAGE_FD

read kangaroos <&AS_ORIGINAL_STDIN_FD`

However doing so is seldom needed, because Autoconf provides higher level macros as
described below.

[Macro]AS_MESSAGE_FD
The file descriptor for ‘checking for...’ messages and results. By default, AS_INIT
sets this to ‘1’ for standalone M4sh clients. However, AC_INIT shuffles things around
to another file descriptor, in order to allow the -q option of configure to choose
whether messages should go to the script’s standard output or be discarded.

If you want to display some messages, consider using one of the printing macros (see
Section 7.5 [Printing Messages], page 128) instead. Copies of messages output via
these macros are also recorded in config.log.

[Macro]AS_MESSAGE_LOG_FD
This must either be empty, or expand to a file descriptor for log messages. By
default, AS_INIT sets this macro to the empty string for standalone M4sh clients, thus
disabling logging. However, AC_INIT shuffles things around so that both configure

and config.status use config.log for log messages. Macros that run tools, like
AC_COMPILE_IFELSE (see Section 6.4 [Running the Compiler], page 115), redirect all
output to this descriptor. You may want to do so if you develop such a low-level
macro.

[Macro]AS_ORIGINAL_STDIN_FD
This must expand to a file descriptor for the original standard input. By default,
AS_INIT sets this macro to ‘0’ for standalone M4sh clients. However, AC_INIT shuffles
things around for safety.

When configure runs, it may accidentally execute an interactive command that has
the same name as the non-interactive meant to be used or checked. If the standard
input was the terminal, such interactive programs would cause configure to stop,
pending some user input. Therefore configure redirects its standard input from
/dev/null during its initialization. This is not normally a problem, since configure
normally does not need user input.

In the extreme case where your configure script really needs to obtain some values
from the original standard input, you can read them explicitly from AS_ORIGINAL_

STDIN_FD.

185

10 Writing Autoconf Macros

When you write a feature test that could be applicable to more than one software package,
the best thing to do is encapsulate it in a new macro. Here are some instructions and
guidelines for writing Autoconf macros. You should also familiarize yourself with M4sugar
(see Chapter 8 [Programming in M4], page 131) and M4sh (see Chapter 9 [Programming in
M4sh], page 175).

10.1 Macro Definitions

[Macro]AC_DEFUN (name, [body])
Autoconf macros are defined using the AC_DEFUN macro, which is similar to the M4
builtin m4_define macro; this creates a macro named name and with body as its
expansion. In addition to defining a macro, AC_DEFUN adds to it some code that is
used to constrain the order in which macros are called, while avoiding redundant
output (see Section 10.3.1 [Prerequisite Macros], page 187).

An Autoconf macro definition looks like this:

AC_DEFUN(macro-name, macro-body)

You can refer to any arguments passed to the macro as ‘$1’, ‘$2’, etc. See Section “How
to define new macros” in GNU M4, for more complete information on writing M4 macros.

Most macros fall in one of two general categories. The first category includes macros
which take arguments, in order to generate output parameterized by those arguments.
Macros in this category are designed to be directly expanded, often multiple times, and
should not be used as the argument to AC_REQUIRE. The other category includes macros
which are shorthand for a fixed block of text, and therefore do not take arguments. For this
category of macros, directly expanding the macro multiple times results in redundant output,
so it is more common to use the macro as the argument to AC_REQUIRE, or to declare the
macro with AC_DEFUN_ONCE (see Section 10.3.3 [One-Shot Macros], page 191).

Be sure to properly quote both the macro-body and the macro-name to avoid any
problems if the macro happens to have been previously defined.

Each macro should have a header comment that gives its prototype, and a brief description.
When arguments have default values, display them in the prototype. For example:

AC_MSG_ERROR(ERROR, [EXIT-STATUS = 1])

m4_define([AC_MSG_ERROR],

[{ AS_MESSAGE([error: $1], [2])

exit m4_default([$2], [1]); }])

Comments about the macro should be left in the header comment. Most other comments
make their way into configure, so just keep using ‘#’ to introduce comments.

If you have some special comments about pure M4 code, comments that make no sense
in configure and in the header comment, then use the builtin dnl: it causes M4 to discard
the text through the next newline.

Keep in mind that dnl is rarely needed to introduce comments; dnl is more useful to get
rid of the newlines following macros that produce no output, such as AC_REQUIRE.

186 Autoconf

Public third-party macros need to use AC_DEFUN, and not m4_define, in order to be
found by aclocal (see Section “Extending aclocal” in GNU Automake). Additionally, if
it is ever determined that a macro should be made obsolete, it is easy to convert from
AC_DEFUN to AU_DEFUN in order to have autoupdate assist the user in choosing a better
alternative, but there is no corresponding way to make m4_define issue an upgrade notice
(see [AU DEFUN], page 191).

There is another subtle, but important, difference between using m4_define and AC_

DEFUN: only the former is unaffected by AC_REQUIRE. When writing a file, it is always safe
to replace a block of text with a m4_define macro that will expand to the same text. But
replacing a block of text with an AC_DEFUN macro with the same content does not necessarily
give the same results, because it changes the location where any embedded but unsatisfied
AC_REQUIRE invocations within the block will be expanded. For an example of this, see
Section 20.8 [Expanded Before Required], page 356.

10.2 Macro Names

All of the public Autoconf macros have all-uppercase names in the namespace ‘^AC_’
to prevent them from accidentally conflicting with other text; Autoconf also reserves
the namespace ‘^_AC_’ for internal macros. All shell variables that they use for internal
purposes have mostly-lowercase names starting with ‘ac_’. Autoconf also uses here-document
delimiters in the namespace ‘^_AC[A-Z]’. During configure, files produced by Autoconf
make heavy use of the file system namespace ‘^conf’.

Since Autoconf is built on top of M4sugar (see Section 8.3 [Programming in M4sugar],
page 145) and M4sh (see Chapter 9 [Programming in M4sh], page 175), you must also be
aware of those namespaces (‘^_?\(m4\|AS\)_’). And since configure.ac is also designed to
be scanned by Autoheader, Autoscan, Autoupdate, and Automake, you should be aware of
the ‘^_?A[HNUM]_’ namespaces. In general, you should not use the namespace of a package
that does not own the macro or shell code you are writing.

To ensure that your macros don’t conflict with present or future Autoconf macros,
you should prefix your own macro names and any shell variables they use with some
other sequence. Possibilities include your initials, or an abbreviation for the name of your
organization or software package. Historically, people have not always followed the rule of
using a namespace appropriate for their package, and this has made it difficult for determining
the origin of a macro (and where to report bugs about that macro), as well as difficult for
the true namespace owner to add new macros without interference from pre-existing uses
of third-party macros. Perhaps the best example of this confusion is the AM_GNU_GETTEXT

macro, which belongs, not to Automake, but to Gettext.

Most of the Autoconf macros’ names follow a structured naming convention that indicates
the kind of feature check by the name. The macro names consist of several words, separated
by underscores, going from most general to most specific. The names of their cache variables
use the same convention (see Section 7.4.1 [Cache Variable Names], page 126, for more
information on them).

The first word of the name after the namespace initials (such as ‘AC_’) usually tells the
category of the feature being tested. Here are the categories used in Autoconf for specific
test macros, the kind of macro that you are more likely to write. They are also used for

Chapter 10: Writing Autoconf Macros 187

cache variables, in all-lowercase. Use them where applicable; where they’re not, invent your
own categories.

C C language builtin features.

DECL Declarations of C variables in header files.

FUNC Functions in libraries.

GROUP Posix group owners of files.

HEADER Header files.

LIB C libraries.

PROG The base names of programs.

MEMBER Members of aggregates.

SYS Operating system features.

TYPE C builtin or declared types.

VAR C variables in libraries.

After the category comes the name of the particular feature being tested. Any further
words in the macro name indicate particular aspects of the feature. For example, AC_PROG_
MAKE_SET checks whether make sets a variable to its own name.

An internal macro should have a name that starts with an underscore; Autoconf internals
should therefore start with ‘_AC_’. Additionally, a macro that is an internal subroutine of
another macro should have a name that starts with an underscore and the name of that
other macro, followed by one or more words saying what the internal macro does. For
example, AC_PATH_X has internal macros _AC_PATH_X_XMKMF and _AC_PATH_X_DIRECT.

10.3 Dependencies Between Macros

Some Autoconf macros depend on other macros having been called first in order to work
correctly. Autoconf provides a way to ensure that certain macros are called if needed and a
way to warn the user if macros are called in an order that might cause incorrect operation.

10.3.1 Prerequisite Macros

A macro that you write might need to use values that have previously been computed by
other macros. For example, AC_DECL_YYTEXT examines the output of flex or lex, so it
depends on AC_PROG_LEX having been called first to set the shell variable LEX.

Rather than forcing the user of the macros to keep track of the dependencies between
them, you can use the AC_REQUIRE macro to do it automatically. AC_REQUIRE can ensure
that a macro is only called if it is needed, and only called once.

[Macro]AC_REQUIRE (macro-name)
If the M4 macro macro-name has not already been called, call it (without any
arguments). Make sure to quote macro-name with square brackets. macro-name must
have been defined using AC_DEFUN or else contain a call to AC_PROVIDE to indicate
that it has been called.

188 Autoconf

AC_REQUIRE must be used inside a macro defined by AC_DEFUN; it must not be called
from the top level. Also, it does not make sense to require a macro that takes
parameters.

AC_REQUIRE is often misunderstood. It really implements dependencies between macros
in the sense that if one macro depends upon another, the latter is expanded before the body
of the former. To be more precise, the required macro is expanded before the outermost
defined macro in the current expansion stack. In particular, ‘AC_REQUIRE([FOO])’ is not
replaced with the body of FOO. For instance, this definition of macros:

AC_DEFUN([TRAVOLTA],

[test "$body_temperature_in_Celsius" -gt 38 &&

dance_floor=occupied])

AC_DEFUN([NEWTON_JOHN],

[test "x$hair_style" = xcurly &&

dance_floor=occupied])

AC_DEFUN([RESERVE_DANCE_FLOOR],

[if test "x`date +%A`" = xSaturday; then

AC_REQUIRE([TRAVOLTA])

AC_REQUIRE([NEWTON_JOHN])

fi])

with this configure.ac

AC_INIT([Dance Manager], [1.0], [bug-dance@example.org])

RESERVE_DANCE_FLOOR

if test "x$dance_floor" = xoccupied; then

AC_MSG_ERROR([cannot pick up here, let's move])

fi

does not leave you with a better chance to meet a kindred soul on days other than Saturday,
since the call to RESERVE_DANCE_FLOOR expands to:

test "$body_temperature_in_Celsius" -gt 38 &&

dance_floor=occupied

test "x$hair_style" = xcurly &&

dance_floor=occupied

if test "x`date +%A`" = xSaturday; then

fi

This behavior was chosen on purpose: (i) it prevents messages in required macros from
interrupting the messages in the requiring macros; (ii) it avoids bad surprises when shell
conditionals are used, as in:

if ...; then

AC_REQUIRE([SOME_CHECK])

fi

...

SOME_CHECK

Chapter 10: Writing Autoconf Macros 189

However, this implementation can lead to another class of problems. Consider the case
where an outer macro first expands, then indirectly requires, an inner macro:

AC_DEFUN([TESTA], [[echo in A

if test -n "$SEEN_A" ; then echo duplicate ; fi

SEEN_A=:]])

AC_DEFUN([TESTB], [AC_REQUIRE([TESTA])[echo in B

if test -z "$SEEN_A" ; then echo bug ; fi]])

AC_DEFUN([TESTC], [AC_REQUIRE([TESTB])[echo in C]])

AC_DEFUN([OUTER], [[echo in OUTER]

TESTA

TESTC])

OUTER

Prior to Autoconf 2.64, the implementation of AC_REQUIRE recognized that TESTB needed to
be hoisted prior to the expansion of OUTER, but because TESTA had already been directly
expanded, it failed to hoist TESTA. Therefore, the expansion of TESTB occurs prior to its
prerequisites, leading to the following output:

in B

bug

in OUTER

in A

in C

Newer Autoconf is smart enough to recognize this situation, and hoists TESTA even though
it has already been expanded, but issues a syntax warning in the process. This is because
the hoisted expansion of TESTA defeats the purpose of using AC_REQUIRE to avoid redundant
code, and causes its own set of problems if the hoisted macro is not idempotent:

in A

in B

in OUTER

in A

duplicate

in C

The bug is not in Autoconf, but in the macro definitions. If you ever pass a particular
macro name to AC_REQUIRE, then you are implying that the macro only needs to be expanded
once. But to enforce this, either the macro must be declared with AC_DEFUN_ONCE (although
this only helps in Autoconf 2.64 or newer), or all uses of that macro should be through AC_

REQUIRE; directly expanding the macro defeats the point of using AC_REQUIRE to eliminate
redundant expansion. In the example, this rule of thumb was violated because TESTB requires
TESTA while OUTER directly expands it. One way of fixing the bug is to factor TESTA into
two macros, the portion designed for direct and repeated use (here, named TESTA), and
the portion designed for one-shot output and used only inside AC_REQUIRE (here, named
TESTA_PREREQ). Then, by fixing all clients to use the correct calling convention according
to their needs:

AC_DEFUN([TESTA], [AC_REQUIRE([TESTA_PREREQ])[echo in A]])

AC_DEFUN([TESTA_PREREQ], [[echo in A_PREREQ

if test -n "$SEEN_A" ; then echo duplicate ; fi

190 Autoconf

SEEN_A=:]])

AC_DEFUN([TESTB], [AC_REQUIRE([TESTA_PREREQ])[echo in B

if test -z "$SEEN_A" ; then echo bug ; fi]])

AC_DEFUN([TESTC], [AC_REQUIRE([TESTB])[echo in C]])

AC_DEFUN([OUTER], [[echo in OUTER]

TESTA

TESTC])

OUTER

the resulting output will then obey all dependency rules and avoid any syntax warnings,
whether the script is built with old or new Autoconf versions:

in A_PREREQ

in B

in OUTER

in A

in C

You can use the helper macros AS_IF and AS_CASE in top-level code to enforce expansion
of required macros outside of shell conditional constructs; these helpers are not needed in
the bodies of macros defined by AC_DEFUN. You are furthermore encouraged, although not
required, to put all AC_REQUIRE calls at the beginning of a macro. You can use dnl to avoid
the empty lines they leave.

Autoconf will normally warn if an AC_REQUIRE call refers to a macro that has not been
defined. However, the aclocal tool relies on parsing an incomplete set of input files to trace
which macros have been required, in order to then pull in additional files that provide those
macros; for this particular use case, pre-defining the macro m4_require_silent_probe will
avoid the warnings.

10.3.2 Suggested Ordering

Some macros should be run before another macro if both are called, but neither requires
that the other be called. For example, a macro that changes the behavior of the C compiler
should be called before any macros that run the C compiler. Many of these dependencies
are noted in the documentation.

Autoconf provides the AC_BEFORE macro to warn users when macros with this kind of
dependency appear out of order in a configure.ac file. The warning occurs when creating
configure from configure.ac, not when running configure.

For example, AC_PROG_CPP checks whether the C compiler can run the C preprocessor
when given the -E option. It should therefore be called after any macros that change which
C compiler is being used, such as AC_PROG_CC. So AC_PROG_CC contains:

AC_BEFORE([$0], [AC_PROG_CPP])dnl

This warns the user if a call to AC_PROG_CPP has already occurred when AC_PROG_CC is
called.

[Macro]AC_BEFORE (this-macro-name, called-macro-name)
Make M4 print a warning message to the standard error output if called-macro-name
has already been called. this-macro-name should be the name of the macro that
is calling AC_BEFORE. The macro called-macro-name must have been defined using
AC_DEFUN or else contain a call to AC_PROVIDE to indicate that it has been called.

Chapter 10: Writing Autoconf Macros 191

10.3.3 One-Shot Macros

Some macros should be called only once, either because calling them multiple time is unsafe,
or because it is bad style. For instance Autoconf ensures that AC_CANONICAL_BUILD and
cousins (see Section 14.2 [Canonicalizing], page 292) are evaluated only once, because it
makes no sense to run these expensive checks more than once. Such one-shot macros can be
defined using AC_DEFUN_ONCE.

[Macro]AC_DEFUN_ONCE (macro-name, macro-body)
Declare macro macro-name like AC_DEFUN would (see Section 10.1 [Macro Definitions],
page 185), but add additional logic that guarantees that only the first use of the macro
(whether by direct expansion or AC_REQUIRE) causes an expansion of macro-body ;
the expansion will occur before the start of any enclosing macro defined by AC_DEFUN.
Subsequent expansions are silently ignored. Generally, it does not make sense for
macro-body to use parameters such as $1.

Prior to Autoconf 2.64, a macro defined by AC_DEFUN_ONCE would emit a warning if it
was directly expanded a second time, so for portability, it is better to use AC_REQUIRE than
direct invocation of macro-name inside a macro defined by AC_DEFUN (see Section 10.3.1
[Prerequisite Macros], page 187).

10.4 Obsoleting Macros

Configuration and portability technology has evolved over the years. Often better ways of
solving a particular problem are developed, or ad-hoc approaches are systematized. This
process has occurred in many parts of Autoconf. One result is that some of the macros are
now considered obsolete; they still work, but are no longer considered the best thing to
do, hence they should be replaced with more modern macros. Ideally, autoupdate should
replace the old macro calls with their modern implementation.

Autoconf provides a simple means to obsolete a macro.

[Macro]AU_DEFUN (old-macro, implementation, [message], [silent])
Define old-macro as implementation, just like AC_DEFUN, but also declare old-macro
to be obsolete. When autoupdate is run, occurrences of old-macro will be replaced
by the text of implementation in the updated configure.ac file.

If a simple textual replacement is not enough to finish the job of updating a
configure.ac to modern style, provide instructions for whatever additional manual
work is required as message. These instructions will be printed by autoupdate, and
embedded in the updated configure.ac file, next to the text of implementation.

Normally, autoconf will also issue a warning (in the “obsolete” category) when it
expands old-macro. This warning does not include message; it only advises the
maintainer to run autoupdate. If it is inappropriate to issue this warning, set the
silent argument to the word silent. One might want to use a silent AU_DEFUN

when old-macro is used in a widely-distributed third-party macro. If that macro’s
maintainers are aware of the need to update their code, it’s unnecessary to nag all of
the transitive users of old-macro as well. This capability was added to AU_DEFUN in
Autoconf 2.70; older versions of autoconf will ignore the silent argument and issue the
warning anyway.

192 Autoconf

Caution: If implementation contains M4 or M4sugar macros, they will be evaluated
when autoupdate is run, not emitted verbatim like the rest of implementation. This
cannot be avoided with extra quotation, because then old-macro will not work when it
is called normally. See the definition of AC_FOREACH in general.m4 for a workaround.

[Macro]AU_ALIAS (old-name, new-name, [silent])
A shorthand version of AU_DEFUN, to be used when a macro has simply been renamed.
autoupdate will replace calls to old-name with calls to new-name, keeping any
arguments intact. No instructions for additional manual work will be printed.

The silent argument works the same as the silent argument to AU_DEFUN. It was added
to AU_ALIAS in Autoconf 2.70.

Caution: AU_ALIAS cannot be used when new-name is an M4 or M4sugar macro. See
above.

10.5 Coding Style

The Autoconf macros follow a strict coding style. You are encouraged to follow this style,
especially if you intend to distribute your macro, either by contributing it to Autoconf itself
or the Autoconf Macro Archive (https://www.gnu.org/software/autoconf-archive/),
or by other means.

The first requirement is to pay great attention to the quotation. For more details, see
Section 3.1.2 [Autoconf Language], page 9, and Section 8.1 [M4 Quotation], page 131.

Do not try to invent new interfaces. It is likely that there is a macro in Autoconf
that resembles the macro you are defining: try to stick to this existing interface (order of
arguments, default values, etc.). We are conscious that some of these interfaces are not
perfect; nevertheless, when harmless, homogeneity should be preferred over creativity.

Be careful about clashes both between M4 symbols and between shell variables.

If you stick to the suggested M4 naming scheme (see Section 10.2 [Macro Names],
page 186), you are unlikely to generate conflicts. Nevertheless, when you need to set a
special value, avoid using a regular macro name; rather, use an “impossible” name. For
instance, up to version 2.13, the macro AC_SUBST used to remember what symbol macros
were already defined by setting AC_SUBST_symbol, which is a regular macro name. But
since there is a macro named AC_SUBST_FILE, it was just impossible to ‘AC_SUBST(FILE)’!
In this case, AC_SUBST(symbol) or _AC_SUBST(symbol) should have been used (yes, with
the parentheses).

No Autoconf macro should ever enter the user-variable name space; i.e., except for the
variables that are the actual result of running the macro, all shell variables should start with
ac_. In addition, small macros or any macro that is likely to be embedded in other macros
should be careful not to use obvious names.

Do not use dnl to introduce comments: most of the comments you are likely to write are
either header comments which are not output anyway, or comments that should make their
way into configure. There are exceptional cases where you do want to comment special
M4 constructs, in which case dnl is right, but keep in mind that it is unlikely.

M4 ignores the leading blanks and newlines before each argument. Use this feature to
indent in such a way that arguments are (more or less) aligned with the opening parenthesis
of the macro being called. For instance, instead of

https://www.gnu.org/software/autoconf-archive/

Chapter 10: Writing Autoconf Macros 193

AC_CACHE_CHECK(for EMX OS/2 environment,

ac_cv_emxos2,

[AC_COMPILE_IFELSE([AC_LANG_PROGRAM(, [return __EMX__;])],

[ac_cv_emxos2=yes], [ac_cv_emxos2=no])])

write

AC_CACHE_CHECK([for EMX OS/2 environment], [ac_cv_emxos2],

[AC_COMPILE_IFELSE([AC_LANG_PROGRAM([], [return __EMX__;])],

[ac_cv_emxos2=yes],

[ac_cv_emxos2=no])])

or even

AC_CACHE_CHECK([for EMX OS/2 environment],

[ac_cv_emxos2],

[AC_COMPILE_IFELSE([AC_LANG_PROGRAM([],

[return __EMX__;])],

[ac_cv_emxos2=yes],

[ac_cv_emxos2=no])])

When using AC_RUN_IFELSE or any macro that cannot work when cross-compiling, provide
a pessimistic value (typically ‘no’).

Feel free to use various tricks to prevent auxiliary tools, such as syntax-highlighting
editors, from behaving improperly. For instance, instead of:

m4_bpatsubst([$1], [$"])

use

m4_bpatsubst([$1], [$""])

so that Emacsen do not open an endless “string” at the first quote. For the same reasons,
avoid:

test $[#] != 0

and use:

test $[@%:@] != 0

Otherwise, the closing bracket would be hidden inside a ‘#’-comment, breaking the bracket-
matching highlighting from Emacsen. Note the preferred style to escape from M4: ‘$[1]’,
‘$[@]’, etc. Do not escape when it is unnecessary. Common examples of useless quotation
are ‘[$]$1’ (write ‘$$1’), ‘[$]var’ (use ‘$var’), etc. If you add portability issues to the
picture, you’ll prefer ‘${1+"$[@]"}’ to ‘"[$]@"’, and you’ll prefer do something better than
hacking Autoconf :-).

When using sed, don’t use -e except for indenting purposes. With the s and y commands,
the preferred separator is ‘/’ unless ‘/’ itself might appear in the pattern or replacement, in
which case you should use ‘|’, or optionally ‘,’ if you know the pattern and replacement cannot
contain a file name. If none of these characters will do, choose a printable character that
cannot appear in the pattern or replacement. Characters from the set ‘"#$&'()*;<=>?`|~’
are good choices if the pattern or replacement might contain a file name, since they have
special meaning to the shell and are less likely to occur in file names.

See Section 10.1 [Macro Definitions], page 185, for details on how to define a macro. If a
macro doesn’t use AC_REQUIRE, is expected to never be the object of an AC_REQUIRE directive,

194 Autoconf

and macros required by other macros inside arguments do not need to be expanded before
this macro, then use m4_define. In case of doubt, use AC_DEFUN. Also take into account
that public third-party macros need to use AC_DEFUN in order to be found by aclocal (see
Section “Extending aclocal” in GNU Automake). All the AC_REQUIRE statements should be
at the beginning of the macro, and each statement should be followed by dnl.

You should not rely on the number of arguments: instead of checking whether an argument
is missing, test that it is not empty. It provides both a simpler and a more predictable
interface to the user, and saves room for further arguments.

Unless the macro is short, try to leave the closing ‘])’ at the beginning of a line, followed
by a comment that repeats the name of the macro being defined. This introduces an
additional newline in configure; normally, that is not a problem, but if you want to remove
it you can use ‘[]dnl’ on the last line. You can similarly use ‘[]dnl’ after a macro call to
remove its newline. ‘[]dnl’ is recommended instead of ‘dnl’ to ensure that M4 does not
interpret the ‘dnl’ as being attached to the preceding text or macro output. For example,
instead of:

AC_DEFUN([AC_PATH_X],

[AC_MSG_CHECKING([for X])

AC_REQUIRE_CPP()

. . .omitted. . .
AC_MSG_RESULT([libraries $x_libraries, headers $x_includes])

fi])

you would write:

AC_DEFUN([AC_PATH_X],

[AC_REQUIRE_CPP()[]dnl

AC_MSG_CHECKING([for X])

. . .omitted. . .
AC_MSG_RESULT([libraries $x_libraries, headers $x_includes])

fi[]dnl

])# AC_PATH_X

If the macro is long, try to split it into logical chunks. Typically, macros that check for a
bug in a function and prepare its AC_LIBOBJ replacement should have an auxiliary macro to
perform this setup. Do not hesitate to introduce auxiliary macros to factor your code.

In order to highlight the recommended coding style, here is a macro written the old way:

dnl Check for EMX on OS/2.

dnl _AC_EMXOS2

AC_DEFUN(_AC_EMXOS2,

[AC_CACHE_CHECK(for EMX OS/2 environment, ac_cv_emxos2,

[AC_COMPILE_IFELSE([AC_LANG_PROGRAM(, return __EMX__;)],

ac_cv_emxos2=yes, ac_cv_emxos2=no)])

test "x$ac_cv_emxos2" = xyes && EMXOS2=yes])

and the new way:

_AC_EMXOS2

Check for EMX on OS/2.

m4_define([_AC_EMXOS2],

Chapter 10: Writing Autoconf Macros 195

[AC_CACHE_CHECK([for EMX OS/2 environment], [ac_cv_emxos2],

[AC_COMPILE_IFELSE([AC_LANG_PROGRAM([], [return __EMX__;])],

[ac_cv_emxos2=yes],

[ac_cv_emxos2=no])])

test "x$ac_cv_emxos2" = xyes && EMXOS2=yes[]dnl

])# _AC_EMXOS2

197

11 Portable Shell Programming

When writing your own checks, there are some shell-script programming techniques you
should avoid in order to make your code portable. The Bourne shell and upward-compatible
shells like the Korn shell and Bash have evolved over the years, and many features added to
the original System7 shell are now supported on all interesting porting targets. However,
the following discussion between Russ Allbery and Robert Lipe is worth reading:

Russ Allbery:

The GNU assumption that /bin/sh is the one and only shell leads to a permanent
deadlock. Vendors don’t want to break users’ existing shell scripts, and there are
some corner cases in the Bourne shell that are not completely compatible with a
Posix shell. Thus, vendors who have taken this route will never (OK. . .“never
say never”) replace the Bourne shell (as /bin/sh) with a Posix shell.

Robert Lipe:

This is exactly the problem. While most (at least most System V’s) do have a
Bourne shell that accepts shell functions most vendor /bin/sh programs are
not the Posix shell.

So while most modern systems do have a shell somewhere that meets the Posix
standard, the challenge is to find it.

For this reason, part of the job of M4sh (see Chapter 9 [Programming in M4sh], page 175)
is to find such a shell. But to prevent trouble, if you’re not using M4sh you should not
take advantage of features that were added after Unix version 7, circa 1977 (see Section 6.7
[Systemology], page 118); you should not use aliases, negated character classes, or even
unset. # comments, while not in Unix version 7, were retrofitted in the original Bourne
shell and can be assumed to be part of the least common denominator.

On the other hand, if you’re using M4sh you can assume that the shell has the features
that were added in SVR2 (circa 1984), including shell functions, return, unset, and I/O redi-
rection for builtins. For more information, refer to https://www.in-ulm.de/~mascheck/

bourne/. However, some pitfalls have to be avoided for portable use of these constructs;
these will be documented in the rest of this chapter. See in particular Section 11.13 [Shell
Functions], page 226, and Section 11.14 [Limitations of Shell Builtins], page 227.

The set of external programs you should run in a configure script is fairly small. See
Section “Utilities in Makefiles” in The GNU Coding Standards, for the list. This restriction
allows users to start out with a fairly small set of programs and build the rest, avoiding too
many interdependencies between packages.

Some of these external utilities have a portable subset of features; see Section 11.15
[Limitations of Usual Tools], page 244.

There are other sources of documentation about shells. The specification for the Posix
Shell Command Language (https://pubs.opengroup.org/onlinepubs/9699919799/
utilities/V3_chap02.html), though more generous than the restrictive shell subset de-
scribed above, is fairly portable nowadays. Also please see the Shell FAQs (http://www.
faqs.org/faqs/unix-faq/shell/).

https://www.in-ulm.de/~mascheck/bourne/
https://www.in-ulm.de/~mascheck/bourne/
https://pubs.opengroup.org/onlinepubs/9699919799/utilities/V3_chap02.html
https://pubs.opengroup.org/onlinepubs/9699919799/utilities/V3_chap02.html
http://www.faqs.org/faqs/unix-faq/shell/
http://www.faqs.org/faqs/unix-faq/shell/

198 Autoconf

11.1 Shellology

There are several families of shells, most prominently the Bourne family and the C shell
family which are deeply incompatible. If you want to write portable shell scripts, avoid
members of the C shell family. The the Shell difference FAQ (http://www.faqs.org/
faqs/unix-faq/shell/shell-differences/) includes a small history of Posix shells, and
a comparison between several of them.

Below we describe some of the members of the Bourne shell family.

Ash Ash is often used on GNU/Linux and BSD systems as a light-weight Bourne-
compatible shell. Ash 0.2 has some bugs that are fixed in the 0.3.x series, but
portable shell scripts should work around them, since version 0.2 is still shipped
with many GNU/Linux distributions.

To be compatible with Ash 0.2:

− don’t use ‘$?’ after expanding empty or unset variables, or at the start of
an eval:

foo=

false

$foo

echo "Do not use it: $?"

false

eval 'echo "Do not use it: $?"'

− don’t use command substitution within variable expansion:

cat ${FOO=`bar`}

− beware that single builtin substitutions are not performed by a subshell,
hence their effect applies to the current shell! See Section 11.8 [Shell
Substitutions], page 209, item “Command Substitution”.

Bash To detect whether you are running Bash, test whether BASH_VERSION is set. To
require Posix compatibility, run ‘set -o posix’. See Section “Bash Posix Mode”
in The GNU Bash Reference Manual, for details.

Bash 2.05 and later
Versions 2.05 and later of Bash use a different format for the output of the set
builtin, designed to make evaluating its output easier. However, this output
is not compatible with earlier versions of Bash (or with many other shells,
probably). So if you use Bash 2.05 or higher to execute configure, you’ll need
to use Bash 2.05 for all other build tasks as well.

Ksh The Korn shell is compatible with the Bourne family and it mostly conforms to
Posix. It has two major variants commonly called ‘ksh88’ and ‘ksh93’, named
after the years of initial release. It is usually called ksh, but is called sh on
some hosts if you set your path appropriately.

On Solaris 11, /bin/sh and /usr/bin/ksh are both ‘ksh93’. On Solaris 10 and
earlier, /bin/sh is a pre-Posix Bourne shell and the Korn shell is found elsewhere:
/usr/bin/ksh is ‘ksh88’ on Solaris 10, /usr/xpg4/bin/sh is a Posix-compliant
variant of ‘ksh88’ on Solaris 10 and later, and /usr/dt/bin/dtksh is ‘ksh93’.
Variants that are not standard may be parts of optional packages. There is no

http://www.faqs.org/faqs/unix-faq/shell/shell-differences/
http://www.faqs.org/faqs/unix-faq/shell/shell-differences/

Chapter 11: Portable Shell Programming 199

extra charge for these packages, but they are not part of a minimal OS install
and therefore some installations may not have it.

Starting with Tru64 Version 4.0, the Korn shell /usr/bin/ksh is also available
as /usr/bin/posix/sh. If the environment variable BIN_SH is set to xpg4,
subsidiary invocations of the standard shell conform to Posix.

Pdksh A public-domain clone of the Korn shell called pdksh is widely available: it
has most of the ‘ksh88’ features along with a few of its own. It usually sets
KSH_VERSION, except if invoked as /bin/sh on OpenBSD, and similarly to Bash
you can require Posix compatibility by running ‘set -o posix’. Unfortunately,
with pdksh 5.2.14 (the latest stable version as of January 2007) Posix mode
is buggy and causes pdksh to depart from Posix in at least one respect, see
Section 11.8 [Shell Substitutions], page 209.

Zsh To detect whether you are running zsh, test whether ZSH_VERSION is set. By
default zsh is not compatible with the Bourne shell: you must execute ‘emulate
sh’, and for zsh versions before 3.1.6-dev-18 you must also set NULLCMD to ‘:’.
See Section “Compatibility” in The Z Shell Manual, for details.

The default Mac OS X sh was originally Zsh; it was changed to Bash in Mac
OS X 10.2.

11.2 Invoking the Shell

The Korn shell (up to at least version M-12/28/93d) has a bug when invoked on a file
whose name does not contain a slash. It first searches for the file’s name in PATH, and if
found it executes that rather than the original file. For example, assuming there is a binary
executable /usr/bin/script in your PATH, the last command in the following example fails
because the Korn shell finds /usr/bin/script and refuses to execute it as a shell script:

$ touch xxyzzyz script

$ ksh xxyzzyz

$ ksh ./script

$ ksh script

ksh: script: cannot execute

Bash 2.03 has a bug when invoked with the -c option: if the option-argument ends in
backslash-newline, Bash incorrectly reports a syntax error. The problem does not occur if a
character follows the backslash:

$ $ bash -c 'echo foo \

> '

bash: -c: line 2: syntax error: unexpected end of file

$ bash -c 'echo foo \

> '

foo

See Section 12.4 [Backslash-Newline-Empty], page 264, for how this can cause problems in
makefiles.

200 Autoconf

11.3 Here-Documents

Because unquoted here-documents are subject to parameter expansion and command sub-
stitution, the characters ‘$’ and ‘`’ are special in unquoted here-documents and should be
escaped by ‘\’ if you want them as-is. Also, ‘\’ is special if it precedes ‘$’, ‘`’, newline or ‘\’
itself, so ‘\’ should be doubled if it appears before these characters and you want it as-is.

Using command substitutions in a here-document that is fed to a shell function is not
portable. For example, with Solaris 10 /bin/sh:

$ kitty () { cat; }

$ kitty <<EOF

> `echo ok`

> EOF

/tmp/sh199886: cannot open

$ echo $?
1

Some shells mishandle large here-documents: for example, Solaris 10 dtksh and the
UnixWare 7.1.1 Posix shell, which are derived from Korn shell version M-12/28/93d, mis-
handle braced variable expansion that crosses a 1024- or 4096-byte buffer boundary within a
here-document. Only the part of the variable name after the boundary is used. For example,
${variable} could be replaced by the expansion of ${ble}. If the end of the variable name
is aligned with the block boundary, the shell reports an error, as if you used ${}. Instead of
${variable-default}, the shell may expand ${riable-default}, or even ${fault}. This
bug can often be worked around by omitting the braces: $variable. The bug was fixed
in ‘ksh93g’ (1998-04-30) but as of 2006 many operating systems were still shipping older
versions with the bug.

Empty here-documents are not portable either; with the following code, zsh up to at
least version 4.3.10 creates a file with a single newline, whereas other shells create an empty
file:

cat >file <<EOF

EOF

Many shells (including the Bourne shell) implement here-documents inefficiently. In
particular, some shells can be extremely inefficient when a single statement contains many
here-documents. For instance if your configure.ac includes something like:

AS_IF([<cross_compiling>],

[assume this and that],

[check this

check that

check something else

...

on and on forever

...])

A shell parses the whole if/fi construct generated by AS_IF, creating temporary files
for each here-document in it. Some shells create links for such here-documents on every
fork, so that the clean-up code they had installed correctly removes them. It is creating
the links that can take the shell forever.

Chapter 11: Portable Shell Programming 201

Moving the tests out of the if/fi, or creating multiple if/fi constructs, would improve
the performance significantly. Anyway, this kind of construct is not exactly the typical use
of Autoconf. In fact, it’s even not recommended, because M4 macros can’t look into shell
conditionals, so we may fail to expand a macro when it was expanded before in a conditional
path, and the condition turned out to be false at runtime, and we end up not executing the
macro at all.

Be careful with the use of ‘<<-’ to unindent here-documents. The behavior is only
portable for stripping leading TABs, and things can silently break if an overzealous editor
converts to using leading spaces (not all shells are nice enough to warn about unterminated
here-documents).

$ printf 'cat <<-x\n\t1\n\t 2\n\tx\n' | bash && echo done

1

2

done

$ printf 'cat <<-x\n 1\n 2\n x\n' | bash-3.2 && echo done

1

2

x

done

11.4 File Descriptors

Most shells, if not all (including Bash, Zsh, Ash), output traces on stderr, even for subshells.
This might result in undesirable content if you meant to capture the standard-error output
of the inner command:

$ ash -x -c '(eval "echo foo >&2") 2>stderr'

$ cat stderr

+ eval echo foo >&2

+ echo foo

foo

$ bash -x -c '(eval "echo foo >&2") 2>stderr'

$ cat stderr

+ eval 'echo foo >&2'

++ echo foo

foo

$ zsh -x -c '(eval "echo foo >&2") 2>stderr'

Traces on startup files deleted here.

$ cat stderr

+zsh:1> eval echo foo >&2

+zsh:1> echo foo

foo

One workaround is to grep out uninteresting lines, hoping not to remove good ones.

If you intend to redirect both standard error and standard output, redirect standard
output first. This works better with HP-UX, since its shell mishandles tracing if standard
error is redirected first:

$ sh -x -c ': 2>err >out'

202 Autoconf

+ :

+ 2> err $ cat err

1> out

Don’t try to redirect the standard error of a command substitution. It must be done
inside the command substitution. When running ‘: `cd /zorglub` 2>/dev/null’ expect
the error message to escape, while ‘: `cd /zorglub 2>/dev/null`’ works properly.

On the other hand, some shells, such as Solaris or FreeBSD /bin/sh, warn about missing
programs before performing redirections. Therefore, to silently check whether a program
exists, it is necessary to perform redirections on a subshell or brace group:

$ /bin/sh -c 'nosuch 2>/dev/null'

nosuch: not found

$ /bin/sh -c '(nosuch) 2>/dev/null'

$ /bin/sh -c '{ nosuch; } 2>/dev/null'

$ bash -c 'nosuch 2>/dev/null'

FreeBSD 6.2 sh may mix the trace output lines from the statements in a shell pipeline.

It is worth noting that Zsh (but not Ash nor Bash) makes it possible in assignments
though: ‘foo=`cd /zorglub` 2>/dev/null’.

Some shells, like ash, don’t recognize bi-directional redirection (‘<>’). And even on shells
that recognize it, it is not portable to use on fifos: Posix does not require read-write support
for named pipes, and Cygwin does not support it:

$ mkfifo fifo

$ exec 5<>fifo

$ echo hi >&5

bash: echo: write error: Communication error on send

Furthermore, versions of dash before 0.5.6 mistakenly truncate regular files when using ‘<>’:

$ echo a > file

$ bash -c ': 1<>file'; cat file

a

$ dash -c ': 1<>file'; cat file

$ rm a

Solaris 10 /bin/sh executes redirected compound commands in a subshell, while other
shells don’t:

$ /bin/sh -c 'foo=0; { foo=1; } 2>/dev/null; echo $foo'
0

$ ksh -c 'foo=0; { foo=1; } 2>/dev/null; echo $foo'
1

$ bash -c 'foo=0; { foo=1; } 2>/dev/null; echo $foo'
1

When catering to old systems, don’t redirect the same file descriptor several times, as
you are doomed to failure under Ultrix.

ULTRIX V4.4 (Rev. 69) System #31: Thu Aug 10 19:42:23 GMT 1995

UWS V4.4 (Rev. 11)

$ eval 'echo matter >fullness' >void

illegal io

Chapter 11: Portable Shell Programming 203

$ eval '(echo matter >fullness)' >void

illegal io

$ (eval '(echo matter >fullness)') >void

Ambiguous output redirect.

In each case the expected result is of course fullness containing ‘matter’ and void being
empty. However, this bug is probably not of practical concern to modern platforms.

Solaris 10 sh will try to optimize away a : command (even if it is redirected) in a loop
after the first iteration, or in a shell function after the first call:

$ for i in 1 2 3 ; do : >x$i; done

$ ls x*

x1

$ f () { : >$1; }; f y1; f y2; f y3;

$ ls y*

y1

As a workaround, echo or eval can be used.

Don’t rely on file descriptors 0, 1, and 2 remaining closed in a subsidiary program. If
any of these descriptors is closed, the operating system may open an unspecified file for the
descriptor in the new process image. Posix 2008 says this may be done only if the subsidiary
program is set-user-ID or set-group-ID, but HP-UX 11.23 does it even for ordinary programs,
and the next version of Posix will allow HP-UX behavior.

If you want a file descriptor above 2 to be inherited into a child process, then you must
use redirections specific to that command or a containing subshell or command group, rather
than relying on exec in the shell. In ksh as well as HP-UX sh, file descriptors above 2 which
are opened using ‘exec n>file’ are closed by a subsequent ‘exec’ (such as that involved in
the fork-and-exec which runs a program or script):

$ echo 'echo hello >&5' >k

$ /bin/sh -c 'exec 5>t; ksh ./k; exec 5>&-; cat t

hello

$ bash -c 'exec 5>t; ksh ./k; exec 5>&-; cat t

hello

$ ksh -c 'exec 5>t; ksh ./k; exec 5>&-; cat t

./k[1]: 5: cannot open [Bad file number]

$ ksh -c '(ksh ./k) 5>t; cat t'

hello

$ ksh -c '{ ksh ./k; } 5>t; cat t'

hello

$ ksh -c '5>t ksh ./k; cat t

hello

Don’t rely on duplicating a closed file descriptor to cause an error. With Solaris 10
/bin/sh, failed duplication is silently ignored, which can cause unintended leaks to the
original file descriptor. In this example, observe the leak to standard output:

$ bash -c 'echo hi >&3' 3>&-; echo $?
bash: 3: Bad file descriptor

1

$ /bin/sh -c 'echo hi >&3' 3>&-; echo $?

204 Autoconf

hi

0

Fortunately, an attempt to close an already closed file descriptor will portably succeed.
Likewise, it is safe to use either style of ‘n<&-’ or ‘n>&-’ for closing a file descriptor, even if
it doesn’t match the read/write mode that the file descriptor was opened with.

DOS variants cannot rename or remove open files, such as in ‘mv foo bar >foo’ or ‘rm
foo >foo’, even though this is perfectly portable among Posix hosts.

A few ancient systems reserved some file descriptors. By convention, file descriptor 3 was
opened to /dev/tty when you logged into Eighth Edition (1985) through Tenth Edition
Unix (1989). File descriptor 4 had a special use on the Stardent/Kubota Titan (circa 1990),
though we don’t now remember what it was. Both these systems are obsolete, so it’s now
safe to treat file descriptors 3 and 4 like any other file descriptors.

On the other hand, you can’t portably use multi-digit file descriptors. dash and Solaris
ksh don’t understand any file descriptor larger than ‘9’:

$ bash -c 'exec 10>&-'; echo $?
0

$ ksh -c 'exec 9>&-'; echo $?
0

$ ksh -c 'exec 10>&-'; echo $?
ksh[1]: exec: 10: not found

127

$ dash -c 'exec 9>&-'; echo $?
0

$ dash -c 'exec 10>&-'; echo $?
exec: 1: 10: not found

2

11.5 Signal Handling

Portable handling of signals within the shell is another major source of headaches. This is
worsened by the fact that various different, mutually incompatible approaches are possible
in this area, each with its distinctive merits and demerits. A detailed description of these
possible approaches, as well as of their pros and cons, can be found in this article (https://
www.cons.org/cracauer/sigint.html).

Solaris 10 /bin/sh automatically traps most signals by default; the shell still exits with
error upon termination by one of those signals, but in such a case the exit status might be
somewhat unexpected (even if allowed by POSIX, strictly speaking):

$ bash -c 'kill -1 $$'; echo $? # Will exit 128 + (signal number).

Hangup

129

$ /bin/ksh -c 'kill -15 $$'; echo $? # Likewise.

Terminated

143

$ for sig in 1 2 3 15; do

> echo $sig:
> /bin/sh -c "kill -$s \$\$"; echo $?

https://www.cons.org/cracauer/sigint.html
https://www.cons.org/cracauer/sigint.html

Chapter 11: Portable Shell Programming 205

> done

signal 1:

Hangup

129

signal 2:

208

signal 3:

208

signal 15:

208

This gets even worse if one is using the POSIX “wait” interface to get details about the
shell process terminations: it will result in the shell having exited normally, rather than by
receiving a signal.

$ cat > foo.c <<'END'

#include <stdio.h> /* for printf */

#include <stdlib.h> /* for system */

#include <sys/wait.h> /* for WIF* macros */

int main(void)

{

int status = system ("kill -15 $$");

printf ("Terminated by signal: %s\n",

WIFSIGNALED (status) ? "yes" : "no");

printf ("Exited normally: %s\n",

WIFEXITED (status) ? "yes" : "no");

return 0;

}

END

$ cc -o foo foo.c

$./a.out # On GNU/Linux

Terminated by signal: no

Exited normally: yes

$./a.out # On Solaris 10

Terminated by signal: yes

Exited normally: no

Various shells seem to handle SIGQUIT specially: they ignore it even if it is not blocked,
and even if the shell is not running interactively (in fact, even if the shell has no attached tty);
among these shells are at least Bash (from version 2 onward), Zsh 4.3.12, Solaris 10 /bin/ksh
and /usr/xpg4/bin/sh, and AT&T ksh93 (2011). Still, SIGQUIT seems to be trappable
quite portably within all these shells. OTOH, some other shells doesn’t special-case the
handling of SIGQUIT; among these shells are at least pdksh 5.2.14, Solaris 10 and NetBSD
5.1 /bin/sh, and the Almquist Shell 0.5.5.1.

Some shells (especially Korn shells and derivatives) might try to propagate to themselves
a signal that has killed a child process; this is not a bug, but a conscious design choice
(although its overall value might be debatable). The exact details of how this is attained
vary from shell to shell. For example, upon running perl -e 'kill 2, $$', after the perl
process has been interrupted, AT&T ksh93 (2011) will proceed to send itself a SIGINT, while

206 Autoconf

Solaris 10 /bin/ksh and /usr/xpg4/bin/sh will proceed to exit with status 130 (i.e., 128 +

2). In any case, if there is an active trap associated with SIGINT, those shells will correctly
execute it.

Some Korn shells, when a child process die due receiving a signal with signal number n,
can leave in ‘$?’ an exit status of 256+n instead of the more common 128+n. Observe the
difference between AT&T ksh93 (2011) and bash 4.1.5 on Debian:

$ /bin/ksh -c 'sh -c "kill -1 \$\$"; echo $?'
/bin/ksh: line 1: 7837: Hangup

257

$ /bin/bash -c 'sh -c "kill -1 \$\$"; echo $?'
/bin/bash: line 1: 7861 Hangup (sh -c "kill -1 \$\$")

129

This ksh behavior is allowed by POSIX, if implemented with due care; see this Austin Group
discussion (https://www.austingroupbugs.net/view.php?id=51) for more background.
However, if it is not implemented with proper care, such a behavior might cause problems
in some corner cases. To see why, assume we have a “wrapper” script like this:

#!/bin/sh

Ignore some signals in the shell only, not in its child processes.

trap : 1 2 13 15

wrapped_command "$@"

ret=$?

other_command

exit $ret

If wrapped_command is interrupted by a SIGHUP (which has signal number 1), ret will be set
to 257. Unless the exit shell builtin is smart enough to understand that such a value can
only have originated from a signal, and adjust the final wait status of the shell appropriately,
the value 257 will just get truncated to 1 by the closing exit call, so that a caller of the
script will have no way to determine that termination by a signal was involved. Observe the
different behavior of AT&T ksh93 (2011) and bash 4.1.5 on Debian:

$ cat foo.sh

#!/bin/sh

sh -c 'kill -1 $$'

ret=$?

echo $ret

exit $ret

$ /bin/ksh foo.sh; echo $?
foo.sh: line 2: 12479: Hangup

257

1

$ /bin/bash foo.sh; echo $?
foo.sh: line 2: 12487 Hangup (sh -c 'kill -1 $$')

129

129

https://www.austingroupbugs.net/view.php?id=51
https://www.austingroupbugs.net/view.php?id=51

Chapter 11: Portable Shell Programming 207

11.6 File System Conventions

Autoconf uses shell-script processing extensively, so the file names that it processes should
not contain characters that are special to the shell. Special characters include space, tab,
newline, NUL, and the following:

" # $ & ' () * ; < = > ? [\ ` |

Also, file names should not begin with ‘~’ or ‘-’, and should contain neither ‘-’ immediately
after ‘/’ nor ‘~’ immediately after ‘:’. On Posix-like platforms, directory names should not
contain ‘:’, as this runs afoul of ‘:’ used as the path separator.

These restrictions apply not only to the files that you distribute, but also to the absolute
file names of your source, build, and destination directories.

On some Posix-like platforms, ‘!’ and ‘^’ are special too, so they should be avoided.

Posix lets implementations treat leading // specially, but requires leading /// and
beyond to be equivalent to /. Most Unix variants treat // like /. However, some treat //
as a “super-root” that can provide access to files that are not otherwise reachable from
/. The super-root tradition began with Apollo Domain/OS, which died out long ago, but
unfortunately Cygwin has revived it.

While autoconf and friends are usually run on some Posix variety, they can be used on
other systems, most notably DOS variants. This impacts several assumptions regarding file
names.

For example, the following code:

case $foo_dir in

/*) # Absolute

;;

*)

foo_dir=$dots$foo_dir ;;

esac

fails to properly detect absolute file names on those systems, because they can use a drivespec,
and usually use a backslash as directory separator. If you want to be portable to DOS
variants (at the price of rejecting valid but oddball Posix file names like a:\b), you can
check for absolute file names like this:

case $foo_dir in

[\\/]* | ?:[\\/]*) # Absolute

;;

*)

foo_dir=$dots$foo_dir ;;

esac

Make sure you quote the brackets if appropriate and keep the backslash as first character.
See [Limitations of Shell Builtins], page 230.

Also, because the colon is used as part of a drivespec, these systems don’t use it as
path separator. When creating or accessing paths, you can use the PATH_SEPARATOR output
variable instead. configure sets this to the appropriate value for the build system (‘:’ or
‘;’) when it starts up.

File names need extra care as well. While DOS variants that are Posixy enough to run
autoconf (such as DJGPP) are usually able to handle long file names properly, there are

208 Autoconf

still limitations that can seriously break packages. Several of these issues can be easily
detected by the doschk (https://ftp.gnu.org/gnu/non-gnu/doschk/doschk-1.1.tar.
gz) package.

A short overview follows; problems are marked with SFN/LFN to indicate where they
apply: SFN means the issues are only relevant to plain DOS, not to DOS under Microsoft
Windows variants, while LFN identifies problems that exist even under Microsoft Windows
variants.

No multiple dots (SFN)
DOS cannot handle multiple dots in file names. This is an especially important
thing to remember when building a portable configure script, as autoconf uses
a .in suffix for template files.

This is perfectly OK on Posix variants:

AC_CONFIG_HEADERS([config.h])

AC_CONFIG_FILES([source.c foo.bar])

AC_OUTPUT

but it causes problems on DOS, as it requires ‘config.h.in’, ‘source.c.in’ and
‘foo.bar.in’. To make your package more portable to DOS-based environments,
you should use this instead:

AC_CONFIG_HEADERS([config.h:config.hin])

AC_CONFIG_FILES([source.c:source.cin foo.bar:foobar.in])

AC_OUTPUT

No leading dot (SFN)
DOS cannot handle file names that start with a dot. This is usually not
important for autoconf.

Case insensitivity (LFN)
DOS is case insensitive, so you cannot, for example, have both a file called
‘INSTALL’ and a directory called ‘install’. This also affects make; if there’s a
file called ‘INSTALL’ in the directory, ‘make install’ does nothing (unless the
‘install’ target is marked as PHONY).

The 8+3 limit (SFN)
Because the DOS file system only stores the first 8 characters of the file name
and the first 3 of the extension, those must be unique. That means that
foobar-part1.c, foobar-part2.c and foobar-prettybird.c all resolve to the
same file name (FOOBAR-P.C). The same goes for foo.bar and foo.bartender.

The 8+3 limit is not usually a problem under Microsoft Windows, as it uses
numeric tails in the short version of file names to make them unique. However,
a registry setting can turn this behavior off. While this makes it possible to
share file trees containing long file names between SFN and LFN environments,
it also means the above problem applies there as well.

Invalid characters (LFN)
Some characters are invalid in DOS file names, and should therefore be avoided.
In a LFN environment, these are ‘/’, ‘\’, ‘?’, ‘*’, ‘:’, ‘<’, ‘>’, ‘|’ and ‘"’. In a
SFN environment, other characters are also invalid. These include ‘+’, ‘,’, ‘[’
and ‘]’.

https://ftp.gnu.org/gnu/non-gnu/doschk/doschk-1.1.tar.gz
https://ftp.gnu.org/gnu/non-gnu/doschk/doschk-1.1.tar.gz

Chapter 11: Portable Shell Programming 209

Invalid names (LFN)
Some DOS file names are reserved, and cause problems if you try to use files
with those names. These names include CON, AUX, COM1, COM2, COM3, COM4, LPT1,
LPT2, LPT3, NUL, and PRN. File names are case insensitive, so even names like
aux/config.guess are disallowed.

11.7 Shell Pattern Matching

Nowadays portable patterns can use negated character classes like ‘[!-aeiou]’. The older
syntax ‘[^-aeiou]’ is supported by some shells but not others; hence portable scripts should
never use ‘^’ as the first character of a bracket pattern.

Outside the C locale, patterns like ‘[a-z]’ are problematic since they may match
characters that are not lower-case letters.

11.8 Shell Substitutions

Contrary to a persistent urban legend, the Bourne shell does not systematically split variables
and back-quoted expressions, in particular on the right-hand side of assignments and in the
argument of case. For instance, the following code:

case "$given_srcdir" in

.) top_srcdir="`echo "$dots" | sed 's|/$||'`" ;;

*) top_srcdir="$dots$given_srcdir" ;;

esac

is more readable when written as:

case $given_srcdir in

.) top_srcdir=`echo "$dots" | sed 's|/$||'` ;;

*) top_srcdir=$dots$given_srcdir ;;

esac

and in fact it is even more portable: in the first case of the first attempt, the computation
of top_srcdir is not portable, since not all shells properly understand "`..."..."...`",
for example Solaris 10 ksh:

$ foo="`echo " bar" | sed 's, ,,'`"

ksh: : cannot execute

ksh: bar | sed 's, ,,': cannot execute

Posix does not specify behavior for this sequence. On the other hand, behavior for
"`...\"...\"...`" is specified by Posix, but in practice, not all shells understand it
the same way: pdksh 5.2.14 prints spurious quotes when in Posix mode:

$ echo "`echo \"hello\"`"

hello

$ set -o posix

$ echo "`echo \"hello\"`"

"hello"

There is just no portable way to use double-quoted strings inside double-quoted back-quoted
expressions (pfew!).

Bash 4.1 has a bug where quoted empty strings adjacent to unquoted parameter expansions
are elided during word splitting. Meanwhile, zsh does not perform word splitting except

210 Autoconf

when in Bourne compatibility mode. In the example below, the correct behavior is to have
five arguments to the function, and exactly two spaces on either side of the middle ‘-’, since
word splitting collapses multiple spaces in ‘$f’ but leaves empty arguments intact.

$ bash -c 'n() { echo "$#$@"; }; f=" - "; n - ""$f"" -'

3- - -

$ ksh -c 'n() { echo "$#$@"; }; f=" - "; n - ""$f"" -'

5- - -

$ zsh -c 'n() { echo "$#$@"; }; f=" - "; n - ""$f"" -'

3- - -

$ zsh -c 'emulate sh;

> n() { echo "$#$@"; }; f=" - "; n - ""$f"" -'

5- - -

You can work around this by doing manual word splitting, such as using ‘"$str" $list’
rather than ‘"$str"$list’.

There are also portability pitfalls with particular expansions:

$@ One of the most famous shell-portability issues is related to ‘"$@"’. When there
are no positional arguments, Posix says that ‘"$@"’ is supposed to be equivalent
to nothing, but the original Unix version 7 Bourne shell treated it as equivalent
to ‘""’ instead, and this behavior survives in later implementations like Digital
Unix 5.0.

The traditional way to work around this portability problem is to use ‘${1+"$@"}’.
Unfortunately this method does not work with Zsh (3.x and 4.x), which is used
on Mac OS X. When emulating the Bourne shell, Zsh performs word splitting
on ‘${1+"$@"}’:

zsh $ emulate sh

zsh $ for i in "$@"; do echo $i; done

Hello World

!

zsh $ for i in ${1+"$@"}; do echo $i; done

Hello

World

!

Zsh handles plain ‘"$@"’ properly, but we can’t use plain ‘"$@"’ because of the
portability problems mentioned above. One workaround relies on Zsh’s “global
aliases” to convert ‘${1+"$@"}’ into ‘"$@"’ by itself:

test ${ZSH_VERSION+y} && alias -g '${1+"$@"}'='"$@"'

Zsh only recognizes this alias when a shell word matches it exactly;
‘"foo"${1+"$@"}’ remains subject to word splitting. Since this case always
yields at least one shell word, use plain ‘"$@"’.

A more conservative workaround is to avoid ‘"$@"’ if it is possible that there
may be no positional arguments. For example, instead of:

cat conftest.c "$@"

you can use this instead:

case $# in

Chapter 11: Portable Shell Programming 211

0) cat conftest.c;;

*) cat conftest.c "$@";;

esac

Autoconf macros often use the set command to update ‘$@’, so if you are writing
shell code intended for configure you should not assume that the value of ‘$@’
persists for any length of time.

${10} The 10th, 11th, . . . positional parameters can be accessed only after a shift.
The 7th Edition shell reported an error if given ${10}, and Solaris 10 /bin/sh

still acts that way:

$ set 1 2 3 4 5 6 7 8 9 10

$ echo ${10}
bad substitution

Conversely, not all shells obey the Posix rule that when braces are omitted,
multiple digits beyond a ‘$’ imply the single-digit positional parameter expansion
concatenated with the remaining literal digits. To work around the issue, you
must use braces.

$ bash -c 'set a b c d e f g h i j; echo $10 ${1}0'
a0 a0

$ dash -c 'set a b c d e f g h i j; echo $10 ${1}0'
j a0

${var:-value}

${var:=value}

${var:?value}

${var:+value}

Old BSD shells, including the Ultrix sh, don’t accept the colon for any shell sub-
stitution, and complain and die. Similarly for ${var:=value}, ${var:?value},
etc. However, all shells that support functions allow the use of colon in shell sub-
stitution, and since m4sh requires functions, you can portably use null variable
substitution patterns in configure scripts.

${var-value}

${var:-value}

${var=value}

${var:=value}

${var?value}

${var:?value}

${var+value}

${var:+value}

When using ‘${var-value}’ or similar notations that modify a parameter
expansion, Posix requires that value must be a single shell word, which can
contain quoted strings but cannot contain unquoted spaces. If this requirement
is not met Solaris 10 /bin/sh sometimes complains, and anyway the behavior
is not portable.

$ /bin/sh -c 'echo ${a-b c}'

/bin/sh: bad substitution

$ /bin/sh -c 'echo ${a-'\''b c'\''}'

212 Autoconf

b c

$ /bin/sh -c 'echo "${a-b c}"'

b c

$ /bin/sh -c 'cat <<EOF

${a-b c}

EOF

b c

Most shells treat the special parameters * and @ as being unset if there are
no positional parameters. However, some shells treat them as being set to the
empty string. Posix does not clearly specify either behavior.

$ bash -c 'echo "* is ${*-unset}."'
* is unset.

$ dash -c 'echo "* is ${*-unset}."'
* is .

According to Posix, if an expansion occurs inside double quotes, then the use
of unquoted double quotes within value is unspecified, and any single quotes
become literal characters; in that case, escaping must be done with backslash.
Likewise, the use of unquoted here-documents is a case where double quotes
have unspecified results:

$ /bin/sh -c 'echo "${a-"b c"}"'

/bin/sh: bad substitution

$ ksh -c 'echo "${a-"b c"}"'

b c

$ bash -c 'echo "${a-"b c"}"'

b c

$ /bin/sh -c 'a=; echo ${a+'\''b c'\''}'

b c

$ /bin/sh -c 'a=; echo "${a+'\''b c'\''}"'

'b c'

$ /bin/sh -c 'a=; echo "${a+\"b c\"}"'

"b c"

$ /bin/sh -c 'a=; echo "${a+b c}"'

b c

$ /bin/sh -c 'cat <<EOF

${a-"b c"}

EOF'

"b c"

$ /bin/sh -c 'cat <<EOF

${a-'b c'}

EOF'

'b c'

$ bash -c 'cat <<EOF

${a-"b c"}

EOF'

b c

$ bash -c 'cat <<EOF

Chapter 11: Portable Shell Programming 213

${a-'b c'}

EOF'

'b c'

Perhaps the easiest way to work around quoting issues in a manner portable
to all shells is to place the results in a temporary variable, then use ‘$t’ as the
value, rather than trying to inline the expression needing quoting.

$ /bin/sh -c 't="b c\"'\''}\\"; echo "${a-$t}"'
b c"'}\

$ ksh -c 't="b c\"'\''}\\"; echo "${a-$t}"'
b c"'}\

$ bash -c 't="b c\"'\''}\\"; echo "${a-$t}"'
b c"'}\

${var=value}

When using ‘${var=value}’ to assign a default value to var, remember that
even though the assignment to var does not undergo file name expansion, the
result of the variable expansion does unless the expansion occurred within double
quotes. In particular, when using : followed by unquoted variable expansion for
the side effect of setting a default value, if the final value of ‘$var’ contains any
globbing characters (either from value or from prior contents), the shell has to
spend time performing file name expansion and field splitting even though those
results will not be used. Therefore, it is a good idea to consider double quotes
when performing default initialization; while remembering how this impacts any
quoting characters appearing in value.

$ time bash -c ': "${a=/usr/bin/*}"; echo "$a"'
/usr/bin/*

real 0m0.005s

user 0m0.002s

sys 0m0.003s

$ time bash -c ': ${a=/usr/bin/*}; echo "$a"'
/usr/bin/*

real 0m0.039s

user 0m0.026s

sys 0m0.009s

$ time bash -c 'a=/usr/bin/*; : ${a=noglob}; echo "$a"'
/usr/bin/*

real 0m0.031s

user 0m0.020s

sys 0m0.010s

$ time bash -c 'a=/usr/bin/*; : "${a=noglob}"; echo "$a"'
/usr/bin/*

real 0m0.006s

214 Autoconf

user 0m0.002s

sys 0m0.003s

As with ‘+’ and ‘-’, value must be a single shell word, otherwise some shells,
such as Solaris 10 /bin/sh or on Digital Unix V 5.0, die because of a “bad
substitution”. Meanwhile, Posix requires that with ‘=’, quote removal happens
prior to the assignment, and the expansion be the final contents of var without
quoting (and thus subject to field splitting), in contrast to the behavior with ‘-’
passing the quoting through to the final expansion. However, bash 4.1 does not
obey this rule.

$ ksh -c 'echo ${var-a\ \ b}'

a b

$ ksh -c 'echo ${var=a\ \ b}'

a b

$ bash -c 'echo ${var=a\ \ b}'

a b

Finally, Posix states that when mixing ‘${a=b}’ with regular commands, it is
unspecified whether the assignments affect the parent shell environment. It
is best to perform assignments independently from commands, to avoid the
problems demonstrated in this example:

$ bash -c 'x= y=${x:=b} sh -c "echo +\$x+\$y+";echo -$x-'
+b+b+

-b-

$ /bin/sh -c 'x= y=${x:=b} sh -c "echo +\$x+\$y+";echo -$x-'
++b+

--

$ ksh -c 'x= y=${x:=b} sh -c "echo +\$x+\$y+";echo -$x-'
+b+b+

--

${var=value}

Solaris 10 /bin/sh has a frightening bug in its handling of literal assignments.
Imagine you need set a variable to a string containing ‘}’. This ‘}’ character
confuses Solaris 10 /bin/sh when the affected variable was already set. This
bug can be exercised by running:

$ unset foo

$ foo=${foo='}'}
$ echo $foo
}

$ foo=${foo='}' # no error; this hints to what the bug is

$ echo $foo
}

$ foo=${foo='}'}
$ echo $foo
}}

^ ugh!

Chapter 11: Portable Shell Programming 215

It seems that ‘}’ is interpreted as matching ‘${’, even though it is enclosed in
single quotes. The problem doesn’t happen using double quotes, or when using
a temporary variable holding the problematic string.

${var=expanded-value}

On Ultrix, running

default="yu,yaa"

: ${var="$default"}

sets var to ‘M-yM-uM-,M-yM-aM-a’, i.e., the 8th bit of each char is set. You don’t
observe the phenomenon using a simple ‘echo $var’ since apparently the shell
resets the 8th bit when it expands $var. Here are two means to make this shell
confess its sins:

$ cat -v <<EOF

$var
EOF

and

$ set | grep '^var=' | cat -v

One classic incarnation of this bug is:

default="a b c"

: ${list="$default"}

for c in $list; do

echo $c

done

You’ll get ‘a b c’ on a single line. Why? Because there are no spaces in ‘$list’:
there are ‘M- ’, i.e., spaces with the 8th bit set, hence no IFS splitting is
performed!!!

One piece of good news is that Ultrix works fine with ‘: ${list=$default}’;
i.e., if you don’t quote. The bad news is then that QNX 4.25 then sets list to
the last item of default!

The portable way out consists in using a double assignment, to switch the 8th
bit twice on Ultrix:

list=${list="$default"}

. . .but beware of the ‘}’ bug from Solaris 10 (see above). For safety, use:

test ${var+y} || var={value}

${#var}

${var%word}

${var%%word}

${var#word}

${var##word}

Posix requires support for these usages, but they do not work with many
traditional shells, e.g., Solaris 10 /bin/sh.

Also, pdksh 5.2.14 mishandles some word forms. For example if ‘$1’ is ‘a/b’
and ‘$2’ is ‘a’, then ‘${1#$2}’ should yield ‘/b’, but with pdksh it yields the
empty string.

216 Autoconf

`commands`

Posix requires shells to trim all trailing newlines from command output before
substituting it, so assignments like ‘dir=`echo "$file" | tr a A`’ do not work
as expected if ‘$file’ ends in a newline.

While in general it makes no sense, do not substitute a single builtin with side
effects, because Ash 0.2, trying to optimize, does not fork a subshell to perform
the command.

For instance, if you wanted to check that cd is silent, do not use ‘test -z "`cd

/`"’ because the following can happen:

$ pwd

/tmp

$ test -z "`cd /`" && pwd

/

The result of ‘foo=`exit 1`’ is left as an exercise to the reader.

The MSYS shell leaves a stray byte in the expansion of a double-quoted command
substitution of a native program, if the end of the substitution is not aligned
with the end of the double quote. This may be worked around by inserting
another pair of quotes:

$ echo "`printf 'foo\r\n'` bar" > broken

$ echo "`printf 'foo\r\n'`"" bar" | cmp - broken

- broken differ: char 4, line 1

Upon interrupt or SIGTERM, some shells may abort a command substitution,
replace it with a null string, and wrongly evaluate the enclosing command before
entering the trap or ending the script. This can lead to spurious errors:

$ sh -c 'if test `sleep 5; echo hi` = hi; then echo yes; fi'

$ ^C

sh: test: hi: unexpected operator/operand

You can avoid this by assigning the command substitution to a temporary
variable:

$ sh -c 'res=`sleep 5; echo hi`

if test "x$res" = xhi; then echo yes; fi'

$ ^C

$(commands)

This construct is meant to replace ‘`commands`’, and it has most of the problems
listed under `commands`.

This construct can be nested while this is impossible to do portably with back
quotes. Although it is almost universally supported, unfortunately Solaris 10
and earlier releases lack it:

$ showrev -c /bin/sh | grep version

Command version: SunOS 5.10 Generic 142251-02 Sep 2010

$ echo $(echo blah)

syntax error: `(' unexpected

nor does IRIX 6.5’s Bourne shell:

$ uname -a

Chapter 11: Portable Shell Programming 217

IRIX firebird-image 6.5 07151432 IP22

$ echo $(echo blah)

$(echo blah)

If you do use ‘$(commands)’, make sure that the commands do not start
with a parenthesis, as that would cause confusion with a different notation
‘$((expression))’ that in modern shells is an arithmetic expression not a
command. To avoid the confusion, insert a space between the two opening
parentheses.

Avoid commands that contain unbalanced parentheses in here-documents, com-
ments, or case statement patterns, as many shells mishandle them. For example,
Bash 3.1, ‘ksh88’, pdksh 5.2.14, and Zsh 4.2.6 all mishandle the following valid
command:

echo $(case x in x) echo hello;; esac)

$((expression))

Arithmetic expansion is not portable as some shells (most notably Solaris 10
/bin/sh) don’t support it.

Among shells that do support ‘$(())’, not all of them obey the Posix rule that
octal and hexadecimal constants must be recognized:

$ bash -c 'echo $((010 + 0x10))'

24

$ zsh -c 'echo $((010 + 0x10))'

26

$ zsh -c 'emulate sh; echo $((010 + 0x10))'

24

$ pdksh -c 'echo $((010 + 0x10))'

pdksh: 010 + 0x10 : bad number `0x10'

$ pdksh -c 'echo $((010))'

10

When it is available, using arithmetic expansion provides a noticeable speedup
in script execution; but testing for support requires eval to avoid syntax
errors. The following construct is used by AS_VAR_ARITH to provide arithmetic
computation when all arguments are decimal integers without leading zeros, and
all operators are properly quoted and appear as distinct arguments:

if (eval 'test $((1 + 1)) = 2') 2>/dev/null; then

eval 'func_arith ()

{

func_arith_result=$(($*))

}'

else

func_arith ()

{

func_arith_result=`expr "$@"`

}

fi

func_arith 1 + 1

218 Autoconf

foo=$func_arith_result

^ Always quote ‘^’, otherwise traditional shells such as /bin/sh on Solaris 10
treat this like ‘|’.

11.9 Assignments

When setting several variables in a row, be aware that the order of the evaluation is undefined.
For instance ‘foo=1 foo=2; echo $foo’ gives ‘1’ with Solaris 10 /bin/sh, but ‘2’ with Bash.
You must use ‘;’ to enforce the order: ‘foo=1; foo=2; echo $foo’.

Don’t rely on the following to find subdir/program:

PATH=subdir$PATH_SEPARATOR$PATH program

as this does not work with Zsh 3.0.6. Use something like this instead:

(PATH=subdir$PATH_SEPARATOR$PATH; export PATH; exec program)

Don’t rely on the exit status of an assignment: Ash 0.2 does not change the status and
propagates that of the last statement:

$ false || foo=bar; echo $?
1

$ false || foo=`:`; echo $?
0

and to make things even worse, QNX 4.25 just sets the exit status to 0 in any case:

$ foo=`exit 1`; echo $?
0

To assign default values, follow this algorithm:

1. If the default value is a literal and does not contain any closing brace, use:

: "${var='my literal'}"

2. If the default value contains no closing brace, has to be expanded, and the variable
being initialized is not intended to be IFS-split (i.e., it’s not a list), then use:

: ${var="$default"}

3. If the default value contains no closing brace, has to be expanded, and the variable
being initialized is intended to be IFS-split (i.e., it’s a list), then use:

var=${var="$default"}

4. If the default value contains a closing brace, then use:

test ${var+y} || var="has a '}'"

In most cases ‘var=${var="$default"}’ is fine, but in case of doubt, just use the last form.
See Section 11.8 [Shell Substitutions], page 209, items ‘${var:-value}’ and ‘${var=value}’
for the rationale.

11.10 Parentheses in Shell Scripts

Beware of two opening parentheses in a row, as many shell implementations treat them
specially, and Posix says that a portable script cannot use ‘((’ outside the ‘$((’ form used
for shell arithmetic. In traditional shells, ‘((cat))’ behaves like ‘(cat)’; but many shells,
including Bash and the Korn shell, treat ‘((cat))’ as an arithmetic expression equivalent to

Chapter 11: Portable Shell Programming 219

‘let "cat"’, and may or may not report an error when they detect that ‘cat’ is not a number.
As another example, ‘pdksh’ 5.2.14 does not treat the following code as a traditional shell
would:

if ((true) || false); then

echo ok

fi

To work around this problem, insert a space between the two opening parentheses. There is a
similar problem and workaround with ‘$((’; see Section 11.8 [Shell Substitutions], page 209.

11.11 Slashes in Shell Scripts

Unpatched Tru64 5.1 sh omits the last slash of command-line arguments that contain two
trailing slashes:

$ echo / // /// //// .// //.

/ / // /// ./ //.

$ x=//

$ eval "echo \$x"
/

$ set -x

$ echo abc | tr -t ab //

+ echo abc

+ tr -t ab /

/bc

Unpatched Tru64 4.0 sh adds a slash after ‘"$var"’ if the variable is empty and the
second double-quote is followed by a word that begins and ends with slash:

$ sh -xc 'p=; echo "$p"/ouch/'
p=

+ echo //ouch/

//ouch/

However, our understanding is that patches are available, so perhaps it’s not worth
worrying about working around these horrendous bugs.

11.12 Special Shell Variables

Some shell variables should not be used, since they can have a deep influence on the behavior
of the shell. In order to recover a sane behavior from the shell, some variables should be unset;
M4sh takes care of this and provides fallback values, whenever needed, to cater for a very
old /bin/sh that does not support unset. (see Chapter 11 [Portable Shell Programming],
page 197).

As a general rule, shell variable names containing a lower-case letter are safe; you can
define and use these variables without worrying about their effect on the underlying system,
and without worrying about whether the shell changes them unexpectedly. (The exception
is the shell variable status, as described below.)

Here is a list of names that are known to cause trouble. This list is not exhaustive, but
you should be safe if you avoid the name status and names containing only upper-case
letters and underscores.

220 Autoconf

? Not all shells correctly reset ‘$?’ after conditionals (see [Limitations of Shell
Builtins], page 237). Not all shells manage ‘$?’ correctly in shell functions (see
Section 11.13 [Shell Functions], page 226) or in traps (see [Limitations of Shell
Builtins], page 242). Not all shells reset ‘$?’ to zero after an empty command.

$ bash -c 'false; $empty; echo $?'
0

$ zsh -c 'false; $empty; echo $?'
1

_ Many shells reserve ‘$_’ for various purposes, e.g., the name of the last command
executed.

BIN_SH In Tru64, if BIN_SH is set to xpg4, subsidiary invocations of the standard shell
conform to Posix.

CDPATH When this variable is set it specifies a list of directories to search when invoking
cd with a relative file name that did not start with ‘./’ or ‘../’. Posix 1003.1-
2001 says that if a nonempty directory name from CDPATH is used successfully,
cd prints the resulting absolute file name. Unfortunately this output can break
idioms like ‘abs=`cd src && pwd`’ because abs receives the name twice. Also,
many shells do not conform to this part of Posix; for example, zsh prints the
result only if a directory name other than . was chosen from CDPATH.

In practice the shells that have this problem also support unset, so you can
work around the problem as follows:

(unset CDPATH) >/dev/null 2>&1 && unset CDPATH

You can also avoid output by ensuring that your directory name is absolute or
anchored at ‘./’, as in ‘abs=`cd ./src && pwd`’.

Configure scripts use M4sh, which automatically unsets CDPATH if possible, so
you need not worry about this problem in those scripts.

CLICOLOR_FORCE

When this variable is set, some implementations of tools like ls attempt to add
color to their output via terminal escape sequences, even when the output is not
directed to a terminal, and can thus cause spurious failures in scripts. Configure
scripts use M4sh, which automatically unsets this variable.

DUALCASE In the MKS shell, case statements and file name generation are case-insensitive
unless DUALCASE is nonzero. Autoconf-generated scripts export this variable
when they start up.

ENV

MAIL

MAILPATH

PS1

PS2

PS4 These variables should not matter for shell scripts, since they are supposed to
affect only interactive shells. However, at least one shell (the pre-3.0 UWIN
Korn shell) gets confused about whether it is interactive, which means that (for

Chapter 11: Portable Shell Programming 221

example) a PS1 with a side effect can unexpectedly modify ‘$?’. To work around
this bug, M4sh scripts (including configure scripts) do something like this:

(unset ENV) >/dev/null 2>&1 && unset ENV MAIL MAILPATH

PS1='$ '

PS2='> '

PS4='+ '

(actually, there is some complication due to bugs in unset; see [Limitations of
Shell Builtins], page 244).

FPATH The Korn shell uses FPATH to find shell functions, so avoid FPATH in portable
scripts. FPATH is consulted after PATH, but you still need to be wary of tests
that use PATH to find whether a command exists, since they might report the
wrong result if FPATH is also set.

GREP_OPTIONS

When this variable is set, some implementations of grep honor these options,
even if the options include direction to enable colored output via terminal escape
sequences, and the result can cause spurious failures when the output is not
directed to a terminal. Configure scripts use M4sh, which automatically unsets
this variable.

IFS Long ago, shell scripts inherited IFS from the environment, but this caused
many problems so modern shells ignore any environment settings for IFS.

Don’t set the first character of IFS to backslash. Indeed, Bourne shells use the
first character (backslash) when joining the components in ‘"$@"’ and some shells
then reinterpret (!) the backslash escapes, so you can end up with backspace
and other strange characters.

The proper value for IFS (in regular code, not when performing splits) is
‘SPCTABRET’. The first character is especially important, as it is used to join the
arguments in ‘$*’; however, note that traditional shells, but also bash-2.04, fail
to adhere to this and join with a space anyway.

M4sh guarantees that IFS will have the default value at the beginning of a
script, and many macros within autoconf rely on this setting. It is okay to use
blocks of shell code that temporarily change the value of IFS in order to split on
another character, but remember to restore it before expanding further macros.

Unsetting IFS instead of resetting it to the default sequence is not suggested,
since code that tries to save and restore the variable’s value will incorrectly reset
it to an empty value, thus disabling field splitting:

unset IFS

default separators used for field splitting

save_IFS=$IFS

IFS=:

...

IFS=$save_IFS

no field splitting performed

222 Autoconf

LANG

LC_ALL

LC_COLLATE

LC_CTYPE

LC_MESSAGES

LC_MONETARY

LC_NUMERIC

LC_TIME

You should set all these variables to ‘C’ because so much configuration code
assumes the C locale and Posix requires that locale environment variables be
set to ‘C’ if the C locale is desired; configure scripts and M4sh do that for you.
Export these variables after setting them.

LANGUAGE

LANGUAGE is not specified by Posix, but it is a GNU extension that overrides
LC_ALL in some cases, so you (or M4sh) should set it too.

LC_ADDRESS

LC_IDENTIFICATION

LC_MEASUREMENT

LC_NAME

LC_PAPER

LC_TELEPHONE

These locale environment variables are GNU extensions. They are treated like
their Posix brethren (LC_COLLATE, etc.) as described above.

LINENO Most modern shells provide the current line number in LINENO. Its value is
the line number of the beginning of the current command. M4sh, and hence
Autoconf, attempts to execute configure with a shell that supports LINENO.
If no such shell is available, it attempts to implement LINENO with a Sed
prepass that replaces each instance of the string $LINENO (not followed by an
alphanumeric character) with the line’s number. In M4sh scripts you should
execute AS_LINENO_PREPARE so that these workarounds are included in your
script; configure scripts do this automatically in AC_INIT.

You should not rely on LINENO within eval or shell functions, as the behavior
differs in practice. The presence of a quoted newline within simple commands can
alter which line number is used as the starting point for $LINENO substitutions
within that command. Also, the possibility of the Sed prepass means that you
should not rely on $LINENO when quoted, when in here-documents, or when
line continuations are used. Subshells should be OK, though. In the following
example, lines 1, 9, and 14 are portable, but the other instances of $LINENO do
not have deterministic values:

Chapter 11: Portable Shell Programming 223

$ cat lineno

echo 1. $LINENO

echo "2. $LINENO

3. $LINENO"

cat <<EOF

5. $LINENO

6. $LINENO

7. \$LINENO

EOF

(echo 9. $LINENO)

eval 'echo 10. $LINENO'

eval 'echo 11. $LINENO

echo 12. $LINENO'

echo 13. '$LINENO'

echo 14. $LINENO '

15.' $LINENO

f () { echo $1 $LINENO;

echo $1 $LINENO }

f 18.

echo 19. \

$LINENO

$ bash-3.2 ./lineno

1. 1

2. 3

3. 3

5. 4

6. 4

7. $LINENO

9. 9

10. 10

11. 12

12. 13

13. $LINENO

14. 14

15. 14

18. 16

18. 17

19. 19

224 Autoconf

$ zsh-4.3.4 ./lineno

1. 1

2. 2

3. 2

5. 4

6. 4

7. $LINENO

9. 9

10. 1

11. 1

12. 2

13. $LINENO

14. 14

15. 14

18. 0

18. 1

19. 19

$ pdksh-5.2.14 ./lineno

1. 1

2. 2

3. 2

5. 4

6. 4

7. $LINENO

9. 9

10. 0

11. 0

12. 0

13. $LINENO

14. 14

15. 14

18. 16

18. 17

19. 19

Chapter 11: Portable Shell Programming 225

$ sed '=' <lineno |

> sed '

> N

> s,$,-,
> t loop

> :loop

> s,^\([0-9]*\)\(.*\)[$]LINENO\([^a-zA-Z0-9_]\),\1\2\1\3,
> t loop

> s,-$,,
> s,^[0-9]*\n,,

> ' |

> sh

1. 1

2. 2

3. 3

5. 5

6. 6

7. \7

9. 9

10. 10

11. 11

12. 12

13. 13

14. 14

15. 15

18. 16

18. 17

19. 20

In particular, note that config.status (and any other subsidiary script created
by AS_INIT_GENERATED) might report line numbers relative to the parent script
as a result of the potential Sed pass.

NULLCMD When executing the command ‘>foo’, zsh executes ‘$NULLCMD >foo’ unless it
is operating in Bourne shell compatibility mode and the zsh version is newer
than 3.1.6-dev-18. If you are using an older zsh and forget to set NULLCMD, your
script might be suspended waiting for data on its standard input.

options For zsh 4.3.10, options is treated as an associative array even after emulate
sh, so it should not be used.

PATH_SEPARATOR

On DJGPP systems, the PATH_SEPARATOR environment variable can be set
to either ‘:’ or ‘;’ to control the path separator Bash uses to set up certain
environment variables (such as PATH). You can set this variable to ‘;’ if you
want configure to use ‘;’ as a separator; this might be useful if you plan to
use non-Posix shells to execute files. See Section 11.6 [File System Conventions],
page 207, for more information about PATH_SEPARATOR.

226 Autoconf

POSIXLY_CORRECT

In the GNU environment, exporting POSIXLY_CORRECT with any value (even
empty) causes programs to try harder to conform to Posix. Autoconf does
not directly manipulate this variable, but bash ties the shell variable POSIXLY_
CORRECT to whether the script is running in Posix mode. Therefore, take care
when exporting or unsetting this variable, so as not to change whether bash is
in Posix mode.

$ bash --posix -c 'set -o | grep posix

> unset POSIXLY_CORRECT

> set -o | grep posix'

posix on

posix off

PWD Posix 1003.1-2001 requires that cd and pwd must update the PWD environment
variable to point to the logical name of the current directory, but traditional shells
do not support this. This can cause confusion if one shell instance maintains PWD
but a subsidiary and different shell does not know about PWD and executes cd;
in this case PWD points to the wrong directory. Use ‘`pwd`’ rather than ‘$PWD’.

RANDOM Many shells provide RANDOM, a variable that returns a different integer each time
it is used. Most of the time, its value does not change when it is not used, but
on IRIX 6.5 the value changes all the time. This can be observed by using set.
It is common practice to use $RANDOM as part of a file name, but code shouldn’t
rely on $RANDOM expanding to a nonempty string.

status This variable is an alias to ‘$?’ for zsh (at least 3.1.6), hence read-only. Do not
use it.

11.13 Shell Functions

Nowadays, it is difficult to find a shell that does not support shell functions at all. However,
some differences should be expected.

When declaring a shell function, you must include whitespace between the ‘)’ after the
function name and the start of the compound expression, to avoid upsetting ksh. While it
is possible to use any compound command, most scripts use ‘{...}’.

$ /bin/sh -c 'a(){ echo hi;}; a'

hi

$ ksh -c 'a(){ echo hi;}; a'

ksh: syntax error at line 1: `}' unexpected

$ ksh -c 'a() { echo hi;}; a'

hi

Inside a shell function, you should not rely on the error status of a subshell if the last
command of that subshell was exit or trap, as this triggers bugs in zsh 4.x; while Autoconf
tries to find a shell that does not exhibit the bug, zsh might be the only shell present on the
user’s machine.

Likewise, the state of ‘$?’ is not reliable when entering a shell function. This has the
effect that using a function as the first command in a trap handler can cause problems.

$ bash -c 'foo() { echo $?; }; trap foo 0; (exit 2); exit 2'; echo $?

Chapter 11: Portable Shell Programming 227

2

2

$ ash -c 'foo() { echo $?; }; trap foo 0; (exit 2); exit 2'; echo $?
0

2

DJGPP bash 2.04 has a bug in that return from a shell function which also used a
command substitution causes a segmentation fault. To work around the issue, you can use
return from a subshell, or ‘AS_SET_STATUS’ as last command in the execution flow of the
function (see Section 9.1 [Common Shell Constructs], page 175).

Not all shells treat shell functions as simple commands impacted by ‘set -e’, for example
with Solaris 10 /bin/sh:

$ bash -c 'f() { return 1; }; set -e; f; echo oops'

$ /bin/sh -c 'f() { return 1; }; set -e; f; echo oops'

oops

Shell variables and functions may share the same namespace, for example with Solaris 10
/bin/sh:

$ f () { :; }; f=; f

f: not found

For this reason, Autoconf (actually M4sh, see Chapter 9 [Programming in M4sh], page 175)
uses the prefix ‘as_fn_’ for its functions.

Handling of positional parameters and shell options varies among shells. For example,
Korn shells reset and restore trace output (‘set -x’) and other options upon function entry
and exit. Inside a function, IRIX sh sets ‘$0’ to the function name.

It is not portable to pass temporary environment variables to shell functions. Solaris 10
/bin/sh does not see the variable. Meanwhile, not all shells follow the Posix rule that the
assignment must affect the current environment in the same manner as special built-ins.

$ /bin/sh -c 'func() { echo $a;}; a=1 func; echo $a'
⇒
⇒
$ ash -c 'func() { echo $a;}; a=1 func; echo $a'
⇒1

⇒
$ bash -c 'set -o posix; func() { echo $a;}; a=1 func; echo $a'
⇒1

⇒1

Some ancient Bourne shell variants with function support did not reset ‘$i, i >= 0’,
upon function exit, so effectively the arguments of the script were lost after the first function
invocation. It is probably not worth worrying about these shells any more.

With AIX sh, a trap on 0 installed in a shell function triggers at function exit rather
than at script exit. See [Limitations of Shell Builtins], page 242.

11.14 Limitations of Shell Builtins

No, no, we are serious: some shells do have limitations! :)

228 Autoconf

You should always keep in mind that any builtin or command may support options, and
therefore differ in behavior with arguments starting with a dash. For instance, even the
innocent ‘echo "$word"’ can give unexpected results when word starts with a dash. It is
often possible to avoid this problem using ‘echo "x$word"’, taking the ‘x’ into account later
in the pipe. Many of these limitations can be worked around using M4sh (see Chapter 9
[Programming in M4sh], page 175).

. Use . only with regular files (use ‘test -f’). Bash 2.03, for instance, chokes on
‘. /dev/null’. Remember that . uses PATH if its argument contains no slashes.
Also, some shells, including bash 3.2, implicitly append the current directory to
this PATH search, even though Posix forbids it. So if you want to use . on a file
foo in the current directory, you must use ‘. ./foo’.

Not all shells gracefully handle syntax errors within a sourced file. On one
extreme, some non-interactive shells abort the entire script. On the other, zsh
4.3.10 has a bug where it fails to react to the syntax error.

$ echo 'fi' > syntax

$ bash -c '. ./syntax; echo $?'
./syntax: line 1: syntax error near unexpected token `fi'

./syntax: line 1: `fi'

2

$ ash -c '. ./syntax; echo $?'
./syntax: 1: Syntax error: "fi" unexpected

$ zsh -c '. ./syntax; echo $?'
./syntax:1: parse error near `fi'

0

! The Unix version 7 shell did not support negating the exit status of commands
with !, and this feature is still absent from some shells (e.g., Solaris 10 /bin/sh).
Other shells, such as FreeBSD /bin/sh or ash, have bugs when using !:

$ sh -c '! : | :'; echo $?
1

$ ash -c '! : | :'; echo $?
0

$ sh -c '! { :; }'; echo $?
1

$ ash -c '! { :; }'; echo $?
{: not found

Syntax error: "}" unexpected

2

Shell code like this:

if ! cmp file1 file2 >/dev/null 2>&1; then

echo files differ or trouble

fi

is therefore not portable in practice. Typically it is easy to rewrite such code,
e.g.:

cmp file1 file2 >/dev/null 2>&1 ||

Chapter 11: Portable Shell Programming 229

echo files differ or trouble

In M4sh, the AS_IF macro provides an easy way to write these kinds of condi-
tionals:

AS_IF([cmp -s file file.new], [],

[echo files differ or trouble])

This kind of rewriting is needed in code outside macro definitions that calls
other macros. See Section 9.1 [Common Shell Constructs], page 175. It is also
useful inside macro definitions, where the then and else branches might contain
macro arguments.

More generally, one can always rewrite ‘! command’ as:

AS_IF([command], [(exit 1)])

&& and || If an AND-OR list is not inside AC_DEFUN, and it contains calls to Autoconf
macros, it should be rewritten using AS_IF. See Section 9.1 [Common Shell
Constructs], page 175. The operators && and || have equal precedence and are
left associative, so instead of:

This is dangerous outside AC_DEFUN.

cmp a b >/dev/null 2>&1 &&

AS_ECHO([files are same]) >$tmpfile ||

AC_MSG_NOTICE([files differ, or echo failed])

you can use:

This is OK outside AC_DEFUN.

AS_IF([AS_IF([cmp a b >/dev/null 2>&1],

[AS_ECHO([files are same]) >$tmpfile],

[false])],

[AC_MSG_NOTICE([files differ, or echo failed])])

{...} Bash 3.2 (and earlier versions) sometimes does not properly set ‘$?’ when failing
to write redirected output of a compound command. This problem is most
commonly observed with ‘{...}’; it does not occur with ‘(...)’. For example:

$ bash -c '{ echo foo; } >/bad; echo $?'
bash: line 1: /bad: Permission denied

0

$ bash -c 'while :; do echo; done >/bad; echo $?'
bash: line 1: /bad: Permission denied

0

To work around the bug, prepend ‘:;’:

$ bash -c ':;{ echo foo; } >/bad; echo $?'
bash: line 1: /bad: Permission denied

1

Posix requires a syntax error if a brace list has no contents. However, not all
shells obey this rule; and on shells where empty lists are permitted, the effect on
‘$?’ is inconsistent. To avoid problems, ensure that a brace list is never empty.

$ bash -c 'false; { }; echo $?' || echo $?
bash: line 1: syntax error near unexpected token `}'

230 Autoconf

bash: line 1: `false; { }; echo $?'

2

$ zsh -c 'false; { }; echo $?' || echo $?
1

$ pdksh -c 'false; { }; echo $?' || echo $?
0

break The use of ‘break 2’ etc. is safe.

case If a case command is not inside AC_DEFUN, and it contains calls to Autoconf
macros, it should be rewritten using AS_CASE. See Section 9.1 [Common Shell
Constructs], page 175. Instead of:

This is dangerous outside AC_DEFUN.

case $filename in

*.[ch]) AC_MSG_NOTICE([C source file]);;

esac

use:

This is OK outside AC_DEFUN.

AS_CASE([$filename],

[[*.[ch]]], [AC_MSG_NOTICE([C source file])])

You don’t need to quote the argument; no splitting is performed.

You don’t need the final ‘;;’, but you should use it.

Posix requires support for case patterns with opening parentheses like this:

case $file_name in

(*.c) echo "C source code";;

esac

but the (in this example is not portable to a few obsolescent Bourne shell
implementations, which is a pity for those of us using tools that rely on balanced
parentheses. For instance, with Solaris 10 /bin/sh:

$ case foo in (foo) echo foo;; esac

error syntax error: `(' unexpected

The leading ‘(’ can be omitted safely. Unfortunately, there are contexts where
unbalanced parentheses cause other problems, such as when using a syntax-
highlighting editor that searches for the balancing counterpart, or more impor-
tantly, when using a case statement as an underquoted argument to an Autoconf
macro. See Section 8.1.7 [Balancing Parentheses], page 137, for trade-offs
involved in various styles of dealing with unbalanced ‘)’.

Zsh handles pattern fragments derived from parameter expansions or command
substitutions as though quoted:

$ pat=\?; case aa in ?$pat) echo match;; esac

$ pat=\?; case a? in ?$pat) echo match;; esac

match

Because of a bug in its fnmatch, Bash fails to properly handle backslashes in
character classes:

bash-2.02$ case /tmp in [/\\]*) echo OK;; esac

Chapter 11: Portable Shell Programming 231

bash-2.02$

This is extremely unfortunate, since you are likely to use this code to handle
Posix or MS-DOS absolute file names. To work around this bug, always put the
backslash first:

bash-2.02$ case '\TMP' in [\\/]*) echo OK;; esac

OK

bash-2.02$ case /tmp in [\\/]*) echo OK;; esac

OK

Many Bourne shells cannot handle closing brackets in character classes correctly.

Some shells also have problems with backslash escaping in case you do not want
to match the backslash: both a backslash and the escaped character match this
pattern. To work around this, specify the character class in a variable, so that
quote removal does not apply afterwards, and the special characters don’t have
to be backslash-escaped:

$ case '\' in [\<]) echo OK;; esac

OK

$ scanset='[<]'; case '\' in $scanset) echo OK;; esac

$

Even with this, Solaris ksh matches a backslash if the set contains any of the
characters ‘|’, ‘&’, ‘(’, or ‘)’.

Conversely, Tru64 ksh (circa 2003) erroneously always matches a closing paren-
thesis if not specified in a character class:

$ case foo in *\)*) echo fail ;; esac

fail

$ case foo in *')'*) echo fail ;; esac

fail

Some shells, such as Ash 0.3.8, are confused by an empty case/esac:

ash-0.3.8 $ case foo in esac;

error Syntax error: ";" unexpected (expecting ")")

Posix requires case to give an exit status of 0 if no cases match. However,
/bin/sh in Solaris 10 does not obey this rule. Meanwhile, it is unclear whether
a case that matches, but contains no statements, must also change the exit
status to 0. The M4sh macro AS_CASE works around these inconsistencies.

$ bash -c 'case `false` in ?) ;; esac; echo $?'
0

$ /bin/sh -c 'case `false` in ?) ;; esac; echo $?'
255

cd Posix 1003.1-2001 requires that cd must support the -L (“logical”) and -P

(“physical”) options, with -L being the default. However, traditional shells do
not support these options, and their cd command has the -P behavior.

Portable scripts should assume neither option is supported, and should assume
neither behavior is the default. This can be a bit tricky, since the Posix default
behavior means that, for example, ‘ls ..’ and ‘cd ..’ may refer to different
directories if the current logical directory is a symbolic link. It is safe to use cd

232 Autoconf

dir if dir contains no .. components. Also, Autoconf-generated scripts check
for this problem when computing variables like ac_top_srcdir (see Section 4.6
[Configuration Actions], page 25), so it is safe to cd to these variables.

Posix states that behavior is undefined if cd is given an explicit empty argument.
Some shells do nothing, some change to the first entry in CDPATH, some change
to HOME, and some exit the shell rather than returning an error. Unfortunately,
this means that if ‘$var’ is empty, then ‘cd "$var"’ is less predictable than
‘cd $var’ (at least the latter is well-behaved in all shells at changing to HOME,
although this is probably not what you wanted in a script). You should check
that a directory name was supplied before trying to change locations.

See Section 11.12 [Special Shell Variables], page 219, for portability problems
involving cd and the CDPATH environment variable. Also please see the discussion
of the pwd command.

echo The simple echo is probably the most surprising source of portability troubles.
It is not possible to use ‘echo’ portably unless both options and escape sequences
are omitted. Don’t expect any option.

Do not use backslashes in the arguments, as there is no consensus on their
handling. For ‘echo '\n' | wc -l’, the sh of Solaris 10 outputs 2, but Bash and
Zsh (in sh emulation mode) output 1. The problem is truly echo: all the shells
understand ‘'\n'’ as the string composed of a backslash and an ‘n’. Within
a command substitution, ‘echo 'string\c'’ will mess up the internal state of
ksh88 on AIX 6.1 so that it will print the first character ‘s’ only, followed by
a newline, and then entirely drop the output of the next echo in a command
substitution.

Because of these problems, do not pass a string containing arbitrary characters
to echo. For example, ‘echo "$foo"’ is safe only if you know that foo’s value
cannot contain backslashes and cannot start with ‘-’.

Normally, printf is safer and easier to use than echo and echo -n. Thus, you
should use printf "%s\n" instead of echo, and similarly use printf %s instead
of echo -n.

Older scripts, written before printf was portable, sometimes used a here-
document as a safer alternative to echo, like this:

cat <<EOF

$foo

EOF

eval The eval command is useful in limited circumstances, e.g., using commands
like ‘eval table_$key=\$value’ and ‘eval value=table_$key’ to simulate a
hash table when the key is known to be alphanumeric.

You should also be wary of common bugs in eval implementations. In some shell
implementations (e.g., older ash, OpenBSD 3.8 sh, pdksh v5.2.14 99/07/13.2,
and zsh 4.2.5), the arguments of ‘eval’ are evaluated in a context where ‘$?’ is
0, so they exhibit behavior like this:

$ false; eval 'echo $?'
0

Chapter 11: Portable Shell Programming 233

The correct behavior here is to output a nonzero value, but portable scripts
should not rely on this.

You should not rely on LINENO within eval. See Section 11.12 [Special Shell
Variables], page 219.

Note that, even though these bugs are easily avoided, eval is tricky to use on
arbitrary arguments. It is obviously unwise to use ‘eval $cmd’ if the string value
of ‘cmd’ was derived from an untrustworthy source. But even if the string value
is valid, ‘eval $cmd’ might not work as intended, since it causes field splitting
and file name expansion to occur twice, once for the eval and once for the
command itself. It is therefore safer to use ‘eval "$cmd"’. For example, if cmd
has the value ‘cat test?.c’, ‘eval $cmd’ might expand to the equivalent of ‘cat
test;.c’ if there happens to be a file named test;.c in the current directory;
and this in turn mistakenly attempts to invoke cat on the file test and then
execute the command .c. To avoid this problem, use ‘eval "$cmd"’ rather than
‘eval $cmd’.

However, suppose that you want to output the text of the evaluated command
just before executing it. Assuming the previous example, ‘echo "Executing:

$cmd"’ outputs ‘Executing: cat test?.c’, but this output doesn’t show the
user that ‘test;.c’ is the actual name of the copied file. Conversely, ‘eval
"echo Executing: $cmd"’ works on this example, but it fails with ‘cmd='cat
foo >bar'’, since it mistakenly replaces the contents of bar by the string ‘cat
foo’. No simple, general, and portable solution to this problem is known.

exec Posix describes several categories of shell built-ins. Special built-ins (such
as exit) must impact the environment of the current shell, and need not be
available through exec. All other built-ins are regular, and must not propagate
variable assignments to the environment of the current shell. However, the group
of regular built-ins is further distinguished by commands that do not require
a PATH search (such as cd), in contrast to built-ins that are offered as a more
efficient version of something that must still be found in a PATH search (such as
echo). Posix is not clear on whether exec must work with the list of 17 utilities
that are invoked without a PATH search, and many platforms lack an executable
for some of those built-ins:

$ sh -c 'exec cd /tmp'

sh: line 0: exec: cd: not found

All other built-ins that provide utilities specified by Posix must have a coun-
terpart executable that exists on PATH, although Posix allows exec to use the
built-in instead of the executable. For example, contrast bash 3.2 and pdksh

5.2.14:

$ bash -c 'pwd --version' | head -n1

bash: line 0: pwd: --: invalid option

pwd: usage: pwd [-LP]

$ bash -c 'exec pwd --version' | head -n1

pwd (GNU coreutils) 6.10

$ pdksh -c 'exec pwd --version' | head -n1

pdksh: pwd: --: unknown option

234 Autoconf

When it is desired to avoid a regular shell built-in, the workaround is to use
some other forwarding command, such as env or nice, that will ensure a path
search:

$ pdksh -c 'exec true --version' | head -n1

$ pdksh -c 'nice true --version' | head -n1

true (GNU coreutils) 6.10

$ pdksh -c 'env true --version' | head -n1

true (GNU coreutils) 6.10

exit The default value of exit is supposed to be $?; unfortunately, some shells, such
as the DJGPP port of Bash 2.04, just perform ‘exit 0’.

bash-2.04$ foo=`exit 1` || echo fail

fail

bash-2.04$ foo=`(exit 1)` || echo fail

fail

bash-2.04$ foo=`(exit 1); exit` || echo fail

bash-2.04$

Using ‘exit $?’ restores the expected behavior.

Some shell scripts, such as those generated by autoconf, use a trap to clean up
before exiting. If the last shell command exited with nonzero status, the trap
also exits with nonzero status so that the invoker can tell that an error occurred.

Unfortunately, in some shells, such as Solaris 10 /bin/sh, an exit trap ignores
the exit command’s argument. In these shells, a trap cannot determine whether
it was invoked by plain exit or by exit 1. Instead of calling exit directly, use
the AC_MSG_ERROR macro that has a workaround for this problem.

export The builtin export dubs a shell variable environment variable. Each update
of exported variables corresponds to an update of the environment variables.
Conversely, each environment variable received by the shell when it is launched
should be imported as a shell variable marked as exported.

Alas, many shells, such as Solaris 10 /bin/sh, IRIX 6.3, IRIX 5.2, AIX 4.1.5,
and Digital Unix 4.0, forget to export the environment variables they receive.
As a result, two variables coexist: the environment variable and the shell variable.
The following code demonstrates this failure:

#!/bin/sh

echo $FOO

FOO=bar

echo $FOO

exec /bin/sh $0

when run with ‘FOO=foo’ in the environment, these shells print alternately ‘foo’
and ‘bar’, although they should print only ‘foo’ and then a sequence of ‘bar’s.

Therefore you should export again each environment variable that you update;
the export can occur before or after the assignment.

Posix is not clear on whether the export of an undefined variable causes the
variable to be defined with the value of an empty string, or merely marks any

Chapter 11: Portable Shell Programming 235

future definition of a variable by that name for export. Various shells behave
differently in this regard:

$ sh -c 'export foo; env | grep foo'

$ ash -c 'export foo; env | grep foo'

foo=

Posix requires export to honor assignments made as arguments, but older shells
do not support this, including /bin/sh in Solaris 10. Portable scripts should
separate assignments and exports into different statements.

$ bash -c 'export foo=bar; echo $foo'
bar

$ /bin/sh -c 'export foo=bar; echo $foo'
/bin/sh: foo=bar: is not an identifier

$ /bin/sh -c 'export foo; foo=bar; echo $foo'
bar

Posix requires export to work with any arbitrary value for the contents of the
variable being exported, as long as the total size of the environment combined
with arguments doesn’t exceed ARG_MAX when executing a child process. How-
ever, some shells have extensions that involve interpreting some environment
values specially, regardless of the variable name. We currently know of one case:
all versions of Bash released prior to 27 September 2014 interpret an environ-
ment variable with an initial content substring of () { as an exported function
definition (this is the “Shellshock” remote execution bug, CVE-2014-6271 and
friends, where it was possible to exploit the function parser to cause remote code
execution on child bash startup; newer versions of Bash use special environment
variable names instead of values to implement the same feature).

There may be entries inherited into the environment that are not valid as shell
variable names; Posix states that processes should be tolerant of these names.
Some shells such as dash do this by removing those names from the environment
at startup, while others such as bash hide the entry from shell access but still
pass it on to child processes. While you can set such names using env for a direct
child process, you cannot rely on them being preserved through an intermediate
pass through the shell.

false Don’t expect false to exit with status 1: in native Solaris /bin/false exits
with status 255.

for To loop over positional arguments, use:

for arg

do

echo "$arg"

done

You may not leave the do on the same line as for, since some shells improperly
grok:

for arg; do

echo "$arg"

done

236 Autoconf

If you want to explicitly refer to the positional arguments, given the ‘$@’ bug
(see Section 11.8 [Shell Substitutions], page 209), use:

for arg in ${1+"$@"}; do

echo "$arg"

done

But keep in mind that Zsh, even in Bourne shell emulation mode, performs
word splitting on ‘${1+"$@"}’; see Section 11.8 [Shell Substitutions], page 209,
item ‘$@’, for more.

Posix requires support for a for loop with no list after in. However, Solaris
10 /bin/sh treats that as a syntax error. It is possible to work around this by
providing any shell word that expands to nothing, or by ignoring an obvious
sentinel.

$ /bin/sh -c 'for a in $empty; do echo hi; done'

$ /bin/sh -c 'for a in ; do echo hi; done'

/bin/sh: syntax error at line 1: `;' unexpected

This syntax problem is most frequently encountered in code that goes through
several layers of expansion, such as an m4 macro or makefile variable used as a
list body, where the first layer of expansion (m4 or make) can end up expanding
to nothing in the version handed to the shell. In the makefile context, one
common workaround is to use a shell variable rather than a make variable as
the source of the list.

$ cat Makefile

list =

bad:

@for arg in $(list); do echo $$arg; done

good:

@list='$(list)'; for arg in $$list; do echo $$arg; done

$ make bad 2&>1 | head -n1

sh: syntax error at line 1: `;' unexpected

$ make bad list='a b'

a

b

$ make good

$ make good list='a b'

a

b

In Solaris 10 /bin/sh, when the list of arguments of a for loop starts with
unquoted tokens looking like variable assignments, the loop is not executed on
those tokens:

$ /bin/sh -c 'for v in a=b c=d x e=f; do echo $v; done'

x

e=f

Thankfully, quoting the assignment-like tokens, or starting the list with other
tokens (including unquoted variable expansion that results in an assignment-like
result), avoids the problem, so it is easy to work around:

Chapter 11: Portable Shell Programming 237

$ /bin/sh -c 'for v in "a=b"; do echo $v; done'

a=b

$ /bin/sh -c 'x=a=b; for v in $x c=d; do echo $v; done'

a=b

c=d

if If an if command is not inside AC_DEFUN, and it contains calls to Autoconf
macros, it should be rewritten using AS_IF. See Section 9.1 [Common Shell
Constructs], page 175.

Using if ! ... is not portable. See [! notes], page 228.

Some very old shells did not reset the exit status from an if with no else:

$ if (exit 42); then true; fi; echo $?
42

whereas a proper shell should have printed ‘0’. Although this is no longer
a portability problem, as any shell that supports functions gets it correct, it
explains why some makefiles have lengthy constructs:

if test -f "$file"; then

install "$file" "$dest"

else

:

fi

printf A format string starting with a ‘-’ can cause problems. Bash interprets it as an
option and gives an error. And ‘--’ to mark the end of options is not good in
the NetBSD Almquist shell (e.g., 0.4.6) which takes that literally as the format
string. Putting the ‘-’ in a ‘%c’ or ‘%s’ is probably easiest:

printf %s -foo

AIX 7.2 sh mishandles octal escapes in multi-byte locales by treating them as
characters instead of bytes. For example, in a locale using the UTF-8 encoding,
‘printf '\351'’ outputs the two bytes C3, A9 (the UTF-8 encoding for U+00E9)
instead of the desired single byte E9. To work around the bug, use the C locale.

Bash 2.03 mishandles an escape sequence that happens to evaluate to ‘%’:

$ printf '\045'

bash: printf: `%': missing format character

Large outputs may cause trouble. On Solaris 10, for example, /usr/bin/printf
is buggy, so when using /bin/sh the command ‘printf %010000x 123’ normally
dumps core.

Since printf is not always a shell builtin, there is a potential speed penalty for
using printf '%s\n' as a replacement for an echo that does not interpret ‘\’
or leading ‘-’. With Solaris ksh, it is possible to use print -r -- for this role
instead.

See [Limitations of Shell Builtins], page 232, for a discussion of portable alterna-
tives to both printf and echo.

pwd With modern shells, plain pwd outputs a “logical” directory name, some of whose
components may be symbolic links. These directory names are in contrast to
“physical” directory names, whose components are all directories.

238 Autoconf

Posix 1003.1-2001 requires that pwd must support the -L (“logical”) and -P

(“physical”) options, with -L being the default. However, traditional shells do
not support these options, and their pwd command has the -P behavior.

Portable scripts should assume neither option is supported, and should assume
neither behavior is the default. Also, on many hosts ‘/bin/pwd’ is equivalent to
‘pwd -P’, but Posix does not require this behavior and portable scripts should
not rely on it.

Typically it’s best to use plain pwd. On modern hosts this outputs logical
directory names, which have the following advantages:

• Logical names are what the user specified.

• Physical names may not be portable from one installation host to another
due to network file system gymnastics.

• On modern hosts ‘pwd -P’ may fail due to lack of permissions to some
parent directory, but plain pwd cannot fail for this reason.

Also please see the discussion of the cd command.

read No options are portable, not even support -r (Solaris 10 /bin/sh for example).
Tru64/OSF 5.1 sh treats read as a special built-in, so it may exit if input is
redirected from a non-existent or unreadable file.

set With the FreeBSD 6.0 shell, the set command (without any options) does not
sort its output.

The set builtin faces the usual problem with arguments starting with a dash.
Modern shells such as Bash or Zsh understand -- to specify the end of the
options (any argument after -- is a parameter, even ‘-x’ for instance), but many
traditional shells (e.g., Solaris 10 /bin/sh) simply stop option processing as
soon as a non-option argument is found. Therefore, use ‘dummy’ or simply ‘x’ to
end the option processing, and use shift to pop it out:

set x $my_list; shift

Avoid ‘set -’, e.g., ‘set - $my_list’. Posix no longer requires support for
this command, and in traditional shells ‘set - $my_list’ resets the -v and -x

options, which makes scripts harder to debug.

Some nonstandard shells do not recognize more than one option (e.g., ‘set -e

-x’ assigns ‘-x’ to the command line). It is better to combine them:

set -ex

The -e option has historically been under-specified, with enough ambiguities to
cause numerous differences across various shell implementations; see for example
this overview (https://www.in-ulm.de/~mascheck/various/set-e/), or this
link (https://www.austingroupbugs.net/view.php?id=52), documenting a
change to Posix 2008 to match ksh88 behavior. Note that mixing set -e and
shell functions is asking for surprises:

set -e

doit()

{

rm file

https://www.in-ulm.de/~mascheck/various/set-e/
https://www.austingroupbugs.net/view.php?id=52
https://www.austingroupbugs.net/view.php?id=52

Chapter 11: Portable Shell Programming 239

echo one

}

doit || echo two

According to the recommendation, ‘one’ should always be output regardless of
whether the rm failed, because it occurs within the body of the shell function
‘doit’ invoked on the left side of ‘||’, where the effects of ‘set -e’ are not
enforced. Likewise, ‘two’ should never be printed, since the failure of rm does
not abort the function, such that the status of ‘doit’ is 0.

The BSD shell has had several problems with the -e option. Older versions of
the BSD shell (circa 1990) mishandled ‘&&’, ‘||’, ‘if’, and ‘case’ when -e was in
effect, causing the shell to exit unexpectedly in some cases. This was particularly
a problem with makefiles, and led to circumlocutions like ‘sh -c 'test -f file

|| touch file'’, where the seemingly-unnecessary ‘sh -c '...'’ wrapper works
around the bug (see Section 12.2 [Failure in Make Rules], page 263).

Even relatively-recent versions of the BSD shell (e.g., OpenBSD 3.4) wrongly
exit with -e if the last command within a compound statement fails and is
guarded by an ‘&&’ only. For example:

#! /bin/sh

set -e

foo=''

test -n "$foo" && exit 1

echo one

if :; then

test -n "$foo" && exit 1

echo two

test -n "$foo" && exit 1

fi

echo three

does not print ‘three’. One workaround is to change the last instance of ‘test -n

"$foo" && exit 1’ to be ‘if test -n "$foo"; then exit 1; fi’ instead. An-
other possibility is to warn BSD users not to use ‘sh -e’.

When ‘set -e’ is in effect, a failed command substitution in Solaris 10 /bin/sh

cannot be ignored, even with ‘||’.

$ /bin/sh -c 'set -e; foo=`false` || echo foo; echo bar'

$ bash -c 'set -e; foo=`false` || echo foo; echo bar'

foo

bar

Moreover, a command substitution, successful or not, causes this shell to exit
from a failing outer command even in presence of an ‘&&’ list:

$ bash -c 'set -e; false `true` && echo notreached; echo ok'

ok

$ sh -c 'set -e; false `true` && echo notreached; echo ok'

$

240 Autoconf

Portable scripts should not use ‘set -e’ if trap is used to install an exit handler.
This is because Tru64/OSF 5.1 sh sometimes enters the trap handler with the
exit status of the command prior to the one that triggered the errexit handler:

$ sh -ec 'trap '\''echo $?'\'' 0; false'

0

$ sh -c 'set -e; trap '\''echo $?'\'' 0; false'

1

Thus, when writing a script in M4sh, rather than trying to rely on ‘set -e’, it
is better to use ‘AS_EXIT’ where it is desirable to abort on failure.

Job control is not provided by all shells, so the use of ‘set -m’ or ‘set -b’ must
be done with care. When using zsh in native mode, asynchronous notification
(‘set -b’) is enabled by default, and using ‘emulate sh’ to switch to Posix
mode does not clear this setting (although asynchronous notification has no
impact unless job monitoring is also enabled). Also, zsh 4.3.10 and earlier have
a bug where job control can be manipulated in interactive shells, but not in
subshells or scripts. Furthermore, some shells, like pdksh, fail to treat subshells
as interactive, even though the parent shell was.

$ echo $ZSH_VERSION
4.3.10

$ set -m; echo $?
0

$ zsh -c 'set -m; echo $?'
set: can't change option: -m

$ (set -m); echo $?
set: can't change option: -m

1

$ pdksh -ci 'echo $-; (echo $-)'
cim

c

Use of set -n (typically via sh -n script) to validate a script is not foolproof.
Modern ksh93 tries to be helpful by informing you about better syntax, but
switching the script to use the suggested syntax in order to silence the warnings
would render the script no longer portable to older shells:

$ ksh -nc '``'

ksh: warning: line 1: `...` obsolete, use $(...)

0

Autoconf itself uses sh -n within its testsuite to check that correct scripts were
generated, but only after first probing for other shell features (such as test

${BASH_VERSION+y}) that indicate a reasonably fast and working implementa-
tion.

shift Not only is shifting a bad idea when there is nothing left to shift, but in
addition it is not portable: the shell of MIPS RISC/OS 4.52 refuses to do it.

Don’t use ‘shift 2’ etc.; while it in the SVR1 shell (1983), it is also absent in
many pre-Posix shells.

source This command is not portable, as Posix does not require it; use . instead.

Chapter 11: Portable Shell Programming 241

test The test program is the way to perform many file and string tests. It is often
invoked by the alternate name ‘[’, but using that name in Autoconf code is
asking for trouble since it is an M4 quote character.

The -a, -o, ‘(’, and ‘)’ operands are not present in all implementations, and
have been marked obsolete by Posix 2008. This is because there are inherent
ambiguities in using them. For example, ‘test "$1" -a "$2"’ looks like a binary
operator to check whether two strings are both non-empty, but if ‘$1’ is the
literal ‘!’, then some implementations of test treat it as a negation of the unary
operator -a.

Thus, portable uses of test should never have more than four arguments, and
scripts should use shell constructs like ‘&&’ and ‘||’ instead. If you combine ‘&&’
and ‘||’ in the same statement, keep in mind that they have equal precedence,
so it is often better to parenthesize even when this is redundant. For example:

Not portable:

test "X$a" = "X$b" -a \

'(' "X$c" != "X$d" -o "X$e" = "X$f" ')'

Portable:

test "X$a" = "X$b" &&

{ test "X$c" != "X$d" || test "X$e" = "X$f"; }

test does not process options like most other commands do; for example, it
does not recognize the -- argument as marking the end of options.

It is safe to use ‘!’ as a test operator. For example, ‘if test ! -d foo; ...’
is portable even though ‘if ! test -d foo; ...’ is not.

test (files)
To enable configure scripts to support cross-compilation, they shouldn’t do
anything that tests features of the build system instead of the host system. But
occasionally you may find it necessary to check whether some arbitrary file
exists. To do so, use ‘test -f’, ‘test -r’, or ‘test -x’. Do not use ‘test -e’,
because Solaris 10 /bin/sh lacks it. To test for symbolic links on systems that
have them, use ‘test -h’ rather than ‘test -L’; either form conforms to Posix
1003.1-2001, but -h has been around longer.

For historical reasons, Posix reluctantly allows implementations of ‘test -x’
that will succeed for the root user, even if no execute permissions are present.
Furthermore, shells do not all agree on whether Access Control Lists should
affect ‘test -r’, ‘test -w’, and ‘test -x’; some shells base test results strictly
on the current user id compared to file owner and mode, as if by stat(2);
while other shells base test results on whether the current user has the given
right, even if that right is only granted by an ACL, as if by faccessat(2).
Furthermore, there is a classic time of check to time of use race between any
use of test followed by operating on the just-checked file. Therefore, it is a
good idea to write scripts that actually attempt an operation, and are prepared
for the resulting failure if permission is denied, rather than trying to avoid an
operation based solely on whether test guessed that it might not be permitted.

242 Autoconf

test (strings)
Posix says that ‘test "string"’ succeeds if string is not null, but this usage is
not portable to traditional platforms like Solaris 10 /bin/sh, which mishandle
strings like ‘!’ and ‘-n’. However, it is portable to test if a variable is set to a
non-empty value, by using ‘test ${var+y}’, since all known implementations
properly distinguish between no arguments and a known-safe string of ‘y’.

Posix also says that ‘test ! "string"’, ‘test -n "string"’ and ‘test -z

"string"’ work with any string, but many shells (such as Solaris 10, AIX 3.2,
UNICOS 10.0.0.6, Digital Unix 4, etc.) get confused if string looks like an
operator:

$ test -n =

test: argument expected

$ test ! -n

test: argument expected

$ test -z ")"; echo $?
0

Similarly, Posix says that both ‘test "string1" = "string2"’ and ‘test
"string1" != "string2"’ work for any pairs of strings, but in practice this is
not true for troublesome strings that look like operators or parentheses, or that
begin with ‘-’.

It is best to protect such strings with a leading ‘X’, e.g., ‘test "Xstring" != X’
rather than ‘test -n "string"’ or ‘test ! "string"’.

It is common to find variations of the following idiom:

test -n "`echo $ac_feature | sed 's/[-a-zA-Z0-9_]//g'`" &&

action

to take an action when a token matches a given pattern. Such constructs should
be avoided by using:

AS_CASE([$ac_feature],

[[*[!-a-zA-Z0-9_]*]], [action])

If the pattern is a complicated regular expression that cannot be expressed as a
shell pattern, use something like this instead:

expr "X$ac_feature" : 'X.*[^-a-zA-Z0-9_]' >/dev/null &&

action

‘expr "Xfoo" : "Xbar"’ is more robust than ‘echo "Xfoo" | grep "^Xbar"’, be-
cause it avoids problems when ‘foo’ contains backslashes.

trap It is safe to trap at least the signals 1, 2, 13, and 15. You can also trap 0, i.e.,
have the trap run when the script ends (either via an explicit exit, or the end
of the script). The trap for 0 should be installed outside of a shell function, or
AIX 5.3 /bin/sh will invoke the trap at the end of this function.

Posix says that ‘trap - 1 2 13 15’ resets the traps for the specified signals
to their default values, but many common shells (e.g., Solaris 10 /bin/sh)
misinterpret this and attempt to execute a “command” named - when the
specified conditions arise. Posix 2008 also added a requirement to support ‘trap
1 2 13 15’ to reset traps, as this is supported by a larger set of shells, but there

Chapter 11: Portable Shell Programming 243

are still shells like dash that mistakenly try to execute 1 instead of resetting
the traps. Therefore, there is no portable workaround, except for ‘trap - 0’, for
which ‘trap '' 0’ is a portable substitute.

Although Posix is not absolutely clear on this point, it is widely admitted that
when entering the trap ‘$?’ should be set to the exit status of the last command
run before the trap. The ambiguity can be summarized as: “when the trap is
launched by an exit, what is the last command run: that before exit, or exit
itself?”

Bash considers exit to be the last command, while Zsh and Solaris 10 /bin/sh

consider that when the trap is run it is still in the exit, hence it is the previous
exit status that the trap receives:

$ cat trap.sh

trap 'echo $?' 0

(exit 42); exit 0

$ zsh trap.sh

42

$ bash trap.sh

0

The portable solution is then simple: when you want to ‘exit 42’, run ‘(exit
42); exit 42’, the first exit being used to set the exit status to 42 for Zsh,
and the second to trigger the trap and pass 42 as exit status for Bash. In M4sh,
this is covered by using AS_EXIT.

The shell in FreeBSD 4.0 has the following bug: ‘$?’ is reset to 0 by empty lines
if the code is inside trap.

$ trap 'false

echo $?' 0

$ exit

0

Fortunately, this bug only affects trap.

Several shells fail to execute an exit trap that is defined inside a subshell, when
the last command of that subshell is not a builtin. A workaround is to use ‘exit
$?’ as the shell builtin.

$ bash -c '(trap "echo hi" 0; /bin/true)'

hi

$ /bin/sh -c '(trap "echo hi" 0; /bin/true)'

$ /bin/sh -c '(trap "echo hi" 0; /bin/true; exit $?)'
hi

Likewise, older implementations of bash failed to preserve ‘$?’ across an exit
trap consisting of a single cleanup command.

$ bash -c 'trap "/bin/true" 0; exit 2'; echo $?
2

$ bash-2.05b -c 'trap "/bin/true" 0; exit 2'; echo $?
0

$ bash-2.05b -c 'trap ":; /bin/true" 0; exit 2'; echo $?

244 Autoconf

2

Be aware that a trap can be called from any number of places in your script, and
therefore the trap handler should not make assumptions about shell state. For
some examples, if your script temporarily modifies IFS, then the trap should
include an initialization back to its typical value of space-tab-newline (autoconf
does this for generated configure files). Likewise, if your script changes the
current working directory at some point after the trap is installed, then your trap
cannot assume which directory it is in, and should begin by changing directories
to an absolute path if that is important to the cleanup efforts (autotest does
this for generated testsuite files).

true Don’t worry: as far as we know true is portable. Nevertheless, it’s not always a
builtin (e.g., Bash 1.x), and the portable shell community tends to prefer using
:. This has a funny side effect: when asked whether false is more portable
than true Alexandre Oliva answered:

In a sense, yes, because if it doesn’t exist, the shell will produce an
exit status of failure, which is correct for false, but not for true.

Remember that even though ‘:’ ignores its arguments, it still takes time to
compute those arguments. It is a good idea to use double quotes around any
arguments to ‘:’ to avoid time spent in field splitting and file name expansion.

unset In some nonconforming shells (e.g., Solaris 10 /bin/ksh and /usr/xpg4/bin/sh,
NetBSD 5.99.43 sh, or Bash 2.05a), unset FOO fails when FOO is not set. This
can interfere with set -e operation. You can use

FOO=; unset FOO

if you are not sure that FOO is set.

A few ancient shells lack unset entirely. For some variables such as PS1, you
can use a neutralizing value instead:

PS1='$ '

Usually, shells that do not support unset need less effort to make the environment
sane, so for example is not a problem if you cannot unset CDPATH on those shells.
However, Bash 2.01 mishandles unset MAIL and unset MAILPATH in some cases
and dumps core. So, you should do something like

((unset MAIL) || exit 1) >/dev/null 2>&1 && unset MAIL || :

See Section 11.12 [Special Shell Variables], page 219, for some neutralizing
values. Also, see [Limitations of Builtins], page 234, for the case of environment
variables.

wait The exit status of wait is not always reliable.

11.15 Limitations of Usual Tools

The small set of tools you can expect to find on any machine can still include some limitations
you should be aware of.

awk Don’t leave white space before the opening parenthesis in a user function call.
Posix does not allow this and GNU Awk rejects it:

$ gawk 'function die () { print "Aaaaarg!" }

Chapter 11: Portable Shell Programming 245

BEGIN { die () }'

gawk: cmd. line:2: BEGIN { die () }

gawk: cmd. line:2: ^ parse error

$ gawk 'function die () { print "Aaaaarg!" }

BEGIN { die() }'

Aaaaarg!

Posix says that if a program contains only ‘BEGIN’ actions, and contains no
instances of getline, then the program merely executes the actions without
reading input. However, traditional Awk implementations (such as Solaris 10
awk) read and discard input in this case. Portable scripts can redirect input
from /dev/null to work around the problem. For example:

awk 'BEGIN {print "hello world"}' </dev/null

Posix says that in an ‘END’ action, ‘$NF’ (and presumably, ‘$1’) retain their value
from the last record read, if no intervening ‘getline’ occurred. However, some
implementations (such as Solaris 10 ‘/usr/bin/awk’, ‘nawk’, or Darwin ‘awk’)
reset these variables. A workaround is to use an intermediate variable prior to
the ‘END’ block. For example:

$ cat end.awk

{ tmp = $1 }

END { print "a", $1, $NF, "b", tmp }

$ echo 1 | awk -f end.awk

a b 1

$ echo 1 | gawk -f end.awk

a 1 1 b 1

If you want your program to be deterministic, don’t depend on for on arrays:

$ cat for.awk

END {

arr["foo"] = 1

arr["bar"] = 1

for (i in arr)

print i

}

$ gawk -f for.awk </dev/null

foo

bar

$ nawk -f for.awk </dev/null

bar

foo

Some Awk implementations, such as HP-UX 11.0’s native one, mishandle
anchors:

$ echo xfoo | $AWK '/foo|^bar/ { print }'

$ echo bar | $AWK '/foo|^bar/ { print }'

bar

$ echo xfoo | $AWK '/^bar|foo/ { print }'

xfoo

246 Autoconf

$ echo bar | $AWK '/^bar|foo/ { print }'

bar

Either do not depend on such patterns (i.e., use ‘/^(.*foo|bar)/’, or use a
simple test to reject such implementations.

On ‘ia64-hp-hpux11.23’, Awk mishandles printf conversions after %u:

$ awk 'BEGIN { printf "%u %d\n", 0, -1 }'

0 0

AIX version 5.2 has an arbitrary limit of 399 on the length of regular expressions
and literal strings in an Awk program.

Traditional Awk implementations derived from Unix version 7, such as Solaris
/bin/awk, have many limitations and do not conform to Posix. Nowadays
AC_PROG_AWK (see Section 5.2.1 [Particular Programs], page 47) finds you an
Awk that doesn’t have these problems, but if for some reason you prefer not to
use AC_PROG_AWK you may need to address them. For more detailed descriptions,
see Section “awk language history” in GNU Awk User’s Guide.

Traditional Awk does not support multidimensional arrays or user-defined
functions.

Traditional Awk does not support the -v option. You can use assignments after
the program instead, e.g., $AWK '{print v $1}' v=x; however, don’t forget that
such assignments are not evaluated until they are encountered (e.g., after any
BEGIN action).

Traditional Awk does not support the keywords delete or do.

Traditional Awk does not support the expressions a?b:c, !a, a^b, or a^=b.

Traditional Awk does not support the predefined CONVFMT or ENVIRON variables.

Traditional Awk supports only the predefined functions exp, index, int, length,
log, split, sprintf, sqrt, and substr.

Traditional Awk getline is not at all compatible with Posix; avoid it.

Traditional Awk has for (i in a) ... but no other uses of the in keyword. For
example, it lacks if (i in a)

In code portable to both traditional and modern Awk, FS must be a string
containing just one ordinary character, and similarly for the field-separator
argument to split.

Traditional Awk has a limit of 99 fields in a record. Since some Awk imple-
mentations, like Tru64’s, split the input even if you don’t refer to any field in
the script, to circumvent this problem, set ‘FS’ to an unusual character and use
split.

Traditional Awk has a limit of at most 99 bytes in a number formatted by OFMT;
for example, OFMT="%.300e"; print 0.1; typically dumps core.

The original version of Awk had a limit of at most 99 bytes per split field, 99
bytes per substr substring, and 99 bytes per run of non-special characters in a
printf format, but these bugs have been fixed on all practical hosts that we
know of.

HP-UX 11.00 and IRIX 6.5 Awk require that input files have a line length of at
most 3070 bytes.

Chapter 11: Portable Shell Programming 247

basename Long ago some hosts lacked a working basename, and portable scripts needed
to use expr instead. Nowadays it is safe to use basename. For example:

base=`basename -- "$file"`

cat Don’t rely on any option.

cc The command ‘cc -c foo.c’ traditionally produces an object file named foo.o.
Most compilers allow -c to be combined with -o to specify a different object
file name, but Posix does not require this combination and a few compilers lack
support for it. See Section 5.10.3 [C Compiler], page 83, for how GNU Make
tests for this feature with AC_PROG_CC_C_O.

When a compilation such as ‘cc -o foo foo.c’ fails, some compilers (such as
CDS on Reliant Unix) leave a foo.o.

HP-UX cc doesn’t accept .S files to preprocess and assemble. ‘cc -c foo.S’
appears to succeed, but in fact does nothing.

The default executable, produced by ‘cc foo.c’, can be

• a.out – usual Posix convention.

• b.out – i960 compilers (including gcc).

• a.exe – DJGPP port of gcc.

• a_out.exe – GNV cc wrapper for DEC C on OpenVMS.

• foo.exe – various MS-DOS compilers.

The C compiler’s traditional name is cc, but other names like gcc are common.
Posix 1003.1-2001 through 1003.1-2017 specify the name c99, but older Posix
editions specified c89, future POSIX standards will likely specify other com-
mands, and anyway these standard names are rarely used in practice. Typically
the C compiler is invoked from makefiles that use ‘$(CC)’, so the value of the
‘CC’ make variable selects the compiler name.

chgrp

chown It is not portable to change a file’s group to a group that the owner does not
belong to.

chmod Avoid usages like ‘chmod -w file’; use ‘chmod a-w file’ instead, for two reasons.
First, plain -w does not necessarily make the file unwritable, since it does not
affect mode bits that correspond to bits in the file mode creation mask. Second,
Posix says that the -w might be interpreted as an implementation-specific option,
not as a mode; Posix suggests using ‘chmod -- -w file’ to avoid this confusion,
but unfortunately ‘--’ does not work on some older hosts.

cmp cmp performs a raw data comparison of two files, while diff compares two text
files. Therefore, if you might compare DOS files, even if only checking whether
two files are different, use diff to avoid spurious differences due to differences
of newline encoding.

cp Avoid the -r option, since Posix 1003.1-2004 marks it as obsolescent and its
behavior on special files is implementation-defined. Use -R instead. On GNU
hosts the two options are equivalent, but on Solaris hosts (for example) cp -r

248 Autoconf

reads from pipes instead of replicating them. AIX 5.3 cp -R may corrupt its
own memory with some directory hierarchies and error out or dump core:

mkdir -p 12345678/12345678/12345678/12345678

touch 12345678/12345678/x

cp -R 12345678 t

cp: 0653-440 12345678/12345678/: name too long.

Some cp implementations (e.g., BSD/OS 4.2) do not allow trailing slashes at
the end of nonexistent destination directories. To avoid this problem, omit the
trailing slashes. For example, use ‘cp -R source /tmp/newdir’ rather than ‘cp
-R source /tmp/newdir/’ if /tmp/newdir does not exist.

The -f option is portable nowadays.

Traditionally, file timestamps had 1-second resolution, and ‘cp -p’ copied the
timestamps exactly. However, many modern file systems have timestamps with
1-nanosecond resolution. Unfortunately, some older ‘cp -p’ implementations
truncate timestamps when copying files, which can cause the destination file to
appear to be older than the source. The exact amount of truncation depends
on the resolution of the system calls that cp uses. Traditionally this was
utime, which has 1-second resolution. Less-ancient cp implementations such
as GNU Core Utilities 5.0.91 (2003) use utimes, which has 1-microsecond
resolution. Modern implementations such as GNU Core Utilities 6.12 (2008) can
set timestamps to the full nanosecond resolution, using the modern system calls
futimens and utimensat when they are available. As of 2011, though, many
platforms do not yet fully support these new system calls.

Bob Proulx notes that ‘cp -p’ always tries to copy ownerships. But whether
it actually does copy ownerships or not is a system dependent policy decision
implemented by the kernel. If the kernel allows it then it happens. If the kernel
does not allow it then it does not happen. It is not something cp itself has
control over.

In Unix System V any user can chown files to any other user, and System V
also has a non-sticky /tmp. That probably derives from the heritage of System
V in a business environment without hostile users. BSD changed this to be a
more secure model where only root can chown files and a sticky /tmp is used.
That undoubtedly derives from the heritage of BSD in a campus environment.

GNU/Linux and Solaris by default follow BSD, but can be configured to allow
a System V style chown. On the other hand, HP-UX follows System V, but can
be configured to use the modern security model and disallow chown. Since it is
an administrator-configurable parameter you can’t use the name of the kernel
as an indicator of the behavior.

date Some versions of date do not recognize special ‘%’ directives, and unfortunately,
instead of complaining, they just pass them through, and exit with success:

$ uname -a

OSF1 medusa.sis.pasteur.fr V5.1 732 alpha

$ date "+%s"

%s

Chapter 11: Portable Shell Programming 249

diff Option -u is nonportable.

Some implementations, such as Tru64’s, fail when comparing to /dev/null. Use
an empty file instead.

dirname Long ago some hosts lacked a working dirname and portable scripts needed
to use use AS_DIRNAME (see Chapter 9 [Programming in M4sh], page 175).
Nowadays dirname suffices and the following are equivalent:

dir=`dirname -- "$file"`

dir=`AS_DIRNAME(["$file"])`

egrep Although Posix stopped requiring egrep in 2001, a few traditional hosts (notably
Solaris 10) do not support the Posix replacement grep -E. Also, some traditional
implementations do not work on long input lines. To work around these problems,
invoke AC_PROG_EGREP and then use $EGREP.

Portable extended regular expressions should use ‘\’ only to escape characters
in the string ‘$()*+.?[\^{|’. For example, ‘\}’ is not portable, even though it
typically matches ‘}’.

The empty alternative is not portable. Use ‘?’ instead. For instance with Digital
Unix v5.0:

> printf "foo\n|foo\n" | $EGREP '^(|foo|bar)$'

|foo

> printf "bar\nbar|\n" | $EGREP '^(foo|bar|)$'

bar|

> printf "foo\nfoo|\n|bar\nbar\n" | $EGREP '^(foo||bar)$'

foo

|bar

For more information about what can appear in portable extended regular
expressions, see Section “Problematic Expressions” in GNU Grep.

$EGREP also suffers the limitations of grep (see [Limitations of Usual Tools],
page 251).

expr Not all implementations obey the Posix rule that ‘--’ separates options from
arguments; likewise, not all implementations provide the extension to Posix that
the first argument can be treated as part of a valid expression rather than an
invalid option if it begins with ‘-’. When performing arithmetic, use ‘expr 0 +

$var’ if ‘$var’ might be a negative number, to keep expr from interpreting it
as an option.

No expr keyword starts with ‘X’, so use ‘expr X"word" : 'Xregex'’ to keep
expr from misinterpreting word.

Don’t use length, substr, match and index.

expr (‘|’) You can use ‘|’. Although Posix does require that ‘expr ''’ return the empty
string, it does not specify the result when you ‘|’ together the empty string (or
zero) with the empty string. For example:

expr '' \| ''

Posix 1003.2-1992 returns the empty string for this case, but traditional Unix
returns ‘0’ (Solaris is one such example). In Posix 1003.1-2001, the specification

250 Autoconf

was changed to match traditional Unix’s behavior (which is bizarre, but it’s too
late to fix this). Please note that the same problem does arise when the empty
string results from a computation, as in:

expr bar : foo \| foo : bar

Avoid this portability problem by avoiding the empty string.

expr (‘:’) Portable expr regular expressions should use ‘\’ to escape only characters in the
string ‘$()*.123456789[\^{}’. For example, alternation, ‘\|’, is common but
Posix does not require its support, so it should be avoided in portable scripts.
Similarly, ‘\+’ and ‘\?’ should be avoided.

Portable expr regular expressions should not begin with ‘^’. Patterns are
automatically anchored so leading ‘^’ is not needed anyway.

On the other hand, the behavior of the ‘$’ anchor is not portable on multi-line
strings. Posix is ambiguous whether the anchor applies to each line, as was done
in older versions of the GNU Core Utilities, or whether it applies only to the
end of the overall string, as in Coreutils 6.0 and most other implementations.

$ baz='foo

> bar'

$ expr "X$baz" : 'X\(foo\)$'

$ expr-5.97 "X$baz" : 'X\(foo\)$'
foo

The Posix standard is ambiguous as to whether ‘expr 'a' : '\(b\)'’ outputs ‘0’
or the empty string. In practice, it outputs the empty string on most platforms,
but portable scripts should not assume this. For instance, the QNX 4.25 native
expr returns ‘0’.

One might think that a way to get a uniform behavior would be to use the
empty string as a default value:

expr a : '\(b\)' \| ''

Unfortunately this behaves exactly as the original expression; see the expr (‘|’)
entry for more information.

Some ancient expr implementations (e.g., Solaris 10 /usr/ucb/expr) have a
silly length limit that causes expr to fail if the matched substring is longer
than 120 bytes. In this case, you might want to fall back on ‘echo|sed’ if expr
fails. Nowadays this is of practical importance only for the rare installer who
mistakenly puts /usr/ucb before /usr/bin in PATH on Solaris 10.

On Mac OS X 10.4, expr mishandles the pattern ‘[^-]’ in some cases. For
example, the command

expr Xpowerpc-apple-darwin8.1.0 : 'X[^-]*-[^-]*-\(.*\)'

outputs ‘apple-darwin8.1.0’ rather than the correct ‘darwin8.1.0’. This
particular case can be worked around by substituting ‘[^--]’ for ‘[^-]’.

Don’t leave, there is some more!

The QNX 4.25 expr, in addition of preferring ‘0’ to the empty string, has a
funny behavior in its exit status: it’s always 1 when parentheses are used!

$ val=`expr 'a' : 'a'`; echo "$?: $val"

Chapter 11: Portable Shell Programming 251

0: 1

$ val=`expr 'a' : 'b'`; echo "$?: $val"
1: 0

$ val=`expr 'a' : '\(a\)'`; echo "?: $val"
1: a

$ val=`expr 'a' : '\(b\)'`; echo "?: $val"
1: 0

In practice this can be a big problem if you are ready to catch failures of expr
programs with some other method (such as using sed), since you may get twice
the result. For instance

$ expr 'a' : '\(a\)' || echo 'a' | sed 's/^\(a\)$/\1/'

outputs ‘a’ on most hosts, but ‘aa’ on QNX 4.25. A simple workaround consists
of testing expr and using a variable set to expr or to false according to the
result.

Tru64 expr incorrectly treats the result as a number, if it can be interpreted
that way:

$ expr 00001 : '.*\(...\)'

1

On HP-UX 11, expr only supports a single sub-expression.

$ expr 'Xfoo' : 'X\(f\(oo\)*\)$'
expr: More than one '\(' was used.

fgrep Although Posix stopped requiring fgrep in 2001, a few traditional hosts (notably
Solaris 10) do not support the Posix replacement grep -F. Also, some traditional
implementations do not work on long input lines. To work around these problems,
invoke AC_PROG_FGREP and then use $FGREP.

Tru64/OSF 5.1 fgrep does not match an empty pattern.

find Many operands of GNU find are not standardized by Posix and are missing on
many platforms. These nonportable operands include -follow, -maxdepth,
-mindepth, -printf, and ,. See the Posix spec for find (https://pubs.
opengroup.org/onlinepubs/9699919799/utilities/find.html) for find

operands that should be portable nowadays.

The replacement of ‘{}’ is guaranteed only if the argument is exactly {}, not if
it’s only a part of an argument. For instance, on HP-UX 11:

$ touch foo

$ find . -name foo -exec echo "{}-{}" \;

{}-{}

while GNU find reports ‘./foo-./foo’. Posix allows either behavior.

grep Portable scripts can rely on the grep options -c, -l, -n, and -v, but should
avoid other options. For example, don’t use -w, as Posix does not require it
and Irix 6.5.16m’s grep does not support it. Also, portable scripts should not
combine -c with -l, as Posix does not allow this.

Some of the options required by Posix are not portable in practice. Don’t use
‘grep -q’ to suppress output, because traditional grep implementations (e.g.,

https://pubs.opengroup.org/onlinepubs/9699919799/utilities/find.html
https://pubs.opengroup.org/onlinepubs/9699919799/utilities/find.html

252 Autoconf

Solaris 10) do not support -q. Don’t use ‘grep -s’ to suppress output either,
because Posix says -s does not suppress output, only some error messages;
also, the -s option of traditional grep behaved like -q does in most modern
implementations. Instead, redirect the standard output and standard error (in
case the file doesn’t exist) of grep to /dev/null. Check the exit status of grep
to determine whether it found a match.

The QNX4 implementation fails to count lines with grep -c '$', but works
with grep -c '^'. Other alternatives for counting lines are to use sed -n '$='

or wc -l.

Some traditional grep implementations do not work on long input lines. On
AIX the default grep silently truncates long lines on the input before matching.

Also, traditional implementations do not support multiple regexps with -e: they
either reject -e entirely (e.g., Solaris 10) or honor only the last pattern (e.g.,
IRIX 6.5 and NeXT). To work around these problems, invoke AC_PROG_GREP

and then use $GREP.

Another possible workaround for the multiple -e problem is to separate the
patterns by newlines, for example:

grep 'foo

bar' in.txt

except that this fails with traditional grep implementations and with OpenBSD
3.8 grep.

Traditional grep implementations (e.g., Solaris 10) do not support the -E or -F
options. To work around these problems, invoke AC_PROG_EGREP and then use
$EGREP, and similarly for AC_PROG_FGREP and $FGREP. Even if you are willing
to require support for Posix grep, your script should not use both -E and -F,
since Posix does not allow this combination.

Portable grep regular expressions should use ‘\’ only to escape characters in the
string ‘$()*.123456789[\^{}’. For example, alternation, ‘\|’, is common but
Posix does not require its support in basic regular expressions, so it should be
avoided in portable scripts. Solaris and HP-UX grep do not support it. Similarly,
the following escape sequences should also be avoided: ‘\<’, ‘\>’, ‘\+’, ‘\?’, ‘\`’,
‘\'’, ‘\B’, ‘\b’, ‘\S’, ‘\s’, ‘\W’, and ‘\w’. For more information about what can
appear in portable regular expressions, see Section “Problematic Expressions”
in GNU Grep.

Posix does not specify the behavior of grep on binary files. An example where
this matters is using BSD grep to search text that includes embedded ANSI
escape sequences for colored output to terminals (‘\033[m’ is the sequence to
restore normal output); the behavior depends on whether input is seekable:

$ printf 'esc\033[mape\n' > sample

$ grep . sample

Binary file sample matches

$ cat sample | grep .

escape

Chapter 11: Portable Shell Programming 253

join On NetBSD, join -a 1 file1 file2 mistakenly behaves like join -a 1 -a 2 1

file1 file2, resulting in a usage warning; the workaround is to use join -a1

file1 file2 instead.

On platforms with the BusyBox tools, the join command is entirely missing.
As a workaround, you can simulate special cases of the join command using
an awk script. For an example, see https://lists.gnu.org/r/bug-gnulib/

2021-04/msg00054.html.

ln The -f option is portable nowadays.

Symbolic links are not available on some systems; use ‘$(LN_S)’ as a portable
substitute.

For versions of the DJGPP before 2.04, ln emulates symbolic links to executables
by generating a stub that in turn calls the real program. This feature also works
with nonexistent files like in the Posix spec. So ‘ln -s file link’ generates
link.exe, which attempts to call file.exe if run. But this feature only works
for executables, so ‘cp -p’ is used instead for these systems. DJGPP versions
2.04 and later have full support for symbolic links.

ls The portable options are -acdilrtu. Current practice is for -l to output both
owner and group, even though ancient versions of ls omitted the group.

On ancient hosts, ‘ls foo’ sent the diagnostic ‘foo not found’ to standard
output if foo did not exist. Hence a shell command like ‘sources=`ls *.c

2>/dev/null`’ did not always work, since it was equivalent to ‘sources='*.c
not found'’ in the absence of ‘.c’ files. This is no longer a practical problem,
since current ls implementations send diagnostics to standard error.

The behavior of ls on a directory that is being concurrently modified is not
always predictable, because of a data race where cached information returned
by readdir does not match the current directory state. In fact, MacOS 10.5
has an intermittent bug where readdir, and thus ls, sometimes lists a file more
than once if other files were added or removed from the directory immediately
prior to the ls call. Since ls already sorts its output, the duplicate entries can
be avoided by piping the results through uniq.

mkdir Combining the -m and -p options, as in ‘mkdir -m go-w -p dir’, often leads to
trouble. FreeBSD mkdir incorrectly attempts to change the permissions of dir
even if it already exists. HP-UX 11.23 and IRIX 6.5 mkdir often assign the
wrong permissions to any newly-created parents of dir.

Posix does not clearly specify whether ‘mkdir -p foo’ should succeed when foo

is a symbolic link to an already-existing directory. The GNU mkdir succeeds,
but Solaris 10 mkdir fails.

Traditional mkdir -p implementations suffer from race conditions. For example,
if you invoke mkdir -p a/b and mkdir -p a/c at the same time, both processes
might detect that a is missing, one might create a, then the other might try to
create a and fail with a File exists diagnostic. Solaris 10 mkdir is vulnerable,
and other traditional Unix systems are probably vulnerable too. This possible
race is harmful in parallel builds when several Make rules call mkdir -p to
construct directories. You may use install-sh -d as a safe replacement, for

https://lists.gnu.org/r/bug-gnulib/2021-04/msg00054.html
https://lists.gnu.org/r/bug-gnulib/2021-04/msg00054.html

254 Autoconf

example by setting ‘MKDIR_P='/path/to/install-sh -d'’ in the environment
of configure, assuming the package distributes install-sh.

mkfifo

mknod The GNU Coding Standards state that mknod is safe to use on platforms where
it has been tested to exist; but it is generally portable only for creating named
FIFOs, since device numbers are platform-specific. Autotest uses mkfifo to
implement parallel testsuites. Posix states that behavior is unspecified when
opening a named FIFO for both reading and writing; on at least Cygwin, this
results in failure on any attempt to read or write to that file descriptor.

mktemp Shell scripts can use temporary files safely with mktemp, but it does not exist
on all systems. A portable way to create a safe temporary file name is to create
a temporary directory with mode 700 and use a file inside this directory. Both
methods prevent attackers from gaining control, though mktemp is far less likely
to fail gratuitously under attack.

Here is sample code to create a new temporary directory ‘$dir’ safely:

Create a temporary directory $dir in $TMPDIR (default /tmp).

Use mktemp if possible; otherwise fall back on mkdir,

with $RANDOM to make collisions less likely.

: "${TMPDIR:=/tmp}"

{

dir=`

(umask 077 && mktemp -d "$TMPDIR/fooXXXXXX") 2>/dev/null

` &&

test -d "$dir"

} || {

dir=$TMPDIR/foo$$-$RANDOM

(umask 077 && mkdir "$dir")

} || exit $?

mv The only portable options are -f and -i.

Moving individual files between file systems is portable (it was in Unix version
6), but it is not always atomic: when doing ‘mv new existing’, there’s a critical
section where neither the old nor the new version of existing actually exists.

On some systems moving files from /tmp can sometimes cause undesirable (but
perfectly valid) warnings, even if you created these files. This is because /tmp
belongs to a group that ordinary users are not members of, and files created in
/tmp inherit the group of /tmp. When the file is copied, mv issues a diagnostic
without failing:

$ touch /tmp/foo

$ mv /tmp/foo .
error mv: ./foo: set owner/group (was: 100/0): Operation not permitted

$ echo $?
0

$ ls foo

foo

This annoying behavior conforms to Posix, unfortunately.

Moving directories across mount points is not portable, use cp and rm.

Chapter 11: Portable Shell Programming 255

DOS variants cannot rename or remove open files, and do not support commands
like ‘mv foo bar >foo’, even though this is perfectly portable among Posix hosts.

od

In MacOS X versions prior to 10.4.3, od does not support the standard Posix
options -A, -j, -N, or -t, or the XSI option, -s. The only supported Posix
option is -v, and the only supported XSI options are those in -bcdox. The BSD
hexdump program can be used instead.

In some versions of some operating systems derived from Solaris 11, od prints
decimal byte values padded with zeros rather than with spaces:

$ printf '#!' | od -A n -t d1 -N 2

035 033

instead of
$ printf '#!' | od -A n -t d1 -N 2

35 33

We have observed this on both OpenIndiana and OmniOS; Illumos may also be
affected. As a workaround, you can use octal output (option -t o1).

rm The -f and -r options are portable.

It is not portable to invoke rm without options or operands. On the other hand,
Posix now requires rm -f to silently succeed when there are no operands (useful
for constructs like rm -rf $filelist without first checking if ‘$filelist’ was
empty). But this was not always portable; at least NetBSD rm built before 2008
would fail with a diagnostic.

A file might not be removed even if its parent directory is writable and searchable.
Many Posix hosts cannot remove a mount point, a named stream, a working
directory, or a last link to a file that is being executed.

DOS variants cannot rename or remove open files, and do not support commands
like ‘rm foo >foo’, even though this is perfectly portable among Posix hosts.

rmdir Just as with rm, some platforms refuse to remove a working directory.

sed Patterns should not include the separator (unless escaped), even as part of a
character class. In conformance with Posix, the Cray sed rejects ‘s/[^/]*$//’:
use ‘s%[^/]*$%%’. Even when escaped, patterns should not include separators
that are also used as sed metacharacters. For example, GNU sed 4.0.9 rejects
‘s,x\{1\,\},,’, while sed 4.1 strips the backslash before the comma before
evaluating the basic regular expression.

Avoid empty patterns within parentheses (i.e., ‘\(\)’). Posix does not require
support for empty patterns, and Unicos 9 sed rejects them.

Unicos 9 sed loops endlessly on patterns like ‘.*\n.*’.

Sed scripts should not use branch labels longer than 7 characters and should not
contain comments; AIX 5.3 sed rejects indented comments. HP-UX sed has a
limit of 99 commands (not counting ‘:’ commands) and 48 labels, which cannot
be circumvented by using more than one script file. It can execute up to 19
reads with the ‘r’ command per cycle. Solaris /usr/ucb/sed rejects usages that
exceed a limit of about 6000 bytes for the internal representation of commands.

256 Autoconf

Avoid redundant ‘;’, as some sed implementations, such as NetBSD 1.4.2’s,
incorrectly try to interpret the second ‘;’ as a command:

$ echo a | sed 's/x/x/;;s/x/x/'

sed: 1: "s/x/x/;;s/x/x/": invalid command code ;

Some sed implementations have a buffer limited to 4000 bytes, and this limits
the size of input lines, output lines, and internal buffers that can be processed
portably. Likewise, not all sed implementations can handle embedded NUL or a
missing trailing newline.

Remember that ranges within a bracket expression of a regular expression
are only well-defined in the ‘C’ (or ‘POSIX’) locale. Meanwhile, support
for character classes like ‘[[:upper:]]’ is not yet universal, so if you
cannot guarantee the setting of LC_ALL, it is better to spell out a range
‘[ABCDEFGHIJKLMNOPQRSTUVWXYZ]’ than to rely on ‘[A-Z]’.

Additionally, Posix states that regular expressions are only well-defined on
characters. Unfortunately, there exist platforms such as MacOS X 10.5 where
not all 8-bit byte values are valid characters, even though that platform has a
single-byte ‘C’ locale. And Posix allows the existence of a multi-byte ‘C’ locale,
although that does not yet appear to be a common implementation. At any
rate, it means that not all bytes will be matched by the regular expression ‘.’:

$ printf '\200\n' | LC_ALL=C sed -n /./p | wc -l

0

$ printf '\200\n' | LC_ALL=en_US.ISO8859-1 sed -n /./p | wc -

l

1

Portable sed regular expressions should use ‘\’ only to escape characters in the
string ‘$()*.123456789[\^n{}’. For example, alternation, ‘\|’, is common but
Posix does not require its support, so it should be avoided in portable scripts.
Solaris sed does not support alternation; e.g., ‘sed '/a\|b/d'’ deletes only lines
that contain the literal string ‘a|b’. Similarly, ‘\+’ and ‘\?’ should be avoided.

Anchors (‘^’ and ‘$’) inside groups are not portable.

Nested parentheses in patterns (e.g., ‘\(\(a*\)b*)\)’) are quite portable to
current hosts, but was not supported by some ancient sed implementations like
SVR3.

Some sed implementations, e.g., Solaris, restrict the special role of the asterisk
‘*’ to one-character regular expressions and back-references, and the special role
of interval expressions ‘\{m\}’, ‘\{m,\}’, or ‘\{m,n\}’ to one-character regular
expressions. This may lead to unexpected behavior:

$ echo '1*23*4' | /usr/bin/sed 's/\(.\)*/x/g'

x2x4

$ echo '1*23*4' | /usr/xpg4/bin/sed 's/\(.\)*/x/g'

x

The -e option is mostly portable. However, its argument cannot start with ‘a’,
‘c’, or ‘i’, as this runs afoul of a Tru64 5.1 bug. Also, its argument cannot be
empty, as this fails on AIX 5.3. Some people prefer to use ‘-e’:

sed -e 'command-1' \

Chapter 11: Portable Shell Programming 257

-e 'command-2'

as opposed to the equivalent:

sed '

command-1

command-2

'

The following usage is sometimes equivalent:

sed 'command-1;command-2'

but Posix says that this use of a semicolon has undefined effect if command-1’s
verb is ‘{’, ‘a’, ‘b’, ‘c’, ‘i’, ‘r’, ‘t’, ‘w’, ‘:’, or ‘#’, so you should use semicolon
only with simple scripts that do not use these verbs.

Posix up to the 2008 revision requires the argument of the -e option to be a
syntactically complete script. GNU sed allows to pass multiple script fragments,
each as argument of a separate -e option, that are then combined, with newlines
between the fragments, and a future Posix revision may allow this as well. This
approach is not portable with script fragments ending in backslash; for example,
the sed programs on Solaris 10, HP-UX 11, and AIX don’t allow splitting in
this case:

$ echo a | sed -n -e 'i\

0'

0

$ echo a | sed -n -e 'i\' -e 0

Unrecognized command: 0

In practice, however, this technique of joining fragments through -e works for
multiple sed functions within ‘{’ and ‘}’, even if that is not specified by Posix:

$ echo a | sed -n -e '/a/{' -e s/a/b/ -e p -e '}'

b

Commands inside { } brackets are further restricted. Posix 2008 says that they
cannot be preceded by addresses, ‘!’, or ‘;’, and that each command must be
followed immediately by a newline, without any intervening blanks or semicolons.
The closing bracket must be alone on a line, other than white space preceding
or following it. However, a future version of Posix may standardize the use of
addresses within brackets.

Contrary to yet another urban legend, you may portably use ‘&’ in the replace-
ment part of the s command to mean “what was matched”. All descendants of
Unix version 7 sed (at least; we don’t have first hand experience with older sed
implementations) have supported it.

Posix requires that you must not have any white space between ‘!’ and the
following command. It is OK to have blanks between the address and the ‘!’.
For instance, on Solaris:

$ echo "foo" | sed -n '/bar/ ! p'

error Unrecognized command: /bar/ ! p

$ echo "foo" | sed -n '/bar/! p'

error Unrecognized command: /bar/! p

258 Autoconf

$ echo "foo" | sed -n '/bar/ !p'

foo

Posix also says that you should not combine ‘!’ and ‘;’. If you use ‘!’, it is best
to put it on a command that is delimited by newlines rather than ‘;’.

Also note that Posix requires that the ‘b’, ‘t’, ‘r’, and ‘w’ commands be followed
by exactly one space before their argument. On the other hand, no white space
is allowed between ‘:’ and the subsequent label name.

If a sed script is specified on the command line and ends in an ‘a’, ‘c’, or
‘i’ command, the last line of inserted text should be followed by a newline.
Otherwise some sed implementations (e.g., OpenBSD 3.9) do not append a
newline to the inserted text.

Many sed implementations (e.g., MacOS X 10.4, OpenBSD 3.9, Solaris 10
/usr/ucb/sed) strip leading white space from the text of ‘a’, ‘c’, and ‘i’ com-
mands. Prepend a backslash to work around this incompatibility with Posix:

$ echo flushleft | sed 'a\

> indented

> '

flushleft

indented

$ echo foo | sed 'a\

> \ indented

> '

flushleft

indented

Posix requires that with an empty regular expression, the last non-empty regular
expression from either an address specification or substitution command is
applied. However, busybox 1.6.1 complains when using a substitution command
with a replacement containing a back-reference to an empty regular expression;
the workaround is repeating the regular expression.

$ echo abc | busybox sed '/a\(b\)c/ s//\1/'

sed: No previous regexp.

$ echo abc | busybox sed '/a\(b\)c/ s/a\(b\)c/\1/'

b

Portable scripts should be aware of the inconsistencies and options for handling
word boundaries, as these are not specified by POSIX.

\< \b [[:<:]]

Solaris 10 yes no no

Solaris XPG4 yes no error

NetBSD 5.1 no no yes

FreeBSD 9.1 no no yes

GNU yes yes error

busybox yes yes error

sed (‘t’) Some old systems have sed that “forget” to reset their ‘t’ flag when starting a
new cycle. For instance on MIPS RISC/OS, and on IRIX 5.3, if you run the
following sed script (the line numbers are not actual part of the texts):

Chapter 11: Portable Shell Programming 259

s/keep me/kept/g # a

t end # b

s/.*/deleted/g # c

:end # d

on

delete me # 1

delete me # 2

keep me # 3

delete me # 4

you get

deleted

delete me

kept

deleted

instead of

deleted

deleted

kept

deleted

Why? When processing line 1, (c) matches, therefore sets the ‘t’ flag, and the
output is produced. When processing line 2, the ‘t’ flag is still set (this is the
bug). Command (a) fails to match, but sed is not supposed to clear the ‘t’
flag when a substitution fails. Command (b) sees that the flag is set, therefore
it clears it, and jumps to (d), hence you get ‘delete me’ instead of ‘deleted’.
When processing line (3), ‘t’ is clear, (a) matches, so the flag is set, hence (b)
clears the flags and jumps. Finally, since the flag is clear, line 4 is processed
properly.

There are two things one should remember about ‘t’ in sed. Firstly, always
remember that ‘t’ jumps if some substitution succeeded, not only the immedi-
ately preceding substitution. Therefore, always use a fake ‘t clear’ followed by
a ‘:clear’ on the next line, to reset the ‘t’ flag where needed.

Secondly, you cannot rely on sed to clear the flag at each new cycle.

One portable implementation of the script above is:

t clear

:clear

s/keep me/kept/g

t end

s/.*/deleted/g

:end

sed (‘w’)

When a script contains multiple commands to write lines to the same output
file, BusyBox sed mistakenly opens a separate output stream for each command.
This can cause one of the commands to “win” and the others to “lose”, in the
sense that their output is discarded. For example:

260 Autoconf

sed -n -e '

/a/w xxx

/b/w xxx

' <<EOF

a

b

EOF

This might output only ‘a’ to xxx; the ‘b’ is lost. To avoid the problem, a
portable script should contain at most one ‘w’ or ‘s/.../.../w’ command per
output file.

sleep Using sleep is generally portable. However, remember that adding a sleep

to work around timestamp issues, with a minimum granularity of one second,
doesn’t scale well for parallel builds on modern machines with sub-second process
completion.

sort Remember that sort order is influenced by the current locale. Inside configure,
the C locale is in effect, but in Makefile snippets, you may need to specify
LC_ALL=C sort.

tar There are multiple file formats for tar; if you use Automake, the macro AM_

INIT_AUTOMAKE has some options controlling which level of portability to use.

touch If you specify the desired timestamp (e.g., with the -r option), older touch

implementations use the utime or utimes system call, which can result in the
same kind of timestamp truncation problems that ‘cp -p’ has.

tr Not all versions of tr handle all backslash character escapes. For example,
Solaris 10 /usr/ucb/tr falls over, even though Solaris contains more modern
tr in other locations. Using octal escapes is more portable for carriage returns,
since ‘\015’ is the same for both ASCII and EBCDIC, and since use of literal
carriage returns in scripts causes a number of other problems. But for other
characters, like newline, using octal escapes ties the operation to ASCII, so it is
better to use literal characters.

$ { echo moon; echo light; } | /usr/ucb/tr -d '\n' ; echo

moo

light

$ { echo moon; echo light; } | /usr/bin/tr -d '\n' ; echo

moonlight

$ { echo moon; echo light; } | /usr/ucb/tr -d '\012' ; echo

moonlight

$ nl='

'; { echo moon; echo light; } | /usr/ucb/tr -d "$nl" ; echo

moonlight

Not all versions of tr recognize direct ranges of characters: at least Solaris
/usr/bin/tr still fails to do so. But you can use /usr/xpg4/bin/tr instead,
or add brackets (which in Posix transliterate to themselves).

$ echo "Hazy Fantazy" | LC_ALL=C /usr/bin/tr a-z A-Z

HAZy FAntAZy

Chapter 11: Portable Shell Programming 261

$ echo "Hazy Fantazy" | LC_ALL=C /usr/bin/tr '[a-z]' '[A-Z]'

HAZY FANTAZY

$ echo "Hazy Fantazy" | LC_ALL=C /usr/xpg4/bin/tr a-z A-Z

HAZY FANTAZY

When providing two arguments, be sure the second string is at least as long as
the first.

$ echo abc | /usr/xpg4/bin/tr bc d

adc

$ echo abc | coreutils/tr bc d

add

On platforms with the BusyBox tools, tr does not support the [x*n] option
syntax.

$ echo abc | tr 'abcd' '[A*4]'

[A*

$ echo abc | coreutils/tr 'abcd' '[A*4]'

AAA

$ echo xyz | tr 'a-z' '[A*]'

]]]

$ echo xyz | coreutils/tr 'a-z' '[A*]'

AAA

Posix requires tr to operate on binary files. But at least Solaris /usr/ucb/tr
and /usr/bin/tr silently discard NUL in the input prior to doing any translation.
When using tr to process a binary file that may contain NUL bytes, it is necessary
to use /usr/xpg4/bin/tr instead, or /usr/xpg6/bin/tr if that is available.

$ printf 'a\0b' | /usr/ucb/tr x x | od -An -tx1

61 62

$ printf 'a\0b' | /usr/bin/tr x x | od -An -tx1

61 62

$ printf 'a\0b' | /usr/xpg4/bin/tr x x | od -An -tx1

61 00 62

Solaris /usr/ucb/tr additionally fails to handle ‘\0’ as the octal escape for NUL.

$ printf 'abc' | /usr/ucb/tr 'bc' '\0d' | od -An -tx1

61 62 63

$ printf 'abc' | /usr/bin/tr 'bc' '\0d' | od -An -tx1

61 00 64

$ printf 'abc' | /usr/xpg4/bin/tr 'bc' '\0d' | od -An -tx1

61 00 64

263

12 Portable Make Programming

Writing portable makefiles is an art. Since a makefile’s commands are executed by the shell,
you must consider the shell portability issues already mentioned. However, other issues are
specific to make itself.

12.1 $< in Ordinary Make Rules

Posix says that the ‘$<’ construct in makefiles can be used only in inference rules and in
the ‘.DEFAULT’ rule; its meaning in ordinary rules is unspecified. Solaris make for instance
replaces it with the empty string. OpenBSD (3.0 and later) make diagnoses these uses and
errors out.

12.2 Failure in Make Rules

Posix 2008 requires that make must invoke each command with the equivalent of a ‘sh -e -c’
subshell, which causes the subshell to exit immediately if a subsidiary simple-command fails,
although not all make implementations have historically followed this rule. For example, the
command ‘touch T; rm -f U’ may attempt to remove U even if the touch fails, although this
is not permitted with Posix make. One way to work around failures in simple commands is
to reword them so that they always succeed, e.g., ‘touch T || :; rm -f U’. However, even
this approach can run into common bugs in BSD implementations of the -e option of sh
and set (see [Limitations of Shell Builtins], page 238), so if you are worried about porting
to buggy BSD shells it may be simpler to migrate complicated make actions into separate
scripts.

12.3 Special Characters in Make Macro Names

Posix limits macro names to nonempty strings containing only ASCII letters and digits,
‘.’, and ‘_’. Many make implementations allow a wider variety of characters, but portable
makefiles should avoid them. It is portable to start a name with a special character, e.g.,
‘$(.FOO)’.

Some ancient make implementations don’t support leading underscores in macro names.
An example is NEWS-OS 4.2R.

$ cat Makefile

_am_include = #

_am_quote =

all:; @echo this is test

$ make

Make: Must be a separator on rules line 2. Stop.

$ cat Makefile2

am_include = #

am_quote =

all:; @echo this is test

$ make -f Makefile2

this is test

However, this problem is no longer of practical concern.

264 Autoconf

12.4 Backslash-Newline Before Empty Lines

On some versions of HP-UX, make reads multiple newlines following a backslash, continuing
to the next non-empty line. For example,

FOO = one \

BAR = two

test:

: FOO is "$(FOO)"

: BAR is "$(BAR)"

shows FOO equal to one BAR = two. Other implementations sensibly let a backslash continue
only to the immediately following line.

12.5 Backslash-Newline in Make Comments

According to Posix, Make comments start with # and continue until an unescaped newline
is reached.

$ cat Makefile

A = foo \

bar \

baz

all:

@echo ok

$ make # GNU make

ok

However this is not always the case. Some implementations discard everything from #

through the end of the line, ignoring any trailing backslash.

$ pmake # BSD make

"Makefile", line 3: Need an operator

Fatal errors encountered -- cannot continue

Therefore, if you want to comment out a multi-line definition, prefix each line with #, not
only the first.

A = foo \

bar \

baz

12.6 Long Lines in Makefiles

Tru64 5.1’s make has been reported to crash when given a makefile with lines longer than
around 20 kB. Earlier versions are reported to exit with Line too long diagnostics.

12.7 make macro=value and Submakes

A command-line variable definition such as foo=bar overrides any definition of foo in a
makefile. Some make implementations (such as GNU make) propagate this override to

Chapter 12: Portable Make Programming 265

subsidiary invocations of make. Some other implementations do not pass the substitution
along to submakes.

$ cat Makefile

foo = foo

one:

@echo $(foo)

$(MAKE) two

two:

@echo $(foo)

$ make foo=bar # GNU make 3.79.1

bar

make two

make[1]: Entering directory `/home/adl'

bar

make[1]: Leaving directory `/home/adl'

$ pmake foo=bar # BSD make

bar

pmake two

foo

You have a few possibilities if you do want the foo=bar override to propagate to submakes.
One is to use the -e option, which causes all environment variables to have precedence over
the makefile macro definitions, and declare foo as an environment variable:

$ env foo=bar make -e

The -e option is propagated to submakes automatically, and since the environment is
inherited between make invocations, the foo macro is overridden in submakes as expected.

This syntax (foo=bar make -e) is portable only when used outside of a makefile, for
instance from a script or from the command line. When run inside a make rule, GNU make

3.80 and prior versions forget to propagate the -e option to submakes.

Moreover, using -e could have unexpected side effects if your environment contains some
other macros usually defined by the makefile. (See also the note about make -e and SHELL

below.)

If you can foresee all macros that a user might want to override, then you can propagate
them to submakes manually, from your makefile:

foo = foo

one:

@echo $(foo)

$(MAKE) foo=$(foo) two

two:

@echo $(foo)

Another way to propagate a variable to submakes in a portable way is to expand an
extra variable in every invocation of ‘$(MAKE)’ within your makefile:

foo = foo

one:

@echo $(foo)

$(MAKE) $(SUBMAKEFLAGS) two

266 Autoconf

two:

@echo $(foo)

Users must be aware that this technique is in use to take advantage of it, e.g. with make

foo=bar SUBMAKEFLAGS='foo=bar', but it allows any macro to be overridden. Makefiles
generated by automake use this technique, expanding $(AM_MAKEFLAGS) on the command
lines of submakes (see Section “Automake” in GNU Automake).

12.8 The Make Macro MAKEFLAGS

Posix requires make to use MAKEFLAGS to affect the current and recursive invocations of
make, but allows implementations several formats for the variable. It is tricky to parse
$MAKEFLAGS to determine whether -s for silent execution or -k for continued execution are
in effect. For example, you cannot assume that the first space-separated word in $MAKEFLAGS

contains single-letter options, since in the Cygwin version of GNU make it is either --unix
or --win32 with the second word containing single-letter options.

$ cat Makefile

all:

@echo MAKEFLAGS = $(MAKEFLAGS)

$ make

MAKEFLAGS = --unix

$ make -k

MAKEFLAGS = --unix -k

12.9 The Make Macro SHELL

Posix-compliant make internally uses the $(SHELL) macro to spawn shell processes and
execute Make rules. This is a builtin macro supplied by make, but it can be modified by a
makefile or by a command-line argument.

Not all make implementations define this SHELL macro. Tru64 make is an example; this
implementation always uses /bin/sh. So it’s a good idea to always define SHELL in your
makefiles. If you use Autoconf, do

SHELL = @SHELL@

If you use Automake, this is done for you.

Do not force SHELL = /bin/sh because that is not correct everywhere. Remember,
/bin/sh is not Posix compliant on many systems, such as FreeBSD 4, NetBSD 3, AIX 3,
Solaris 10, or Tru64. Additionally, DJGPP lacks /bin/sh, and when its GNU make port sees
such a setting it enters a special emulation mode where features like pipes and redirections
are emulated on top of DOS’s command.com. Unfortunately this emulation is incomplete;
for instance it does not handle command substitutions. Using @SHELL@ means that your
makefile will benefit from the same improved shell, such as bash or ksh, that was discovered
during configure, so that you aren’t fighting two different sets of shell bugs between the
two contexts.

Posix-compliant make should never acquire the value of $(SHELL) from the environment,
even when make -e is used (otherwise, think about what would happen to your rules if
SHELL=/bin/tcsh).

Chapter 12: Portable Make Programming 267

However not all make implementations have this exception. For instance it’s not surprising
that Tru64 make doesn’t protect SHELL, since it doesn’t use it.

$ cat Makefile

SHELL = /bin/sh

FOO = foo

all:

@echo $(SHELL)

@echo $(FOO)

$ env SHELL=/bin/tcsh FOO=bar make -e # Tru64 Make

/bin/tcsh

bar

$ env SHELL=/bin/tcsh FOO=bar gmake -e # GNU make

/bin/sh

bar

Conversely, make is not supposed to export any changes to the macro SHELL to child
processes. Again, many implementations break this rule:

$ cat Makefile

all:

@echo $(SHELL)

@printenv SHELL

$ env SHELL=sh make -e SHELL=/bin/ksh # BSD Make, GNU make 3.80

/bin/ksh

/bin/ksh

$ env SHELL=sh gmake -e SHELL=/bin/ksh # GNU make 3.81

/bin/ksh

sh

12.10 Parallel Make

Support for parallel execution in make implementation varies. Generally, using GNU make
is your best bet.

When NetBSD or FreeBSD make are run in parallel mode, they will reuse the same shell
for multiple commands within one recipe. This can have various unexpected consequences.
For example, changes of directories or variables persist between recipes, so that:

all:

@var=value; cd /; pwd; echo $$var; echo $$$$

@pwd; echo $$var; echo $$$$

may output the following with make -j1, at least on NetBSD up to 5.1 and FreeBSD up to
8.2:

/

value

32235

/

value

32235

268 Autoconf

while without -j1, or with -B, the output looks less surprising:

/

value

32238

/tmp

32239

Another consequence is that, if one command in a recipe uses exit 0 to indicate a successful
exit, the shell will be gone and the remaining commands of this recipe will not be executed.

The BSD make implementations, when run in parallel mode, will also pass the Makefile
recipes to the shell through its standard input, thus making it unusable from the recipes:

$ cat Makefile

read:

@read line; echo LINE: $$line

$ echo foo | make read

LINE: foo

$ echo foo | make -j1 read # NetBSD 5.1 and FreeBSD 8.2

LINE:

Moreover, when FreeBSD make (up at least to 8.2) is run in parallel mode, it implements the
@ and - “recipe modifiers” by dynamically modifying the active shell flags. This behavior
has the effects of potentially clobbering the exit status of recipes silenced with the @ modifier
if they also unset the errexit shell flag, and of mangling the output in unexpected ways:

$ cat Makefile

a:

@echo $$-; set +e; false

b:

-echo $$-; false; echo set -

$ make a; echo status: $?
ehBc

*** Error code 1

status: 1

$ make -j1 a; echo status: $?
ehB

status: 0

$ make b

echo $-; echo set -

hBc

set -

$ make -j1 b

echo $-; echo hvB

You can avoid all these issues by using the -B option to enable compatibility semantics.
However, that will effectively also disable all parallelism as that will cause prerequisites to
be updated in the order they are listed in a rule.

Some make implementations (among them, FreeBSD make, NetBSD make, and Solaris
dmake), when invoked with a -jN option, connect the standard output and standard error of

Chapter 12: Portable Make Programming 269

all their child processes to pipes or temporary regular files. This can lead to subtly different
semantics in the behavior of the spawned processes. For example, even if the make standard
output is connected to a tty, the recipe command will not be:

$ cat Makefile

all:

@test -t 1 && echo "Is a tty" || echo "Is not a tty"

$ make -j 2 # FreeBSD 8.2 make

Is not a tty

$ make -j 2 # NetBSD 5.1 make

--- all ---

Is not a tty

$ dmake -j 2 # Solaris 10 dmake

hostname --> 1 job

hostname --> Job output

Is not a tty

On the other hand:

$ make -j 2 # GNU make, Heirloom make

Is a tty

The above examples also show additional status output produced in parallel mode for targets
being updated by Solaris dmake and NetBSD make (but not by FreeBSD make).

Furthermore, parallel runs of those make implementations will route standard error
from commands that they spawn into their own standard output, and may remove leading
whitespace from output lines.

12.11 Comments in Make Rules

Never put comments in a rule.

Some make treat anything starting with a tab as a command for the current rule, even
if the tab is immediately followed by a #. The make from Tru64 Unix V5.1 is one of them.
The following makefile runs # foo through the shell.

all:

foo

As a workaround, you can use the : no-op command with a string argument that gets
ignored:

all:

: "foo"

Conversely, if you want to use the ‘#’ character in some command, you can only do so by
expanding it inside a rule (see Section 12.13 [Comments in Make Macros], page 270). So
for example, if ‘COMMENT_CHAR’ is substituted by config.status as ‘#’, then the following
substitutes ‘@COMMENT_CHAR@’ in a generated header:

foo.h: foo.h.in

sed -e 's|@''COMMENT_CHAR''@|@COMMENT_CHAR@|g' \

$(srcdir)/foo.h.in > $@

The funny shell quoting avoids a substitution at config.status run time of the left-hand
side of the sed ‘s’ command.

270 Autoconf

12.12 Newlines in Make Rules

In shell scripts, newlines can be used inside string literals. But in the shell statements of
Makefile rules, this is not possible: A newline not preceded by a backslash is a separator
between shell statements. Whereas a newline that is preceded by a backslash becomes part
of the shell statement according to POSIX, but gets replaced, together with the backslash
that precedes it, by a space in GNU make 3.80 and older. So, how can a newline be used in
a string literal?

The trick is to set up a shell variable that contains a newline:

nlinit=`echo 'nl="'; echo '"'`; eval "$$nlinit"

For example, in order to create a multi-line ‘sed’ expression that inserts a blank line
after every line of a file, this code can be used:

nlinit=`echo 'nl="'; echo '"'`; eval "$$nlinit"; \

sed -e "s/\$$/\\$${nl}/" < input > output

12.13 Comments in Make Macros

Avoid putting comments in macro values as far as possible. Posix specifies that the text
starting from the ‘#’ sign until the end of the line is to be ignored, which has the unfortunate
effect of disallowing them even within quotes. Thus, the following might lead to a syntax
error at compile time:

CPPFLAGS = "-DCOMMENT_CHAR='#'"

as ‘CPPFLAGS’ may be expanded to ‘"-DCOMMENT_CHAR='’.

Most make implementations disregard this and treat single and double quotes specially
here. Also, GNU make lets you put ‘#’ into a macro value by escaping it with a backslash,
i.e., ‘\#’. However, neither of these usages are portable. See Section 12.11 [Comments in
Make Rules], page 269, for a portable alternative.

Even without quoting involved, comments can have surprising effects, because the
whitespace before them is part of the variable value:

foo = bar # trailing comment

print: ; @echo "$(foo)."

prints ‘bar .’, which is usually not intended, and can expose make bugs as described below.

12.14 Trailing whitespace in Make Macros

GNU make 3.80 mistreats trailing whitespace in macro substitutions and appends another
spurious suffix:

empty =

foo = bar $(empty)

print: ; @echo $(foo:=.test)

prints ‘bar.test .test’.

BSD and Solaris make implementations do not honor trailing whitespace in macro
definitions as Posix requires:

foo = bar # Note the space after "bar".

print: ; @echo $(foo)t

Chapter 12: Portable Make Programming 271

prints ‘bart’ instead of ‘bar t’. To work around this, you can use a helper macro as in the
previous example.

12.15 Command-line Macros and whitespace

Some make implementations may strip trailing whitespace off of macros set on the command
line in addition to leading whitespace. Further, some may strip leading whitespace off of
macros set from environment variables:

$ echo 'print: ; @echo "x$(foo)x$(bar)x"' |

foo=' f f ' make -f - bar=' b b '

x f f xb b x # AIX, BSD, GNU make

xf f xb b x # HP-UX, IRIX, Tru64/OSF make

x f f xb bx # Solaris make

12.16 The obj/ Subdirectory and Make

Never name one of your subdirectories obj/ if you don’t like surprises.

If an obj/ directory exists, BSD make enters it before reading the makefile. Hence the
makefile in the current directory is not read.

$ cat Makefile

all:

echo Hello

$ cat obj/Makefile

all:

echo World

$ make # GNU make

echo Hello

Hello

$ pmake # BSD make

echo World

World

12.17 Exit Status of make -k

Do not rely on the exit status of make -k. Some implementations reflect whether they
encountered an error in their exit status; other implementations always succeed.

$ cat Makefile

all:

false

$ make -k; echo exit status: $? # GNU make

false

make: *** [all] Error 1

exit status: 2

$ pmake -k; echo exit status: $? # BSD make

false

*** Error code 1 (continuing)

exit status: 0

272 Autoconf

12.18 VPATH and Make

Posix does not specify the semantics of VPATH. Typically, make supports VPATH, but its
implementation is not consistent.

Autoconf and Automake support makefiles whose usages of VPATH are portable to recent-
enough popular implementations of make, but to keep the resulting makefiles portable, a
package’s makefile prototypes must take the following issues into account. These issues are
complicated and are often poorly understood, and installers who use VPATH should expect
to find many bugs in this area. If you use VPATH, the simplest way to avoid these portability
bugs is to stick with GNU make, since it is the most commonly-used make among Autoconf
users.

Here are some known issues with some VPATH implementations.

12.18.1 Variables listed in VPATH

Do not set VPATH to the value of another variable, for example ‘VPATH = $(srcdir)’, because
some ancient versions of make do not do variable substitutions on the value of VPATH. For
example, use this

srcdir = @srcdir@

VPATH = @srcdir@

rather than ‘VPATH = $(srcdir)’. Note that with GNU Automake, there is no need to set
this yourself.

12.18.2 VPATH and Double-colon Rules

With ancient versions of Sun make, any assignment to VPATH causes make to execute only
the first set of double-colon rules. However, this problem is no longer of practical concern.

12.18.3 $< Not Supported in Explicit Rules

Using $< in explicit rules is not portable. The prerequisite file must be named explicitly in
the rule. If you want to find the prerequisite via a VPATH search, you have to code the whole
thing manually. See Section 4.8.4 [Build Directories], page 36.

12.18.4 Automatic Rule Rewriting

Some make implementations, such as Solaris and Tru64, search for prerequisites in VPATH

and then rewrite each occurrence as a plain word in the rule. For instance:

This isn't portable to GNU make.

VPATH = ../pkg/src

f.c: if.c

cp if.c f.c

executes cp ../pkg/src/if.c f.c if if.c is found in ../pkg/src.

However, this rule leads to real problems in practice. For example, if the source directory
contains an ordinary file named test that is used in a dependency, Solaris make rewrites
commands like ‘if test -r foo; ...’ to ‘if ../pkg/src/test -r foo; ...’, which is typ-
ically undesirable. In fact, make is completely unaware of shell syntax used in the rules,
so the VPATH rewrite can potentially apply to any whitespace-separated word in a rule,
including shell variables, functions, and keywords.

$ mkdir build

Chapter 12: Portable Make Programming 273

$ cd build

$ cat > Makefile <<'END'

VPATH = ..

all: arg func for echo

func () { for arg in "$$@"; do echo $$arg; done; }; \

func "hello world"

END

$ touch ../arg ../func ../for ../echo

$ make

../func () { ../for ../arg in "$@"; do ../echo $arg; done; }; \

../func "hello world"

sh: syntax error at line 1: `do' unexpected

*** Error code 2

To avoid this problem, portable makefiles should never mention a source file or dependency
whose name is that of a shell keyword like for or until, a shell command like cat or gcc
or test, or a shell function or variable used in the corresponding Makefile recipe.

Because of these problems GNU make and many other make implementations do not
rewrite commands, so portable makefiles should search VPATH manually. It is tempting to
write this:

This isn't portable to Solaris make.

VPATH = ../pkg/src

f.c: if.c

cp `test -f if.c || echo $(VPATH)/`if.c f.c

However, the “prerequisite rewriting” still applies here. So if if.c is in ../pkg/src, Solaris
and Tru64 make execute

cp `test -f ../pkg/src/if.c || echo ../pkg/src/`if.c f.c

which reduces to

cp if.c f.c

and thus fails. Oops.

A simple workaround, and good practice anyway, is to use ‘$?’ and ‘$@’ when possible:
VPATH = ../pkg/src

f.c: if.c

cp $? $@

but this does not generalize well to commands with multiple prerequisites. A more general
workaround is to rewrite the rule so that the prerequisite if.c never appears as a plain
word. For example, these three rules would be safe, assuming if.c is in ../pkg/src and
the other files are in the working directory:

VPATH = ../pkg/src

f.c: if.c f1.c

cat `test -f ./if.c || echo $(VPATH)/`if.c f1.c >$@

g.c: if.c g1.c

cat `test -f 'if.c' || echo $(VPATH)/`if.c g1.c >$@

h.c: if.c h1.c

cat `test -f "if.c" || echo $(VPATH)/`if.c h1.c >$@

Things get worse when your prerequisites are in a macro.

VPATH = ../pkg/src

HEADERS = f.h g.h h.h

274 Autoconf

install-HEADERS: $(HEADERS)

for i in $(HEADERS); do \

$(INSTALL) -m 644 \

`test -f $$i || echo $(VPATH)/`$$i \

$(DESTDIR)$(includedir)/$$i; \

done

The above install-HEADERS rule is not Solaris-proof because for i in $(HEADERS);

is expanded to for i in f.h g.h h.h; where f.h and g.h are plain words and are hence
subject to VPATH adjustments.

If the three files are in ../pkg/src, the rule is run as:

for i in ../pkg/src/f.h ../pkg/src/g.h h.h; do \

install -m 644 \

`test -f $i || echo ../pkg/src/`$i \

/usr/local/include/$i; \

done

where the two first install calls fail. For instance, consider the f.h installation:

install -m 644 \

`test -f ../pkg/src/f.h || \

echo ../pkg/src/ \

`../pkg/src/f.h \

/usr/local/include/../pkg/src/f.h;

It reduces to:

install -m 644 \

../pkg/src/f.h \

/usr/local/include/../pkg/src/f.h;

Note that the manual VPATH search did not cause any problems here; however this
command installs f.h in an incorrect directory.

Trying to quote $(HEADERS) in some way, as we did for foo.c a few makefiles ago, does
not help:

install-HEADERS: $(HEADERS)

headers='$(HEADERS)'; \

for i in $$headers; do \

$(INSTALL) -m 644 \

`test -f $$i || echo $(VPATH)/`$$i \

$(DESTDIR)$(includedir)/$$i; \

done

Now, headers='$(HEADERS)' macro-expands to:

headers='f.h g.h h.h'

but g.h is still a plain word. (As an aside, the idiom headers='$(HEADERS)'; for i in

$$headers; is a good idea if $(HEADERS) can be empty, because some shells diagnose a
syntax error on for i in;.)

One workaround is to strip this unwanted ../pkg/src/ prefix manually:

VPATH = ../pkg/src

Chapter 12: Portable Make Programming 275

HEADERS = f.h g.h h.h

install-HEADERS: $(HEADERS)

headers='$(HEADERS)'; \

for i in $$headers; do \

i=`expr "$$i" : '$(VPATH)/\(.*\)'`;

$(INSTALL) -m 644 \

`test -f $$i || echo $(VPATH)/`$$i \

$(DESTDIR)$(includedir)/$$i; \

done

Automake does something similar. However the above hack works only if the files listed
in HEADERS are in the current directory or a subdirectory; they should not be in an enclosing
directory. If we had HEADERS = ../f.h, the above fragment would fail in a VPATH build
with Tru64 make. The reason is that not only does Tru64 make rewrite dependencies, but
it also simplifies them. Hence ../f.h becomes ../pkg/f.h instead of ../pkg/src/../f.h.
This obviously defeats any attempt to strip a leading ../pkg/src/ component.

The following example makes the behavior of Tru64 make more apparent.

$ cat Makefile

VPATH = sub

all: ../foo

echo ../foo

$ ls

Makefile foo

$ make

echo foo

foo

Dependency ../foo was found in sub/../foo, but Tru64 make simplified it as foo. (Note
that the sub/ directory does not even exist, this just means that the simplification occurred
before the file was checked for.)

12.18.5 Tru64 make Creates Prerequisite Directories Magically

When a prerequisite is a subdirectory of VPATH, Tru64 make creates it in the current directory.

$ mkdir -p foo/bar build

$ cd build

$ cat >Makefile <<END

VPATH = ..

all: foo/bar

END

$ make

mkdir foo

mkdir foo/bar

This can yield unexpected results if a rule uses a manual VPATH search as presented
before.

VPATH = ..

all : foo/bar

command `test -d foo/bar || echo ../`foo/bar

276 Autoconf

The above command is run on the empty foo/bar directory that was created in the current
directory.

12.18.6 Make Target Lookup

GNU make uses a complex algorithm to decide when it should use files found via a VPATH

search. See Section “How Directory Searches are Performed” in The GNU Make Manual.

If a target needs to be rebuilt, GNU make discards the file name found during the VPATH
search for this target, and builds the file locally using the file name given in the makefile. If
a target does not need to be rebuilt, GNU make uses the file name found during the VPATH
search.

Other make implementations, like NetBSD make, are easier to describe: the file name
found during the VPATH search is used whether the target needs to be rebuilt or not. Therefore
new files are created locally, but existing files are updated at their VPATH location.

OpenBSD and FreeBSD make, however, never perform a VPATH search for a dependency
that has an explicit rule. This is extremely annoying.

When attempting a VPATH build for an autoconfiscated package (e.g., mkdir build &&

cd build && ../configure), this means GNU make builds everything locally in the build
directory, while BSD make builds new files locally and updates existing files in the source
directory.

$ cat Makefile

VPATH = ..

all: foo.x bar.x

foo.x bar.x: newer.x

@echo Building $@

$ touch ../bar.x

$ touch ../newer.x

$ make # GNU make

Building foo.x

Building bar.x

$ pmake # NetBSD make

Building foo.x

Building ../bar.x

$ fmake # FreeBSD make, OpenBSD make

Building foo.x

Building bar.x

$ tmake # Tru64 make

Building foo.x

Building bar.x

$ touch ../bar.x

$ make # GNU make

Building foo.x

$ pmake # NetBSD make

Building foo.x

$ fmake # FreeBSD make, OpenBSD make

Building foo.x

Building bar.x

Chapter 12: Portable Make Programming 277

$ tmake # Tru64 make

Building foo.x

Building bar.x

Note how NetBSD make updates ../bar.x in its VPATH location, and how FreeBSD,
OpenBSD, and Tru64 make always update bar.x, even when ../bar.x is up to date.

Another point worth mentioning is that once GNU make has decided to ignore a VPATH

file name (e.g., it ignored ../bar.x in the above example) it continues to ignore it when the
target occurs as a prerequisite of another rule.

The following example shows that GNU make does not look up bar.x in VPATH before
performing the .x.y rule, because it ignored the VPATH result of bar.x while running the
bar.x: newer.x rule.

$ cat Makefile

VPATH = ..

all: bar.y

bar.x: newer.x

@echo Building $@

.SUFFIXES: .x .y

.x.y:

cp $< $@

$ touch ../bar.x

$ touch ../newer.x

$ make # GNU make

Building bar.x

cp bar.x bar.y

cp: cannot stat 'bar.x': No such file or directory

make: *** [bar.y] Error 1

$ pmake # NetBSD make

Building ../bar.x

cp ../bar.x bar.y

$ rm bar.y

$ fmake # FreeBSD make, OpenBSD make

echo Building bar.x

cp bar.x bar.y

cp: cannot stat 'bar.x': No such file or directory

*** Error code 1

$ tmake # Tru64 make

Building bar.x

cp: bar.x: No such file or directory

*** Exit 1

Note that if you drop away the command from the bar.x: newer.x rule, GNU make

magically starts to work: it knows that bar.x hasn’t been updated, therefore it doesn’t
discard the result from VPATH (../bar.x) in succeeding uses. Tru64 also works, but FreeBSD
and OpenBSD still don’t.

$ cat Makefile

VPATH = ..

278 Autoconf

all: bar.y

bar.x: newer.x

.SUFFIXES: .x .y

.x.y:

cp $< $@

$ touch ../bar.x

$ touch ../newer.x

$ make # GNU make

cp ../bar.x bar.y

$ rm bar.y

$ pmake # NetBSD make

cp ../bar.x bar.y

$ rm bar.y

$ fmake # FreeBSD make, OpenBSD make

cp bar.x bar.y

cp: cannot stat 'bar.x': No such file or directory

*** Error code 1

$ tmake # Tru64 make

cp ../bar.x bar.y

It seems the sole solution that would please every make implementation is to never rely
on VPATH searches for targets. In other words, VPATH should be reserved to sources that are
not built.

12.19 Single Suffix Rules and Separated Dependencies

A Single Suffix Rule is basically a usual suffix (inference) rule (‘.from.to:’), but which
destination suffix is empty (‘.from:’).

Separated dependencies simply refers to listing the prerequisite of a target, without
defining a rule. Usually one can list on the one hand side, the rules, and on the other hand
side, the dependencies.

Solaris make does not support separated dependencies for targets defined by single suffix
rules:

$ cat Makefile

.SUFFIXES: .in

foo: foo.in

.in:

cp $< $@

$ touch foo.in

$ make

$ ls

Makefile foo.in

while GNU Make does:

$ gmake

cp foo.in foo

$ ls

Makefile foo foo.in

Chapter 12: Portable Make Programming 279

Note it works without the ‘foo: foo.in’ dependency.

$ cat Makefile

.SUFFIXES: .in

.in:

cp $< $@

$ make foo

cp foo.in foo

and it works with double suffix inference rules:

$ cat Makefile

foo.out: foo.in

.SUFFIXES: .in .out

.in.out:

cp $< $@

$ make

cp foo.in foo.out

As a result, in such a case, you have to write target rules.

12.20 Timestamp Resolution and Make

Traditionally, file timestamps had 1-second resolution, and make used those timestamps to
determine whether one file was newer than the other. However, many modern file systems
have timestamps with 1-nanosecond resolution. Some make implementations look at the
entire timestamp; others ignore the fractional part, which can lead to incorrect results.
Normally this is not a problem, but in some extreme cases you may need to use tricks like
‘sleep 1’ to work around timestamp truncation bugs.

Commands like ‘cp -p’ and ‘touch -r’ typically do not copy file timestamps to their full
resolutions (see [Limitations of Usual Tools], page 260). Hence you should be wary of rules
like this:

dest: src

cp -p src dest

as dest often appears to be older than src after the timestamp is truncated, and this can
cause make to do needless rework the next time it is invoked. To work around this problem,
you can use a timestamp file, e.g.:

dest-stamp: src

cp -p src dest

date >dest-stamp

Apart from timestamp resolution, there are also differences in handling equal timestamps.
HP-UX make updates targets if it has the same timestamp as one of its prerequisites, in
violation of Posix rules.

This can cause spurious rebuilds for repeated runs of make. This in turn can cause make
to fail if it tries to rebuild generated files in a possibly read-only source tree with tools not
present on the end-user machine. Use GNU make instead.

281

13 Portable C and C++ Programming

C and C++ programs often use low-level features of the underlying system, and therefore are
often more difficult to make portable to other platforms.

Several standards have been developed to help make your programs more portable. If
you write programs with these standards in mind, you can have greater confidence that your
programs work on a wide variety of systems. See Section “Language Standards Supported by
GCC” in Using the GNU Compiler Collection (GCC), for a list of C-related standards. Many
programs also assume the Posix standard (https://en.wikipedia.org/wiki/POSIX).

The first widely used C variant was K&R C, which predates any C standard. K&R C
compilers are no longer of practical interest, though, and Autoconf assumes at least C89,
the first C standard, which is sometimes called “C90” due to a delay in standardization. C
has since gone through the standards C99, C11, C17, and C23, and Autoconf is compatible
with all these standards.

Program portability is a huge topic, and this section can only briefly introduce common
pitfalls. See Section “Portability between System Types” in The GNU Coding Standards,
for more information.

13.1 Varieties of Unportability

Autoconf tests and ordinary programs often need to test what is allowed on a system, and
therefore they may need to deliberately exceed the boundaries of what the standards allow,
if only to see whether an optional feature is present. When you write such a program, you
should keep in mind the difference between constraints, unspecified behavior, and undefined
behavior.

In C, a constraint is a rule that the compiler must enforce. An example constraint is that
C programs must not declare a bit-field with negative width. Tests can therefore reliably
assume that programs with negative-width bit-fields are rejected by a compiler that conforms
to the standard.

Unspecified behavior is valid behavior, where the standard allows multiple possibili-
ties. For example, the order of evaluation of function arguments is unspecified. Some
unspecified behavior is implementation-defined, i.e., documented by the implementation,
but since Autoconf tests cannot read the documentation they cannot distinguish between
implementation-defined and other unspecified behavior. It is common for Autoconf tests to
probe implementations to determine otherwise-unspecified behavior.

Undefined behavior is invalid behavior, where the standard allows the implementation to
do anything it pleases. For example, dereferencing a null pointer leads to undefined behavior.
If possible, test programs should avoid undefined behavior, since a program with undefined
behavior might succeed on a test that should fail.

The above rules apply to programs that are intended to conform to the standard. However,
strictly-conforming programs are quite rare, since the standards are so limiting. A major
goal of Autoconf is to support programs that use implementation features not described by
the standard, and it is fairly common for test programs to violate the above rules, if the
programs work well enough in practice.

https://en.wikipedia.org/wiki/POSIX

282 Autoconf

13.2 Integer Overflow

Although some traditional C programs assume that signed integer overflow wraps around
reliably using two’s complement arithmetic, the C standard says that program behavior is
undefined on overflow, and these C programs may not work on many modern implementations.

13.2.1 Basics of Integer Overflow

In languages like C, integer overflow wraps around for unsigned integer types that are at
least as wide as unsigned int; e.g., UINT_MAX + 1 yields zero. This is guaranteed by the C
standard and is portable in practice, unless you specify aggressive, nonstandard optimization
options suitable only for special applications.

In contrast, the C standard says that signed integer overflow leads to undefined behavior
where a program can do anything, including dumping core or overrunning a buffer. The
misbehavior can even precede the overflow. Such an overflow can occur during addition,
subtraction, multiplication, division, and left shift. It can even occur for unsigned types like
unsigned short int that are narrower than int, as values of these types are widened to
int before computation.

Despite this requirement of the standard, some C programs assume that signed integer
overflow silently wraps around modulo a power of two, using two’s complement arithmetic,
so long as you convert the resulting value to a signed integer type. These programs can have
problems, especially when optimization is enabled. If you assume a GCC-like compiler, you
can work around the problems by compiling with GCC’s -fwrapv option; however, this is
not portable.

For historical reasons C17 and earlier also allowed implementations with ones’ complement
or signed magnitude arithmetic, but C23 requires two’s complement and it is safe to assume
two’s complement nowadays.

Also, overflow can occur when converting an out-of-range value to a signed integer type.
Here a standard implementation must define what happens, and this can include raising an
exception. Although practical implementations typically wrap around silently in this case, a
few debugging implementations trap instead.

13.2.2 Examples of Code Assuming Wraparound Overflow

There was long a tension between what the C standard requires for signed integer overflow,
and what traditional C programs commonly assumed. The standard allows aggressive
optimizations based on assumptions that overflow never occurs, but traditionally many C
programs relied on overflow wrapping around. Although these programs did not conform
to the standard, they formerly worked in practice because traditionally compilers did not
optimize in such a way that would break the programs. Nowadays, though, compilers do
perform these optimizations, so portable programs can no longer assume reliable wraparound
on signed integer overflow.

The C Standard says that if a program has signed integer overflow its behavior is
undefined, and the undefined behavior can even precede the overflow. To take an extreme
example:

if (password == expected_password)

allow_superuser_privileges ();

else if (counter++ == INT_MAX)

Chapter 13: Portable C and C++ Programming 283

abort ();

else

printf ("%d password mismatches\n", counter);

If the int variable counter equals INT_MAX, counter++ must overflow and the behavior
is undefined, so the C standard allows the compiler to optimize away the test against
INT_MAX and the abort call. Worse, if an earlier bug in the program lets the compiler deduce
that counter == INT_MAX or that counter previously overflowed, the C standard allows
the compiler to optimize away the password test and generate code that allows superuser
privileges unconditionally.

Here is an example derived from the 7th Edition Unix implementation of atoi (1979-01-
10):

char *p;

int f, n;

...

while (*p >= '0' && *p <= '9')

n = n * 10 + *p++ - '0';

return (f ? -n : n);

Even if the input string is in range, on most modern machines this has signed overflow when
computing the most negative integer (the -n overflows) or a value near an extreme integer
(the + overflows).

Here is another example, derived from the 7th Edition implementation of rand (1979-01-
10). Here the programmer expects both multiplication and addition to wrap on overflow:

static long int randx = 1;

...

randx = randx * 1103515245 + 12345;

return (randx >> 16) & 077777;

In the following example, derived from the GNU C Library 2.15 implementation of mktime
(2012-03-21), the code assumes wraparound arithmetic in + to detect signed overflow:

time_t t, t1, t2;

int sec_requested, sec_adjustment;

...

t1 = t + sec_requested;

t2 = t1 + sec_adjustment;

if (((t1 < t) != (sec_requested < 0))

| ((t2 < t1) != (sec_adjustment < 0)))

return -1;

Although some of these examples will likely behave as if signed integer overflow wraps
around reliably, other examples are likely to misbehave when optimization is enabled. All
these examples should be avoided in portable code because signed integer overflow is not
reliable on modern systems, and it’s not worth worrying about which of these examples
happen to work on most platforms and which do not.

13.2.3 Optimizations That Break Wraparound Arithmetic

Compilers sometimes generate code that is incompatible with wraparound integer arithmetic.
A simple example is an algebraic simplification: a compiler might translate (i * 2000) /

284 Autoconf

1000 to i * 2 because it assumes that i * 2000 does not overflow. The translation is not
equivalent to the original when overflow occurs: e.g., in the typical case of 32-bit signed
two’s complement wraparound int, if i has type int and value 1073742, the original
expression returns −2147483 but the optimized version returns the mathematically correct
value 2147484.

More subtly, loop induction optimizations often exploit the undefined behavior of signed
overflow. Consider the following contrived function sumc:

int

sumc (int lo, int hi)

{

int sum = 0;

for (int i = lo; i <= hi; i++)

sum ^= i * 53;

return sum;

}

To avoid multiplying by 53 each time through the loop, an optimizing compiler might
internally transform sumc to the equivalent of the following:

int

transformed_sumc (int lo, int hi)

{

int sum = 0;

int hic = hi * 53;

for (int ic = lo * 53; ic <= hic; ic += 53)

sum ^= ic;

return sum;

}

This transformation is allowed by the C standard, but it is invalid for wraparound arithmetic
when INT_MAX / 53 < hi, because then the overflow in computing expressions like hi * 53

can cause the expression i <= hi to yield a different value from the transformed expression
ic <= hic.

For this reason, compilers that use loop induction and similar techniques often do not
support reliable wraparound arithmetic when a loop induction variable like ic is involved.
Since loop induction variables are generated by the compiler, and are not visible in the
source code, it is not always trivial to say whether the problem affects your code.

Hardly any code actually depends on wraparound arithmetic in cases like these, so in
practice these loop induction optimizations are almost always useful. However, edge cases in
this area can cause problems. For example:

for (int j = 1; 0 < j; j *= 2)

test (j);

Here, the loop attempts to iterate through all powers of 2 that int can represent, but the
C standard allows a compiler to optimize away the comparison and generate an infinite
loop, under the argument that behavior is undefined on overflow. As of this writing this
optimization is done on some platforms by GCC with -O2, so this code is not portable in
practice.

Chapter 13: Portable C and C++ Programming 285

13.2.4 Practical Advice for Signed Overflow Issues

Ideally the safest approach is to avoid signed integer overflow entirely. For example, instead
of multiplying two signed integers, you can convert them to double-width integers, multiply
the wider values, then test whether the result is in the narrower range. Or you can use
more-complicated code employing unsigned integers of the same width.

Rewriting code in this way will be inconvenient, though, especially if the signed values
might be negative and no wider type is available. Using unsigned arithmetic to check for
overflow is particularly painful to do portably and efficiently when dealing with an integer
type like uid_t whose width and signedness vary from platform to platform. Also, this
approach may hurt performance.

Hence it is often useful to maintain code that needs wraparound on overflow, instead
of rewriting the code. The rest of this section attempts to give practical advice for this
situation.

To detect integer overflow portably when attempting operations like sum = a + b, you
can use the C23 <stdckdint.h> macros ckd_add, ckd_sub, and ckd_mul. The following
code adds two integers with overflow wrapping around reliably in the sum:

#include <stdckdint.h>

...

/* Set sum = a + b, with wraparound. */

if (ckd_add (&sum, a, b))

/* 'sum' has just the low order bits. */;

else

/* 'sum' is the correct answer. */;

To be portable to pre-C23 platforms you can use Gnulib’s stdckdint module, which
emulates this part of C23 (see Section 2.2 [Gnulib], page 3). Invoking the stdckdint macros
typically costs just one machine instruction for the arithmetic and another instruction for
the rare branch on overflow.

If your code uses a signed loop index, make sure that the index cannot overflow, along
with all signed expressions derived from the index. Here is a contrived example of problematic
code with two instances of overflow.

for (int i = INT_MAX - 10; i <= INT_MAX; i++)

if (i + 1 < 0)

{

report_overflow ();

break;

}

Because of the two overflows, a compiler might optimize away or transform the two compar-
isons in a way that is incompatible with the wraparound assumption.

If your code is intended to be compiled only by GCC and assumes wraparound behavior,
and you want to insulate it against any GCC optimizations that would fail to support that
behavior, you should use GCC’s -fwrapv option, which causes signed overflow to wrap
around reliably (except for division and remainder, as discussed in the next section).

If you need to write portable code and therefore cannot assume that signed integer
overflow wraps around reliably, you should consider debugging with a GCC option that

286 Autoconf

causes signed overflow to raise an exception. These options include -fsanitize=undefined
and -ftrapv.

13.2.5 Signed Integer Division and Integer Overflow

Overflow in signed integer division is not always harmless: for example, on CPUs of the
i386 family, dividing INT_MIN by -1 yields a SIGFPE signal which by default terminates the
program. Worse, taking the remainder of these two values typically yields the same signal
on these CPUs, behavior that the C standard allows.

13.3 Preprocessor Arithmetic

In C99 and later, preprocessor arithmetic, used for #if expressions, must be evaluated as if
all signed values are of type intmax_t and all unsigned values of type uintmax_t. Many
compilers are buggy in this area, though. For example, as of 2007, Sun C mishandles #if
LLONG_MIN < 0 on a platform with 32-bit long int and 64-bit long long int. Also, some
older preprocessors mishandle constants ending in LL. To work around these problems, you
can compute the value of expressions like LONG_MAX < LLONG_MAX at configure-time rather
than at #if-time.

13.4 Properties of Null Pointers

Most modern hosts reliably fail when you attempt to dereference a null pointer.

On almost all modern hosts, null pointers use an all-bits-zero internal representation, so
you can reliably use memset with 0 to set all the pointers in an array to null values.

If p is a null pointer to an object type, the C expression p + 0 always evaluates to p on
modern hosts, even though the standard says that it has undefined behavior.

13.5 Buffer Overruns and Subscript Errors

Buffer overruns and subscript errors are the most common dangerous errors in C programs.
They result in undefined behavior because storing outside an array typically modifies storage
that is used by some other object, and most modern systems lack runtime checks to catch
these errors. Programs should not rely on buffer overruns being caught.

There is one exception to the usual rule that a portable program cannot address outside
an array. In C, it is valid to compute the address just past an object, e.g., &a[N] where a

has N elements, so long as you do not dereference the resulting pointer. But it is not valid
to compute the address just before an object, e.g., &a[-1]; nor is it valid to compute two
past the end, e.g., &a[N+1]. On most platforms &a[-1] < &a[0] && &a[N] < &a[N+1], but
this is not reliable in general, and it is usually easy enough to avoid the potential portability
problem, e.g., by allocating an extra unused array element at the start or end.

Valgrind (https://www.valgrind.org/) can catch many overruns. GCC users might
also consider using the -fsanitize= options to catch overruns. See Section “Program
Instrumentation Options” in Using the GNU Compiler Collection (GCC).

Buffer overruns are usually caused by off-by-one errors, but there are more subtle ways
to get them.

Using int values to index into an array or compute array sizes causes problems on typical
64-bit hosts where an array index might be 231 or larger. Index values of type size_t avoid

https://www.valgrind.org/

Chapter 13: Portable C and C++ Programming 287

this problem, but cannot be negative. Index values of type ptrdiff_t are signed, and are
wide enough in practice.

If you add or multiply two numbers to calculate an array size, e.g., malloc (x * sizeof

y + z), havoc ensues if the addition or multiplication overflows.

Many implementations of the alloca function silently misbehave and can generate buffer
overflows if given sizes that are too large. The size limits are implementation dependent,
but are at least 4000 bytes on all platforms that we know about.

The standard functions asctime, asctime_r, ctime, ctime_r, and gets are prone to
buffer overflows, and portable code should not use them unless the inputs are known to
be within certain limits. The time-related functions can overflow their buffers if given
timestamps out of range (e.g., a year less than -999 or greater than 9999). Time-related
buffer overflows cannot happen with recent-enough versions of the GNU C library, but
are possible with other implementations. The gets function is the worst, since it almost
invariably overflows its buffer when presented with an input line larger than the buffer.

13.6 Volatile Objects

The keyword volatile is often misunderstood in portable code. Its use inhibits some
memory-access optimizations, but programmers often wish that it had a different meaning
than it actually does.

volatile was designed for code that accesses special objects like memory-mapped device
registers whose contents spontaneously change. Such code is inherently low-level, and it
is difficult to specify portably what volatile means in these cases. The C standard says,
“What constitutes an access to an object that has volatile-qualified type is implementation-
defined,” so in theory each implementation is supposed to fill in the gap by documenting
what volatile means for that implementation. In practice, though, this documentation is
usually absent or incomplete.

One area of confusion is the distinction between objects defined with volatile types, and
volatile lvalues. From the C standard’s point of view, an object defined with a volatile type
has externally visible behavior. You can think of such objects as having little oscilloscope
probes attached to them, so that the user can observe some properties of accesses to them,
just as the user can observe data written to output files. However, the standard does not
make it clear whether users can observe accesses by volatile lvalues to ordinary objects. For
example:

/* Declare and access a volatile object.

Accesses to X are "visible" to users. */

static int volatile x;

x = 1;

/* Access two ordinary objects via a volatile lvalue.

It's not clear whether accesses to *P are "visible". */

int y;

int *z = malloc (sizeof (int));

int volatile *p;

p = &y;

*p = 1;

288 Autoconf

p = z;

*p = 1;

Programmers often wish that volatile meant “Perform the memory access here and
now, without merging several memory accesses, without changing the memory word size,
and without reordering.” But the C standard does not require this. For objects defined with
a volatile type, accesses must be done before the next sequence point; but otherwise merging,
reordering, and word-size change is allowed. Worse, it is not clear from the standard whether
volatile lvalues provide more guarantees in general than nonvolatile lvalues, if the underlying
objects are ordinary.

Even when accessing objects defined with a volatile type, the C standard allows only
extremely limited signal handlers: in C99 the behavior is undefined if a signal handler reads
any non-local object, or writes to any non-local object whose type is not sig_atomic_t
volatile, or calls any standard library function other than abort, signal, and _Exit.
Hence C compilers need not worry about a signal handler disturbing ordinary computation.
C11 and Posix allow some additional behavior in a portable signal handler, but are still
quite restrictive.

Some C implementations allow memory-access optimizations within each translation unit,
such that actual behavior agrees with the behavior required by the standard only when
calling a function in some other translation unit, and a signal handler acts like it was called
from a different translation unit. The C99 standard hints that in these implementations,
objects referred to by signal handlers “would require explicit specification of volatile
storage, as well as other implementation-defined restrictions.” But unfortunately even for
this special case these other restrictions are often not documented well. This area was
significantly changed in C11, and eventually implementations will probably head in the C11
direction, but this will take some time. See Section “When is a Volatile Object Accessed?”
in Using the GNU Compiler Collection (GCC), for some restrictions imposed by GCC. See
Section “Defining Signal Handlers” in The GNU C Library , for some restrictions imposed
by the GNU C library. Restrictions differ on other platforms.

If possible, it is best to use a signal handler that fits within the limits imposed by the C
and Posix standards.

If this is not practical, you can try the following rules of thumb. A signal handler should
access only volatile lvalues, preferably lvalues that refer to objects defined with a volatile
type, and should not assume that the accessed objects have an internally consistent state if
they are larger than a machine word. Furthermore, installers should employ compilers and
compiler options that are commonly used for building operating system kernels, because
kernels often need more from volatile than the C Standard requires, and installers who
compile an application in a similar environment can sometimes benefit from the extra
constraints imposed by kernels on compilers. Admittedly we are hand-waving somewhat
here, as there are few guarantees in this area; the rules of thumb may help to fix some bugs
but there is a good chance that they will not fix them all.

For volatile, C++ has the same problems that C does. Multithreaded applications have
even more problems with volatile, but they are beyond the scope of this section.

The bottom line is that using volatile typically hurts performance but should not hurt
correctness. In some cases its use does help correctness, but these cases are often so poorly

Chapter 13: Portable C and C++ Programming 289

understood that all too often adding volatile to a data structure merely alleviates some
symptoms of a bug while not fixing the bug in general.

13.7 Floating Point Portability

Almost all modern systems use IEEE-754 floating point, and it is safe to assume IEEE-754
in most portable code these days. For more information, please see David Goldberg’s classic
paper What Every Computer Scientist Should Know About Floating-Point Arithmetic
(http://www.validlab.com/goldberg/paper.pdf).

13.8 Exiting Portably

A C or C++ program can exit with status N by returning N from the main function. Portable
programs are supposed to exit either with status 0 or EXIT_SUCCESS to succeed, or with
status EXIT_FAILURE to fail, but in practice it is portable to fail by exiting with status 1,
and test programs that assume Posix can fail by exiting with status values from 1 through
255.

A program can also exit with status N by passing N to the exit function, and a program
can fail by calling the abort function. If a program is specialized to just some platforms, it
can fail by calling functions specific to those platforms, e.g., _exit (Posix). However, like
other functions, an exit function should be declared, typically by including a header. For
example, if a C program calls exit, it should include stdlib.h either directly or via the
default includes (see Section 5.1.2 [Default Includes], page 45).

A program can fail due to undefined behavior such as dereferencing a null pointer, but
this is not recommended as undefined behavior allows an implementation to do whatever it
pleases and this includes exiting successfully.

http://www.validlab.com/goldberg/paper.pdf
http://www.validlab.com/goldberg/paper.pdf

291

14 Manual Configuration

A few kinds of features can’t be guessed automatically by running test programs. For
example, the details of the object-file format, or special options that need to be passed to the
compiler or linker. Autoconf provides a uniform method for handling unguessable features,
by giving each operating system a canonical system type, also known as a canonical name
or target triplet.

If you use any of the macros described in this chapter, you must distribute the helper
scripts config.guess and config.sub along with your source code. Some Autoconf macros
use these macros internally, so you may need to distribute these scripts even if you do not
use any of these macros yourself. See Section 4.4 [Input], page 22, for information about
the AC_CONFIG_AUX_DIR macro which you can use to control in which directory configure

looks for helper scripts, and where to get the scripts from.

14.1 Specifying target triplets

Autoconf-generated configure scripts can make decisions based on a canonical name for
the system type, or target triplet, which has the form: ‘cpu-vendor-os’, where os can be
‘system’ or ‘kernel-system’

configure can usually guess the canonical name for the type of system it’s running
on. To do so it runs a script called config.guess, which infers the name using the uname
command or symbols predefined by the C preprocessor.

Alternately, the user can specify the system type with command line arguments to
configure (see Section 16.6 [System Types], page 308. Doing so is necessary when cross-
compiling. In the most complex case of cross-compiling, three system types are involved.
The options to specify them are:

--build=build-type

the type of system on which the package is being configured and compiled. It
defaults to the result of running config.guess. Specifying a build-type that
differs from host-type enables cross-compilation mode.

--host=host-type

the type of system on which the package runs. By default it is the same as the
build machine. The tools that get used to build and manipulate binaries will, by
default, all be prefixed with host-type-, such as host-type-gcc, host-type-
g++, host-type-ar, and host-type-nm. If the binaries produced by these tools
can be executed by the build system, the configure script will make use of it
in AC_RUN_IFELSE invocations; otherwise, cross-compilation mode is enabled.
Specifying a host-type that differs from build-type, when build-type was also
explicitly specified, equally enables cross-compilation mode.

--target=target-type

the type of system for which any compiler tools in the package produce code
(rarely needed). By default, it is the same as host.

If you mean to override the result of config.guess but still produce binaries for the
build machine, use --build, not --host.

292 Autoconf

So, for example, to produce binaries for 64-bit MinGW, use a command like this:

./configure --host=x86_64-w64-mingw64

If your system has the ability to execute MinGW binaries but you don’t want to make
use of this feature and instead prefer cross-compilation guesses, use a command like this:

./configure --build=x86_64-pc-linux-gnu --host=x86_64-w64-mingw64

Note that if you do not specify --host, configure fails if it can’t run the code generated
by the specified compiler. For example, configuring as follows fails:

./configure CC=x86_64-w64-mingw64-gcc

When cross-compiling, configure will warn about any tools (compilers, linkers, assem-
blers) whose name is not prefixed with the host type. This is an aid to users performing
cross-compilation. Continuing the example above, if a cross-compiler named cc is used
with a native pkg-config, then libraries found by pkg-config will likely cause subtle build
failures; but using the names x86_64-w64-mingw64-gcc and x86_64-w64-mingw64-pkg-

config avoids any confusion. Avoiding the warning is as simple as creating the correct
symlinks naming the cross tools.

configure recognizes short aliases for many system types; for example, ‘decstation’
can be used instead of ‘mips-dec-ultrix4.2’. configure runs a script called config.sub

to canonicalize system type aliases.

This section deliberately omits the description of the obsolete interface; see Section 18.6.3
[Hosts and Cross-Compilation], page 333.

14.2 Getting the Canonical System Type

The following macros make the system type available to configure scripts.

The variables ‘build_alias’, ‘host_alias’, and ‘target_alias’ are always exactly the
arguments of --build, --host, and --target; in particular, they are left empty if the user
did not use them, even if the corresponding AC_CANONICAL macro was run. Any configure
script may use these variables anywhere. These are the variables that should be used when
in interaction with the user.

If you need to recognize some special environments based on their system type, run the
following macros to get canonical system names. These variables are not set before the
macro call.

[Macro]AC_CANONICAL_BUILD
Compute the canonical build-system type variable, build, and its three individual
parts build_cpu, build_vendor, and build_os.

If --build was specified, then build is the canonicalization of build_alias by
config.sub, otherwise it is determined by the shell script config.guess.

[Macro]AC_CANONICAL_HOST
Compute the canonical host-system type variable, host, and its three individual parts
host_cpu, host_vendor, and host_os.

If --host was specified, then host is the canonicalization of host_alias by
config.sub, otherwise it defaults to build.

Chapter 14: Manual Configuration 293

[Macro]AC_CANONICAL_TARGET
Compute the canonical target-system type variable, target, and its three individual
parts target_cpu, target_vendor, and target_os.

If --target was specified, then target is the canonicalization of target_alias by
config.sub, otherwise it defaults to host.

Note that there can be artifacts due to the backward compatibility code. See Section 18.6.3
[Hosts and Cross-Compilation], page 333, for more.

14.3 Using the System Type

In configure.ac the system type is generally used by one or more case statements to select
system-specifics. Shell wildcards can be used to match a group of system types.

For example, an extra assembler code object file could be chosen, giving access to a CPU
cycle counter register. $(CYCLE_OBJ) in the following would be used in a makefile to add
the object to a program or library.

AS_CASE([$host],

[alpha*-*-*], [CYCLE_OBJ=rpcc.o],

[i?86-*-*], [CYCLE_OBJ=rdtsc.o],

[CYCLE_OBJ=""])

AC_SUBST([CYCLE_OBJ])

AC_CONFIG_LINKS (see Section 4.11 [Configuration Links], page 42) is another good way
to select variant source files, for example optimized code for some CPUs. The configured
CPU type doesn’t always indicate exact CPU types, so some runtime capability checks may
be necessary too.

AS_CASE([$host],

[alpha*-*-*], [AC_CONFIG_LINKS([dither.c:alpha/dither.c])],

[powerpc*-*-*], [AC_CONFIG_LINKS([dither.c:powerpc/dither.c])],

[AC_CONFIG_LINKS([dither.c:generic/dither.c])])

The host system type can also be used to find cross-compilation tools with AC_CHECK_TOOL

(see Section 5.2.2 [Generic Programs], page 51).

The above examples all show ‘$host’, since this is where the code is going to run. Only
rarely is it necessary to test ‘$build’ (which is where the build is being done).

Whenever you’re tempted to use ‘$host’ it’s worth considering whether some sort of
probe would be better. New system types come along periodically or previously missing
features are added. Well-written probes can adapt themselves to such things, but hard-coded
lists of names can’t. Here are some guidelines,

• Availability of libraries and library functions should always be checked by probing.

• Variant behavior of system calls is best identified with runtime tests if possible, but
bug workarounds or obscure difficulties might have to be driven from ‘$host’.

• Assembler code is inevitably highly CPU-specific and is best selected according to
‘$host_cpu’.

• Assembler variations like underscore prefix on globals or ELF versus COFF type
directives are however best determined by probing, perhaps even examining the compiler
output.

294 Autoconf

‘$target’ is for use by a package creating a compiler or similar. For ordinary packages
it’s meaningless and should not be used. It indicates what the created compiler should
generate code for, if it can cross-compile. ‘$target’ generally selects various hard-coded CPU
and system conventions, since usually the compiler or tools under construction themselves
determine how the target works.

295

15 Site Configuration

configure scripts support several kinds of local configuration decisions. There are ways for
users to specify where external software packages are, include or exclude optional features,
install programs under modified names, and set default values for configure options.

15.1 Controlling Help Output

Users consult ‘configure --help’ to learn of configuration decisions specific to your package.
By default, configure breaks this output into sections for each type of option; within each
section, help strings appear in the order configure.ac defines them:

Optional Features:

...

--enable-bar include bar

Optional Packages:

...

--with-foo use foo

[Macro]AC_PRESERVE_HELP_ORDER
Request an alternate --help format, in which options of all types appear together, in
the order defined. Call this macro before any AC_ARG_ENABLE or AC_ARG_WITH.

Optional Features and Packages:

...

--enable-bar include bar

--with-foo use foo

15.2 Working With External Software

Some packages require, or can optionally use, other software packages that are already
installed. The user can give configure command line options to specify which such external
software to use. The options have one of these forms:

--with-package[=arg]
--without-package

For example, --with-gnu-ld means work with the GNU linker instead of some other
linker. --with-x means work with The X Window System.

The user can give an argument by following the package name with ‘=’ and the argument.
Giving an argument of ‘no’ is for packages that are used by default; it says to not use the
package. An argument that is neither ‘yes’ nor ‘no’ could include a name or number of a
version of the other package, to specify more precisely which other package this program is
supposed to work with. If no argument is given, it defaults to ‘yes’. --without-package is
equivalent to --with-package=no.

Normally configure scripts complain about --with-package options that they do not
support. See Section 15.5 [Option Checking], page 300, for details, and for how to override
the defaults.

296 Autoconf

For each external software package that may be used, configure.ac should call AC_ARG_
WITH to detect whether the configure user asked to use it. Whether each package is used
or not by default, and which arguments are valid, is up to you.

[Macro]AC_ARG_WITH (package, help-string, [action-if-given],
[action-if-not-given])

If the user gave configure the option --with-package or --without-package, run
shell commands action-if-given. If neither option was given, run shell commands
action-if-not-given. The name package indicates another software package that this
program should work with. It should consist only of alphanumeric characters, dashes,
plus signs, and dots.

The option’s argument is available to the shell commands action-if-given in the shell
variable withval, which is actually just the value of the shell variable named with_

package, with any non-alphanumeric characters in package changed into ‘_’. You may
use that variable instead, if you wish.

Note that action-if-not-given is not expanded until the point that AC_ARG_WITH was
expanded. If you need the value of with_package set to a default value by the time
argument parsing is completed, use m4_divert_text to the DEFAULTS diversion (see
[m4 divert text], page 151) (if done as an argument to AC_ARG_WITH, also provide
non-diverted text to avoid a shell syntax error).

The argument help-string is a description of the option that looks like this:

--with-readline support fancy command line editing

help-string may be more than one line long, if more detail is needed. Just make sure
the columns line up in ‘configure --help’. Avoid tabs in the help string. The easiest
way to provide the proper leading whitespace is to format your help-string with the
macro AS_HELP_STRING (see Section 15.4 [Pretty Help Strings], page 299).

The following example shows how to use the AC_ARG_WITHmacro in a common situation.
You want to let the user decide whether to enable support for an external library (e.g.,
the readline library); if the user specified neither --with-readline nor --without-
readline, you want to enable support for readline only if the library is available on
the system.

AC_ARG_WITH([readline],

[AS_HELP_STRING([--with-readline],

[support fancy command line editing @<:@default=check@:>@])],

[],

[: m4_divert_text([DEFAULTS], [with_readline=check])])

LIBREADLINE=

AS_IF([test "x$with_readline" != xno],

[AC_CHECK_LIB([readline], [main],

[AC_SUBST([LIBREADLINE], ["-lreadline -lncurses"])

AC_DEFINE([HAVE_LIBREADLINE], [1],

[Define if you have libreadline])

],

[if test "x$with_readline" != xcheck; then

AC_MSG_FAILURE(

Chapter 15: Site Configuration 297

[--with-readline was given, but test for readline failed])

fi

], -lncurses)])

The next example shows how to use AC_ARG_WITH to give the user the possibility to
enable support for the readline library, in case it is still experimental and not well
tested, and is therefore disabled by default.

AC_ARG_WITH([readline],

[AS_HELP_STRING([--with-readline],

[enable experimental support for readline])],

[],

[with_readline=no])

LIBREADLINE=

AS_IF([test "x$with_readline" != xno],

[AC_CHECK_LIB([readline], [main],

[AC_SUBST([LIBREADLINE], ["-lreadline -lncurses"])

AC_DEFINE([HAVE_LIBREADLINE], [1],

[Define if you have libreadline])

],

[AC_MSG_FAILURE(

[--with-readline was given, but test for readline failed])],

[-lncurses])])

The last example shows how to use AC_ARG_WITH to give the user the possibility to
disable support for the readline library, given that it is an important feature and that
it should be enabled by default.

AC_ARG_WITH([readline],

[AS_HELP_STRING([--without-readline],

[disable support for readline])],

[],

[with_readline=yes])

LIBREADLINE=

AS_IF([test "x$with_readline" != xno],

[AC_CHECK_LIB([readline], [main],

[AC_SUBST([LIBREADLINE], ["-lreadline -lncurses"])

AC_DEFINE([HAVE_LIBREADLINE], [1],

[Define if you have libreadline])

],

[AC_MSG_FAILURE(

[readline test failed (--without-readline to disable)])],

[-lncurses])])

These three examples can be easily adapted to the case where AC_ARG_ENABLE should
be preferred to AC_ARG_WITH (see Section 15.3 [Package Options], page 298).

298 Autoconf

15.3 Choosing Package Options

If a software package has optional compile-time features, the user can give configure

command line options to specify whether to compile them. The options have one of these
forms:

--enable-feature[=arg]
--disable-feature

These options allow users to choose which optional features to build and install.
--enable-feature options should never make a feature behave differently or cause one
feature to replace another. They should only cause parts of the program to be built rather
than left out.

The user can give an argument by following the feature name with ‘=’ and the argument.
Giving an argument of ‘no’ requests that the feature not be made available. A feature with
an argument looks like --enable-debug=stabs. If no argument is given, it defaults to ‘yes’.
--disable-feature is equivalent to --enable-feature=no.

Normally configure scripts complain about --enable-package options that they do
not support. See Section 15.5 [Option Checking], page 300, for details, and for how to
override the defaults.

For each optional feature, configure.ac should call AC_ARG_ENABLE to detect whether
the configure user asked to include it. Whether each feature is included or not by default,
and which arguments are valid, is up to you.

[Macro]AC_ARG_ENABLE (feature, help-string, [action-if-given],
[action-if-not-given])

If the user gave configure the option --enable-feature or --disable-feature,
run shell commands action-if-given. If neither option was given, run shell commands
action-if-not-given. The name feature indicates an optional user-level facility. It should
consist only of alphanumeric characters, dashes, plus signs, and dots.

The option’s argument is available to the shell commands action-if-given in the shell
variable enableval, which is actually just the value of the shell variable named
enable_feature, with any non-alphanumeric characters in feature changed into ‘_’.
You may use that variable instead, if you wish. The help-string argument is like that
of AC_ARG_WITH (see Section 15.2 [External Software], page 295).

Note that action-if-not-given is not expanded until the point that AC_ARG_ENABLE was
expanded. If you need the value of enable_feature set to a default value by the time
argument parsing is completed, use m4_divert_text to the DEFAULTS diversion (see
[m4 divert text], page 151) (if done as an argument to AC_ARG_ENABLE, also provide
non-diverted text to avoid a shell syntax error).

You should format your help-string with the macro AS_HELP_STRING (see Section 15.4
[Pretty Help Strings], page 299).

See the examples suggested with the definition of AC_ARG_WITH (see Section 15.2
[External Software], page 295) to get an idea of possible applications of AC_ARG_
ENABLE.

Chapter 15: Site Configuration 299

15.4 Making Your Help Strings Look Pretty

Properly formatting the ‘help strings’ which are used in AC_ARG_WITH (see Section 15.2
[External Software], page 295) and AC_ARG_ENABLE (see Section 15.3 [Package Options],
page 298) can be challenging. Specifically, you want your own ‘help strings’ to line up
in the appropriate columns of ‘configure --help’ just like the standard Autoconf ‘help
strings’ do. This is the purpose of the AS_HELP_STRING macro.

[Macro]AS_HELP_STRING (left-hand-side, right-hand-side [indent-column
= ‘26’], [wrap-column = ‘79’])

Expands into a help string that looks pretty when the user executes ‘configure
--help’. It is typically used in AC_ARG_WITH (see Section 15.2 [External Software],
page 295) or AC_ARG_ENABLE (see Section 15.3 [Package Options], page 298). The
following example makes this clearer.

AC_ARG_WITH([foo],

[AS_HELP_STRING([--with-foo],

[use foo (default is no)])],

[use_foo=$withval],

[use_foo=no])

Then the last few lines of ‘configure --help’ appear like this:

--enable and --with options recognized:

--with-foo use foo (default is no)

Macro expansion is performed on the first argument. However, the second argument
of AS_HELP_STRING is treated as a whitespace separated list of text to be reformatted,
and is not subject to macro expansion. Since it is not expanded, it should not be
double quoted. See Section 3.1.2 [Autoconf Language], page 9, for a more detailed
explanation.

The AS_HELP_STRING macro is particularly helpful when the left-hand-side and/or
right-hand-side are composed of macro arguments, as shown in the following exam-
ple. Be aware that left-hand-side may not expand to unbalanced quotes, although
quadrigraphs can be used.

AC_DEFUN([MY_ARG_WITH],

[AC_ARG_WITH(m4_translit([[$1]], [_], [-]),

[AS_HELP_STRING([--with-m4_translit([$1], [_], [-])],

[use $1 (default is $2)])],

[use_[]$1=$withval],

[use_[]$1=$2])])

MY_ARG_WITH([a_b], [no])

Here, the last few lines of ‘configure --help’ will include:

--enable and --with options recognized:

--with-a-b use a_b (default is no)

The parameters indent-column and wrap-column were introduced in Autoconf 2.62.
Generally, they should not be specified; they exist for fine-tuning of the wrapping.

AS_HELP_STRING([--option], [description of option])

⇒ --option description of option

300 Autoconf

AS_HELP_STRING([--option], [description of option], [15], [30])

⇒ --option description of

⇒ option

15.5 Controlling Checking of configure Options

The configure script checks its command-line options against a list of known options, like
--help or --config-cache. An unknown option ordinarily indicates a mistake by the user
and configure halts with an error. However, by default unknown --with-package and
--enable-feature options elicit only a warning, to support configuring entire source trees.

Source trees often contain multiple packages with a top-level configure script that uses
the AC_CONFIG_SUBDIRS macro (see Section 4.12 [Subdirectories], page 43). Because the
packages generally support different --with-package and --enable-feature options, the
GNU Coding Standards say they must accept unrecognized options without halting. Even
a warning message is undesirable here, so AC_CONFIG_SUBDIRS automatically disables the
warnings.

This default behavior may be modified in two ways. First, the installer can invoke
configure --disable-option-checking to disable these warnings, or invoke configure

--enable-option-checking=fatal options to turn them into fatal errors, respectively.
Second, the maintainer can use AC_DISABLE_OPTION_CHECKING.

[Macro]AC_DISABLE_OPTION_CHECKING
By default, disable warnings related to any unrecognized --with-package or
--enable-feature options. This is implied by AC_CONFIG_SUBDIRS.

The installer can override this behavior by passing --enable-option-checking (en-
able warnings) or --enable-option-checking=fatal (enable errors) to configure.

15.6 Configuring Site Details

Some software packages require complex site-specific information. Some examples are host
names to use for certain services, company names, and email addresses to contact. Since
some configuration scripts generated by Metaconfig ask for such information interactively,
people sometimes wonder how to get that information in Autoconf-generated configuration
scripts, which aren’t interactive.

Such site configuration information should be put in a file that is edited only by users,
not by programs. The location of the file can either be based on the prefix variable,
or be a standard location such as the user’s home directory. It could even be specified
by an environment variable. The programs should examine that file at runtime, rather
than at compile time. Runtime configuration is more convenient for users and makes the
configuration process simpler than getting the information while configuring. See Section
“Variables for Installation Directories” in The GNU Coding Standards, for more information
on where to put data files.

15.7 Transforming Program Names When Installing

Autoconf supports changing the names of programs when installing them. In order to use
these transformations, configure.ac must call the macro AC_ARG_PROGRAM.

Chapter 15: Site Configuration 301

[Macro]AC_ARG_PROGRAM
Place in output variable program_transform_name a sequence of sed commands for
changing the names of installed programs.

If any of the options described below are given to configure, program names are
transformed accordingly. Otherwise, if AC_CANONICAL_TARGET has been called and
a --target value is given, the target type followed by a dash is used as a prefix.
Otherwise, no program name transformation is done.

15.7.1 Transformation Options

You can specify name transformations by giving configure these command line options:

--program-prefix=prefix

prepend prefix to the names;

--program-suffix=suffix

append suffix to the names;

--program-transform-name=expression

perform sed substitution expression on the names.

15.7.2 Transformation Examples

These transformations are useful with programs that can be part of a cross-compilation
development environment. For example, a cross-assembler running on x86-64 configured
with --target=aarch64-linux-gnu is normally installed as aarch64-linux-gnu-as, rather
than as, which could be confused with a native x86-64 assembler.

You can force a program name to begin with g, if you don’t want GNU programs installed
on your system to shadow other programs with the same name. For example, if you configure
GNU diff with --program-prefix=g, then when you run ‘make install’ it is installed as
/usr/local/bin/gdiff.

As a more sophisticated example, you could use

--program-transform-name='s/^/g/; s/^gg/g/; s/^gless/less/'

to prepend ‘g’ to most of the program names in a source tree, excepting those like gdb

that already have one and those like less and lesskey that aren’t GNU programs. (That
is assuming that you have a source tree containing those programs that is set up to use this
feature.)

One way to install multiple versions of some programs simultaneously is to append a
version number to the name of one or both. For example, if you want to keep Autoconf version
1 around for awhile, you can configure Autoconf version 2 using --program-suffix=2 to
install the programs as /usr/local/bin/autoconf2, /usr/local/bin/autoheader2, etc.
Nevertheless, pay attention that only the binaries are renamed, therefore you’d have problems
with the library files which might overlap.

15.7.3 Transformation Rules

Here is how to use the variable program_transform_name in a Makefile.in:

PROGRAMS = cp ls rm

transform = @program_transform_name@

302 Autoconf

install:

for p in $(PROGRAMS); do \

$(INSTALL_PROGRAM) $$p $(DESTDIR)$(bindir)/`echo $$p | \

sed '$(transform)'`; \

done

uninstall:

for p in $(PROGRAMS); do \

rm -f $(DESTDIR)$(bindir)/`echo $$p | sed '$(transform)'`; \

done

It is guaranteed that program_transform_name is never empty, and that there are no
useless separators. Therefore you may safely embed program_transform_name within a sed
program using ‘;’:

transform = @program_transform_name@

transform_exe = s/$(EXEEXT)$$//;$(transform);s/$$/$(EXEEXT)/

Whether to do the transformations on documentation files (Texinfo or man) is a tricky
question; there seems to be no perfect answer, due to the several reasons for name trans-
forming. Documentation is not usually particular to a specific architecture, and Texinfo files
do not conflict with system documentation. But they might conflict with earlier versions
of the same files, and man pages sometimes do conflict with system documentation. As a
compromise, it is probably best to do name transformations on man pages but not on Texinfo
manuals.

15.8 Setting Site Defaults

Autoconf-generated configure scripts allow your site to provide default values for some
configuration values. You do this by creating site- and system-wide initialization files.

If the environment variable CONFIG_SITE is set, configure uses its value as a space-
separated list of shell scripts to read; it is recommended that these be absolute file
names. Otherwise, it reads the shell script prefix/share/config.site if it exists, then
prefix/etc/config.site if it exists. Thus, settings in machine-specific files override those
in machine-independent ones in case of conflict.

Site files can be arbitrary shell scripts, but only certain kinds of code are really appropriate
to be in them. Because configure reads any cache file after it has read any site files, a site
file can define a default cache file to be shared between all Autoconf-generated configure

scripts run on that system (see Section 7.4.2 [Cache Files], page 127). If you set a default
cache file in a site file, it is a good idea to also set the output variable CC in that site file,
because the cache file is only valid for a particular compiler, but many systems have several
available.

You can examine or override the value set by a command line option to configure

in a site file; options set shell variables that have the same names as the options, with
any dashes turned into underscores. The exceptions are that --without- and --disable-

options are like giving the corresponding --with- or --enable- option and the value ‘no’.
Thus, --cache-file=localcache sets the variable cache_file to the value ‘localcache’;
--enable-warnings=no or --disable-warnings sets the variable enable_warnings to the
value ‘no’; --prefix=/usr sets the variable prefix to the value ‘/usr’; etc.

Chapter 15: Site Configuration 303

Site files are also good places to set default values for other output variables, such as
CFLAGS, if you need to give them non-default values: anything you would normally do,
repetitively, on the command line. If you use non-default values for prefix or exec prefix
(wherever you locate the site file), you can set them in the site file if you specify it with the
CONFIG_SITE environment variable.

You can set some cache values in the site file itself. Doing this is useful if you are
cross-compiling, where it is impossible to check features that require running a test pro-
gram. You could “prime the cache” by setting those values correctly for that system in
prefix/etc/config.site. To find out the names of the cache variables you need to set,
see the documentation of the respective Autoconf macro. If the variables or their semantics
are undocumented, you may need to look for shell variables with ‘_cv_’ in their names in
the affected configure scripts, or in the Autoconf M4 source code for those macros; but in
that case, their name or semantics may change in a future Autoconf version.

The cache file is careful to not override any variables set in the site files. Similarly, you
should not override command-line options in the site files. Your code should check that
variables such as prefix and cache_file have their default values (as set near the top of
configure) before changing them.

Here is a sample file /usr/share/local/gnu/share/config.site. The command
‘configure --prefix=/usr/share/local/gnu’ would read this file (if CONFIG_SITE is not
set to a different file).

/usr/share/local/gnu/share/config.site for configure

#

Change some defaults.

test "$prefix" = NONE && prefix=/usr/share/local/gnu

test "$exec_prefix" = NONE && exec_prefix=/usr/local/gnu

test "$sharedstatedir" = '${prefix}/com' && sharedstatedir=/var

test "$localstatedir" = '${prefix}/var' && localstatedir=/var

test "$runstatedir" = '${localstatedir}/run' && runstatedir=/run

Give Autoconf 2.x generated configure scripts a shared default

cache file for feature test results, architecture-specific.

if test "$cache_file" = /dev/null; then

cache_file="$prefix/var/config.cache"

A cache file is only valid for one C compiler.

CC=gcc

fi

Another use of config.site is for priming the directory variables in a manner consistent
with the Filesystem Hierarchy Standard (FHS). Once the following file is installed at
/usr/share/config.site, a user can execute simply ./configure --prefix=/usr to get
all the directories chosen in the locations recommended by FHS.

/usr/share/config.site for FHS defaults when installing below /usr,

and the respective settings were not changed on the command line.

if test "$prefix" = /usr; then

test "$sysconfdir" = '${prefix}/etc' && sysconfdir=/etc

test "$sharedstatedir" = '${prefix}/com' && sharedstatedir=/var

304 Autoconf

test "$localstatedir" = '${prefix}/var' && localstatedir=/var

fi

Likewise, on platforms where 64-bit libraries are built by default, then installed in
/usr/local/lib64 instead of /usr/local/lib, it is appropriate to install /usr/local/
share/config.site:

/usr/local/share/config.site for platforms that prefer

the directory /usr/local/lib64 over /usr/local/lib.

test "$libdir" = '${exec_prefix}/lib' && libdir='${exec_prefix}/lib64'

305

16 Running configure Scripts

Below are instructions on how to configure a package that uses a configure script, suitable
for inclusion as an INSTALL file in the package. A plain-text version of INSTALL which you
may use comes with Autoconf.

16.1 Basic Installation

The following shell commands:

test -f configure || ./bootstrap

./configure

make

make install

should configure, build, and install this package. The first line, which bootstraps, is intended
for developers; when building from distribution tarballs it does nothing and can be skipped.

The following more-detailed instructions are generic; see the README file for instructions
specific to this package. More recommendations for GNU packages can be found in Section
“Makefile Conventions” in GNU Coding Standards.

Many packages have scripts meant for developers instead of ordinary builders, as they
may use developer tools that are less commonly installed, or they may access the network,
which has privacy implications. If the bootstrap shell script exists, it attempts to build
the configure shell script and related files, possibly using developer tools or the network.
Because the output of bootstrap is system-independent, it is normally run by a package
developer so that its output can be put into the distribution tarball and ordinary builders
and users need not run bootstrap. Some packages have commands like ./autopull.sh

and ./autogen.sh that you can run instead of ./bootstrap, for more fine-grained control
over bootstrapping.

The configure shell script attempts to guess correct values for various system-dependent
variables used during compilation. It uses those values to create a Makefile in each
directory of the package. It may also create one or more .h files containing system-dependent
definitions. Finally, it creates a shell script config.status that you can run in the future
to recreate the current configuration, and a file config.log containing output useful for
debugging configure.

It can also use an optional file (typically called config.cache and enabled with --cache-

file=config.cache or simply -C) that saves the results of its tests to speed up reconfiguring.
Caching is disabled by default to prevent problems with accidental use of stale cache files.

If you need to do unusual things to compile the package, please try to figure out how
configure could check whether to do them, and mail diffs or instructions to the address
given in the README so they can be considered for the next release. If you are using the
cache, and at some point config.cache contains results you don’t want to keep, you may
remove or edit it.

The autoconf program generates configure from the file configure.ac. Normally you
should edit configure.ac instead of editing configure directly.

The simplest way to compile this package is:

1. cd to the directory containing the package’s source code.

306 Autoconf

2. If this is a developer checkout and file ‘configure’ does not yet exist, type ‘./bootstrap’
to create it. You may need special developer tools and network access to bootstrap, and
the network access may have privacy implications.

3. Type ‘./configure’ to configure the package for your system. This might take a while.
While running, configure prints messages telling which features it is checking for.

4. Type ‘make’ to compile the package.

5. Optionally, type ‘make check’ to run any self-tests that come with the package, generally
using the just-built uninstalled binaries.

6. Type ‘make install’ to install the programs and any data files and documentation.
When installing into a prefix owned by root, it is recommended that the package be
configured and built as a regular user, and only the ‘make install’ phase executed
with root privileges.

7. Optionally, type ‘make installcheck’ to repeat any self-tests, but this time using the
binaries in their final installed location. This target does not install anything. Running
this target as a regular user, particularly if the prior ‘make install’ required root
privileges, verifies that the installation completed correctly.

8. You can remove the program binaries and object files from the source code directory
by typing ‘make clean’. To also remove the files that configure created (so you can
compile the package for a different kind of computer), type ‘make distclean’. There is
also a ‘make maintainer-clean’ target, but that is intended mainly for the package’s
developers. If you use it, you may have to bootstrap again.

9. If the package follows the GNU Coding Standards, you can type ‘make uninstall’ to
remove the installed files.

16.2 Compilers and Options

Some systems require unusual options for compilation or linking that the configure script
does not know about. Run ‘./configure --help’ for details on some of the pertinent
environment variables.

You can give configure initial values for configuration parameters by setting variables
in the command line or in the environment. Here is an example:

./configure CC=gcc CFLAGS=-g LIBS=-lposix

Section 16.8 [Defining Variables], page 309, and Section 4.8.1 [Preset Output Variables],
page 27, for more details.

16.3 Compiling For Multiple Architectures

You can compile the package for more than one kind of computer at the same time, by
placing the object files for each system in their own directory. To do this, you can use GNU
make. cd to the directory where you want the object files and executables to go and run the
configure script. configure automatically checks for the source code in the directory that
configure is in and in ... This is known as a VPATH build.

With a non-GNU make, it is safer to compile the package for one system at a time in
the source code directory. After you have installed the package for one system, use ‘make
distclean’ before reconfiguring for another system.

Chapter 16: Running configure Scripts 307

Some platforms, notably macOS, support “fat” or “universal” binaries, where a single
binary can execute on different architectures. On these platforms you can configure and
compile just once, with options specific to that platform.

16.4 Installation Names

By default, ‘make install’ installs the package’s commands under /usr/local/bin, include
files under /usr/local/include, etc. You can specify an installation prefix other than
/usr/local by giving configure the option --prefix=prefix, where prefix must be an
absolute file name.

You can specify separate installation prefixes for architecture-specific files and architecture-
independent files. If you pass the option --exec-prefix=prefix to configure, the package
uses prefix as the prefix for installing programs and libraries. Documentation and other
data files still use the regular prefix.

In addition, if you use an unusual directory layout you can give options like --bindir=dir
to specify different values for particular kinds of files. Run ‘configure --help’ for a list of
the directories you can set and what kinds of files go in them. In general, the default for
these options is expressed in terms of ‘${prefix}’, so that specifying just --prefix will
affect all of the other directory specifications that were not explicitly provided.

The most portable way to affect installation locations is to pass the correct locations
to configure; however, many packages provide one or both of the following shortcuts of
passing variable assignments to the ‘make install’ command line to change installation
locations without having to reconfigure or recompile.

The first method involves providing an override variable for each affected directory. For
example, ‘make install prefix=/alternate/directory’ will choose an alternate location
for all directory configuration variables that were expressed in terms of ‘${prefix}’. Any
directories that were specified during configure, but not in terms of ‘${prefix}’, must
each be overridden at install time for the entire installation to be relocated. The approach
of makefile variable overrides for each directory variable is required by the GNU Coding
Standards, and ideally causes no recompilation. However, some platforms have known
limitations with the semantics of shared libraries that end up requiring recompilation when
using this method, particularly noticeable in packages that use GNU Libtool.

The second method involves providing the ‘DESTDIR’ variable. For example, ‘make
install DESTDIR=/alternate/directory’ will prepend ‘/alternate/directory’ before
all installation names. The approach of ‘DESTDIR’ overrides is not required by the GNU
Coding Standards, and does not work on platforms that have drive letters. On the other
hand, it does better at avoiding recompilation issues, and works well even when some
directory options were not specified in terms of ‘${prefix}’ at configure time.

16.5 Optional Features

If the package supports it, you can cause programs to be installed with an extra prefix
or suffix on their names by giving configure the option --program-prefix=PREFIX or
--program-suffix=SUFFIX.

Some packages pay attention to --enable-feature and --disable-feature options to
configure, where feature indicates an optional part of the package. They may also pay

308 Autoconf

attention to --with-package and --without-package options, where package is something
like ‘gnu-ld’. ‘./configure --help’ should mention the --enable-... and --with-...

options that the package recognizes.

Some packages offer the ability to configure how verbose the execution of make will
be. For these packages, running ‘./configure --enable-silent-rules’ sets the default
to minimal output, which can be overridden with make V=1; while running ‘./configure
--disable-silent-rules’ sets the default to verbose, which can be overridden with make

V=0.

16.6 Specifying a System Type

By default configure builds for the current system. To create binaries that can run on
a different system type, specify a --host=type option along with compiler variables that
specify how to generate object code for type. For example, to create binaries intended to
run on a 64-bit ARM processor:

./configure --host=aarch64-linux-gnu \

CC=aarch64-linux-gnu-gcc \

CXX=aarch64-linux-gnu-g++

If done on a machine that can execute these binaries (e.g., via qemu-aarch64, $QEMU_
LD_PREFIX, and Linux’s binfmt_misc capability), the build behaves like a native build.
Otherwise it is a cross-build: configure will make cross-compilation guesses instead of
running test programs, and make check will not work.

A system type can either be a short name like ‘mingw64’, or a canonical name like
‘x86_64-pc-linux-gnu’. Canonical names have the form cpu-company-system where system
is either os or kernel-os. To canonicalize and validate a system type, you can run the
command config.sub, which is often squirreled away in a subdirectory like build-aux. For
example:

$ build-aux/config.sub arm64-linux

aarch64-unknown-linux-gnu

$ build-aux/config.sub riscv-lnx

Invalid configuration 'riscv-lnx': OS 'lnx' not recognized

You can look at the config.sub file to see which types are recognized. If the file is absent,
this package does not need the system type.

If configure fails with the diagnostic “cannot guess build type”. config.sub did not
recognize your system’s type. In this case, first fetch the newest versions of these files from
the GNU config package (https://savannah.gnu.org/projects/config). If that fixes
things, please report it to the maintainers of the package containing configure. Otherwise,
you can try the configure option --build=type where type comes close to your system type;
also, please report the problem to config-patches@gnu.org.

For more details about configuring system types, see Chapter 14 [Manual Configuration],
page 291.

16.7 Sharing Defaults

If you want to set default values for configure scripts to share, you can create a site
shell script called config.site that gives default values for variables like CC, cache_

https://savannah.gnu.org/projects/config
mailto:config-patches@gnu.org

Chapter 16: Running configure Scripts 309

file, and prefix. configure looks for prefix/share/config.site if it exists, then
prefix/etc/config.site if it exists. Or, you can set the CONFIG_SITE environment
variable to the location of the site script. A warning: not all configure scripts look for a
site script.

16.8 Defining Variables

Variables not defined in a site shell script can be set in the environment passed to configure.
However, some packages may run configure again during the build, and the customized
values of these variables may be lost. In order to avoid this problem, you should set them in
the configure command line, using ‘VAR=value’. For example:

./configure CC=/usr/local2/bin/gcc

causes the specified gcc to be used as the C compiler (unless it is overridden in the site shell
script).

Unfortunately, this technique does not work for CONFIG_SHELL due to an Autoconf limitation.
Until the limitation is lifted, you can use this workaround:

CONFIG_SHELL=/bin/bash ./configure CONFIG_SHELL=/bin/bash

16.9 configure Invocation

configure recognizes the following options to control how it operates.

--help

-h Print a summary of all of the options to configure, and exit.

--help=short

--help=recursive

Print a summary of the options unique to this package’s configure, and exit.
The short variant lists options used only in the top level, while the recursive
variant lists options also present in any nested packages.

--version

-V Print the version of Autoconf used to generate the configure script, and exit.

--cache-file=file

Enable the cache: use and save the results of the tests in file, traditionally
config.cache. file defaults to /dev/null to disable caching.

--config-cache

-C Alias for --cache-file=config.cache.

--srcdir=dir

Look for the package’s source code in directory dir. Usually configure can
determine that directory automatically.

--prefix=dir

Use dir as the installation prefix. Section 16.4 [Installation Names], page 307,
for more details, including other options available for fine-tuning the installation
locations.

--host=type

Build binaries for system type. See Section 16.6 [System Types], page 308.

310 Autoconf

--enable-feature

--disable-feature

Enable or disable the optional feature. See Section 16.5 [Optional Features],
page 307.

--with-package

--without-package

Use or omit package when building. See Section 16.5 [Optional Features],
page 307.

--quiet

--silent

-q Do not print messages saying which checks are being made. To suppress all
normal output, redirect it to /dev/null (any error messages will still be shown).

--no-create

-n Run the configure checks, but stop before creating any output files.

configure also recognizes several environment variables, and accepts some other, less widely
useful, options. Run ‘configure --help’ for more details.

311

17 config.status Invocation

The configure script creates a file named config.status, which actually configures,
instantiates, the template files. It also records the configuration options that were specified
when the package was last configured in case reconfiguring is needed.

Synopsis:

./config.status [option]... [tag]...

It configures each tag ; if none are specified, all the templates are instantiated. A tag
refers to a file or other tag associated with a configuration action, as specified by an AC_

CONFIG_ITEMS macro (see Section 4.6 [Configuration Actions], page 25). The files must be
specified without their dependencies, as in

./config.status foobar

not

./config.status foobar:foo.in:bar.in

The supported options are:

--help

-h Print a summary of the command line options, the list of the template files, and
exit.

--version

-V Print the version number of Autoconf and the configuration settings, and exit.

--config Print the configuration settings in reusable way, quoted for the shell, and exit.
For example, for a debugging build that otherwise reuses the configuration from
a different build directory build-dir of a package in src-dir, you could use the
following:

args=`build-dir/config.status --config`

eval src-dir/configure "$args" CFLAGS=-g --srcdir=src-dir

Note that it may be necessary to override a --srcdir setting that was saved in
the configuration, if the arguments are used in a different build directory.

--silent

--quiet

-q Do not print progress messages.

--debug

-d Don’t remove the temporary files.

--file=file[:template]

Require that file be instantiated as if ‘AC_CONFIG_FILES(file:template)’ was
used. Both file and template may be ‘-’ in which case the standard output
and/or standard input, respectively, is used. If a template file name is relative,
it is first looked for in the build tree, and then in the source tree. See Section 4.6
[Configuration Actions], page 25, for more details.

This option and the following ones provide one way for separately distributed
packages to share the values computed by configure. Doing so can be useful if
some of the packages need a superset of the features that one of them, perhaps

312 Autoconf

a common library, does. These options allow a config.status file to create
files other than the ones that its configure.ac specifies, so it can be used for a
different package, or for extracting a subset of values. For example,

echo '@CC@' | ./config.status --file=-

provides the value of @CC@ on standard output.

--header=file[:template]

Same as --file above, but with ‘AC_CONFIG_HEADERS’.

--recheck

Ask config.status to update itself and exit (no instantiation). This option
is useful if you change configure, so that the results of some tests might
be different from the previous run. The --recheck option reruns configure
with the same arguments you used before, plus the --no-create option, which
prevents configure from running config.status and creating Makefile and
other files, and the --no-recursion option, which prevents configure from
running other configure scripts in subdirectories. (This is so other Make
rules can run config.status when it changes; see Section 4.8.5 [Automatic
Remaking], page 36, for an example).

config.status checks several optional environment variables that can alter its behavior:

[Variable]CONFIG_SHELL
The shell with which to run configure. It must be Bourne-compatible, and the
absolute name of the shell should be passed. The default is a shell that supports
LINENO if available, and /bin/sh otherwise.

[Variable]CONFIG_STATUS
The file name to use for the shell script that records the configuration. The default is
./config.status. This variable is useful when one package uses parts of another and
the configure scripts shouldn’t be merged because they are maintained separately.

You can use ./config.status in your makefiles. For example, in the dependencies given
above (see Section 4.8.5 [Automatic Remaking], page 36), config.status is run twice when
configure.ac has changed. If that bothers you, you can make each run only regenerate the
files for that rule:

config.h: stamp-h

stamp-h: config.h.in config.status

./config.status config.h

echo > stamp-h

Makefile: Makefile.in config.status

./config.status Makefile

The calling convention of config.status has changed; see Section 18.1 [Obsolete con-
fig.status Use], page 313, for details.

313

18 Obsolete Constructs

Autoconf changes, and throughout the years some constructs have been obsoleted. Most
of the changes involve the macros, but in some cases the tools themselves, or even some
concepts, are now considered obsolete.

You may completely skip this chapter if you are new to Autoconf. Its intention is mainly
to help maintainers updating their packages by understanding how to move to more modern
constructs.

18.1 Obsolete config.status Invocation

config.status now supports arguments to specify the files to instantiate; see Chapter 17
[config.status Invocation], page 311, for more details. Before, environment variables had to
be used.

[Variable]CONFIG_COMMANDS
The tags of the commands to execute. The default is the arguments given to AC_OUTPUT
and AC_CONFIG_COMMANDS in configure.ac.

[Variable]CONFIG_FILES
The files in which to perform ‘@variable@’ substitutions. The default is the arguments
given to AC_OUTPUT and AC_CONFIG_FILES in configure.ac.

[Variable]CONFIG_HEADERS
The files in which to substitute C #define statements. The default is the arguments
given to AC_CONFIG_HEADERS; if that macro was not called, config.status ignores
this variable.

[Variable]CONFIG_LINKS
The symbolic links to establish. The default is the arguments given to AC_CONFIG_

LINKS; if that macro was not called, config.status ignores this variable.

In Chapter 17 [config.status Invocation], page 311, using this old interface, the example
would be:

config.h: stamp-h

stamp-h: config.h.in config.status

CONFIG_COMMANDS= CONFIG_LINKS= CONFIG_FILES= \

CONFIG_HEADERS=config.h ./config.status

echo > stamp-h

Makefile: Makefile.in config.status

CONFIG_COMMANDS= CONFIG_LINKS= CONFIG_HEADERS= \

CONFIG_FILES=Makefile ./config.status

(If configure.ac does not call AC_CONFIG_HEADERS, there is no need to set CONFIG_HEADERS
in the make rules. Equally for CONFIG_COMMANDS, etc.)

314 Autoconf

18.2 acconfig.h

In order to produce config.h.in, autoheader needs to build or to find templates for each
symbol. Modern releases of Autoconf use AH_VERBATIM and AH_TEMPLATE (see Section 4.9.3
[Autoheader Macros], page 41), but in older releases a file, acconfig.h, contained the list
of needed templates. autoheader copied comments and #define and #undef statements
from acconfig.h in the current directory, if present. This file used to be mandatory if you
AC_DEFINE any additional symbols.

Modern releases of Autoconf also provide AH_TOP and AH_BOTTOM if you need to
prepend/append some information to config.h.in. Ancient versions of Autoconf had a
similar feature: if ./acconfig.h contains the string ‘@TOP@’, autoheader copies the lines
before the line containing ‘@TOP@’ into the top of the file that it generates. Similarly, if
./acconfig.h contains the string ‘@BOTTOM@’, autoheader copies the lines after that line
to the end of the file it generates. Either or both of those strings may be omitted. An even
older alternate way to produce the same effect in ancient versions of Autoconf is to create
the files file.top (typically config.h.top) and/or file.bot in the current directory. If
they exist, autoheader copies them to the beginning and end, respectively, of its output.

In former versions of Autoconf, the files used in preparing a software package for distri-
bution were:

configure.ac --. .------> autoconf* -----> configure

+---+

[aclocal.m4] --+ `---.

[acsite.m4] ---' |

+--> [autoheader*] -> [config.h.in]

[acconfig.h] ----. |

+-----'

[config.h.top] --+

[config.h.bot] --'

Using only the AH_ macros, configure.ac should be self-contained, and should not
depend upon acconfig.h etc.

18.3 Using autoupdate to Modernize configure.ac

The autoupdate program updates a configure.ac file that calls Autoconf macros by their
old names to use the current macro names. In version 2 of Autoconf, most of the macros
were renamed to use a more uniform and descriptive naming scheme. See Section 10.2
[Macro Names], page 186, for a description of the new scheme. Although the old names
still work (see Section 18.4 [Obsolete Macros], page 315, for a list of the old macros and
the corresponding new names), you can make your configure.ac files more readable and
make it easier to use the current Autoconf documentation if you update them to use the
new macro names.

If given no arguments, autoupdate updates configure.ac, backing up the original
version with the suffix ~ (or the value of the environment variable SIMPLE_BACKUP_SUFFIX,
if that is set). If you give autoupdate an argument, it reads that file instead of configure.ac
and writes the updated file to the standard output.

autoupdate accepts the following options:

Chapter 18: Obsolete Constructs 315

--help

-h Print a summary of the command line options and exit.

--version

-V Print the version number of Autoconf and exit.

--verbose

-v Report processing steps.

--debug

-d Don’t remove the temporary files.

--force

-f Force the update even if the file has not changed. Disregard the cache.

--include=dir

-I dir Also look for input files in dir. Multiple invocations accumulate. Directories are
browsed from last to first.

--prepend-include=dir

-B dir Prepend directory dir to the search path. This is used to include the language-
specific files before any third-party macros.

18.4 Obsolete Macros

Several macros are obsoleted in Autoconf, for various reasons (typically they failed to quote
properly, couldn’t be extended for more recent issues, etc.). They are still supported, but
deprecated: their use should be avoided.

During the jump from Autoconf version 1 to version 2, most of the macros were renamed
to use a more uniform and descriptive naming scheme, but their signature did not change.
See Section 10.2 [Macro Names], page 186, for a description of the new naming scheme.
Below, if there is just the mapping from old names to new names for these macros, the reader
is invited to refer to the definition of the new macro for the signature and the description.

[Macro]AC_AIX
This macro is a platform-specific subset of AC_USE_SYSTEM_EXTENSIONS (see
[AC USE SYSTEM EXTENSIONS], page 102).

[Macro]AC_ALLOCA
Replaced by AC_FUNC_ALLOCA (see [AC FUNC ALLOCA], page 58).

[Macro]AC_ARG_ARRAY
Removed because of limited usefulness.

[Macro]AC_C_CROSS
This macro is obsolete; it does nothing.

[Macro]AC_C_LONG_DOUBLE
If the C compiler supports a working long double type with more range or precision
than the double type, define HAVE_LONG_DOUBLE.

You should use AC_TYPE_LONG_DOUBLE or AC_TYPE_LONG_DOUBLE_WIDER instead. See
Section 5.9.1 [Particular Types], page 77.

316 Autoconf

[Macro]AC_CANONICAL_SYSTEM
Determine the system type and set output variables to the names of the canonical
system types. See Section 14.2 [Canonicalizing], page 292, for details about the
variables this macro sets.

The user is encouraged to use either AC_CANONICAL_BUILD, or AC_CANONICAL_HOST,
or AC_CANONICAL_TARGET, depending on the needs. Using AC_CANONICAL_TARGET is
enough to run the two other macros (see Section 14.2 [Canonicalizing], page 292).

[Macro]AC_CHAR_UNSIGNED
Replaced by AC_C_CHAR_UNSIGNED (see [AC C CHAR UNSIGNED], page 87).

[Macro]AC_CHECK_TYPE (type, default)
Autoconf, up to 2.13, used to provide this version of AC_CHECK_TYPE, deprecated
because of its flaws. First, although it is a member of the CHECK clan, it does more
than just checking. Secondly, missing types are defined using #define, not typedef,
and this can lead to problems in the case of pointer types.

This use of AC_CHECK_TYPE is obsolete and discouraged; see Section 5.9.2 [Generic
Types], page 80, for the description of the current macro.

If the type type is not defined, define it to be the C (or C++) builtin type default, e.g.,
‘short int’ or ‘unsigned int’.

This macro is equivalent to:

AC_CHECK_TYPE([type], [],

[AC_DEFINE_UNQUOTED([type], [default],

[Define to 'default'

if <sys/types.h> does not define.])])

In order to keep backward compatibility, the two versions of AC_CHECK_TYPE are
implemented, selected using these heuristics:

1. If there are three or four arguments, the modern version is used.

2. If the second argument appears to be a C or C++ type, then the obsolete version
is used. This happens if the argument is a C or C++ builtin type or a C identifier
ending in ‘_t’, optionally followed by one of ‘[(* ’ and then by a string of zero or
more characters taken from the set ‘[]()* _a-zA-Z0-9’.

3. If the second argument is spelled with the alphabet of valid C and C++ types, the
user is warned and the modern version is used.

4. Otherwise, the modern version is used.

You are encouraged either to use a valid builtin type, or to use the equivalent modern
code (see above), or better yet, to use AC_CHECK_TYPES together with

#ifndef HAVE_LOFF_T

typedef loff_t off_t;

#endif

[Macro]AC_CHECKING (feature-description)
Same as

AC_MSG_NOTICE([checking feature-description...]

See [AC MSG NOTICE], page 129.

Chapter 18: Obsolete Constructs 317

[Macro]AC_COMPILE_CHECK (echo-text, includes, function-body,
action-if-true, [action-if-false])

This is an obsolete version of AC_TRY_COMPILE itself replaced by AC_COMPILE_IFELSE

(see Section 6.4 [Running the Compiler], page 115), with the addition that it prints
‘checking for echo-text’ to the standard output first, if echo-text is non-empty.
Use AC_MSG_CHECKING and AC_MSG_RESULT instead to print messages (see Section 7.5
[Printing Messages], page 128).

[Macro]AC_CONST
Replaced by AC_C_CONST (see [AC C CONST], page 86).

[Macro]AC_CROSS_CHECK
Same as AC_C_CROSS, which is obsolete too, and does nothing :-).

[Macro]AC_CYGWIN
Check for the Cygwin environment in which case the shell variable CYGWIN is set to
‘yes’. Don’t use this macro, the dignified means to check the nature of the host is
using AC_CANONICAL_HOST (see Section 14.2 [Canonicalizing], page 292). As a matter
of fact this macro is defined as:

AC_REQUIRE([AC_CANONICAL_HOST])[]dnl

case $host_os in

cygwin) CYGWIN=yes;;

*) CYGWIN=no;;

esac

Beware that the variable CYGWIN has a special meaning when running Cygwin, and
should not be changed. That’s yet another reason not to use this macro.

[Macro]AC_DECL_SYS_SIGLIST
Same as:

AC_CHECK_DECLS([sys_siglist], [], [],

[#include <signal.h>

/* NetBSD declares sys_siglist in unistd.h. */

#ifdef HAVE_UNISTD_H

include <unistd.h>

#endif

])

See [AC CHECK DECLS], page 74.

[Macro]AC_DECL_YYTEXT
Does nothing, now integrated in AC_PROG_LEX (see [AC PROG LEX], page 49).

[Macro]AC_DIAGNOSE (category, message)
Replaced by m4_warn (see [m4 warn], page 149).

[Macro]AC_DIR_HEADER
Like calling AC_FUNC_CLOSEDIR_VOID (see [AC FUNC CLOSEDIR VOID], page 59)
and AC_HEADER_DIRENT (see [AC HEADER DIRENT], page 69), but defines a different
set of C preprocessor macros to indicate which header file is found:

318 Autoconf

Header Old Symbol New Symbol
dirent.h DIRENT HAVE_DIRENT_H

sys/ndir.h SYSNDIR HAVE_SYS_NDIR_H

sys/dir.h SYSDIR HAVE_SYS_DIR_H

ndir.h NDIR HAVE_NDIR_H

[Macro]AC_DYNIX_SEQ
If on DYNIX/ptx, add -lseq to output variable LIBS. This macro used to be defined
as

AC_CHECK_LIB([seq], [getmntent], [LIBS="-lseq $LIBS"])

now it is just AC_FUNC_GETMNTENT (see [AC FUNC GETMNTENT], page 61).

[Macro]AC_EXEEXT
Defined the output variable EXEEXT based on the output of the compiler, which is
now done automatically. Typically set to empty string if Posix and ‘.exe’ if a DOS
variant.

[Macro]AC_EMXOS2
Similar to AC_CYGWIN but checks for the EMX environment on OS/2 and sets EMXOS2.
Don’t use this macro, the dignified means to check the nature of the host is using
AC_CANONICAL_HOST (see Section 14.2 [Canonicalizing], page 292).

[Macro]AC_ENABLE (feature, action-if-given, [action-if-not-given])
This is an obsolete version of AC_ARG_ENABLE that does not support providing a help
string (see [AC ARG ENABLE], page 298).

[Macro]AC_ERROR
Replaced by AC_MSG_ERROR (see [AC MSG ERROR], page 129).

[Macro]AC_FATAL (message)
Replaced by m4_fatal (see [m4 fatal], page 148).

[Macro]AC_FIND_X
Replaced by AC_PATH_X (see [AC PATH X], page 100).

[Macro]AC_FIND_XTRA
Replaced by AC_PATH_XTRA (see [AC PATH XTRA], page 100).

[Macro]AC_FOREACH
Replaced by m4_foreach_w (see [m4 foreach w], page 156).

[Macro]AC_FUNC_CHECK
Replaced by AC_CHECK_FUNC (see [AC CHECK FUNC], page 65).

[Macro]AC_FUNC_SETVBUF_REVERSED
Do nothing. Formerly, this macro checked whether setvbuf takes the buffering type
as its second argument and the buffer pointer as the third, instead of the other
way around, and defined SETVBUF_REVERSED. However, the last systems to have the
problem were those based on SVR2, which became obsolete in 1987, and the macro is
no longer needed.

Chapter 18: Obsolete Constructs 319

[Macro]AC_FUNC_WAIT3
If wait3 is found and fills in the contents of its third argument (a ‘struct rusage *’),
which HP-UX does not do, define HAVE_WAIT3.

These days portable programs should use waitpid, not wait3, as wait3 has been
removed from Posix.

[Macro]AC_GCC_TRADITIONAL
Replaced by AC_PROG_GCC_TRADITIONAL (see [AC PROG GCC TRADITIONAL],
page 323), which is itself obsolete.

[Macro]AC_GETGROUPS_T
Replaced by AC_TYPE_GETGROUPS (see [AC TYPE GETGROUPS], page 77).

[Macro]AC_GETLOADAVG
Replaced by AC_FUNC_GETLOADAVG (see [AC FUNC GETLOADAVG], page 60).

[Macro]AC_GNU_SOURCE
This macro is a platform-specific subset of AC_USE_SYSTEM_EXTENSIONS (see
[AC USE SYSTEM EXTENSIONS], page 102).

[Macro]AC_HAVE_FUNCS
Replaced by AC_CHECK_FUNCS (see [AC CHECK FUNCS], page 66).

[Macro]AC_HAVE_HEADERS
Replaced by AC_CHECK_HEADERS (see [AC CHECK HEADERS], page 73).

[Macro]AC_HAVE_LIBRARY (library, [action-if-found],
[action-if-not-found], [other-libraries])

This macro is equivalent to calling AC_CHECK_LIB with a function argument of main.
In addition, library can be written as any of ‘foo’, -lfoo, or ‘libfoo.a’. In all of
those cases, the compiler is passed -lfoo. However, library cannot be a shell variable;
it must be a literal name. See [AC CHECK LIB], page 54.

[Macro]AC_HAVE_POUNDBANG
Replaced by AC_SYS_INTERPRETER (see [AC SYS INTERPRETER], page 100).

[Macro]AC_HEADER_CHECK
Replaced by AC_CHECK_HEADER (see [AC CHECK HEADER], page 72).

[Macro]AC_HEADER_EGREP
Replaced by AC_EGREP_HEADER (see [AC EGREP HEADER], page 114).

[Macro]AC_HEADER_TIME
This macro used to check whether it was possible to include time.h and sys/time.h

in the same source file, defining TIME_WITH_SYS_TIME if so.

Nowadays, it is equivalent to ‘AC_CHECK_HEADERS([sys/time.h])’, although it does
still define TIME_WITH_SYS_TIME for compatibility’s sake. time.h is universally present,
and the systems on which sys/time.h conflicted with time.h are obsolete.

[Macro]AC_HELP_STRING
Replaced by AS_HELP_STRING (see [AS HELP STRING], page 299).

320 Autoconf

[Macro]AC_INIT (unique-file-in-source-dir)
Formerly AC_INIT used to have a single argument, and was equivalent to:

AC_INIT

AC_CONFIG_SRCDIR(unique-file-in-source-dir)

See [AC INIT], page 19, and [AC CONFIG SRCDIR], page 22.

[Macro]AC_INLINE
Replaced by AC_C_INLINE (see [AC C INLINE], page 87).

[Macro]AC_INT_16_BITS
If the C type int is 16 bits wide, define INT_16_BITS. Use ‘AC_CHECK_SIZEOF(int)’
instead (see [AC CHECK SIZEOF], page 81).

[Macro]AC_IRIX_SUN
If on IRIX (Silicon Graphics Unix), add -lsun to output LIBS. If you were using it to
get getmntent, use AC_FUNC_GETMNTENT instead. If you used it for the NIS versions
of the password and group functions, use ‘AC_CHECK_LIB(sun, getpwnam)’. Up to
Autoconf 2.13, it used to be

AC_CHECK_LIB([sun], [getmntent], [LIBS="-lsun $LIBS"])

now it is defined as

AC_FUNC_GETMNTENT

AC_CHECK_LIB([sun], [getpwnam])

See [AC FUNC GETMNTENT], page 61, and [AC CHECK LIB], page 54.

[Macro]AC_ISC_POSIX
This macro adds -lcposix to output variable LIBS if necessary for Posix facilities.
Sun dropped support for the obsolete INTERACTIVE Systems Corporation Unix on
2006-07-23. New programs need not use this macro. It is implemented as AC_SEARCH_
LIBS([strerror], [cposix]) (see [AC SEARCH LIBS], page 55).

[Macro]AC_LANG_C
Same as ‘AC_LANG([C])’ (see [AC LANG], page 107).

[Macro]AC_LANG_CPLUSPLUS
Same as ‘AC_LANG([C++])’ (see [AC LANG], page 107).

[Macro]AC_LANG_FORTRAN77
Same as ‘AC_LANG([Fortran 77])’ (see [AC LANG], page 107).

[Macro]AC_LANG_RESTORE
Select the language that is saved on the top of the stack, as set by AC_LANG_SAVE,
remove it from the stack, and call AC_LANG(language). See Section 6.1 [Language
Choice], page 107, for the preferred way to change languages.

[Macro]AC_LANG_SAVE
Remember the current language (as set by AC_LANG) on a stack. The current language
does not change. AC_LANG_PUSH is preferred (see [AC LANG PUSH], page 108).

Chapter 18: Obsolete Constructs 321

[Macro]AC_LINK_FILES (source. . . , dest. . .)
This is an obsolete version of AC_CONFIG_LINKS (see [AC CONFIG LINKS], page 42.
An updated version of:

AC_LINK_FILES(config/$machine.h config/$obj_format.h,

host.h object.h)

is:

AC_CONFIG_LINKS([host.h:config/$machine.h

object.h:config/$obj_format.h])

[Macro]AC_LN_S
Replaced by AC_PROG_LN_S (see [AC PROG LN S], page 50).

[Macro]AC_LONG_64_BITS
Define LONG_64_BITS if the C type long int is 64 bits wide. Use the generic macro
‘AC_CHECK_SIZEOF([long int])’ instead (see [AC CHECK SIZEOF], page 81).

[Macro]AC_LONG_DOUBLE
If the C compiler supports a working long double type with more range or precision
than the double type, define HAVE_LONG_DOUBLE.

You should use AC_TYPE_LONG_DOUBLE or AC_TYPE_LONG_DOUBLE_WIDER instead. See
Section 5.9.1 [Particular Types], page 77.

[Macro]AC_LONG_FILE_NAMES
Replaced by

AC_SYS_LONG_FILE_NAMES

See [AC SYS LONG FILE NAMES], page 102.

[Macro]AC_MAJOR_HEADER
Replaced by AC_HEADER_MAJOR (see [AC HEADER MAJOR], page 70).

[Macro]AC_MEMORY_H
Used to define NEED_MEMORY_H if the mem functions were defined in memory.h. Today
it is equivalent to ‘AC_CHECK_HEADERS([memory.h])’ (see [AC CHECK HEADERS],
page 73). Adjust your code to get the mem functions from string.h instead.

[Macro]AC_MINGW32
Similar to AC_CYGWIN but checks for the MinGW compiler environment and sets
MINGW32. Don’t use this macro, the dignified means to check the nature of the host is
using AC_CANONICAL_HOST (see Section 14.2 [Canonicalizing], page 292).

[Macro]AC_MINIX
This macro is a platform-specific subset of AC_USE_SYSTEM_EXTENSIONS (see
[AC USE SYSTEM EXTENSIONS], page 102).

[Macro]AC_MINUS_C_MINUS_O
Replaced by AC_PROG_CC_C_O (see [AC PROG CC C O], page 85).

[Macro]AC_MMAP
Replaced by AC_FUNC_MMAP (see [AC FUNC MMAP], page 63).

322 Autoconf

[Macro]AC_MODE_T
Replaced by AC_TYPE_MODE_T (see [AC TYPE MODE T], page 78).

[Macro]AC_OBJEXT
Defined the output variable OBJEXT based on the output of the compiler, after .c files
have been excluded. Typically set to ‘o’ if Posix, ‘obj’ if a DOS variant. Now the
compiler checking macros handle this automatically.

[Macro]AC_OBSOLETE (this-macro-name, [suggestion])
Make M4 print a message to the standard error output warning that this-macro-name
is obsolete, and giving the file and line number where it was called. this-macro-name
should be the name of the macro that is calling AC_OBSOLETE. If suggestion is given,
it is printed at the end of the warning message; for example, it can be a suggestion for
what to use instead of this-macro-name.

For instance

AC_OBSOLETE([$0], [; use AC_CHECK_HEADERS(unistd.h) instead])dnl

You are encouraged to use AU_DEFUN instead, since it gives better services to the user
(see [AU DEFUN], page 191).

[Macro]AC_OFF_T
Replaced by AC_TYPE_OFF_T (see [AC TYPE OFF T], page 78).

[Macro]AC_OUTPUT ([file]. . . , [extra-cmds], [init-cmds])
The use of AC_OUTPUT with arguments is deprecated. This obsoleted interface is
equivalent to:

AC_CONFIG_FILES(file...)

AC_CONFIG_COMMANDS([default],

extra-cmds, init-cmds)

AC_OUTPUT

See [AC CONFIG FILES], page 27, [AC CONFIG COMMANDS], page 41, and
[AC OUTPUT], page 24.

[Macro]AC_OUTPUT_COMMANDS (extra-cmds, [init-cmds])
Specify additional shell commands to run at the end of config.status, and
shell commands to initialize any variables from configure. This macro may
be called multiple times. It is obsolete, replaced by AC_CONFIG_COMMANDS (see
[AC CONFIG COMMANDS], page 41).

Here is an unrealistic example:

fubar=27

AC_OUTPUT_COMMANDS([echo this is extra $fubar, and so on.],

[fubar=$fubar])

AC_OUTPUT_COMMANDS([echo this is another, extra, bit],

[echo init bit])

Aside from the fact that AC_CONFIG_COMMANDS requires an additional key, an important
difference is that AC_OUTPUT_COMMANDS is quoting its arguments twice, unlike AC_

CONFIG_COMMANDS. This means that AC_CONFIG_COMMANDS can safely be given macro
calls as arguments:

AC_CONFIG_COMMANDS(foo, [my_FOO()])

Chapter 18: Obsolete Constructs 323

Conversely, where one level of quoting was enough for literal strings with AC_OUTPUT_

COMMANDS, you need two with AC_CONFIG_COMMANDS. The following lines are equivalent:

AC_OUTPUT_COMMANDS([echo "Square brackets: []"])

AC_CONFIG_COMMANDS([default], [[echo "Square brackets: []"]])

[Macro]AC_PID_T
Replaced by AC_TYPE_PID_T (see [AC TYPE PID T], page 79).

[Macro]AC_PREFIX
Replaced by AC_PREFIX_PROGRAM (see [AC PREFIX PROGRAM], page 44).

[Macro]AC_PROG_CC_C89
Now done by AC_PROG_CC (see [AC PROG CC], page 84).

[Macro]AC_PROG_CC_C99
Now done by AC_PROG_CC (see [AC PROG CC], page 84).

[Macro]AC_PROG_CC_STDC
Now done by AC_PROG_CC (see [AC PROG CC], page 84).

[Macro]AC_PROG_GCC_TRADITIONAL
Used to put GCC into “traditional” (pre-ISO C) compilation mode, on systems with
headers that did not work correctly with a standard-compliant compiler. GCC has not
supported traditional compilation in many years, and all of the systems that required
this are long obsolete themselves. This macro is now a compatibility synonym for
AC_PROG_CC (see [AC PROG CC], page 84).

[Macro]AC_PROGRAMS_CHECK
Replaced by AC_CHECK_PROGS (see [AC CHECK PROGS], page 51).

[Macro]AC_PROGRAMS_PATH
Replaced by AC_PATH_PROGS (see [AC PATH PROGS], page 52).

[Macro]AC_PROGRAM_CHECK
Replaced by AC_CHECK_PROG (see [AC CHECK PROG], page 51).

[Macro]AC_PROGRAM_EGREP
Replaced by AC_EGREP_CPP (see [AC EGREP CPP], page 114).

[Macro]AC_PROGRAM_PATH
Replaced by AC_PATH_PROG (see [AC PATH PROG], page 52).

[Macro]AC_REMOTE_TAPE
Removed because of limited usefulness.

[Macro]AC_RESTARTABLE_SYSCALLS
This macro was renamed AC_SYS_RESTARTABLE_SYSCALLS. However, these days
portable programs should use sigaction with SA_RESTART if they want restartable
system calls. They should not rely on HAVE_RESTARTABLE_SYSCALLS, since nowadays
whether a system call is restartable is a dynamic issue, not a configuration-time issue.

324 Autoconf

[Macro]AC_RETSIGTYPE
Replaced by AC_TYPE_SIGNAL (see [AC TYPE SIGNAL], page 327), which itself is
obsolete.

[Macro]AC_RSH
Removed because of limited usefulness.

[Macro]AC_SCO_INTL
If on SCO Unix, add -lintl to output variable LIBS. This macro used to do this:

AC_CHECK_LIB([intl], [strftime], [LIBS="-lintl $LIBS"])

Now it just calls AC_FUNC_STRFTIME instead (see [AC FUNC STRFTIME], page 64).

[Macro]AC_SETVBUF_REVERSED
Replaced by

AC_FUNC_SETVBUF_REVERSED

See [AC FUNC SETVBUF REVERSED], page 318.

[Macro]AC_SET_MAKE
Replaced by AC_PROG_MAKE_SET (see [AC PROG MAKE SET], page 24).

[Macro]AC_SIZEOF_TYPE
Replaced by AC_CHECK_SIZEOF (see [AC CHECK SIZEOF], page 81).

[Macro]AC_SIZE_T
Replaced by AC_TYPE_SIZE_T (see [AC TYPE SIZE T], page 79).

[Macro]AC_STAT_MACROS_BROKEN
Replaced by AC_HEADER_STAT (see [AC HEADER STAT], page 71).

[Macro]AC_STDC_HEADERS
Replaced by AC_HEADER_STDC (see [AC HEADER STDC], page 71), which is itself
obsolete. Nowadays it is safe to assume the facilities of C89 exist.

[Macro]AC_STRCOLL
Replaced by AC_FUNC_STRCOLL (see [AC FUNC STRCOLL], page 64).

[Macro]AC_STRUCT_ST_BLKSIZE
If struct stat contains an st_blksize member, define HAVE_STRUCT_STAT_ST_

BLKSIZE. The former name, HAVE_ST_BLKSIZE is to be avoided, as its support will
cease in the future. This macro is obsoleted, and should be replaced by

AC_CHECK_MEMBERS([struct stat.st_blksize])

See [AC CHECK MEMBERS], page 77.

[Macro]AC_STRUCT_ST_RDEV
If struct stat contains an st_rdev member, define HAVE_STRUCT_STAT_ST_RDEV.
The former name for this macro, HAVE_ST_RDEV, is to be avoided as it will cease to
be supported in the future. Actually, even the new macro is obsolete and should be
replaced by:

AC_CHECK_MEMBERS([struct stat.st_rdev])

See [AC CHECK MEMBERS], page 77.

Chapter 18: Obsolete Constructs 325

[Macro]AC_ST_BLKSIZE
Replaced by AC_CHECK_MEMBERS (see [AC CHECK MEMBERS], page 77).

[Macro]AC_ST_BLOCKS
Replaced by AC_STRUCT_ST_BLOCKS (see [AC STRUCT ST BLOCKS], page 76).

[Macro]AC_ST_RDEV
Replaced by AC_CHECK_MEMBERS (see [AC CHECK MEMBERS], page 77).

[Macro]AC_SYS_RESTARTABLE_SYSCALLS
If the system automatically restarts a system call that is interrupted by a signal, define
HAVE_RESTARTABLE_SYSCALLS. This macro does not check whether system calls are
restarted in general—it checks whether a signal handler installed with signal (but
not sigaction) causes system calls to be restarted. It does not check whether system
calls can be restarted when interrupted by signals that have no handler.

These days portable programs should use sigaction with SA_RESTART if they want
restartable system calls. They should not rely on HAVE_RESTARTABLE_SYSCALLS, since
nowadays whether a system call is restartable is a dynamic issue, not a configuration-
time issue.

[Macro]AC_SYS_SIGLIST_DECLARED
This macro was renamed AC_DECL_SYS_SIGLIST. However, even that name is
obsolete, as the same functionality is now achieved via AC_CHECK_DECLS (see
[AC CHECK DECLS], page 74).

[Macro]AC_TEST_CPP
This macro was renamed AC_TRY_CPP, which in turn was replaced by AC_PREPROC_

IFELSE (see [AC PREPROC IFELSE], page 113).

[Macro]AC_TEST_PROGRAM
This macro was renamed AC_TRY_RUN, which in turn was replaced by AC_RUN_IFELSE

(see [AC RUN IFELSE], page 116).

[Macro]AC_TIMEZONE
Replaced by AC_STRUCT_TIMEZONE (see [AC STRUCT TIMEZONE], page 76).

[Macro]AC_TIME_WITH_SYS_TIME
Replaced by AC_HEADER_TIME (see [AC HEADER TIME], page 319), which is itself
obsolete; nowadays one need only do ‘AC_CHECK_HEADERS([sys/time.h])’.

[Macro]AC_TRY_COMPILE (includes, function-body, [action-if-true],
[action-if-false])

Same as:

AC_COMPILE_IFELSE(

[AC_LANG_PROGRAM([[includes]],

[[function-body]])],

[action-if-true],

[action-if-false])

See Section 6.4 [Running the Compiler], page 115.

326 Autoconf

This macro double quotes both includes and function-body.

For C and C++, includes is any #include statements needed by the code in function-
body (includes is ignored if the currently selected language is Fortran or Fortran
77). The compiler and compilation flags are determined by the current language (see
Section 6.1 [Language Choice], page 107).

[Macro]AC_TRY_CPP (input, [action-if-true], [action-if-false])
Same as:

AC_PREPROC_IFELSE(

[AC_LANG_SOURCE([[input]])],

[action-if-true],

[action-if-false])

See Section 6.3 [Running the Preprocessor], page 113.

This macro double quotes the input.

[Macro]AC_TRY_LINK (includes, function-body, [action-if-true],
[action-if-false])

Same as:

AC_LINK_IFELSE(

[AC_LANG_PROGRAM([[includes]],

[[function-body]])],

[action-if-true],

[action-if-false])

See Section 6.5 [Running the Linker], page 115.

This macro double quotes both includes and function-body.

Depending on the current language (see Section 6.1 [Language Choice], page 107),
create a test program to see whether a function whose body consists of function-body
can be compiled and linked. If the file compiles and links successfully, run shell
commands action-if-found, otherwise run action-if-not-found.

This macro double quotes both includes and function-body.

For C and C++, includes is any #include statements needed by the code in function-
body (includes is ignored if the currently selected language is Fortran or Fortran
77). The compiler and compilation flags are determined by the current language (see
Section 6.1 [Language Choice], page 107), and in addition LDFLAGS and LIBS are used
for linking.

[Macro]AC_TRY_LINK_FUNC (function, [action-if-found],
[action-if-not-found])

This macro is equivalent to

AC_LINK_IFELSE([AC_LANG_CALL([], [function])],

[action-if-found], [action-if-not-found])

See Section 6.5 [Running the Linker], page 115.

Chapter 18: Obsolete Constructs 327

[Macro]AC_TRY_RUN (program, [action-if-true], [action-if-false],
[action-if-cross-compiling = ‘AC_MSG_FAILURE’])

Same as:

AC_RUN_IFELSE(

[AC_LANG_SOURCE([[program]])],

[action-if-true],

[action-if-false],

[action-if-cross-compiling])

See Section 6.6 [Runtime], page 116.

[Macro]AC_TYPE_SIGNAL
If signal.h declares signal as returning a pointer to a function returning void, define
RETSIGTYPE to be void; otherwise, define it to be int. These days, it is portable to
assume C89, and that signal handlers return void, without needing to use this macro
or RETSIGTYPE.

[Macro]AC_UID_T
Replaced by AC_TYPE_UID_T (see [AC TYPE UID T], page 79).

[Macro]AC_UNISTD_H
Same as ‘AC_CHECK_HEADERS([unistd.h])’ (see [AC CHECK HEADERS], page 73),
which is one of the tests done as a side effect by AC_INCLUDES_DEFAULT (see
Section 5.1.2 [Default Includes], page 45), so usually unnecessary to write explicitly.

[Macro]AC_USG
Define USG if the BSD string functions (bcopy, bzero, index, rindex, etc) are not
defined in strings.h. Modern code should assume string.h exists and should use the
standard C string functions (memmove, memset, strchr, strrchr, etc) unconditionally.

strings.h may be the only header that declares strcasecmp, strncasecmp, and ffs.
AC_INCLUDES_DEFAULT checks for it (see Section 5.1.2 [Default Includes], page 45);
test HAVE_STRINGS_H.

[Macro]AC_UTIME_NULL
Replaced by AC_FUNC_UTIME_NULL (see [AC FUNC UTIME NULL], page 65).

[Macro]AC_VALIDATE_CACHED_SYSTEM_TUPLE ([cmd])
If the cache file is inconsistent with the current host, target and build system types, it
used to execute cmd or print a default error message. This is now handled by default.

[Macro]AC_VERBOSE (result-description)
Replaced by AC_MSG_RESULT (see [AC MSG RESULT], page 128).

[Macro]AC_VFORK
Replaced by AC_FUNC_FORK (see [AC FUNC FORK], page 59).

[Macro]AC_VPRINTF
Replaced by AC_FUNC_VPRINTF (see [AC FUNC VPRINTF], page 65).

[Macro]AC_WAIT3
This macro was renamed AC_FUNC_WAIT3. However, these days portable programs
should use waitpid, not wait3, as wait3 has been removed from Posix.

328 Autoconf

[Macro]AC_WARN
Replaced by AC_MSG_WARN (see [AC MSG WARN], page 129).

[Macro]AC_WARNING (message)
Replaced by m4_warn (see [m4 warn], page 149).

[Macro]AC_WITH (package, action-if-given, [action-if-not-given])
This is an obsolete version of AC_ARG_WITH that does not support providing a help
string (see [AC ARG WITH], page 296).

[Macro]AC_WORDS_BIGENDIAN
Replaced by AC_C_BIGENDIAN (see [AC C BIGENDIAN], page 85).

[Macro]AC_XENIX_DIR
This macro used to add -lx to output variable LIBS if on Xenix. Also, if dirent.h
is being checked for, added -ldir to LIBS. Now it is merely an alias of AC_HEADER_
DIRENT instead, plus some code to detect whether running XENIX on which you
should not depend:

AC_MSG_CHECKING([for Xenix])

AC_EGREP_CPP([yes],

[#if defined M_XENIX && !defined M_UNIX

yes

#endif],

[AC_MSG_RESULT([yes]); XENIX=yes],

[AC_MSG_RESULT([no]); XENIX=])

Don’t use this macro, the dignified means to check the nature of the host is using
AC_CANONICAL_HOST (see Section 14.2 [Canonicalizing], page 292).

[Macro]AC_YYTEXT_POINTER
This macro was renamed AC_DECL_YYTEXT, which in turn was integrated into AC_

PROG_LEX (see [AC PROG LEX], page 49).

18.5 Upgrading From Version 1

Autoconf version 2 is mostly backward compatible with version 1. However, it introduces
better ways to do some things, and doesn’t support some of the ugly things in version 1. So,
depending on how sophisticated your configure.ac files are, you might have to do some
manual work in order to upgrade to version 2. This chapter points out some problems to
watch for when upgrading. Also, perhaps your configure scripts could benefit from some of
the new features in version 2; the changes are summarized in the file NEWS in the Autoconf
distribution.

18.5.1 Changed File Names

If you have an aclocal.m4 installed with Autoconf (as opposed to in a particular package’s
source directory), you must rename it to acsite.m4. See Section 3.4 [autoconf Invocation],
page 13.

If you distribute install.sh with your package, rename it to install-sh so make builtin
rules don’t inadvertently create a file called install from it. AC_PROG_INSTALL looks for
the script under both names, but it is best to use the new name.

Chapter 18: Obsolete Constructs 329

If you were using config.h.top, config.h.bot, or acconfig.h, you still can, but you
have less clutter if you use the AH_ macros. See Section 4.9.3 [Autoheader Macros], page 41.

18.5.2 Changed Makefiles

Add ‘@CFLAGS@’, ‘@CPPFLAGS@’, and ‘@LDFLAGS@’ in your Makefile.in files, so they can
take advantage of the values of those variables in the environment when configure is run.
Doing this isn’t necessary, but it’s a convenience for users.

Also add ‘@configure_input@’ in a comment to each input file for AC_OUTPUT, so that
the output files contain a comment saying they were produced by configure. Automatically
selecting the right comment syntax for all the kinds of files that people call AC_OUTPUT on
became too much work.

Add config.log and config.cache to the list of files you remove in distclean targets.

If you have the following in Makefile.in:

prefix = /usr/local

exec_prefix = $(prefix)

you must change it to:

prefix = @prefix@

exec_prefix = @exec_prefix@

The old behavior of replacing those variables without ‘@’ characters around them has been
removed.

18.5.3 Changed Macros

Many of the macros were renamed in Autoconf version 2. You can still use the old names, but
the new ones are clearer, and it’s easier to find the documentation for them. See Section 18.4
[Obsolete Macros], page 315, for a table showing the new names for the old macros. Use the
autoupdate program to convert your configure.ac to using the new macro names. See
Section 18.3 [autoupdate Invocation], page 314.

Some macros have been superseded by similar ones that do the job better, but are not
call-compatible. If you get warnings about calling obsolete macros while running autoconf,
you may safely ignore them, but your configure script generally works better if you follow
the advice that is printed about what to replace the obsolete macros with. In particular,
the mechanism for reporting the results of tests has changed. If you were using echo or
AC_VERBOSE (perhaps via AC_COMPILE_CHECK), your configure script’s output looks better
if you switch to AC_MSG_CHECKING and AC_MSG_RESULT. See Section 7.5 [Printing Messages],
page 128. Those macros work best in conjunction with cache variables. See Section 7.4
[Caching Results], page 125.

18.5.4 Changed Results

If you were checking the results of previous tests by examining the shell variable DEFS, you
need to switch to checking the values of the cache variables for those tests. DEFS no longer
exists while configure is running; it is only created when generating output files. This
difference from version 1 is because properly quoting the contents of that variable turned out
to be too cumbersome and inefficient to do every time AC_DEFINE is called. See Section 7.4.1
[Cache Variable Names], page 126.

330 Autoconf

For example, here is a configure.ac fragment written for Autoconf version 1:

AC_HAVE_FUNCS(syslog)

case "$DEFS" in

-DHAVE_SYSLOG) ;;

*) # syslog is not in the default libraries. See if it's in some other.

saved_LIBS="$LIBS"

for lib in bsd socket inet; do

AC_CHECKING(for syslog in -l$lib)

LIBS="-l$lib $saved_LIBS"

AC_HAVE_FUNCS(syslog)

case "$DEFS" in

-DHAVE_SYSLOG) break ;;

*) ;;

esac

LIBS="$saved_LIBS"

done ;;

esac

Here is a way to write it for version 2:

AC_CHECK_FUNCS([syslog])

AS_IF([test "x$ac_cv_func_syslog" = xno],

[# syslog is not in the default libraries. See if it's in some other.

for lib in bsd socket inet; do

AC_CHECK_LIB([$lib], [syslog],

[AC_DEFINE([HAVE_SYSLOG])

LIBS="-l$lib $LIBS"; break])

done])

If you were working around bugs in AC_DEFINE_UNQUOTED by adding backslashes before
quotes, you need to remove them. It now works predictably, and does not treat quotes
(except back quotes) specially. See Section 7.2 [Setting Output Variables], page 122.

All of the Boolean shell variables set by Autoconf macros now use ‘yes’ for the true value.
Most of them use ‘no’ for false, though for backward compatibility some use the empty
string instead. If you were relying on a shell variable being set to something like 1 or ‘t’ for
true, you need to change your tests.

18.5.5 Changed Macro Writing

When defining your own macros, you should now use AC_DEFUN instead of define. AC_

DEFUN automatically calls AC_PROVIDE and ensures that macros called via AC_REQUIRE do
not interrupt other macros, to prevent nested ‘checking...’ messages on the screen. There’s
no actual harm in continuing to use the older way, but it’s less convenient and attractive.
See Section 10.1 [Macro Definitions], page 185.

You probably looked at the macros that came with Autoconf as a guide for how to do
things. It would be a good idea to take a look at the new versions of them, as the style is
somewhat improved and they take advantage of some new features.

If you were doing tricky things with undocumented Autoconf internals (macros, variables,
diversions), check whether you need to change anything to account for changes that have

Chapter 18: Obsolete Constructs 331

been made. Perhaps you can even use an officially supported technique in version 2 instead
of kludging. Or perhaps not.

To speed up your locally written feature tests, add caching to them. See whether any of
your tests are of general enough usefulness to encapsulate them into macros that you can
share.

18.6 Upgrading From Version 2.13

The introduction of the previous section (see Section 18.5 [Autoconf 1], page 328) perfectly
suits this section. . .

Autoconf version 2.50 is mostly backward compatible with version 2.13. However,
it introduces better ways to do some things, and doesn’t support some of the ugly
things in version 2.13. So, depending on how sophisticated your configure.ac
files are, you might have to do some manual work in order to upgrade to version
2.50. This chapter points out some problems to watch for when upgrading. Also,
perhaps your configure scripts could benefit from some of the new features
in version 2.50; the changes are summarized in the file NEWS in the Autoconf
distribution.

18.6.1 Changed Quotation

The most important changes are invisible to you: the implementation of most macros have
completely changed. This allowed more factorization of the code, better error messages, a
higher uniformity of the user’s interface etc. Unfortunately, as a side effect, some construct
which used to (miraculously) work might break starting with Autoconf 2.50. The most
common culprit is bad quotation.

For instance, in the following example, the message is not properly quoted:

AC_INIT

AC_CHECK_HEADERS(foo.h, ,

AC_MSG_ERROR(cannot find foo.h, bailing out))

AC_OUTPUT

Autoconf 2.13 simply ignores it:

$ autoconf-2.13; ./configure --silent

creating cache ./config.cache

configure: error: cannot find foo.h

$

while Autoconf 2.50 produces a broken configure:

$ autoconf-2.50; ./configure --silent

configure: error: cannot find foo.h

./configure: exit: bad non-numeric arg `bailing'

./configure: exit: bad non-numeric arg `bailing'

$

The message needs to be quoted, and the AC_MSG_ERROR invocation too!

AC_INIT([Example], [1.0], [bug-example@example.org])

AC_CHECK_HEADERS([foo.h], [],

[AC_MSG_ERROR([cannot find foo.h, bailing out])])

332 Autoconf

AC_OUTPUT

Many many (and many more) Autoconf macros were lacking proper quotation, including
no less than. . . AC_DEFUN itself!

$ cat configure.in

AC_DEFUN([AC_PROG_INSTALL],

[# My own much better version

])

AC_INIT

AC_PROG_INSTALL

AC_OUTPUT

$ autoconf-2.13

autoconf: Undefined macros:

BUG in Autoconf--please report AC_FD_MSG

BUG in Autoconf--please report AC_EPI

configure.in:1:AC_DEFUN([AC_PROG_INSTALL],

configure.in:5:AC_PROG_INSTALL

$ autoconf-2.50

$

18.6.2 New Macros

While Autoconf was relatively dormant in the late 1990s, Automake provided Autoconf-like
macros for a while. Starting with Autoconf 2.50 in 2001, Autoconf provided versions of
these macros, integrated in the AC_ namespace, instead of AM_. But in order to ease the
upgrading via autoupdate, bindings to such AM_ macros are provided.

Unfortunately older versions of Automake (e.g., Automake 1.4) did not quote the names
of these macros. Therefore, when m4 finds something like ‘AC_DEFUN(AM_TYPE_PTRDIFF_T,
...)’ in aclocal.m4, AM_TYPE_PTRDIFF_T is expanded, replaced with its Autoconf defini-
tion.

Fortunately Autoconf catches pre-AC_INIT expansions, and complains, in its own words:

$ cat configure.ac

AC_INIT([Example], [1.0], [bug-example@example.org])

AM_TYPE_PTRDIFF_T

$ aclocal-1.4

$ autoconf

aclocal.m4:17: error: m4_defn: undefined macro: _m4_divert_diversion

aclocal.m4:17: the top level

autom4te: m4 failed with exit status: 1

$

Modern versions of Automake no longer define most of these macros, and properly quote
the names of the remaining macros. If you must use an old Automake, do not depend upon
macros from Automake as it is simply not its job to provide macros (but the one it requires
itself):

$ cat configure.ac

AC_INIT([Example], [1.0], [bug-example@example.org])

AM_TYPE_PTRDIFF_T

Chapter 18: Obsolete Constructs 333

$ rm aclocal.m4

$ autoupdate

autoupdate: 'configure.ac' is updated

$ cat configure.ac

AC_INIT([Example], [1.0], [bug-example@example.org])

AC_CHECK_TYPES([ptrdiff_t])

$ aclocal-1.4

$ autoconf

$

18.6.3 Hosts and Cross-Compilation

Based on the experience of compiler writers, and after long public debates, many aspects of
the cross-compilation chain have changed:

− the relationship between the build, host, and target architecture types,

− the command line interface for specifying them to configure,

− the variables defined in configure,

− the enabling of cross-compilation mode.

The relationship between build, host, and target have been cleaned up: the chain of
default is now simply: target defaults to host, host to build, and build to the result of
config.guess. Nevertheless, in order to ease the transition from 2.13 to 2.50, the following
transition scheme is implemented. Do not rely on it, as it will be completely disabled in a
couple of releases (we cannot keep it, as it proves to cause more problems than it cures).

They all default to the result of running config.guess, unless you specify either --build
or --host. In this case, the default becomes the system type you specified. If you specify
both, and they’re different, configure enters cross compilation mode, so it doesn’t run any
tests that require execution.

Hint: if you mean to override the result of config.guess, prefer --build over --host.

For backward compatibility, configure accepts a system type as an option by itself.
Such an option overrides the defaults for build, host, and target system types. The following
configure statement configures a cross toolchain that runs on NetBSD/alpha but generates
code for GNU Hurd/sparc, which is also the build platform.

./configure --host=alpha-netbsd sparc-gnu

In Autoconf 2.13 and before, the variables build, host, and target had a different
semantics before and after the invocation of AC_CANONICAL_BUILD etc. Now, the argument
of --build is strictly copied into build_alias, and is left empty otherwise. After the
AC_CANONICAL_BUILD, build is set to the canonicalized build type. To ease the transition,
before, its contents is the same as that of build_alias. Do not rely on this broken feature.

For consistency with the backward compatibility scheme exposed above, when --host

is specified but --build isn’t, the build system is assumed to be the same as --host, and
‘build_alias’ is set to that value. Eventually, this historically incorrect behavior will go
away.

334 Autoconf

The former scheme to enable cross-compilation proved to cause more harm than good, in
particular, it used to be triggered too easily, leaving regular end users puzzled in front of
cryptic error messages. configure could even enter cross-compilation mode only because
the compiler was not functional. This is mainly because configure used to try to detect
cross-compilation, instead of waiting for an explicit flag from the user.

Now, configure enters cross-compilation mode if and only if --host is passed.

That’s the short documentation. To ease the transition between 2.13 and its successors, a
more complicated scheme is implemented. Do not rely on the following, as it will be removed
in the near future.

If you specify --host, but not --build, when configure performs the first compiler
test it tries to run an executable produced by the compiler. If the execution fails, it enters
cross-compilation mode. This is fragile. Moreover, by the time the compiler test is performed,
it may be too late to modify the build-system type: other tests may have already been
performed. Therefore, whenever you specify --host, be sure to specify --build too.

./configure --build=x86_64-pc-linux-gnu --host=x86_64-w64-mingw64

enters cross-compilation mode. The former interface, which consisted in setting the compiler
to a cross-compiler without informing configure is obsolete. For instance, configure fails
if it can’t run the code generated by the specified compiler if you configure as follows:

./configure CC=x86_64-w64-mingw64-gcc

18.6.4 AC_LIBOBJ vs. LIBOBJS

Up to Autoconf 2.13, the replacement of functions was triggered via the variable LIBOBJS.
Since Autoconf 2.50, the macro AC_LIBOBJ should be used instead (see Section 5.5.3 [Generic
Functions], page 65). Starting at Autoconf 2.53, the use of LIBOBJS is an error.

This change is mandated by the unification of the GNU Build System components. In
particular, the various fragile techniques used to parse a configure.ac are all replaced
with the use of traces. As a consequence, any action must be traceable, which obsoletes
critical variable assignments. Fortunately, LIBOBJS was the only problem, and it can even
be handled gracefully (read, “without your having to change something”).

There were two typical uses of LIBOBJS: asking for a replacement function, and adjusting
LIBOBJS for Automake and/or Libtool.

As for function replacement, the fix is immediate: use AC_LIBOBJ. For instance:

LIBOBJS="$LIBOBJS fnmatch.o"

LIBOBJS="$LIBOBJS malloc.$ac_objext"

should be replaced with:

AC_LIBOBJ([fnmatch])

AC_LIBOBJ([malloc])

When used with Automake 1.10 or newer, a suitable value for LIBOBJDIR is set so that the
LIBOBJS and LTLIBOBJS can be referenced from any Makefile.am. Even without Automake,
arranging for LIBOBJDIR to be set correctly enables referencing LIBOBJS and LTLIBOBJS in
another directory. The LIBOBJDIR feature is experimental.

Chapter 18: Obsolete Constructs 335

18.6.5 AC_ACT_IFELSE vs. AC_TRY_ACT

Since Autoconf 2.50, internal codes uses AC_PREPROC_IFELSE, AC_COMPILE_IFELSE,
AC_LINK_IFELSE, and AC_RUN_IFELSE on one hand and AC_LANG_SOURCE, and AC_LANG_

PROGRAM on the other hand instead of the deprecated AC_TRY_CPP, AC_TRY_COMPILE,
AC_TRY_LINK, and AC_TRY_RUN. The motivations where:

− a more consistent interface: AC_TRY_COMPILE etc. were double quoting their arguments;

− the combinatorial explosion is solved by decomposing on the one hand the generation
of sources, and on the other hand executing the program;

− this scheme helps supporting more languages than plain C and C++.

In addition to the change of syntax, the philosophy has changed too: while emphasis was
put on speed at the expense of accuracy, today’s Autoconf promotes accuracy of the testing
framework at, ahem. . . , the expense of speed.

As a perfect example of what is not to be done, here is how to find out whether a header
file contains a particular declaration, such as a typedef, a structure, a structure member,
or a function. Use AC_EGREP_HEADER instead of running grep directly on the header file;
on some systems the symbol might be defined in another header file that the file you are
checking includes.

As a (bad) example, here is how you should not check for C preprocessor symbols, either
defined by header files or predefined by the C preprocessor: using AC_EGREP_CPP:

AC_EGREP_CPP(yes,

[#ifdef _AIX

yes

#endif

], is_aix=yes, is_aix=no)

The above example, properly written would (i) use AC_LANG_PROGRAM, and (ii) run the
compiler:

AC_COMPILE_IFELSE([AC_LANG_PROGRAM(

[[#ifndef _AIX

error: This isn't AIX!

#endif

]])],

[is_aix=yes],

[is_aix=no])

337

19 Generating Test Suites with Autotest

N.B.: This section describes a feature which is still
stabilizing. Although we believe that Autotest is useful as-is, this
documentation describes an interface which might change in the future:
do not depend upon Autotest without subscribing to the Autoconf mailing
lists.

It is paradoxical that portable projects depend on nonportable tools to run their test suite.
Autoconf by itself is the paragon of this problem: although it aims at perfectly portability,
up to 2.13 its test suite was using DejaGNU, a rich and complex testing framework, but
which is far from being standard on Posix systems. Worse yet, it was likely to be missing on
the most fragile platforms, the very platforms that are most likely to torture Autoconf and
exhibit deficiencies.

To circumvent this problem, many package maintainers have developed their own testing
framework, based on simple shell scripts whose sole outputs are exit status values describing
whether the test succeeded. Most of these tests share common patterns, and this can result
in lots of duplicated code and tedious maintenance.

Following exactly the same reasoning that yielded to the inception of Autoconf, Autotest
provides a test suite generation framework, based on M4 macros building a portable shell
script. The suite itself is equipped with automatic logging and tracing facilities which greatly
diminish the interaction with bug reporters, and simple timing reports.

Autoconf itself has been using Autotest for years, and we do attest that it has considerably
improved the strength of the test suite and the quality of bug reports. Other projects are
known to use some generation of Autotest, such as Bison, GNU Wdiff, GNU Tar, each
of them with different needs, and this usage has validated Autotest as a general testing
framework.

Nonetheless, compared to DejaGNU, Autotest is inadequate for interactive tool testing,
which is probably its main limitation.

19.1 Using an Autotest Test Suite

19.1.1 testsuite Scripts

Generating testing or validation suites using Autotest is rather easy. The whole validation
suite is held in a file to be processed through autom4te, itself using GNU M4 under the
hood, to produce a stand-alone Bourne shell script which then gets distributed. Neither
autom4te nor GNU M4 are needed at the installer’s end.

Each test of the validation suite should be part of some test group. A test group is a
sequence of interwoven tests that ought to be executed together, usually because one test in
the group creates data files that a later test in the same group needs to read. Complex test
groups make later debugging more tedious. It is much better to keep only a few tests per
test group. Ideally there is only one test per test group.

For all but the simplest packages, some file such as testsuite.at does not fully hold all
test sources, as these are often easier to maintain in separate files. Each of these separate
files holds a single test group, or a sequence of test groups all addressing some common
functionality in the package. In such cases, testsuite.at merely initializes the validation

338 Autoconf

suite, and sometimes does elementary health checking, before listing include statements for
all other test files. The special file package.m4, containing the identification of the package,
is automatically included if found.

A convenient alternative consists in moving all the global issues (local Autotest macros,
elementary health checking, and AT_INIT invocation) into the file local.at, and making
testsuite.at be a simple list of m4_includes of sub test suites. In such case, generating
the whole test suite or pieces of it is only a matter of choosing the autom4te command line
arguments.

The validation scripts that Autotest produces are by convention called testsuite. When
run, testsuite executes each test group in turn, producing only one summary line per test
to say if that particular test succeeded or failed. At end of all tests, summarizing counters
get printed. One debugging directory is left for each test group which failed, if any: such
directories are named testsuite.dir/nn, where nn is the sequence number of the test
group, and they include:

• a debugging script named run which reruns the test in debug mode (see Section 19.3
[testsuite Invocation], page 346). The automatic generation of debugging scripts has
the purpose of easing the chase for bugs.

• all the files created with AT_DATA

• all the Erlang source code files created with AT_CHECK_EUNIT

• a log of the run, named testsuite.log

In the ideal situation, none of the tests fail, and consequently no debugging directory is
left behind for validation.

It often happens in practice that individual tests in the validation suite need to get
information coming out of the configuration process. Some of this information, common for
all validation suites, is provided through the file atconfig, automatically created by AC_

CONFIG_TESTDIR. For configuration information which your testing environment specifically
needs, you might prepare an optional file named atlocal.in, instantiated by AC_CONFIG_

FILES. The configuration process produces atconfig and atlocal out of these two input
files, and these two produced files are automatically read by the testsuite script.

Here is a diagram showing the relationship between files.

Files used in preparing a software package for distribution:

[package.m4] -->.

\

subfile-1.at ->. [local.at] ---->+

... \ \

subfile-i.at ---->-- testsuite.at -->-- autom4te* -->testsuite

... /

subfile-n.at ->'

Files used in configuring a software package:

.--> atconfig

/

[atlocal.in] --> config.status* --<

\

`--> [atlocal]

Chapter 19: Generating Test Suites with Autotest 339

Files created during test suite execution:

atconfig -->. .--> testsuite.log

\ /

>-- testsuite* --<

/ \

[atlocal] ->' `--> [testsuite.dir]

19.1.2 Autotest Logs

When run, the test suite creates a log file named after itself, e.g., a test suite named
testsuite creates testsuite.log. It contains a lot of information, usually more than
maintainers actually need, but therefore most of the time it contains all that is needed:

command line arguments
A bad but unfortunately widespread habit consists of setting environment
variables before the command, such as in ‘CC=my-home-grown-cc ./testsuite’.
The test suite does not know this change, hence (i) it cannot report it to you,
and (ii) it cannot preserve the value of CC for subsequent runs. Autoconf faced
exactly the same problem, and solved it by asking users to pass the variable
definitions as command line arguments. Autotest requires this rule, too, but
has no means to enforce it; the log then contains a trace of the variables that
were changed by the user.

ChangeLog excerpts
The topmost lines of all the ChangeLog files found in the source hierarchy. This
is especially useful when bugs are reported against development versions of the
package, since the version string does not provide sufficient information to know
the exact state of the sources the user compiled. Of course, this relies on the
use of a ChangeLog.

build machine
Running a test suite in a cross-compile environment is not an easy task, since it
would mean having the test suite run on a machine build, while running programs
on a machine host. It is much simpler to run both the test suite and the programs
on host, but then, from the point of view of the test suite, there remains a single
environment, host = build. The log contains relevant information on the state
of the build machine, including some important environment variables.

tested programs
The absolute file name and answers to --version of the tested programs (see
Section 19.2 [Writing Testsuites], page 339, AT_TESTED).

configuration log
The contents of config.log, as created by configure, are appended. It contains
the configuration flags and a detailed report on the configuration itself.

19.2 Writing testsuite.at

The testsuite.at is a Bourne shell script making use of special Autotest M4 macros. It
often contains a call to AT_INIT near its beginning followed by one call to m4_include per
source file for tests. Each such included file, or the remainder of testsuite.at if include

340 Autoconf

files are not used, contain a sequence of test groups. Each test group begins with a call
to AT_SETUP, then an arbitrary number of shell commands or calls to AT_CHECK, and then
completes with a call to AT_CLEANUP. Multiple test groups can be categorized by a call to
AT_BANNER.

All of the public Autotest macros have all-uppercase names in the namespace ‘^AT_’
to prevent them from accidentally conflicting with other text; Autoconf also reserves the
namespace ‘^_AT_’ for internal macros. All shell variables used in the testsuite for internal
purposes have mostly-lowercase names starting with ‘at_’. Autotest also uses here-document
delimiters in the namespace ‘^_AT[A-Z]’, and makes use of the file system namespace ‘^at-’.

Since Autoconf is built on top of M4sugar (see Section 8.3 [Programming in M4sugar],
page 145) and M4sh (see Chapter 9 [Programming in M4sh], page 175), you must also
be aware of those namespaces (‘^_?\(m4\|AS\)_’). In general, you should not use the
namespace of a package that does not own the macro or shell code you are writing.

[Macro]AT_INIT ([name])
Initialize Autotest. Giving a name to the test suite is encouraged if your package
includes several test suites. Before this macro is called, AT_PACKAGE_STRING and
AT_PACKAGE_BUGREPORT must be defined, which are used to display information about
the testsuite to the user. Typically, these macros are provided by a file package.m4
built by make (see Section 19.4 [Making testsuite Scripts], page 348), in order to inherit
the package name, version, and bug reporting address from configure.ac.

[Macro]AT_COPYRIGHT (copyright-notice)
State that, in addition to the Free Software Foundation’s copyright on the Autotest
macros, parts of your test suite are covered by copyright-notice.

The copyright-notice shows up in both the head of testsuite and in ‘testsuite
--version’.

[Macro]AT_ARG_OPTION (options, help-text, [action-if-given],
[action-if-not-given])

Accept options from the space-separated list options, a list that has leading dashes
removed from the options. Long options will be prefixed with ‘--’, single-character
options with ‘-’. The first word in this list is the primary option, any others are
assumed to be short-hand aliases. The variable associated with it is at_arg_option,
with any dashes in option replaced with underscores.

If the user passes --option to the testsuite, the variable will be set to ‘:’. If the
user does not pass the option, or passes --no-option, then the variable will be set to
‘false’.

action-if-given is run each time the option is encountered; here, the variable at_

optarg will be set to ‘:’ or ‘false’ as appropriate. at_optarg is actually just a copy
of at_arg_option.

action-if-not-given will be run once after option parsing is complete and if no option
from options was used.

help-text is added to the end of the list of options shown in testsuite --help (see
[AS HELP STRING], page 299).

It is recommended that you use a package-specific prefix to options names in order to
avoid clashes with future Autotest built-in options.

Chapter 19: Generating Test Suites with Autotest 341

[Macro]AT_ARG_OPTION_ARG (options, help-text, [action-if-given],
[action-if-not-given])

Accept options with arguments from the space-separated list options, a list that has
leading dashes removed from the options. Long options will be prefixed with ‘--’,
single-character options with ‘-’. The first word in this list is the primary option,
any others are assumed to be short-hand aliases. The variable associated with it is
at_arg_option, with any dashes in option replaced with underscores.

If the user passes --option=arg or --option arg to the testsuite, the variable will
be set to ‘arg’.

action-if-given is run each time the option is encountered; here, the variable at_optarg
will be set to ‘arg’. at_optarg is actually just a copy of at_arg_option.

action-if-not-given will be run once after option parsing is complete and if no option
from options was used.

help-text is added to the end of the list of options shown in testsuite --help (see
[AS HELP STRING], page 299).

It is recommended that you use a package-specific prefix to options names in order to
avoid clashes with future Autotest built-in options.

[Macro]AT_COLOR_TESTS
Enable colored test results by default when the output is connected to a terminal.

[Macro]AT_TESTED (executables)
Log the file name and answer to --version of each program in space-separated list
executables. Several invocations register new executables, in other words, don’t fear
registering one program several times.

Autotest test suites rely on PATH to find the tested program. This avoids the need to
generate absolute names of the various tools, and makes it possible to test installed
programs. Therefore, knowing which programs are being exercised is crucial to
understanding problems in the test suite itself, or its occasional misuses. It is a
good idea to also subscribe foreign programs you depend upon, to avoid incompatible
diagnostics.

executables is implicitly wrapped in shell double quotes, but it will still use shell
variable expansion (‘$’), command substitution (‘`’), and backslash escaping (‘\’). In
particular, the EXEEXT variable is available if it is passed to the testsuite via atlocal

or atconfig.

[Macro]AT_PREPARE_TESTS (shell-code)
Execute shell-code in the main testsuite process, after initializing the test suite and
processing command-line options, but before running any tests. If this macro is used
several times, all of the shell-codes will be executed, in the order they appeared in
testsuite.at.

One reason to use AT_PREPARE_TESTS is when the programs under test are sensitive
to environment variables: you can unset all these variables or reset them to safe values
in shell-code.

shell-code is only executed if at least one test is going to be run. In particular, it
will not be executed if any of the --help, --version, --list, or --clean options
are given to testsuite (see Section 19.3 [testsuite Invocation], page 346).

342 Autoconf

[Macro]AT_PREPARE_EACH_TEST (shell-code)
Execute shell-code in each test group’s subshell, at the point of the AT_SETUP that
starts the test group.

[Macro]AT_TEST_HELPER_FN (name, args, description, code)
Define a shell function that will be available to the code for each test group. Its name
will be ath_fn_name, and its body will be code. (The prefix prevents name conflicts
with shell functions defined by M4sh and Autotest.)

args should describe the function’s arguments and description what it does; these are
used only for documentation comments in the generated testsuite script.

[Macro]AT_BANNER (test-category-name)
This macro identifies the start of a category of related test groups. When the resulting
testsuite is invoked with more than one test group to run, its output will include a
banner containing test-category-name prior to any tests run from that category. The
banner should be no more than about 40 or 50 characters. A blank banner indicates
uncategorized tests; an empty line will be inserted after tests from an earlier category,
effectively ending that category.

[Macro]AT_SETUP (test-group-name)
This macro starts a group of related tests, all to be executed in the same subshell.
It accepts a single argument, which holds a few words (no more than about 30 or
40 characters) quickly describing the purpose of the test group being started. test-
group-name must not expand to unbalanced quotes, although quadrigraphs can be
used.

[Macro]AT_KEYWORDS (keywords)
Associate the space-separated list of keywords to the enclosing test group. This makes
it possible to run “slices” of the test suite. For instance, if some of your test groups
exercise some ‘foo’ feature, then using ‘AT_KEYWORDS(foo)’ lets you run ‘./testsuite
-k foo’ to run exclusively these test groups. The test-group-name of the test group is
automatically recorded to AT_KEYWORDS.

Several invocations within a test group accumulate new keywords. In other words,
don’t fear registering the same keyword several times in a test group.

[Macro]AT_CAPTURE_FILE (file)
If the current test group fails, log the contents of file. Several identical calls within
one test group have no additional effect.

[Macro]AT_FAIL_IF (shell-condition)
Make the test group fail and skip the rest of its execution, if shell-condition is true.
shell-condition is a shell expression such as a test command. Tests before AT_FAIL_IF
will be executed and may still cause the test group to be skipped. You can instantiate
this macro many times from within the same test group.

You should use this macro only for very simple failure conditions. If the shell-condition
could emit any kind of output you should instead use AT_CHECK like

AT_CHECK([if shell-condition; then exit 99; fi])

so that such output is properly recorded in the testsuite.log file.

Chapter 19: Generating Test Suites with Autotest 343

[Macro]AT_SKIP_IF (shell-condition)
Determine whether the test should be skipped because it requires features that are
unsupported on the machine under test. shell-condition is a shell expression such as a
test command. Tests before AT_SKIP_IF will be executed and may still cause the
test group to fail. You can instantiate this macro many times from within the same
test group.

You should use this macro only for very simple skip conditions. If the shell-condition
could emit any kind of output you should instead use AT_CHECK like

AT_CHECK([if shell-condition; then exit 77; fi])

so that such output is properly recorded in the testsuite.log file.

[Macro]AT_XFAIL_IF (shell-condition)
Determine whether the test is expected to fail because it is a known bug (for unsup-
ported features, you should skip the test). shell-condition is a shell expression such as
a test command; you can instantiate this macro many times from within the same
test group, and one of the conditions is enough to turn the test into an expected
failure.

[Macro]AT_CLEANUP
End the current test group.

[Macro]AT_DATA (file, contents)
[Macro]AT_DATA_UNQUOTED (file, contents)

Initialize an input data file with given contents. Of course, the contents have to
be properly quoted between square brackets to protect against included commas or
spurious M4 expansion. contents must be empty or end with a newline. file must be a
single shell word that expands into a single file name.

The difference between AT_DATA and AT_DATA_UNQUOTED is that only the latter per-
forms shell variable expansion (‘$’), command substitution (‘`’), and backslash escaping
(‘\’) on contents.

[Macro]AT_CHECK (commands, [status = ‘0’], [stdout], [stderr], [run-if-fail],
[run-if-pass])

[Macro]AT_CHECK_UNQUOTED (commands, [status = ‘0’], [stdout], [stderr],
[run-if-fail], [run-if-pass])

Perform a test, by running the shell commands in a subshell. commands is output
as-is, so shell expansions are honored. These commands are expected to have a final
exit status of status, and to produce output as described by stdout and stderr (see
below).

This macro must be invoked in between AT_SETUP and AT_CLEANUP.

If commands exit with unexpected status 77, then the rest of the test group is skipped.
If commands exit with unexpected status 99, then the test group is immediately failed;
this is called a hard failure. Otherwise, the test is considered to have succeeded if all
of the status, stdout, and stderr expectations were met.

If run-if-fail is nonempty, it provides extra shell commands to run when the test fails;
if run-if-pass is nonempty, it provides extra shell commands to run when the test

344 Autoconf

succeeds. These commands are not run in a subshell, and they are not run when the
test group is skipped (exit code 77) or hard-failed (exit code 99). They may change
whether the test group is considered to have succeeded, by modifying the shell variable
at_failed; set it to : to indicate that the test group has failed, or false to indicate
that it has succeeded.

The exit status of commands is available to run-if-fail and run-if-pass commands in
the at_status shell variable. The output from commands is also available, in the files
named by the at_stdout and at_stderr variables.

If status is the literal ‘ignore’, then the exit status of commands is not checked,
except for the special cases of 77 (skip) and 99 (hard failure). The existence of hard
failures allows one to mark a test as an expected failure with AT_XFAIL_IF because
a feature has not yet been implemented, but to still distinguish between gracefully
handling the missing feature and dumping core.

If the value of the stdout or stderr parameter is one of the literals in the following
table, then the test treats the output according to the rules of that literal.

‘ignore’ The content of the output is ignored, but still captured in the test group log
(if the testsuite is run with the -v option, the test group log is displayed
as the test is run; if the test group later fails, the test group log is also
copied into the overall testsuite log). This action is valid for both stdout
and stderr.

‘ignore-nolog’
The content of the output is ignored, and nothing is captured in the log
files. If commands are likely to produce binary output (including long
lines) or large amounts of output, then logging the output can make it
harder to locate details related to subsequent tests within the group, and
could potentially corrupt terminal display of a user running testsuite

-v. This action is valid for both stdout and stderr.

‘stdout’ Only valid as the stdout parameter. Capture the content of standard
output in both a file named stdout and the test group log. Subsequent
commands in the test group can then post-process the file. This action is
often used when it is desired to use grep to look for a substring in the
output, or when the output must be post-processed to normalize error
messages into a common form.

‘stderr’ Only valid as the stderr parameter. Capture the content of standard error
in both a file named stderr and the test group log.

‘stdout-nolog’
‘stderr-nolog’

Like ‘stdout’ or ‘stderr’, except that the captured output is not dupli-
cated into the test group log. This action is particularly useful for an
intermediate check that produces large amounts of data, which will be
followed by another check that filters down to the relevant data, as it
makes it easier to locate details in the log.

‘expout’ Only valid as the stdout parameter. Compare standard output with the
previously created file expout, and list any differences in the testsuite log.

Chapter 19: Generating Test Suites with Autotest 345

‘experr’ Only valid as the stderr parameter. Compare standard error with the
previously created file experr, and list any differences in the testsuite log.

Otherwise, the values of the stdout and stderr parameters are treated as text that
must exactly match the output given by commands on standard output and standard
error (including an empty parameter for no output); any differences are captured in
the testsuite log and the test is failed (unless an unexpected exit status of 77 skipped
the test instead).

AT_CHECK_UNQUOTED performs shell variable expansion (‘$’), command substitution
(‘`’), and backslash escaping (‘\’) on comparison text given in the stdout and stderr
parameters; AT_CHECK does not. There is no difference in the interpretation of
commands.

[Macro]AT_CHECK_EUNIT (module, test-spec, [erlflags], [run-if-fail],
[run-if-pass])

Initialize and execute an Erlang module named module that performs tests following
the test-spec EUnit test specification. test-spec must be a valid EUnit test specifi-
cation, as defined in the EUnit Reference Manual (https://erlang.org/doc/apps/
eunit/index.html). erlflags are optional command-line options passed to the Erlang
interpreter to execute the test Erlang module. Typically, erlflags defines at least the
paths to directories containing the compiled Erlang modules under test, as ‘-pa path1

path2 ...’.

For example, the unit tests associated with Erlang module ‘testme’, which compiled
code is in subdirectory src, can be performed with:

AT_CHECK_EUNIT([testme_testsuite], [{module, testme}],

[-pa "${abs_top_builddir}/src"])

This macro must be invoked in between AT_SETUP and AT_CLEANUP.

Variables ERL, ERLC, and (optionally) ERLCFLAGS must be defined as the path of
the Erlang interpreter, the path of the Erlang compiler, and the command-line
flags to pass to the compiler, respectively. Those variables should be configured in
configure.ac using the AC_ERLANG_PATH_ERL and AC_ERLANG_PATH_ERLC macros,
and the configured values of those variables are automatically defined in the testsuite.
If ERL or ERLC is not defined, the test group is skipped.

If the EUnit library cannot be found, i.e. if module eunit cannot be loaded, the test
group is skipped. Otherwise, if test-spec is an invalid EUnit test specification, the
test group fails. Otherwise, if the EUnit test passes, shell commands run-if-pass are
executed or, if the EUnit test fails, shell commands run-if-fail are executed and the
test group fails.

Only the generated test Erlang module is automatically compiled and executed. If
test-spec involves testing other Erlang modules, e.g. module ‘testme’ in the example
above, those modules must be already compiled.

If the testsuite is run in verbose mode and with the --verbose option, EUnit is also
run in verbose mode to output more details about individual unit tests.

https://erlang.org/doc/apps/eunit/index.html
https://erlang.org/doc/apps/eunit/index.html

346 Autoconf

19.3 Running testsuite Scripts

Autotest test suites support the following options:

--help

-h Display the list of options and exit successfully.

--version

-V Display the version of the test suite and exit successfully.

--directory=dir

-C dir Change the current directory to dir before creating any files. Useful for running
the testsuite in a subdirectory from a top-level Makefile.

--jobs[=n]
-j[n] Run n tests in parallel, if possible. If n is not given, run all given tests in parallel.

Note that there should be no space before the argument to -j, as -j number

denotes the separate arguments -j and number, see below.

In parallel mode, the standard input device of the testsuite script is not available
to commands inside a test group. Furthermore, banner lines are not printed, and
the summary line for each test group is output after the test group completes.
Summary lines may appear unordered. If verbose and trace output are enabled
(see below), they may appear intermixed from concurrently running tests.

Parallel mode requires the mkfifo command to work, and will be silently disabled
otherwise.

--clean

-c Remove all the files the test suite might have created and exit. Meant for clean
Make targets.

--list

-l List all the tests (or only the selection), including their possible keywords.

By default all tests are performed (or described with --list) silently in the default
environment, but the environment, set of tests, and verbosity level can be tuned:

‘variable=value’
Set the environment variable to value. Use this rather than ‘FOO=foo
./testsuite’ as debugging scripts would then run in a different environment.

The variable AUTOTEST_PATH specifies the testing path to prepend to PATH.
Relative directory names (not starting with ‘/’) are considered to be relative
to the top level of the package being built. All directories are made absolute,
first starting from the top level build tree, then from the source tree. For
instance ‘./testsuite AUTOTEST_PATH=tests:bin’ for a /src/foo-1.0 source
package built in /tmp/foo results in ‘/tmp/foo/tests:/tmp/foo/bin’ and then
‘/src/foo-1.0/tests:/src/foo-1.0/bin’ being prepended to PATH.

‘number’
‘number-number’
‘number-’
‘-number’ Add the corresponding test groups, with obvious semantics, to the selection.

Chapter 19: Generating Test Suites with Autotest 347

‘--keywords=keywords’
‘-k keywords’

Add to the selection the test groups with title or keywords (arguments to AT_

SETUP or AT_KEYWORDS) that match all keywords of the comma separated list
keywords, case-insensitively. Use ‘!’ immediately before the keyword to invert
the selection for this keyword. By default, the keywords match whole words;
enclose them in ‘.*’ to also match parts of words.

For example, running

./testsuite -k 'autoupdate,.*FUNC.*'

selects all tests tagged ‘autoupdate’ and with tags containing ‘FUNC’ (as in
‘AC_CHECK_FUNC’, ‘AC_FUNC_ALLOCA’, etc.), while

./testsuite -k '!autoupdate' -k '.*FUNC.*'

selects all tests not tagged ‘autoupdate’ or with tags containing ‘FUNC’.

‘--errexit’
‘-e’ If any test fails, immediately abort testing. This implies --debug: post test

group clean up, and top-level logging are inhibited. This option is meant for
the full test suite, it is not really useful for generated debugging scripts. If the
testsuite is run in parallel mode using --jobs, then concurrently running tests
will finish before exiting.

‘--verbose’
‘-v’ Force more verbosity in the detailed output of what is being done. This is the

default for debugging scripts.

‘--color’
‘--color[=never|auto|always]’

Enable colored test results. Without an argument, or with ‘always’, test results
will be colored. With ‘never’, color mode is turned off. Otherwise, if either
the macro AT_COLOR_TESTS is used by the testsuite author, or the argument
‘auto’ is given, then test results are colored if standard output is connected to a
terminal.

‘--debug’
‘-d’ Do not remove the files after a test group was performed—but they are still

removed before, therefore using this option is sane when running several test
groups. Create debugging scripts. Do not overwrite the top-level log (in order
to preserve a supposedly existing full log file). This is the default for debugging
scripts, but it can also be useful to debug the testsuite itself.

‘--recheck’
Add to the selection all test groups that failed or passed unexpectedly during
the last non-debugging test run.

‘--trace’
‘-x’ Trigger shell tracing of the test groups.

Besides these options accepted by every Autotest testsuite, the testsuite author might
have added package-specific options via the AT_ARG_OPTION and AT_ARG_OPTION_ARG macros
(see Section 19.2 [Writing Testsuites], page 339); refer to testsuite --help and the package
documentation for details.

348 Autoconf

19.4 Making testsuite Scripts

For putting Autotest into movement, you need some configuration and makefile machinery.
We recommend, at least if your package uses deep or shallow hierarchies, that you use
tests/ as the name of the directory holding all your tests and their makefile. Here is a
check list of things to do, followed by an example, taking into consideration whether you are
also using Automake.

− Make sure to create the file package.m4, which defines the identity of the package.
It must define AT_PACKAGE_STRING, the full signature of the package, and AT_PACKAGE_

BUGREPORT, the address to which bug reports should be sent. For sake of completeness,
we suggest that you also define AT_PACKAGE_NAME, AT_PACKAGE_TARNAME, AT_PACKAGE_
VERSION, and AT_PACKAGE_URL. See Section 4.1 [Initializing configure], page 19, for a
description of these variables. Be sure to distribute package.m4 and to put it into the
source hierarchy: the test suite ought to be shipped! See below for an example.

− Invoke AC_CONFIG_TESTDIR in your configure.ac.

[Macro]AC_CONFIG_TESTDIR (directory, [test-path = directory])
An Autotest test suite is to be configured in directory. This macro causes
directory/atconfig to be created by config.status and sets the default
AUTOTEST_PATH to test-path (see Section 19.3 [testsuite Invocation], page 346).

− Still within configure.ac, as appropriate, ensure that some AC_CONFIG_FILES com-
mand includes substitution for tests/atlocal.

− Also within your configure.ac, arrange for the AUTOM4TE variable to be set.

− The appropriate Makefile should be modified so the validation in your package is
triggered by ‘make check’.

The following example demonstrates the above checklist, first by assuming that you are
using Automake (see below for tweaks to make to get the same results without Automake).
Begin by adding the following lines to your configure.ac:

Initialize the test suite.

AC_CONFIG_TESTDIR([tests])

AC_CONFIG_FILES([tests/Makefile tests/atlocal])

AM_MISSING_PROG([AUTOM4TE], [autom4te])

Next, add the following lines to your tests/Makefile.am, in order to link ‘make check’
with a validation suite.

The ':;' works around a Bash 3.2 bug when the output is not writable.

$(srcdir)/package.m4: $(top_srcdir)/configure.ac

:;{ \

echo '# Signature of the current package.' && \

echo 'm4_define([AT_PACKAGE_NAME],' && \

echo ' [$(PACKAGE_NAME)])' && \

echo 'm4_define([AT_PACKAGE_TARNAME],' && \

echo ' [$(PACKAGE_TARNAME)])' && \

echo 'm4_define([AT_PACKAGE_VERSION],' && \

echo ' [$(PACKAGE_VERSION)])' && \

echo 'm4_define([AT_PACKAGE_STRING],' && \

Chapter 19: Generating Test Suites with Autotest 349

echo ' [$(PACKAGE_STRING)])' && \

echo 'm4_define([AT_PACKAGE_BUGREPORT],' && \

echo ' [$(PACKAGE_BUGREPORT)])'; \

echo 'm4_define([AT_PACKAGE_URL],' && \

echo ' [$(PACKAGE_URL)])'; \

} >'$(srcdir)/package.m4'

EXTRA_DIST = testsuite.at $(srcdir)/package.m4 $(TESTSUITE) atlocal.in

TESTSUITE = $(srcdir)/testsuite

check-local: atconfig atlocal $(TESTSUITE)

$(SHELL) '$(TESTSUITE)' $(TESTSUITEFLAGS)

installcheck-local: atconfig atlocal $(TESTSUITE)

$(SHELL) '$(TESTSUITE)' AUTOTEST_PATH='$(bindir)' \

$(TESTSUITEFLAGS)

clean-local:

test ! -f '$(TESTSUITE)' || \

$(SHELL) '$(TESTSUITE)' --clean

AUTOTEST = $(AUTOM4TE) --language=autotest

$(TESTSUITE): $(srcdir)/testsuite.at $(srcdir)/package.m4

$(AUTOTEST) -I '$(srcdir)' -o $@.tmp $@.at

mv $@.tmp $@

Note that the built testsuite is distributed; this is necessary because users might not
have Autoconf installed, and thus would not be able to rebuild it. Likewise, the use
of Automake’s AM_MISSING_PROG will arrange for the definition of $AUTOM4TE within the
Makefile to provide the user with a nicer error message if they modify a source file to the
testsuite, and accidentally trigger the rebuild rules.

You might want to list explicitly the dependencies, i.e., the list of the files testsuite.at
includes.

If you don’t use Automake, you should make the following tweaks. In your configure.ac,
replace the AM_MISSING_PROG line above with AC_PATH_PROG([AUTOM4TE], [autom4te],

[false]). You are welcome to also try using the missing script from the Automake project
instead of false, to try to get a nicer error message when the user modifies prerequisites but
did not have Autoconf installed, but at that point you may be better off using Automake.
Then, take the code suggested above for tests/Makefile.am and place it in your tests/
Makefile.in instead. Add code to your tests/Makefile.in to ensure that $(EXTRA_DIST)
files are distributed, as well as adding the following additional lines to prepare the set of
needed Makefile variables:

subdir = tests

PACKAGE_NAME = @PACKAGE_NAME@

PACKAGE_TARNAME = @PACKAGE_TARNAME@

PACKAGE_VERSION = @PACKAGE_VERSION@

PACKAGE_STRING = @PACKAGE_STRING@

350 Autoconf

PACKAGE_BUGREPORT = @PACKAGE_BUGREPORT@

PACKAGE_URL = @PACKAGE_URL@

AUTOM4TE = @AUTOM4TE@

atconfig: $(top_builddir)/config.status

cd $(top_builddir) && \

$(SHELL) ./config.status $(subdir)/$@

atlocal: $(srcdir)/atlocal.in $(top_builddir)/config.status

cd $(top_builddir) && \

$(SHELL) ./config.status $(subdir)/$@

Using the above example (with or without Automake), and assuming you were careful
to not initialize ‘TESTSUITEFLAGS’ within your makefile, you can now fine-tune test suite
execution at runtime by altering this variable, for example:

make check TESTSUITEFLAGS='-v -d -x 75 -k AC_PROG_CC CFLAGS=-g'

351

20 Frequent Autoconf Questions, with answers

Several questions about Autoconf come up occasionally. Here some of them are addressed.

20.1 Distributing configure Scripts

What are the restrictions on distributing configure

scripts that Autoconf generates? How does that affect my
programs that use them?

There are no restrictions on how the configuration scripts that Autoconf produces may
be distributed or used. In Autoconf version 1, they were covered by the GNU General Public
License. We still encourage software authors to distribute their work under terms like those
of the GPL, but doing so is not required to use Autoconf.

Of the other files that might be used with configure, config.h.in is under whatever
copyright you use for your configure.ac. config.sub and config.guess have an exception
to the GPL when they are used with an Autoconf-generated configure script, which permits
you to distribute them under the same terms as the rest of your package. install-sh is
from the X Consortium and is not copyrighted.

20.2 Why Require GNU M4?

Why does Autoconf require GNU M4?

Many M4 implementations have hard-coded limitations on the size and number of macros
that Autoconf exceeds. They also lack several builtin macros that it would be difficult to
get along without in a sophisticated application like Autoconf, including:

m4_builtin

m4_indir

m4_bpatsubst

__file__

__line__

Autoconf requires version 1.4.8 or later of GNU M4. It works better with version 1.4.16
or later.

Since only software maintainers need to use Autoconf, and since GNU M4 is simple to
configure and install, it seems reasonable to require GNU M4 to be installed also. Many
maintainers of GNU and other free software already have most of the GNU utilities installed,
since they prefer them.

20.3 How Can I Bootstrap?

If Autoconf requires GNU M4 and GNU M4 has an Autoconf
configure script, how do I bootstrap? It seems like a chicken
and egg problem!

This is a misunderstanding. Although GNU M4 does come with a configure script
produced by Autoconf, Autoconf is not required in order to run the script and install GNU
M4. Autoconf is only required if you want to change the M4 configure script, which few
people have to do (mainly its maintainer).

352 Autoconf

20.4 Why Not Imake?

Why not use Imake instead of configure scripts?

Several people have written addressing this question, so adaptations of their explanations
are included here.

The following answer is based on one written by Richard Pixley:

Autoconf generated scripts frequently work on machines that it has never been
set up to handle before. That is, it does a good job of inferring a configuration
for a new system. Imake cannot do this.

Imake uses a common database of host specific data. For X11, this makes sense
because the distribution is made as a collection of tools, by one central authority
who has control over the database.

GNU tools are not released this way. Each GNU tool has a maintainer; these
maintainers are scattered across the world. Using a common database would be
a maintenance nightmare. Autoconf may appear to be this kind of database,
but in fact it is not. Instead of listing host dependencies, it lists program
requirements.

If you view the GNU suite as a collection of native tools, then the problems are
similar. But the GNU development tools can be configured as cross tools in
almost any host+target permutation. All of these configurations can be installed
concurrently. They can even be configured to share host independent files across
hosts. Imake doesn’t address these issues.

Imake templates are a form of standardization. The GNU coding standards
address the same issues without necessarily imposing the same restrictions.

Here is some further explanation, written by Per Bothner:

One of the advantages of Imake is that it is easy to generate large makefiles
using the ‘#include’ and macro mechanisms of cpp. However, cpp is not
programmable: it has limited conditional facilities, and no looping. And cpp

cannot inspect its environment.

All of these problems are solved by using sh instead of cpp. The shell is fully
programmable, has macro substitution, can execute (or source) other shell
scripts, and can inspect its environment.

Paul Eggert elaborates more:

With Autoconf, installers need not assume that Imake itself is already installed
and working well. This may not seem like much of an advantage to people who
are accustomed to Imake. But on many hosts Imake is not installed or the
default installation is not working well, and requiring Imake to install a package
hinders the acceptance of that package on those hosts. For example, the Imake
template and configuration files might not be installed properly on a host, or
the Imake build procedure might wrongly assume that all source files are in
one big directory tree, or the Imake configuration might assume one compiler
whereas the package or the installer needs to use another, or there might be a
version mismatch between the Imake expected by the package and the Imake
supported by the host. These problems are much rarer with Autoconf, where
each package comes with its own independent configuration processor.

Chapter 20: Frequent Autoconf Questions, with answers 353

Also, Imake often suffers from unexpected interactions between make and the
installer’s C preprocessor. The fundamental problem here is that the C prepro-
cessor was designed to preprocess C programs, not makefiles. This is much less of
a problem with Autoconf, which uses the general-purpose preprocessor M4, and
where the package’s author (rather than the installer) does the preprocessing in
a standard way.

Finally, Mark Eichin notes:

Imake isn’t all that extensible, either. In order to add new features to Imake,
you need to provide your own project template, and duplicate most of the
features of the existing one. This means that for a sophisticated project, using
the vendor-provided Imake templates fails to provide any leverage—since they
don’t cover anything that your own project needs (unless it is an X11 program).

On the other side, though:

The one advantage that Imake has over configure: Imakefile files tend to be
much shorter (likewise, less redundant) than Makefile.in files. There is a fix
to this, however—at least for the Kerberos V5 tree, we’ve modified things to call
in common post.in and pre.in makefile fragments for the entire tree. This
means that a lot of common things don’t have to be duplicated, even though
they normally are in configure setups.

20.5 How Do I #define Installation Directories?

My program needs library files, installed in datadir and
similar. If I use

AC_DEFINE_UNQUOTED([DATADIR], [$datadir],

[Define to the read-only architecture-independent

data directory.])

I get

#define DATADIR "${prefix}/share"

As already explained, this behavior is on purpose, mandated by the GNU Coding
Standards, see Section 4.8.2 [Installation Directory Variables], page 31. There are several
means to achieve a similar goal:

− Do not use AC_DEFINE but use your makefile to pass the actual value of datadir via
compilation flags. See Section 4.8.2 [Installation Directory Variables], page 31, for the
details.

− This solution can be simplified when compiling a program: you may either extend the
CPPFLAGS:

CPPFLAGS = -DDATADIR='"$(datadir)"' @CPPFLAGS@

If you are using Automake, you should use AM_CPPFLAGS instead:

AM_CPPFLAGS = -DDATADIR='"$(datadir)"'

354 Autoconf

Alternatively, create a dedicated header file:

DISTCLEANFILES = myprog-paths.h

myprog-paths.h: Makefile

echo '#define DATADIR "$(datadir)"' >$@

The Gnulib module ‘configmake’ provides such a header with all the standard directory
variables defined, see Section “configmake” in GNU Gnulib.

− Use AC_DEFINE but have configure compute the literal value of datadir and others.
Many people have wrapped macros to automate this task; for an example, see the macro
AC_DEFINE_DIR from the Autoconf Macro Archive (https://www.gnu.org/software/
autoconf-archive/).

This solution does not conform to the GNU Coding Standards.

− Note that all the previous solutions hard wire the absolute name of these directories in the
executables, which is not a good property. You may try to compute the names relative
to prefix, and try to find prefix at runtime, this way your package is relocatable.

20.6 What is autom4te.cache?

What is this directory autom4te.cache? Can I safely remove it?

In the GNU Build System, configure.ac plays a central role and is read by many tools:
autoconf to create configure, autoheader to create config.h.in, automake to create
Makefile.in, autoscan to check the completeness of configure.ac, autoreconf to check
the GNU Build System components that are used. To “read configure.ac” actually means
to compile it with M4, which can be a long process for complex configure.ac.

This is why all these tools, instead of running directly M4, invoke autom4te (see
Section 8.2.1 [autom4te Invocation], page 140) which, while answering to a specific de-
mand, stores additional information in autom4te.cache for future runs. For instance, if
you run autoconf, behind the scenes, autom4te also stores information for the other tools,
so that when you invoke autoheader or automake etc., reprocessing configure.ac is not
needed. The speed up is frequently 30%, and is increasing with the size of configure.ac.

But it is and remains being simply a cache: you can safely remove it.

Can I permanently get rid of it?

The creation of this cache can be disabled from ~/.autom4te.cfg, see Section 8.2.2
[Customizing autom4te], page 144, for more details. You should be aware that disabling the
cache slows down the Autoconf test suite by 40%. The more GNU Build System components
are used, the more the cache is useful; for instance running ‘autoreconf -f’ on the Core
Utilities is twice slower without the cache although --force implies that the cache is not
fully exploited, and eight times slower than without --force.

20.7 Header Present But Cannot Be Compiled

The most important guideline to bear in mind when checking for features is to mimic as
much as possible the intended use. Unfortunately, old versions of AC_CHECK_HEADER and
AC_CHECK_HEADERS failed to follow this idea, and called the preprocessor, instead of the
compiler, to check for headers. As a result, incompatibilities between headers went unnoticed
during configuration, and maintainers finally had to deal with this issue elsewhere.

https://www.gnu.org/software/autoconf-archive/
https://www.gnu.org/software/autoconf-archive/

Chapter 20: Frequent Autoconf Questions, with answers 355

The transition began with Autoconf 2.56. As of Autoconf 2.64 both checks are performed,
and configure complains loudly if the compiler and the preprocessor do not agree. However,
only the compiler result is considered. As of Autoconf 2.70, only the compiler check is
performed.

Consider the following example:

$ cat number.h

typedef int number;

$ cat pi.h

const number pi = 3;

$ cat configure.ac

AC_INIT([Example], [1.0], [bug-example@example.org])

AC_CHECK_HEADERS([pi.h])

$ autoconf -Wall

$./configure CPPFLAGS='-I.'

checking for gcc... gcc

checking whether the C compiler works... yes

checking for C compiler default output file name... a.out

checking for suffix of executables...

checking whether we are cross compiling... no

checking for suffix of object files... o

checking whether the compiler supports GNU C... yes

checking whether gcc accepts -g... yes

checking for gcc option to enable C11 features... -std=gnu11

checking for sys/types.h... yes

checking for sys/stat.h... yes

checking for strings.h... yes

checking for inttypes.h... yes

checking for stdint.h... yes

checking for unistd.h... yes

checking for pi.h... no

The proper way to handle this case is using the fourth argument (see Section 5.6.3 [Generic
Headers], page 72):

$ cat configure.ac

AC_INIT([Example], [1.0], [bug-example@example.org])

AC_CHECK_HEADERS([number.h pi.h], [], [],

[[#ifdef HAVE_NUMBER_H

include <number.h>

#endif

]])

$ autoconf -Wall

$./configure CPPFLAGS='-I.'

checking for gcc... gcc

checking whether the C compiler works... yes

checking for C compiler default output file name... a.out

checking for suffix of executables...

checking whether we are cross compiling... no

checking for suffix of object files... o

checking whether the compiler supports GNU C... yes

checking whether gcc accepts -g... yes

checking for gcc option to enable C11 features... -std=gnu11

checking for number.h... yes

356 Autoconf

checking for pi.h... yes

See Section 5.6.2 [Particular Headers], page 69, for a list of headers with their prerequisites.

20.8 Expanded Before Required

Older versions of Autoconf silently built files with incorrect ordering between dependent
macros if an outer macro first expanded, then later indirectly required, an inner macro.
Starting with Autoconf 2.64, this situation no longer generates out-of-order code, but results
in duplicate output and a syntax warning:

$ cat configure.ac

⇒AC_DEFUN([TESTA], [[echo in A

⇒if test -n "$SEEN_A" ; then echo duplicate ; fi

⇒SEEN_A=:]])

⇒AC_DEFUN([TESTB], [AC_REQUIRE([TESTA])[echo in B

⇒if test -z "$SEEN_A" ; then echo bug ; fi]])

⇒AC_DEFUN([TESTC], [AC_REQUIRE([TESTB])[echo in C]])

⇒AC_DEFUN([OUTER], [[echo in OUTER]

⇒TESTA

⇒TESTC])

⇒AC_INIT

⇒OUTER

⇒AC_OUTPUT

$ autoconf

⇒configure.ac:11: warning: AC_REQUIRE:

⇒ 'TESTA' was expanded before it was required

⇒configure.ac:4: TESTB is expanded from...

⇒configure.ac:6: TESTC is expanded from...

⇒configure.ac:7: OUTER is expanded from...

⇒configure.ac:11: the top level

To avoid this warning, decide what purpose the macro in question serves. If it only needs to
be expanded once (for example, if it provides initialization text used by later macros), then
the simplest fix is to change the macro to be declared with AC_DEFUN_ONCE (see Section 10.3.3
[One-Shot Macros], page 191), although this only works in Autoconf 2.64 and newer. A
more portable fix is to change all instances of direct calls to instead go through AC_REQUIRE

(see Section 10.3.1 [Prerequisite Macros], page 187). If, instead, the macro is parameterized
by arguments or by the current definition of other macros in the m4 environment, then the
macro should always be directly expanded instead of required.

For another case study, consider this example trimmed down from an actual package.
Originally, the package contained shell code and multiple macro invocations at the top level
of configure.ac:

AC_DEFUN([FOO], [AC_COMPILE_IFELSE([...])])

foobar=

AC_PROG_CC

FOO

Chapter 20: Frequent Autoconf Questions, with answers 357

but that was getting complex, so the author wanted to offload some of the text into a new
macro in another file included via aclocal.m4. The näıve approach merely wraps the text
in a new macro:

AC_DEFUN([FOO], [AC_COMPILE_IFELSE([...])])

AC_DEFUN([BAR], [

foobar=

AC_PROG_CC

FOO

])

BAR

With older versions of Autoconf, the setting of ‘foobar=’ occurs before the single compiler
check, as the author intended. But with Autoconf 2.64, this issues the “expanded before
it was required” warning for AC_PROG_CC, and outputs two copies of the compiler check,
one before ‘foobar=’, and one after. To understand why this is happening, remember that
the use of AC_COMPILE_IFELSE includes a call to AC_REQUIRE([AC_PROG_CC]) under the
hood. According to the documented semantics of AC_REQUIRE, this means that AC_PROG_CC
must occur before the body of the outermost AC_DEFUN, which in this case is BAR, thus
preceding the use of ‘foobar=’. The older versions of Autoconf were broken with regards to
the rules of AC_REQUIRE, which explains why the code changed from one over to two copies of
AC_PROG_CC when upgrading autoconf. In other words, the author was unknowingly relying
on a bug exploit to get the desired results, and that exploit broke once the bug was fixed.

So, what recourse does the author have, to restore their intended semantics of setting
‘foobar=’ prior to a single compiler check, regardless of whether Autoconf 2.63 or 2.64 is
used? One idea is to remember that only AC_DEFUN is impacted by AC_REQUIRE; there is
always the possibility of using the lower-level m4_define:

AC_DEFUN([FOO], [AC_COMPILE_IFELSE([...])])

m4_define([BAR], [

foobar=

AC_PROG_CC

FOO

])

BAR

This works great if everything is in the same file. However, it does not help in the case
where the author wants to have aclocal find the definition of BAR from its own file, since
aclocal requires the use of AC_DEFUN. In this case, a better fix is to recognize that if BAR
also uses AC_REQUIRE, then there will no longer be direct expansion prior to a subsequent
require. Then, by creating yet another helper macro, the author can once again guarantee
a single invocation of AC_PROG_CC, which will still occur after foobar=. The author can
also use AC_BEFORE to make sure no other macro appearing before BAR has triggered an
unwanted expansion of AC_PROG_CC.

AC_DEFUN([FOO], [AC_COMPILE_IFELSE([...])])

AC_DEFUN([BEFORE_CC], [

foobar=

])

AC_DEFUN([BAR], [

358 Autoconf

AC_BEFORE([$0], [AC_PROG_CC])dnl

AC_REQUIRE([BEFORE_CC])dnl

AC_REQUIRE([AC_PROG_CC])dnl

FOO

])

BAR

20.9 Debugging configure scripts

While in general, configure scripts generated by Autoconf strive to be fairly portable to
various systems, compilers, shells, and other tools, it may still be necessary to debug a
failing test, broken script or makefile, or fix or override an incomplete, faulty, or erroneous
test, especially during macro development. Failures can occur at all levels, in M4 syntax or
semantics, shell script issues, or due to bugs in the test or the tools invoked by configure.
Together with the rather arcane error message that m4 and make may produce when their
input contains syntax errors, this can make debugging rather painful.

Nevertheless, here is a list of hints and strategies that may help:

• When autoconf fails, common causes for error include:

• mismatched or unbalanced parentheses or braces (see Section 8.1.7 [Balancing
Parentheses], page 137),

• under- or over-quoted macro arguments (see Section 3.1.2 [Autoconf Language],
page 9, see Section 8.1.3 [Quoting and Parameters], page 133, see Section 8.1.4
[Quotation and Nested Macros], page 134),

• spaces between macro name and opening parenthesis (see Section 3.1.2 [Autoconf
Language], page 9).

Typically, it helps to go back to the last working version of the input and compare the
differences for each of these errors. Another possibility is to sprinkle pairs of m4_traceon
and m4_traceoff judiciously in the code, either without a parameter or listing some
macro names and watch m4 expand its input verbosely (see Section 8.4 [Debugging via
autom4te], page 173).

• Sometimes autoconf succeeds but the generated configure script has invalid shell
syntax. You can detect this case by running ‘bash -n configure’ or ‘sh -n configure’.
If this command fails, the same tips apply, as if autoconf had failed.

• Debugging configure script execution may be done by sprinkling pairs of set -x and
set +x into the shell script before and after the region that contains a bug. Running the
whole script with ‘shell -vx ./configure 2>&1 | tee log-file’ with a decent shell
may work, but produces lots of output. Here, it can help to search for markers like
‘checking for’ a particular test in the log-file.

• Alternatively, you might use a shell with debugging capabilities like bashdb (http://
bashdb.sourceforge.net/).

• When configure tests produce invalid results for your system, it may be necessary to
override them:

• For programs, tools or libraries variables, preprocessor, compiler, or linker flags, it is
often sufficient to override them at make run time with some care (see Section 12.7
[Macros and Submakes], page 264). Since this normally won’t cause configure

http://bashdb.sourceforge.net/
http://bashdb.sourceforge.net/

Chapter 20: Frequent Autoconf Questions, with answers 359

to be run again with these changed settings, it may fail if the changed variable
would have caused different test results from configure, so this may work only for
simple differences.

• Most tests which produce their result in a substituted variable allow to override
the test by setting the variable on the configure command line (see Section 16.2
[Compilers and Options], page 306, see Section 16.8 [Defining Variables], page 309).

• Many tests store their result in a cache variable (see Section 7.4 [Caching Results],
page 125). This lets you override them either on the configure command line
as above, or through a primed cache or site file (see Section 7.4.2 [Cache Files],
page 127, see Section 15.8 [Site Defaults], page 302). The name of a cache variable
is documented with a test macro or may be inferred from Section 7.4.1 [Cache
Variable Names], page 126; the precise semantics of undocumented variables are
often internal details, subject to change.

• Alternatively, configure may produce invalid results because of uncaught programming
errors, in your package or in an upstream library package. For example, when AC_

CHECK_LIB fails to find a library with a specified function, always check config.log.
This will reveal the exact error that produced the failing result: the library linked by
AC_CHECK_LIB probably has a fatal bug.

Conversely, as macro author, you can make it easier for users of your macro:

• by minimizing dependencies between tests and between test results as far as possible,

• by using make variables to factorize and allow override of settings at make run time,

• by honoring the GNU Coding Standards and not overriding flags reserved for the user
except temporarily during configure tests,

• by not requiring users of your macro to use the cache variables. Instead, expose the
result of the test via run-if-true and run-if-false parameters. If the result is not a
boolean, then provide it through documented shell variables.

361

21 History of Autoconf

This chapter was written by the original author, David MacKenzie.

You may be wondering, Why was Autoconf originally written? How did it get into its
present form? (Why does it look like gorilla spit?) If you’re not wondering, then this chapter
contains no information useful to you, and you might as well skip it. If you are wondering,
then let there be light. . .

21.1 Genesis

In June 1991 I was maintaining many of the GNU utilities for the Free Software Foundation.
As they were ported to more platforms and more programs were added, the number of -D
options that users had to select in the makefile (around 20) became burdensome. Especially
for me—I had to test each new release on a bunch of different systems. So I wrote a little
shell script to guess some of the correct settings for the fileutils package, and released it
as part of fileutils 2.0. That configure script worked well enough that the next month I
adapted it (by hand) to create similar configure scripts for several other GNU utilities
packages. Brian Berliner also adapted one of my scripts for his CVS revision control system.

Later that summer, I learned that Richard Stallman and Richard Pixley were developing
similar scripts to use in the GNU compiler tools; so I adapted my configure scripts to
support their evolving interface: using the file name Makefile.in as the templates; adding
‘+srcdir’, the first option (of many); and creating config.status files.

21.2 Exodus

As I got feedback from users, I incorporated many improvements, using Emacs to search
and replace, cut and paste, similar changes in each of the scripts. As I adapted more GNU
utilities packages to use configure scripts, updating them all by hand became impractical.
Rich Murphey, the maintainer of the GNU graphics utilities, sent me mail saying that the
configure scripts were great, and asking if I had a tool for generating them that I could
send him. No, I thought, but I should! So I started to work out how to generate them. And
the journey from the slavery of hand-written configure scripts to the abundance and ease
of Autoconf began.

Cygnus configure, which was being developed at around that time, is table driven; it is
meant to deal mainly with a discrete number of system types with a small number of mainly
unguessable features (such as details of the object file format). The automatic configuration
system that Brian Fox had developed for Bash takes a similar approach. For general use, it
seems to me a hopeless cause to try to maintain an up-to-date database of which features
each variant of each operating system has. It’s easier and more reliable to check for most
features on the fly—especially on hybrid systems that people have hacked on locally or that
have patches from vendors installed.

I considered using an architecture similar to that of Cygnus configure, where there is
a single configure script that reads pieces of configure.in when run. But I didn’t want
to have to distribute all of the feature tests with every package, so I settled on having a
different configure made from each configure.in by a preprocessor. That approach also
offered more control and flexibility.

362 Autoconf

I looked briefly into using the Metaconfig package, by Larry Wall, Harlan Stenn, and
Raphael Manfredi, but I decided not to for several reasons. The Configure scripts it
produces are interactive, which I find quite inconvenient; I didn’t like the ways it checked for
some features (such as library functions); I didn’t know that it was still being maintained,
and the Configure scripts I had seen didn’t work on many modern systems (such as System
V R4 and NeXT); it wasn’t flexible in what it could do in response to a feature’s presence
or absence; I found it confusing to learn; and it was too big and complex for my needs (I
didn’t realize then how much Autoconf would eventually have to grow).

I considered using Perl to generate my style of configure scripts, but decided that
M4 was better suited to the job of simple textual substitutions: it gets in the way less,
because output is implicit. Plus, everyone already has it. (Initially I didn’t rely on the GNU
extensions to M4.) Also, some of my friends at the University of Maryland had recently
been putting M4 front ends on several programs, including tvtwm, and I was interested in
trying out a new language.

21.3 Leviticus

Since my configure scripts determine the system’s capabilities automatically, with no
interactive user intervention, I decided to call the program that generates them Autoconfig.
But with a version number tacked on, that name would be too long for old Unix file systems,
so I shortened it to Autoconf.

In the fall of 1991 I called together a group of fellow questers after the Holy Grail of
portability (er, that is, alpha testers) to give me feedback as I encapsulated pieces of my
handwritten scripts in M4 macros and continued to add features and improve the techniques
used in the checks. Prominent among the testers were François Pinard, who came up with
the idea of making an Autoconf shell script to run M4 and check for unresolved macro calls;
Richard Pixley, who suggested running the compiler instead of searching the file system
to find include files and symbols, for more accurate results; Karl Berry, who got Autoconf
to configure TEX and added the macro index to the documentation; and Ian Lance Taylor,
who added support for creating a C header file as an alternative to putting -D options in
a makefile, so he could use Autoconf for his UUCP package. The alpha testers cheerfully
adjusted their files again and again as the names and calling conventions of the Autoconf
macros changed from release to release. They all contributed many specific checks, great
ideas, and bug fixes.

21.4 Numbers

In July 1992, after months of alpha testing, I released Autoconf 1.0, and converted many
GNU packages to use it. I was surprised by how positive the reaction to it was. More
people started using it than I could keep track of, including people working on software that
wasn’t part of the GNU Project (such as TCL, FSP, and Kerberos V5). Autoconf continued
to improve rapidly, as many people using the configure scripts reported problems they
encountered.

Autoconf turned out to be a good torture test for M4 implementations. Unix M4 started
to dump core because of the length of the macros that Autoconf defined, and several bugs
showed up in GNU M4 as well. Eventually, we realized that we needed to use some features

Chapter 21: History of Autoconf 363

that only GNU M4 has. 4.3BSD M4, in particular, has an impoverished set of builtin macros;
the System V version is better, but still doesn’t provide everything we need.

More development occurred as people put Autoconf under more stresses (and to uses I
hadn’t anticipated). Karl Berry added checks for X11. david zuhn contributed C++ support.
François Pinard made it diagnose invalid arguments. Jim Blandy bravely coerced it into
configuring GNU Emacs, laying the groundwork for several later improvements. Roland
McGrath got it to configure the GNU C Library, wrote the autoheader script to automate
the creation of C header file templates, and added a --verbose option to configure. Noah
Friedman added the --autoconf-dir option and AC_MACRODIR environment variable. (He
also coined the term autoconfiscate to mean “adapt a software package to use Autoconf”.)
Roland and Noah improved the quoting protection in AC_DEFINE and fixed many bugs,
especially when I got sick of dealing with portability problems from February through June,
1993.

21.5 Deuteronomy

A long wish list for major features had accumulated, and the effect of several years of
patching by various people had left some residual cruft. In April 1994, while working for
Cygnus Support, I began a major revision of Autoconf. I added most of the features of
the Cygnus configure that Autoconf had lacked, largely by adapting the relevant parts of
Cygnus configure with the help of david zuhn and Ken Raeburn. These features include
support for using config.sub, config.guess, --host, and --target; making links to files;
and running configure scripts in subdirectories. Adding these features enabled Ken to
convert GNU as, and Rob Savoye to convert DejaGNU, to using Autoconf.

I added more features in response to other peoples’ requests. Many people had asked
for configure scripts to share the results of the checks between runs, because (particularly
when configuring a large source tree, like Cygnus does) they were frustratingly slow. Mike
Haertel suggested adding site-specific initialization scripts. People distributing software
that had to unpack on MS-DOS asked for a way to override the .in extension on the file
names, which produced file names like config.h.in containing two dots. Jim Avera did
an extensive examination of the problems with quoting in AC_DEFINE and AC_SUBST; his
insights led to significant improvements. Richard Stallman asked that compiler output
be sent to config.log instead of /dev/null, to help people debug the Emacs configure
script.

I made some other changes because of my dissatisfaction with the quality of the program.
I made the messages showing results of the checks less ambiguous, always printing a result.
I regularized the names of the macros and cleaned up coding style inconsistencies. I added
some auxiliary utilities that I had developed to help convert source code packages to use
Autoconf. With the help of François Pinard, I made the macros not interrupt each others’
messages. (That feature revealed some performance bottlenecks in GNU M4, which he
hastily corrected!) I reorganized the documentation around problems people want to solve.
And I began a test suite, because experience had shown that Autoconf has a pronounced
tendency to regress when we change it.

Again, several alpha testers gave invaluable feedback, especially François Pinard, Jim
Meyering, Karl Berry, Rob Savoye, Ken Raeburn, and Mark Eichin.

364 Autoconf

Finally, version 2.0 was ready. And there was much rejoicing. (And I have free time
again. I think. Yeah, right.)

365

Appendix A GNU Free Documentation License

Version 1.3, 3 November 2008

Copyright c© 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.
https://fsf.org/

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and
useful document free in the sense of freedom: to assure everyone the effective freedom
to copy and redistribute it, with or without modifying it, either commercially or
noncommercially. Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible for modifications
made by others.

This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice
placed by the copyright holder saying it can be distributed under the terms of this
License. Such a notice grants a world-wide, royalty-free license, unlimited in duration,
to use that work under the conditions stated herein. The “Document”, below, refers
to any such manual or work. Any member of the public is a licensee, and is addressed
as “you”. You accept the license if you copy, modify or distribute the work in a way
requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into
another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that
could fall directly within that overall subject. (Thus, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding
them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released

https://fsf.org/

366 Autoconf

under this License. If a section does not fit the above definition of Secondary then it is
not allowed to be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may
be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented in a
format whose specification is available to the general public, that is suitable for revising
the document straightforwardly with generic text editors or (for images composed of
pixels) generic paint programs or (for drawings) some widely available drawing editor,
and that is suitable for input to text formatters or for automatic translation to a
variety of formats suitable for input to text formatters. A copy made in an otherwise
Transparent file format whose markup, or absence of markup, has been arranged to
thwart or discourage subsequent modification by readers is not Transparent. An image
format is not Transparent if used for any substantial amount of text. A copy that is
not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without
markup, Texinfo input format, LaTEX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML, PostScript or PDF designed
for human modification. Examples of transparent image formats include PNG, XCF
and JPG. Opaque formats include proprietary formats that can be read and edited only
by proprietary word processors, SGML or XML for which the DTD and/or processing
tools are not generally available, and the machine-generated HTML, PostScript or PDF
produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

The “publisher” means any person or entity that distributes copies of the Document to
the public.

A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such
as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve
the Title” of such a section when you modify the Document means that it remains a
section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to be
included by reference in this License, but only as regards disclaiming warranties: any
other implication that these Warranty Disclaimers may have is void and has no effect
on the meaning of this License.

2. VERBATIM COPYING

Appendix A: GNU Free Documentation License 367

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and
that you add no other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for copies.
If you distribute a large enough number of copies you must also follow the conditions in
section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of
the Document, numbering more than 100, and the Document’s license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify you as the publisher
of these copies. The front cover must present the full title with all words of the title
equally prominent and visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verbatim copying in other
respects.

If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a computer-network location from which
the general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material. If
you use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will
remain thus accessible at the stated location until at least one year after the last time
you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of it.
In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any,

368 Autoconf

be listed in the History section of the Document). You may use the same title as a
previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has fewer
than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item
stating at least the title, year, new authors, and publisher of the Modified Version as
given on the Title Page. If there is no section Entitled “History” in the Document,
create one stating the title, year, authors, and publisher of the Document as given
on its Title Page, then add an item describing the Modified Version as stated in
the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
“History” section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included
in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in
title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as
Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their

Appendix A: GNU Free Documentation License 369

titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties—for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but
you may replace the old one, on explicit permission from the previous publisher that
added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections Entitled “History” in the various
original documents, forming one section Entitled “History”; likewise combine any
sections Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You
must delete all sections Entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you follow
the rules of this License for verbatim copying of each of the documents in all other
respects.

You may extract a single document from such a collection, and distribute it individually
under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.

370 Autoconf

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called an
“aggregate” if the copyright resulting from the compilation is not used to limit the legal
rights of the compilation’s users beyond what the individual works permit. When the
Document is included in an aggregate, this License does not apply to the other works
in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they
must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original versions
of these Invariant Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warranty Disclaimers, provided that you also
include the original English version of this License and the original versions of those
notices and disclaimers. In case of a disagreement between the translation and the
original version of this License or a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “His-
tory”, the requirement (section 4) to Preserve its Title (section 1) will typically require
changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense, or
distribute it is void, and will automatically terminate your rights under this License.

However, if you cease all violation of this License, then your license from a particular
copyright holder is reinstated (a) provisionally, unless and until the copyright holder
explicitly and finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means prior to 60 days
after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if
the copyright holder notifies you of the violation by some reasonable means, this is the
first time you have received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after your receipt of the
notice.

Termination of your rights under this section does not terminate the licenses of parties
who have received copies or rights from you under this License. If your rights have been
terminated and not permanently reinstated, receipt of a copy of some or all of the same
material does not give you any rights to use it.

Appendix A: GNU Free Documentation License 371

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See https://www.gnu.org/licenses/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version” applies
to it, you have the option of following the terms and conditions either of that specified
version or of any later version that has been published (not as a draft) by the Free
Software Foundation. If the Document does not specify a version number of this License,
you may choose any version ever published (not as a draft) by the Free Software
Foundation. If the Document specifies that a proxy can decide which future versions
of this License can be used, that proxy’s public statement of acceptance of a version
permanently authorizes you to choose that version for the Document.

11. RELICENSING

“Massive Multiauthor Collaboration Site” (or “MMC Site”) means any World Wide
Web server that publishes copyrightable works and also provides prominent facilities for
anybody to edit those works. A public wiki that anybody can edit is an example of
such a server. A “Massive Multiauthor Collaboration” (or “MMC”) contained in the
site means any set of copyrightable works thus published on the MMC site.

“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0 license published
by Creative Commons Corporation, a not-for-profit corporation with a principal place
of business in San Francisco, California, as well as future copyleft versions of that license
published by that same organization.

“Incorporate” means to publish or republish a Document, in whole or in part, as part of
another Document.

An MMC is “eligible for relicensing” if it is licensed under this License, and if all works
that were first published under this License somewhere other than this MMC, and
subsequently incorporated in whole or in part into the MMC, (1) had no cover texts or
invariant sections, and (2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site under
CC-BY-SA on the same site at any time before August 1, 2009, provided the MMC is
eligible for relicensing.

https://www.gnu.org/licenses/

372 Autoconf

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify this document

under the terms of the GNU Free Documentation License, Version 1.3

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover

Texts. A copy of the license is included in the section entitled ``GNU

Free Documentation License''.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with. . .Texts.” line with this:

with the Invariant Sections being list their titles, with

the Front-Cover Texts being list, and with the Back-Cover Texts

being list.

If you have Invariant Sections without Cover Texts, or some other combination of the
three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.

373

Appendix B Indices

B.1 Environment Variable Index

This is an alphabetical list of the environment variables that might influence Autoconf
checks.

_ . 220

B
BIN_SH . 220

C
CC . 84
CDPATH . 220
CFLAGS . 28, 84
CLICOLOR_FORCE . 220
CONFIG_COMMANDS . 313
CONFIG_FILES . 313
CONFIG_HEADERS . 313
CONFIG_LINKS . 313
CONFIG_SHELL . 312
CONFIG_SITE . 302
CONFIG_STATUS . 312
CPP . 85
CPPFLAGS . 29
CXX . 88
CXXCPP . 89
CXXFLAGS . 29, 88
CYGWIN . 317

D
DUALCASE . 220

E
ENV . 220
ERL . 91
ERLC . 91
ERLCFLAGS . 29, 91

F
F77 . 91
FC . 92
FCFLAGS . 29, 92
FFLAGS . 30, 91
FPATH . 221

G
GOFLAGS . 30
GREP_OPTIONS . 221

I
IFS . 221

L
LANG . 222
LANGUAGE . 222
LC_ADDRESS . 222
LC_ALL . 181, 222
LC_COLLATE . 222
LC_CTYPE . 222
LC_IDENTIFICATION . 222
LC_MEASUREMENT . 222
LC_MESSAGES . 222
LC_MONETARY . 222
LC_NAME . 222
LC_NUMERIC . 222
LC_PAPER . 222
LC_TELEPHONE . 222
LC_TIME . 222
LDFLAGS . 30
LIBS . 30
LINENO . 182, 222

M
M4 . 140
MAIL . 220
MAILPATH . 220

N
NULLCMD . 225

O
OBJC . 90
OBJCFLAGS . 30, 90
OBJCPP . 90
OBJCXX . 90
OBJCXXCPP . 90
OBJCXXFLAGS . 30, 90
options . 225

374 Autoconf

P
PATH_SEPARATOR . 225
POSIXLY_CORRECT . 226
PS1 . 220
PS2 . 220
PS4 . 220
PWD . 226

R
RANDOM . 226

S
SHELL . 181
SIMPLE_BACKUP_SUFFIX . 314
status . 226

T
TMPDIR . 182

W
WARNINGS . 14, 17, 40, 141

X
XMKMF . 100

Y
YACC . 51
YFLAGS . 51

B.2 Output Variable Index

This is an alphabetical list of the variables that Autoconf can substitute into files that it
creates, typically one or more makefiles. See Section 7.2 [Setting Output Variables], page 122,
for more information on how this is done.

A
abs_builddir . 30
abs_srcdir . 31
abs_top_builddir . 31
abs_top_srcdir . 31
ac_empty . 98
ALLOCA . 58
AR . 47
AWK . 47

B
bindir . 31
build . 292
build_alias . 292
build_cpu . 292
build_os . 292
build_vendor . 292
builddir . 30

C
CC . 84, 101
CFLAGS . 28, 84
configure_input . 28
CPP . 85
CPPFLAGS . 29
cross_compiling . 117
CXX . 88
CXXCPP . 89
CXXFLAGS . 29, 88

D
datadir . 31
datarootdir . 31
DEFS . 29
docdir . 31
dvidir . 31

E
ECHO_C . 29
ECHO_N . 29
ECHO_T . 29
EGREP . 47
ERL . 91, 107, 115
ERLANG_ERTS_VER . 104
ERLANG_INSTALL_LIB_DIR 34, 106
ERLANG_INSTALL_LIB_DIR_library 34, 106
ERLANG_LIB_DIR . 105
ERLANG_LIB_DIR_library . 105
ERLANG_LIB_VER_library . 105
ERLANG_ROOT_DIR . 104
ERLC . 91, 107
ERLCFLAGS . 29, 91, 107
exec_prefix . 31
EXEEXT . 80, 318

Appendix B: Indices 375

F
F77 . 91
FC . 92
FC_MODEXT . 98
FC_MODINC . 98
FC_MODOUT . 99
FCFLAGS . 29, 92
FCLIBS . 93
FFLAGS . 30, 91
FGREP . 48
FLIBS . 93

G
GETGROUPS_LIB . 60
GETLOADAVG_LIBS . 60
GOFLAGS . 30
GREP . 47

H
host . 292
host_alias . 292
host_cpu . 292
host_os . 292
host_vendor . 292
htmldir . 31

I
includedir . 32
infodir . 32
INSTALL . 48
INSTALL_DATA . 48
INSTALL_PROGRAM . 48
INSTALL_SCRIPT . 48

K
KMEM_GROUP . 60

L
LDFLAGS . 30
LEX . 49
LEX_OUTPUT_ROOT . 49
LEXLIB . 49
libdir . 32
libexecdir . 32
LIBOBJDIR . 334
LIBOBJS . 60, 62, 66, 67, 76
LIBS . 30, 320, 324, 328
LN_S . 50
localedir . 32
localstatedir . 32

M
mandir . 32
MKDIR_P . 48

N
NEED_SETGID . 60

O
OBJC . 90
OBJCFLAGS . 30, 90
OBJCPP . 90
OBJCXX . 90
OBJCXXCPP . 90
OBJCXXFLAGS . 30, 90
OBJEXT . 80, 322
oldincludedir . 32
OPENMP_CFLAGS . 82
OPENMP_CXXFLAGS . 82
OPENMP_FCFLAGS . 82
OPENMP_FFLAGS . 82

P
PACKAGE_BUGREPORT . 20
PACKAGE_NAME . 20
PACKAGE_STRING . 20
PACKAGE_TARNAME . 20
PACKAGE_URL . 20
PACKAGE_VERSION . 20
pdfdir . 32
POW_LIB . 64
prefix . 32
program_transform_name . 301
psdir . 32

R
RANLIB . 50
runstatedir . 32

S
sbindir . 32
SED . 50
SET_MAKE . 24
sharedstatedir . 32
srcdir . 31
subdirs . 43
sysconfdir . 32

376 Autoconf

T
target . 293
target_alias . 292
target_cpu . 293
target_os . 293
target_vendor . 293
tmp . 182
top_build_prefix . 30
top_builddir . 30
top_srcdir . 31

X
X_CFLAGS . 100
X_EXTRA_LIBS . 100
X_LIBS . 100
X_PRE_LIBS . 100

Y
YACC . 51

B.3 Preprocessor Symbol Index

This is an alphabetical list of the C preprocessor symbols that the Autoconf macros define.
To work with Autoconf, C source code needs to use these names in #if or #ifdef directives.

__CHAR_UNSIGNED__ . 87
__EXTENSIONS__ . 104
__PROTOTYPES . 88
__STDC_NO_VLA__ . 88
__STDC_WANT_DEC_FP__ . 104
__STDC_WANT_IEC_60559_ATTRIBS_EXT__ 103
__STDC_WANT_IEC_60559_BFP_EXT__ 103
__STDC_WANT_IEC_60559_DFP_EXT__ 103
__STDC_WANT_IEC_60559_EXT__ 103
__STDC_WANT_IEC_60559_FUNCS_EXT__ 103
__STDC_WANT_IEC_60559_TYPES_EXT__ 103
__STDC_WANT_LIB_EXT1__ . 104
__STDC_WANT_LIB_EXT2__ . 103
__STDC_WANT_MATH_SPEC_FUNCS__ 103
_ALL_SOURCE . 103, 315
_DARWIN_C_SOURCE . 103
_FILE_OFFSET_BITS . 101
_Generic . 86
_GNU_SOURCE . 103, 319
_LARGEFILE_SOURCE . 60
_MINIX . 104, 321
_NETBSD_SOURCE . 103
_OPENBSD_SOURCE . 103
_OPENMP . 82
_POSIX_1_SOURCE . 104, 321
_POSIX_PTHREAD_SEMANTICS 103
_POSIX_SOURCE . 104, 321
_POSIX_VERSION . 72
_TANDEM_SOURCE . 103
_TIME_BITS . 101
_XOPEN_SOURCE . 104

A
ALIGNOF_type . 81

C
C_ALLOCA . 58
C_GETLOADAVG . 60
CLOSEDIR_VOID . 59
const . 86
CXX_NO_MINUS_C_MINUS_O . 90

D
DGUX . 60
DIRENT . 317

F
F77_DUMMY_MAIN . 93
F77_FUNC . 94
F77_FUNC_ . 94
F77_MAIN . 94
F77_NO_MINUS_C_MINUS_O . 92
FC_DUMMY_MAIN . 93
FC_FUNC . 94
FC_FUNC_ . 94
FC_MAIN . 94
FC_NO_MINUS_C_MINUS_O . 92
FLEXIBLE_ARRAY_MEMBER . 88

G
GETGROUPS_T . 77
GETLOADAVG_PRIVILEGED . 60
GETPGRP_VOID . 61
gid_t . 79
GWINSZ_IN_SYS_IOCTL . 72

Appendix B: Indices 377

H
HAVE__BOOL . 69, 71
HAVE_aggregate_member . 77
HAVE_ALLOCA_H . 58
HAVE_C_BACKSLASH_A . 85
HAVE_C_VARARRAYS . 88
HAVE_CHOWN . 59
HAVE_CONFIG_H . 38
HAVE_DECL_STRERROR_R . 64
HAVE_DECL_symbol . 74, 75
HAVE_DECL_TZNAME . 76
HAVE_DIRENT_H . 69
HAVE_DOPRNT . 65
HAVE_FSEEKO . 60
HAVE_function . 66, 67
HAVE_GETGROUPS . 60
HAVE_GETMNTENT . 61
HAVE_header . 73
HAVE_INT16_T . 78
HAVE_INT32_T . 78
HAVE_INT64_T . 78
HAVE_INT8_T . 77
HAVE_INTMAX_T . 78
HAVE_INTPTR_T . 78
HAVE_LONG_DOUBLE . 78, 315
HAVE_LONG_DOUBLE_WIDER . 78
HAVE_LONG_FILE_NAMES . 102
HAVE_LONG_LONG_INT . 78
HAVE_LSTAT_EMPTY_STRING_BUG 64
HAVE_MALLOC . 62
HAVE_MBRTOWC . 62
HAVE_MMAP . 63
HAVE_NDIR_H . 69
HAVE_NLIST_H . 60
HAVE_OBSTACK . 63
HAVE_REALLOC . 63
HAVE_RESOLV_H . 71
HAVE_RESTARTABLE_SYSCALLS 325
HAVE_ST_BLKSIZE . 324
HAVE_ST_BLOCKS . 76
HAVE_ST_RDEV . 324
HAVE_STAT_EMPTY_STRING_BUG 64
HAVE_STDBOOL_H . 71
HAVE_STRCOLL . 64
HAVE_STRERROR_R . 64
HAVE_STRFTIME . 64
HAVE_STRINGIZE . 87
HAVE_STRNLEN . 65
HAVE_STRTOLD . 64
HAVE_STRUCT_DIRENT_D_INO . 76
HAVE_STRUCT_DIRENT_D_TYPE 76
HAVE_STRUCT_STAT_ST_BLKSIZE 324
HAVE_STRUCT_STAT_ST_BLOCKS 76
HAVE_STRUCT_STAT_ST_RDEV 324
HAVE_STRUCT_TM_TM_ZONE . 76
HAVE_SYS_DIR_H . 69
HAVE_SYS_NDIR_H . 69
HAVE_SYS_WAIT_H . 71

HAVE_TM_ZONE . 76
HAVE_type . 80
HAVE_TYPEOF . 88
HAVE_TZNAME . 76
HAVE_UINT16_T . 79
HAVE_UINT32_T . 79
HAVE_UINT64_T . 79
HAVE_UINT8_T . 79
HAVE_UINTMAX_T . 79
HAVE_UINTPTR_T . 79
HAVE_UNSIGNED_LONG_LONG_INT 79
HAVE_UTIME_NULL . 65
HAVE_VFORK_H . 59
HAVE_VPRINTF . 65
HAVE_WAIT3 . 319
HAVE_WORKING_FORK . 59
HAVE_WORKING_VFORK . 59

I
inline . 87
int16_t . 78
int32_t . 78
int64_t . 78
int8_t . 77
INT_16_BITS . 320
intmax_t . 78
intptr_t . 78

L
LONG_64_BITS . 321
LSTAT_FOLLOWS_SLASHED_SYMLINK 61

M
MAJOR_IN_MKDEV . 70
MAJOR_IN_SYSMACROS . 70
malloc . 62
mbstate_t . 78
mode_t . 78

N
NDEBUG . 69
NDIR . 317
NEED_MEMORY_H . 321
NEED_SETGID . 60
NLIST_NAME_UNION . 60
NO_MINUS_C_MINUS_O . 85

O
off_t . 78

378 Autoconf

P
PACKAGE_BUGREPORT . 20
PACKAGE_NAME . 20
PACKAGE_STRING . 20
PACKAGE_TARNAME . 20
PACKAGE_URL . 20
PACKAGE_VERSION . 20
PARAMS . 88
pid_t . 79
PROTOTYPES . 88

R
realloc . 63
restrict . 86
RETSIGTYPE . 327

S
SELECT_TYPE_ARG1 . 63
SELECT_TYPE_ARG234 . 63
SELECT_TYPE_ARG5 . 63
SETPGRP_VOID . 63
SETVBUF_REVERSED . 318
size_t . 79
SIZEOF_type-or-expr . 81
ssize_t . 79
STAT_MACROS_BROKEN . 71
STDC_HEADERS . 71
STRERROR_R_CHAR_P . 64
SVR4 . 60
SYS_SIGLIST_DECLARED . 317
SYSDIR . 317
SYSNDIR . 317

T
TIME_WITH_SYS_TIME . 319
TM_IN_SYS_TIME . 76
typeof . 88

U
uid_t . 79
uint16_t . 79
uint32_t . 79
uint64_t . 79
uint8_t . 79
uintmax_t . 79
uintptr_t . 79
UMAX . 60
UMAX4_3 . 60
USG . 327

V
variable . 121, 122
vfork . 59
volatile . 87

W
WORDS_BIGENDIAN . 85

X
X_DISPLAY_MISSING . 100

Y
YYTEXT_POINTER . 49

B.4 Cache Variable Index

This is an alphabetical list of documented cache variables used by macros defined in Autoconf.
Autoconf macros may use additional cache variables internally. To make the list easier to
use, the variables are listed without their preceding ‘ac_cv_’.

A
alignof_type-or-expr . 81

C
c_const . 86
c_int16_t . 78
c_int32_t . 78
c_int64_t . 78
c_int8_t . 77
c_restrict . 86
c_uint16_t . 79
c_uint32_t . 79

c_uint64_t . 79
c_uint8_t . 79

F
f77_compiler_gnu . 91
f77_dummy_main . 93
f77_implicit_none . 98
f77_libs . 93
f77_main . 94
f77_mangling . 94
fc_check_bounds . 98
fc_compiler_gnu . 92
fc_cray_pointer . 99

Appendix B: Indices 379

fc_dummy_main . 93
fc_fixedform . 97
fc_freeform . 97
fc_implicit_none . 98
fc_libs . 93
fc_line_length . 97
fc_main . 94
fc_mangling . 94
fc_module_ext . 98
fc_module_flag . 98
fc_module_output_flag . 99
fc_pp_define . 96
fc_pp_srcext_ext . 96
fc_srcext_ext . 96
file_file . 54
func_chown_works . 59
func_closedir_void . 59
func_fnmatch_gnu . 59
func_fnmatch_works . 59, 65
func_function . 65
func_getgroups_works . 60
func_getpgrp_void . 61
func_lstat_dereferences_slashed_symlink . . . 61
func_lstat_empty_string_bug 64
func_malloc_0_nonnull . 62
func_mbrtowc . 62
func_memcmp_working . 62
func_mmap_fixed_mapped . 63
func_obstack . 63
func_pow . 64
func_realloc_0_nonnull . 63
func_setpgrp_void . 63
func_stat_empty_string_bug 64
func_strcoll_works . 64
func_strerror_r_char_p . 64
func_strnlen_working . 65
func_strtod . 64
func_strtold . 64
func_utime_null . 65
func_working_mktime . 62

H
have_decl_symbol . 74
header_header-file . 73
header_stdbool_h . 69, 71
header_stdc . 71
header_sys_wait_h . 71
header_time . 319

L
lib_error_at_line . 59
lib_library_function . 54

M
member_aggregate_member . 76
member_struct_stat_st_blocks 76

P
path_install . 48
path_mkdir . 48
path_SED . 50
path_variable . 52, 53
prog_AWK . 47
prog_c_openmp . 82
prog_cc_compiler_c_o . 85
prog_cxx_openmp . 82
prog_EGREP . 47
prog_f77_c_o . 92
prog_f77_g . 91
prog_f77_openmp . 82
prog_f77_v . 93
prog_fc_c_o . 92
prog_fc_g . 92
prog_fc_openmp . 82
prog_fc_v . 93
prog_FGREP . 48
prog_GREP . 47
prog_LEX . 49
prog_variable . 51
prog_YACC . 51

S
search_function . 55
search_getmntent . 61
sizeof_type-or-expr . 81
sys_posix_termios . 102

T
type_getgroups . 77
type_long_double . 78
type_long_double_wider . 78
type_long_long_int . 78
type_mbstate_t . 78
type_mode_t . 78
type_off_t . 78
type_pid_t . 79
type_size_t . 79
type_ssize_t . 79
type_type . 80
type_uid_t . 79
type_unsigned_long_long_int 79

380 Autoconf

B.5 Autoconf Macro Index

This is an alphabetical list of the Autoconf macros. To make the list easier to use, the
macros are listed without their preceding ‘AC_’.

Appendix B: Indices 381

A
ACT_IFELSE . 335
AH_BOTTOM . 41
AH_HEADER . 38
AH_TEMPLATE . 41
AH_TOP . 41
AH_VERBATIM . 41
AIX . 315
ALLOCA . 315
ARG_ARRAY . 315
ARG_ENABLE . 298
ARG_PROGRAM . 301
ARG_VAR . 124
ARG_WITH . 296
AU_ALIAS . 192
AU_DEFUN . 191
AUTOCONF_VERSION . 21

B
BEFORE . 190

C
C__GENERIC . 86
C_BACKSLASH_A . 85
C_BIGENDIAN . 85
C_CHAR_UNSIGNED . 87
C_CONST . 86
C_CROSS . 315
C_FLEXIBLE_ARRAY_MEMBER . 88
C_INLINE . 87
C_LONG_DOUBLE . 315
C_PROTOTYPES . 88
C_RESTRICT . 86
C_STRINGIZE . 87
C_TYPEOF . 88
C_VARARRAYS . 88
C_VOLATILE . 87
CACHE_CHECK . 125
CACHE_LOAD . 127
CACHE_SAVE . 128
CACHE_VAL . 125
CANONICAL_BUILD . 292
CANONICAL_HOST . 292
CANONICAL_SYSTEM . 316
CANONICAL_TARGET . 293
CHAR_UNSIGNED . 316
CHECK_ALIGNOF . 81
CHECK_DECL . 74
CHECK_DECLS . 74
CHECK_DECLS_ONCE . 75
CHECK_FILE . 54
CHECK_FILES . 54
CHECK_FUNC . 65
CHECK_FUNCS . 66
CHECK_FUNCS_ONCE . 66
CHECK_HEADER . 73

CHECK_HEADER_STDBOOL . 69
CHECK_HEADERS . 73
CHECK_HEADERS_ONCE . 73
CHECK_INCLUDES_DEFAULT . 47
CHECK_LIB . 54
CHECK_MEMBER . 76
CHECK_MEMBERS . 77
CHECK_PROG . 51
CHECK_PROGS . 51
CHECK_SIZEOF . 81
CHECK_TARGET_TOOL . 51
CHECK_TARGET_TOOLS . 52
CHECK_TOOL . 52
CHECK_TOOLS . 52
CHECK_TYPE . 80, 316
CHECK_TYPES . 80
CHECKING . 316
COMPILE_CHECK . 317
COMPILE_IFELSE . 115
COMPUTE_INT . 81
CONFIG_AUX_DIR . 23
CONFIG_COMMANDS . 41
CONFIG_COMMANDS_POST . 42
CONFIG_COMMANDS_PRE . 42
CONFIG_FILES . 27
CONFIG_HEADERS . 38
CONFIG_ITEMS . 25
CONFIG_LIBOBJ_DIR . 67
CONFIG_LINKS . 42
CONFIG_MACRO_DIR . 22
CONFIG_MACRO_DIR_TRACE . 22
CONFIG_MACRO_DIRS . 22
CONFIG_SRCDIR . 22
CONFIG_SUBDIRS . 43
CONFIG_TESTDIR . 348
CONST . 317
COPYRIGHT . 21
CROSS_CHECK . 317
CYGWIN . 317

D
DATAROOTDIR_CHECKED . 35
DECL_SYS_SIGLIST . 317
DECL_YYTEXT . 317
DEFINE . 121
DEFINE_UNQUOTED . 122
DEFUN . 185
DEFUN_ONCE . 191
DIAGNOSE . 317
DIR_HEADER . 317
DISABLE_OPTION_CHECKING . 300
DYNIX_SEQ . 318

382 Autoconf

E
EGREP_CPP . 114
EGREP_HEADER . 114
EMXOS2 . 318
ENABLE . 318
ERLANG_CHECK_LIB . 105
ERLANG_NEED_ERL . 91
ERLANG_NEED_ERLC . 91
ERLANG_PATH_ERL . 91
ERLANG_PATH_ERLC . 91
ERLANG_SUBST_ERTS_VER . 104
ERLANG_SUBST_INSTALL_LIB_DIR 34, 106
ERLANG_SUBST_INSTALL_LIB_SUBDIR 34, 106
ERLANG_SUBST_LIB_DIR . 105
ERLANG_SUBST_ROOT_DIR . 104
ERROR . 318
EXEEXT . 318

F
F77_CRAY_POINTERS . 99
F77_DUMMY_MAIN . 93
F77_FUNC . 95
F77_IMPLICIT_NONE . 98
F77_LIBRARY_LDFLAGS . 93
F77_MAIN . 94
F77_WRAPPERS . 94
FATAL . 318
FC_CHECK_BOUNDS . 98
FC_CRAY_POINTERS . 99
FC_DUMMY_MAIN . 93
FC_FIXEDFORM . 97
FC_FREEFORM . 97
FC_FUNC . 95
FC_IMPLICIT_NONE . 98
FC_LIBRARY_LDFLAGS . 93
FC_LINE_LENGTH . 97
FC_MAIN . 94
FC_MODULE_EXTENSION . 98
FC_MODULE_FLAG . 98
FC_MODULE_OUTPUT_FLAG . 99
FC_PP_DEFINE . 96
FC_PP_SRCEXT . 96
FC_SRCEXT . 96
FC_WRAPPERS . 94
FIND_X . 318
FIND_XTRA . 318
FOREACH . 318
FUNC_ALLOCA . 58
FUNC_CHECK . 318
FUNC_CHOWN . 59
FUNC_CLOSEDIR_VOID . 59
FUNC_ERROR_AT_LINE . 59
FUNC_FNMATCH . 59
FUNC_FNMATCH_GNU . 59
FUNC_FORK . 59
FUNC_FSEEKO . 60
FUNC_GETGROUPS . 60

FUNC_GETLOADAVG . 60
FUNC_GETMNTENT . 61
FUNC_GETPGRP . 61
FUNC_LSTAT . 64
FUNC_LSTAT_FOLLOWS_SLASHED_SYMLINK 61
FUNC_MALLOC . 62
FUNC_MBRTOWC . 62
FUNC_MEMCMP . 62
FUNC_MKTIME . 62
FUNC_MMAP . 63
FUNC_OBSTACK . 63
FUNC_REALLOC . 63
FUNC_SELECT_ARGTYPES . 63
FUNC_SETPGRP . 63
FUNC_SETVBUF_REVERSED . 318
FUNC_STAT . 64
FUNC_STRCOLL . 64
FUNC_STRERROR_R . 64
FUNC_STRFTIME . 64
FUNC_STRNLEN . 65
FUNC_STRTOD . 64
FUNC_STRTOLD . 64
FUNC_UTIME_NULL . 65
FUNC_VPRINTF . 65
FUNC_WAIT3 . 319

G
GCC_TRADITIONAL . 319
GETGROUPS_T . 319
GETLOADAVG . 319
GNU_SOURCE . 319

H
HAVE_FUNCS . 319
HAVE_HEADERS . 319
HAVE_LIBRARY . 319
HAVE_POUNDBANG . 319
HEADER_ASSERT . 69
HEADER_CHECK . 319
HEADER_DIRENT . 69
HEADER_EGREP . 319
HEADER_MAJOR . 70
HEADER_RESOLV . 71
HEADER_STAT . 71
HEADER_STDBOOL . 71
HEADER_STDC . 71
HEADER_SYS_WAIT . 71
HEADER_TIME . 319
HEADER_TIOCGWINSZ . 72
HELP_STRING . 319

Appendix B: Indices 383

I
INCLUDES_DEFAULT . 46
INIT . 19, 320
INLINE . 320
INT_16_BITS . 320
IRIX_SUN . 320
ISC_POSIX . 320

L
LANG . 107
LANG_ASSERT . 108
LANG_C . 320
LANG_CALL . 112
LANG_CONFTEST . 110
LANG_CPLUSPLUS . 320
LANG_DEFINES_PROVIDED . 110
LANG_FORTRAN77 . 320
LANG_FUNC_LINK_TRY . 112
LANG_POP . 108
LANG_PROGRAM . 111
LANG_PUSH . 108
LANG_RESTORE . 320
LANG_SAVE . 320
LANG_SOURCE . 110
LANG_WERROR . 82
LIBOBJ . 66
LIBSOURCE . 66
LIBSOURCES . 67
LINK_FILES . 321
LINK_IFELSE . 115
LN_S . 321
LONG_64_BITS . 321
LONG_DOUBLE . 321
LONG_FILE_NAMES . 321

M
MAJOR_HEADER . 321
MEMORY_H . 321
MINGW32 . 321
MINIX . 321
MINUS_C_MINUS_O . 321
MMAP . 321
MODE_T . 322
MSG_CHECKING . 128
MSG_ERROR . 129
MSG_FAILURE . 129
MSG_NOTICE . 129
MSG_RESULT . 128
MSG_WARN . 129

O
OBJEXT . 322
OBSOLETE . 322
OFF_T . 322
OPENMP . 82
OUTPUT . 24, 322
OUTPUT_COMMANDS . 322

P
PACKAGE_BUGREPORT . 20
PACKAGE_NAME . 20
PACKAGE_STRING . 20
PACKAGE_TARNAME . 20
PACKAGE_URL . 20
PACKAGE_VERSION . 20
PATH_PROG . 52
PATH_PROGS . 52
PATH_PROGS_FEATURE_CHECK . 53
PATH_TARGET_TOOL . 53
PATH_TOOL . 53
PATH_X . 100
PATH_XTRA . 100
PID_T . 323
PREFIX . 323
PREFIX_DEFAULT . 44
PREFIX_PROGRAM . 44
PREPROC_IFELSE . 113
PREREQ . 21
PRESERVE_HELP_ORDER . 295
PROG_AR . 47
PROG_AWK . 47
PROG_CC . 84
PROG_CC_C_O . 85
PROG_CC_C89 . 323
PROG_CC_C99 . 323
PROG_CC_STDC . 323
PROG_CPP . 85
PROG_CPP_WERROR . 85
PROG_CXX . 88
PROG_CXX_C_O . 90
PROG_CXXCPP . 89
PROG_EGREP . 47
PROG_F77 . 91
PROG_F77_C_O . 92
PROG_FC . 92
PROG_FC_C_O . 92
PROG_FGREP . 48
PROG_GCC_TRADITIONAL . 323
PROG_GREP . 47
PROG_INSTALL . 48
PROG_LEX . 49
PROG_LN_S . 50
PROG_MAKE_SET . 24
PROG_MKDIR_P . 48
PROG_OBJC . 90
PROG_OBJCPP . 90
PROG_OBJCXX . 90

384 Autoconf

PROG_OBJCXXCPP . 90
PROG_RANLIB . 50
PROG_SED . 50
PROG_YACC . 51
PROGRAM_CHECK . 323
PROGRAM_EGREP . 323
PROGRAM_PATH . 323
PROGRAMS_CHECK . 323
PROGRAMS_PATH . 323

R
REMOTE_TAPE . 323
REPLACE_FNMATCH . 65
REPLACE_FUNCS . 67
REQUIRE . 187
REQUIRE_AUX_FILE . 23
REQUIRE_CPP . 108
RESTARTABLE_SYSCALLS . 323
RETSIGTYPE . 324
REVISION . 21
RSH . 324
RUN_IFELSE . 116

S
SCO_INTL . 324
SEARCH_LIBS . 55
SET_MAKE . 324
SETVBUF_REVERSED . 324
SIZE_T . 324
SIZEOF_TYPE . 324
ST_BLKSIZE . 325
ST_BLOCKS . 325
ST_RDEV . 325
STAT_MACROS_BROKEN . 324
STDC_HEADERS . 324
STRCOLL . 324
STRUCT_DIRENT_D_INO . 76
STRUCT_DIRENT_D_TYPE . 76
STRUCT_ST_BLKSIZE . 324
STRUCT_ST_BLOCKS . 76
STRUCT_ST_RDEV . 324
STRUCT_TIMEZONE . 76
STRUCT_TM . 76
SUBST . 123
SUBST_FILE . 123
SYS_INTERPRETER . 100
SYS_LARGEFILE . 101
SYS_LONG_FILE_NAMES . 102
SYS_POSIX_TERMIOS . 102
SYS_RESTARTABLE_SYSCALLS 325
SYS_SIGLIST_DECLARED . 325
SYS_YEAR2038 . 102
SYS_YEAR2038_RECOMMENDED 102

T
TEST_CPP . 325
TEST_PROGRAM . 325
TIME_WITH_SYS_TIME . 325
TIMEZONE . 325
TRY_ACT . 335
TRY_COMPILE . 325
TRY_CPP . 326
TRY_LINK . 326
TRY_LINK_FUNC . 326
TRY_RUN . 327
TYPE_GETGROUPS . 77
TYPE_INT16_T . 78
TYPE_INT32_T . 78
TYPE_INT64_T . 78
TYPE_INT8_T . 77
TYPE_INTMAX_T . 78
TYPE_INTPTR_T . 78
TYPE_LONG_DOUBLE . 78
TYPE_LONG_DOUBLE_WIDER . 78
TYPE_LONG_LONG_INT . 78
TYPE_MBSTATE_T . 78
TYPE_MODE_T . 78
TYPE_OFF_T . 78
TYPE_PID_T . 79
TYPE_SIGNAL . 327
TYPE_SIZE_T . 79
TYPE_SSIZE_T . 79
TYPE_UID_T . 79
TYPE_UINT16_T . 79
TYPE_UINT32_T . 79
TYPE_UINT64_T . 79
TYPE_UINT8_T . 79
TYPE_UINTMAX_T . 79
TYPE_UINTPTR_T . 79
TYPE_UNSIGNED_LONG_LONG_INT 79

U
UID_T . 327
UNISTD_H . 327
USE_SYSTEM_EXTENSIONS . 103
USG . 327
UTIME_NULL . 327

V
VALIDATE_CACHED_SYSTEM_TUPLE 327
VERBOSE . 327
VFORK . 327
VPRINTF . 327

Appendix B: Indices 385

W

WAIT3 . 327

WARN . 328

WARNING . 328

WITH . 328

WORDS_BIGENDIAN . 328

X
XENIX_DIR . 328

Y
YYTEXT_POINTER . 328

B.6 M4 Macro Index

This is an alphabetical list of the M4, M4sugar, and M4sh macros. To make the list easier
to use, the macros are listed without their preceding ‘m4_’ or ‘AS_’. The prefix is ‘m4_’ for
all-lowercase macro names and ‘AS_’ for all-uppercase macro names.

__file__ . 145
__line__ . 145
__oline__ . 146

A
append . 163
append_uniq . 163
append_uniq_w . 164
apply . 159
argn . 155
assert . 148

B
bmatch . 152
BOURNE_COMPATIBLE . 181
BOX . 175
bpatsubst . 146
bpatsubsts . 152
bregexp . 146
builtin . 145

C
car . 155
case . 152
CASE . 175
cdr . 155
changecom . 145
changequote . 145
chomp . 164
chomp_all . 164
cleardivert . 151
cmp . 167
combine . 164
cond . 153
copy . 146
copy_force . 146
count . 159
curry . 159

D
debugfile . 145
debugmode . 145
decr . 145
default . 153
default_nblank . 153
default_nblank_quoted . 153
default_quoted . 153
define . 145
define_default . 154
defn . 146
DIRNAME . 175
divert . 146
divert_once . 151
divert_pop . 151
divert_push . 151
divert_text . 151
divnum . 145
dnl . 146
do . 160
dquote . 160
dquote_elt . 160
dumpdef . 147
dumpdefs . 147

E
echo . 160
ECHO . 175
ECHO_N . 176
errprint . 145
errprintn . 148
escape . 165
ESCAPE . 176
esyscmd . 145
esyscmd_s . 147
eval . 145
EXECUTABLE_P . 176
exit . 147
EXIT . 177
expand . 160

386 Autoconf

F
fatal . 148
flatten . 165
for . 156
foreach . 156
foreach_w . 156
format . 145

H
HELP_STRING . 299

I
if . 147
ifblank . 154
ifdef . 145
ifnblank . 154
ifndef . 154
ifset . 154
ifval . 155
ifvaln . 155
IF . 177
ignore . 161
include . 147
incr . 145
index . 145
indir . 145
init . 152
INIT . 181
INIT_GENERATED . 181

J
join . 165
joinall . 165

L
len . 145
LINENO_PREPARE . 182
list_cmp . 167
LITERAL_IF . 178
LITERAL_WORD_IF . 178
location . 148

M
make_list . 161
maketemp . 147
map . 156
map_args . 157
map_args_pair . 158
map_args_sep . 158
map_args_w . 158
map_sep . 156
mapall . 156
mapall_sep . 156
max . 167
ME_PREPARE . 182
MESSAGE_FD . 183
MESSAGE_LOG_FD . 183
min . 167
MKDIR_P . 177
mkstemp . 147

N
n . 155
newline . 165
normalize . 165

O
ORIGINAL_STDIN_FD . 183

P
pattern_allow . 173
pattern_forbid . 172
popdef . 148
pushdef . 145

Q
quote . 162

R
re_escape . 165
rename . 146
rename_force . 146
reverse . 162

Appendix B: Indices 387

S
set_add . 169

set_add_all . 169

set_contains . 169

set_contents . 169

set_delete . 170

set_difference . 170

set_dump . 169

set_empty . 170

set_foreach . 171

set_intersection . 170

set_list . 171

set_listc . 171

set_map . 172

set_map_sep . 172

set_remove . 172

set_size . 172

set_union . 170

SET_CATFILE . 177

SET_STATUS . 177

SHELL_SANITIZE . 183

shift . 145

shift2 . 158

shift3 . 158

shiftn . 158

sign . 168

sinclude . 147

split . 165

stack_foreach . 158

stack_foreach_lifo . 158

stack_foreach_sep . 159

stack_foreach_sep_lifo . 159

strip . 166

substr . 145

syscmd . 145

sysval . 145

T
text_box . 166
text_wrap . 166
TMPDIR . 182
tolower . 167
toupper . 167
TR_CPP . 177
TR_SH . 177
traceoff . 145
traceon . 145
translit . 145

U
undefine . 148
undivert . 148
unquote . 162
UNSET . 178

V
VAR_APPEND . 179
VAR_ARITH . 179
VAR_COPY . 179
VAR_IF . 180
VAR_POPDEF . 180
VAR_PUSHDEF . 180
VAR_SET . 181
VAR_SET_IF . 181
VAR_TEST_SET . 181
version_compare . 168
version_prereq . 168
VERSION_COMPARE . 178

W
warn . 149
wrap . 148
wrap_lifo . 148

B.7 Autotest Macro Index

This is an alphabetical list of the Autotest macros. To make the list easier to use, the macros
are listed without their preceding ‘AT_’.

A
ARG_OPTION . 340
ARG_OPTION_ARG . 341
AT_PREPARE_EACH_TEST . 342

B
BANNER . 342

C
CAPTURE_FILE . 342
CHECK . 343
CHECK_EUNIT . 345
CHECK_UNQUOTED . 343
CLEANUP . 343
COLOR_TESTS . 341
COPYRIGHT . 340

388 Autoconf

D
DATA . 343

F
FAIL_IF . 342

I
INIT . 340

K
KEYWORDS . 342

P
PACKAGE_BUGREPORT . 348
PACKAGE_NAME . 348
PACKAGE_STRING . 348
PACKAGE_TARNAME . 348
PACKAGE_URL . 348
PACKAGE_VERSION . 348
PREPARE_TESTS . 341

S
SETUP . 342
SKIP_IF . 343

T
TESTED . 341

X
XFAIL_IF . 343

B.8 Program and Function Index

This is an alphabetical list of the programs and functions whose portability is discussed in
this document.

!
! . 228

&
&& . 229

.

. 228

/
/usr/bin/ksh on Solaris . 198
/usr/dt/bin/dtksh on Solaris 198
/usr/xpg4/bin/sh on Solaris 198

{
{...} . 229

|
|| . 229

A
alloca . 58
alloca.h . 58
assert.h . 45, 69
awk . 244

B
basename . 247
break . 230

C
case . 230
cat . 247
cc . 247
cd . 231
chgrp . 247
chmod . 247
chown . 59, 247
closedir . 59
cmp . 247
config.guess . 23, 291
config.sub . 23, 291
cp . 247
ctype.h . 45

Appendix B: Indices 389

D
date . 248
diff . 249
dirent.h . 69
dirname . 249

E
echo . 232
egrep . 249
errno.h . 45
error_at_line . 59
eval . 232
exec . 233
exit . 55, 234
export . 234
expr . 249, 250
expr (‘|’) . 249

F
false . 235
fgrep . 251
find . 251
float.h . 45
fnmatch . 59, 65
fnmatch.h . 65
for . 235
fork . 59
fseeko . 60
ftello . 60

G
getgroups . 60
getloadavg . 60
getmntent . 61
getpgid . 61
getpgrp . 61
grep . 251

I
if . 237
install-sh . 23, 48
inttypes.h . 68, 77
isinf . 55
isnan . 55
iso646.h . 45

J
join . 253

K
‘ksh’ . 198
‘ksh88’ . 198
‘ksh93’ . 198

L
limits.h . 45
linux/irda.h . 68
linux/random.h . 68
ln . 253
locale.h . 45
ls . 253
lstat . 61, 64

M
make . 263
malloc . 56, 62
math.h . 45
mbrtowc . 62
memcmp . 62
memory.h . 68
mkdir . 253
mkfifo . 254
mknod . 254
mktemp . 254
mktime . 62
mmap . 63
mv . 254

N
ndir.h . 69
net/if.h . 68
netinet/if_ether.h . 68
nlist.h . 61

O
od . 255

P
‘pdksh’ . 199
printf . 237
putenv . 56
pwd . 237

R
read . 238
realloc . 56, 63
resolv.h . 71
rm . 255
rmdir . 255

390 Autoconf

S
sed . 255
sed (‘t’) . 258
sed (‘w’) . 259
select . 63
set . 238
setjmp.h . 45
setpgrp . 63
setvbuf . 318
shift . 240
sigaction . 57
signal . 57
signal.h . 45, 327
sleep . 260
snprintf . 57
sort . 260
source . 240
stat . 64
stdarg.h . 45
stdbool.h . 69, 71
stddef.h . 45
stdint.h . 68, 77
stdio.h . 45
stdlib.h . 45, 77
strcoll . 64
strerror_r . 57, 64
strftime . 64
string.h . 45
strings.h . 68
strnlen . 57, 65
strtod . 64
strtold . 64
sys/dir.h . 69
sys/ioctl.h . 72
sys/mkdev.h . 70
sys/mount.h . 69
sys/ndir.h . 69
sys/ptem.h . 69
sys/socket.h . 69
sys/stat.h . 71
sys/sysmacros.h . 70
sys/time.h . 76, 319
sys/types.h . 77

sys/ucred.h . 69
sys/wait.h . 71
sysconf . 57

T
tar . 260
termios.h . 72
test . 241
time.h . 45, 76, 319
touch . 260
tr . 260
trap . 242
true . 244

U
unistd.h . 72
unlink . 57
unset . 244
unsetenv . 57
utime . 65

V
va_copy . 57
va_list . 57
vfork . 59
vfork.h . 59
vprintf . 65
vsnprintf . 57
vsprintf . 65

W
wait . 244
wait3 . 319
wchar.h . 45, 78
wctype.h . 45

X
X11/extensions/scrnsaver.h 69

B.9 Concept Index

This is an alphabetical list of the files, tools, and concepts introduced in this document.

Appendix B: Indices 391

"
"$@" . 210

$
$((expression)) . 217
$(commands) . 216
$<, explicit rules, and VPATH 272
${#var} . 215
${var##word} . 215
${var#word} . 215
${var%%word} . 215
${var%word} . 215
${var+value} . 211
${var-value} . 211
${var:+value} . 211
${var:-value} . 211
${var:=value} . 211
${var:?value} . 211
${var=expanded-value} . 215
${var=literal} . 214
${var=value} . 211, 213
${var?value} . 211

^
^ quoting . 218

_m4_divert_diversion . 332

‘
`commands` . 216

@
‘@%:@’ . 136
‘@&t@’ . 136
‘@:>@’ . 136
‘@:}@’ . 136
‘@<:@’ . 136
‘@{:@’ . 136
‘@S|@’ . 136

6
64-bit libraries . 304

A
abs_builddir . 30
abs_srcdir . 31
abs_top_builddir . 31
abs_top_srcdir . 31
absolute file names, detect . 207
ac_aux_dir . 23
ac_objext . 66
ac_path_variable . 53
ac_path_variable_found . 53
ac_srcdir . 26
ac_top_build_prefix . 26
ac_top_srcdir . 26
acconfig.h . 314
aclocal.m4 . 7
Ash . 198
at_arg_option . 340, 341
at_optarg . 340, 341
at_optarg_option . 340
at_status . 343
autoconf . 13
Autoconf upgrading . 328, 331
Autoconf version . 21
autoheader . 39
Autoheader macros . 41
autom4te debugging tips . 173
Autom4te Library . 143
autom4te.cache . 142
autom4te.cfg . 144
Automake . 3
Automatic remaking . 36
automatic rule rewriting and VPATH 272
autopoint . 16
autoreconf . 15
autoscan . 12
Autotest . 337
AUTOTEST_PATH . 346
autoupdate . 314

B
balancing parentheses . 137
Bash . 198
Bash 2.05 and later . 198
bindir . 31
Bootstrap . 351
BSD make and obj/ . 271
buffer overruns . 286
Build directories . 36
builddir . 30

392 Autoconf

C
C function portability . 55
C types . 77
C89, C99, C11, C17, and C23 281
Cache . 125
Cache variable . 126
Cache, enabling . 309
Canonical system type . 292
carriage return, deleting . 260
CFLAGS . 28
changequote . 135
Coding style . 192
Command Substitution . 216
command-line, macros set on 271
Commands for configuration 41
Comments in Makefile macros 270
Comments in Makefile rules 269
Common autoconf behavior . 45
Compilers . 80
composing variable names . 180
config.h . 37
config.h.bot . 314
config.h.in . 38
config.h.top . 314
config.site . 302
config.status . 311
config.sub . 292
CONFIG_COMMANDS . 313
CONFIG_FILES . 313
CONFIG_HEADERS . 313
CONFIG_LINKS . 313
CONFIG_SHELL . 312
CONFIG_STATUS . 312
Configuration actions . 25
Configuration commands . 41
Configuration file creation . 27
Configuration Header . 37
Configuration Header Template 38
Configuration links . 42
configure . 7, 305
Configure subdirectories . 43
configure.ac . 7
configure.in . 8
configure_input . 28
Copyright Notice . 21, 340
CPPFLAGS . 29
Creating configuration files . 27
Creating temporary files . 254
Cross compilation . 333
CXXFLAGS . 29

D
Darwin . 118
Data structure, set . 169
datadir . 31
datarootdir . 31, 35
debugging tips . 173
Declaration, checking . 74
Default includes . 45
DEFS . 29
deleting carriage return . 260
Dependencies between macros 187
Descriptors . 201
descriptors . 183
Directories, build . 36
Directories, installation . 31
division, integer . 286
dnl . 185, 192
docdir . 31
double-colon rules and VPATH 272
dvidir . 31

E
ECHO_C . 29
ECHO_N . 29
ECHO_T . 29
Endianness . 85
environment, macros set from 271
Erlang . 91
Erlang, Library, checking . 104
ERLANG_INSTALL_LIB_DIR . 34
ERLANG_INSTALL_LIB_DIR_library 34
ERLCFLAGS . 29
exec_prefix . 31
exiting portably . 289
expanded before required . 356
explicit rules, $<, and VPATH 272
External software . 295

F
F77 . 91
FCFLAGS . 29
FFLAGS . 30
FHS . 303
File descriptors . 201
file descriptors . 183
File system conventions . 207
File, checking . 53
Filesystem Hierarchy Standard 303
floating point . 289
Forbidden patterns . 172
Fortran . 91
Function, checking . 58

Appendix B: Indices 393

G
Gettext . 16
GNU build system . 3
Gnulib . 3
Go . 100
GOFLAGS . 30

H
Header portability . 67
Header templates . 38
Header, checking . 67
Help strings . 299
Here-documents . 200
History of autoconf . 361
htmldir . 31

I
ifnames . 13
Imake . 352
includedir . 32
Includes, default . 45
indirection, variable name . 178
infodir . 32
input . 183
Install prefix . 43
Installation directories . 31
Instantiation . 24
integer overflow . 282, 285
Introduction . 1
invoking the shell . 199

K
K&R C . 281
Korn shell . 198
Ksh . 198

L
Language . 107
Large file support . 101
LDFLAGS . 30
LFS . 101
lib64 . 304
libdir . 32
libexecdir . 32
Library, checking . 54
LIBS . 30
Libtool . 4
License . 351
Limitations of make . 263
Limitations of shell builtins 227
Limitations of usual tools . 244
Links . 42
Links for configuration . 42
Listing directories . 253

localedir . 32
localstatedir . 32
loop induction . 283
low-level output . 183

M
m4sugar debugging tips . 173
M4 . 131
M4 quotation . 131
M4sugar . 145
Macros, called once . 191
Macros, obsoleting . 191
Macros, ordering . 190
Macros, prerequisites . 187
make -k . 271
make and MAKEFLAGS . 266
make and SHELL . 266
Makefile macros and comments 270
Makefile macros and whitespace 270
Makefile rules and comments 269
Makefile rules and newlines 270
Makefile substitutions . 27
MAKEFLAGS and make . 266
Making directories . 253
mandir . 32
Messages, from configure . 128
Messages, from M4sugar . 148
Moving open files . 254

N
newline, deleting . 260
Newlines in Makefile rules . 270
Notices in configure . 21
null pointers . 286

O
obj/, subdirectory . 271
OBJCFLAGS . 30
OBJCXXFLAGS . 30
Obsolete constructs . 313
Obsoleting macros . 191
obstack . 63
oldincludedir . 32
One-shot macros . 191
Options, package . 298
Options, Package . 300
Ordering macros . 190
Output variables . 27, 122
Output variables, special characters in 124
output, low-level . 183
Outputting files . 24
overflow, signed integer 282, 285

394 Autoconf

P
Package options . 298
package.m4 . 348
Parallel make . 267
parentheses, balancing . 137
Patterns, forbidden . 172
pdfdir . 32
polymorphic variable name . 178
portability . 281
Portability of C functions . 55
Portability of headers . 67
Portable C and C++ programming 281
Portable shell programming 197
positional parameters . 211
Posix termios headers . 102
Precious Variable . 123
prefix . 32
Prefix for install . 43
preprocessor arithmetic . 286
Preprocessors . 80
prerequisite directories and VPATH 275
Prerequisite macros . 187
Program names, transforming 300
Programs, checking . 47
psdir . 32

Q
QNX 4.25 . 118
quadrigraphs . 136
quotation . 9, 131

R
Remaking automatically . 36
Revision . 21
Rule, Single Suffix Inference 278
runstatedir . 32

S
sbindir . 32
Separated Dependencies . 278
set -b . 240
set -e . 238
set -m . 240
set -n . 240
Set manipulation . 169
sharedstatedir . 32
Shell assignments . 218
Shell builtins . 227
Shell file descriptors . 201
Shell Functions . 226
Shell here-documents . 200
shell invocation . 199
Shell parentheses . 218
Shell pattern matching . 209
Shell slashes . 219

Shell substitutions . 209

Shell variables . 219

SHELL and make . 266

Shellology . 198

Signal handling in the shell 204

Signals, shells and . 204

signed integer overflow 282, 285

Single Suffix Inference Rule 278

Site defaults . 302

Site details . 300

Special shell variables . 219

srcdir . 26, 31

standard input . 183

Standard symbols . 45

Structure, checking . 75

Subdirectory configure . 43

Substitutions in makefiles . 27

Symbolic links . 253

sysconfdir . 32

System type . 291, 292

Systemology . 118

T
Target triplet . 291

termios Posix headers . 102

test group . 337

testsuite . 337, 346

timestamp resolution 248, 260, 279

tmp . 26

top_build_prefix . 30

top_builddir . 30

top_srcdir . 31

Transforming program names 300

Types . 77

U
unbalanced parentheses, managing 137

undefined macro . 332

Unix version 7 . 118

Unordered set manipulation 169

Upgrading autoconf . 328, 331

Appendix B: Indices 395

V
V7 . 118
variable name indirection . 178
variable names, composing . 180
Variable, Precious . 123
variables and VPATH . 272
Version . 21
version, Autoconf . 21
volatile objects . 287
VPATH . 272
VPATH and automatic rule rewriting 272
VPATH and double-colon rules 272
VPATH and prerequisite directories 275
VPATH and variables . 272
VPATH, explicit rules, and $< 272
VPATH, resolving target pathnames 276

W
whitespace in command-line macros 271
whitespace in Makefile macros 270
wraparound arithmetic 282, 285

X
X Window System . 100

Y
Year 2038 . 102

Z
Zsh . 199

	1 Introduction
	2 The GNU Build System
	Automake
	Gnulib
	Libtool
	Pointers

	3 Making configure Scripts
	Writing configure.ac
	A Shell Script Compiler
	The Autoconf Language
	Standard configure.ac Layout

	Using autoscan to Create configure.ac
	Using ifnames to List Conditionals
	Using autoconf to Create configure
	Using autoreconf to Update configure Scripts

	4 Initialization and Output Files
	Initializing configure
	Dealing with Autoconf versions
	Notices in configure
	Configure Input: Source Code, Macros, and Auxiliary Files
	Outputting Files
	Performing Configuration Actions
	Creating Configuration Files
	Substitutions in Makefiles
	Preset Output Variables
	Installation Directory Variables
	Changed Directory Variables
	Build Directories
	Automatic Remaking

	Configuration Header Files
	Configuration Header Templates
	Using autoheader to Create config.h.in
	Autoheader Macros

	Running Arbitrary Configuration Commands
	Creating Configuration Links
	Configuring Other Packages in Subdirectories
	Default Prefix

	5 Existing Tests
	Common Behavior
	Standard Symbols
	Default Includes

	Alternative Programs
	Particular Program Checks
	Generic Program and File Checks

	Files
	Library Files
	Library Functions
	Portability of C Functions
	Particular Function Checks
	Generic Function Checks

	Header Files
	Portability of Headers
	Particular Header Checks
	Generic Header Checks

	Declarations
	Particular Declaration Checks
	Generic Declaration Checks

	Structures
	Particular Structure Checks
	Generic Structure Checks

	Types
	Particular Type Checks
	Generic Type Checks

	Compilers and Preprocessors
	Specific Compiler Characteristics
	Generic Compiler Characteristics
	C Compiler Characteristics
	C++ Compiler Characteristics
	Objective C Compiler Characteristics
	Objective C++ Compiler Characteristics
	Erlang Compiler and Interpreter Characteristics
	Fortran Compiler Characteristics
	Go Compiler Characteristics

	System Services
	C and Posix Variants
	Erlang Libraries

	6 Writing Tests
	Language Choice
	Writing Test Programs
	Guidelines for Test Programs
	Test Functions
	Generating Sources

	Running the Preprocessor
	Running the Compiler
	Running the Linker
	Checking Runtime Behavior
	Systemology
	Multiple Cases

	7 Results of Tests
	Defining C Preprocessor Symbols
	Setting Output Variables
	Special Characters in Output Variables
	Caching Results
	Cache Variable Names
	Cache Files
	Cache Checkpointing

	Printing Messages

	8 Programming in M4
	M4 Quotation
	Active Characters
	One Macro Call
	Quoting and Parameters
	Quotation and Nested Macros
	changequote is Evil
	Quadrigraphs
	Dealing with unbalanced parentheses
	Quotation Rule Of Thumb

	Using autom4te
	Invoking autom4te
	Customizing autom4te

	Programming in M4sugar
	Redefined M4 Macros
	Diagnostic messages from M4sugar
	Diversion support
	Conditional constructs
	Looping constructs
	Evaluation Macros
	String manipulation in M4
	Arithmetic computation in M4
	Set manipulation in M4
	Forbidden Patterns

	Debugging via autom4te

	9 Programming in M4sh
	Common Shell Constructs
	Support for indirect variable names
	Initialization Macros
	File Descriptor Macros

	10 Writing Autoconf Macros
	Macro Definitions
	Macro Names
	Dependencies Between Macros
	Prerequisite Macros
	Suggested Ordering
	One-Shot Macros

	Obsoleting Macros
	Coding Style

	11 Portable Shell Programming
	Shellology
	Invoking the Shell
	Here-Documents
	File Descriptors
	Signal Handling
	File System Conventions
	Shell Pattern Matching
	Shell Substitutions
	Assignments
	Parentheses in Shell Scripts
	Slashes in Shell Scripts
	Special Shell Variables
	Shell Functions
	Limitations of Shell Builtins
	Limitations of Usual Tools

	12 Portable Make Programming
	$< in Ordinary Make Rules
	Failure in Make Rules
	Special Characters in Make Macro Names
	Backslash-Newline Before Empty Lines
	Backslash-Newline in Make Comments
	Long Lines in Makefiles
	make macro=value and Submakes
	The Make Macro MAKEFLAGS
	The Make Macro SHELL
	Parallel Make
	Comments in Make Rules
	Newlines in Make Rules
	Comments in Make Macros
	Trailing whitespace in Make Macros
	Command-line Macros and whitespace
	The obj/ Subdirectory and Make
	Exit Status of make -k
	VPATH and Make
	Variables listed in VPATH
	VPATH and Double-colon Rules
	$< Not Supported in Explicit Rules
	Automatic Rule Rewriting
	Tru64 make Creates Prerequisite Directories Magically
	Make Target Lookup

	Single Suffix Rules and Separated Dependencies
	Timestamp Resolution and Make

	13 Portable C and C++ Programming
	Varieties of Unportability
	Integer Overflow
	Basics of Integer Overflow
	Examples of Code Assuming Wraparound Overflow
	Optimizations That Break Wraparound Arithmetic
	Practical Advice for Signed Overflow Issues
	Signed Integer Division and Integer Overflow

	Preprocessor Arithmetic
	Properties of Null Pointers
	Buffer Overruns and Subscript Errors
	Volatile Objects
	Floating Point Portability
	Exiting Portably

	14 Manual Configuration
	Specifying target triplets
	Getting the Canonical System Type
	Using the System Type

	15 Site Configuration
	Controlling Help Output
	Working With External Software
	Choosing Package Options
	Making Your Help Strings Look Pretty
	Controlling Checking of configure Options
	Configuring Site Details
	Transforming Program Names When Installing
	Transformation Options
	Transformation Examples
	Transformation Rules

	Setting Site Defaults

	16 Running configure Scripts
	Basic Installation
	Compilers and Options
	Compiling For Multiple Architectures
	Installation Names
	Optional Features
	Specifying a System Type
	Sharing Defaults
	Defining Variables
	configure Invocation

	17 config.status Invocation
	18 Obsolete Constructs
	Obsolete config.status Invocation
	acconfig.h
	Using autoupdate to Modernize configure.ac
	Obsolete Macros
	Upgrading From Version 1
	Changed File Names
	Changed Makefiles
	Changed Macros
	Changed Results
	Changed Macro Writing

	Upgrading From Version 2.13
	Changed Quotation
	New Macros
	Hosts and Cross-Compilation
	AC_LIBOBJ vs. LIBOBJS
	AC_ACT_IFELSE vs. AC_TRY_ACT

	19 Generating Test Suites with Autotest
	Using an Autotest Test Suite
	testsuite Scripts
	Autotest Logs

	Writing testsuite.at
	Running testsuite Scripts
	Making testsuite Scripts

	20 Frequent Autoconf Questions, with answers
	Distributing configure Scripts
	Why Require GNU M4?
	How Can I Bootstrap?
	Why Not Imake?
	How Do I #define Installation Directories?
	What is autom4te.cache?
	Header Present But Cannot Be Compiled
	Expanded Before Required
	Debugging configure scripts

	21 History of Autoconf
	Genesis
	Exodus
	Leviticus
	Numbers
	Deuteronomy

	A GNU Free Documentation License
	B Indices
	Environment Variable Index
	Output Variable Index
	Preprocessor Symbol Index
	Cache Variable Index
	Autoconf Macro Index
	M4 Macro Index
	Autotest Macro Index
	Program and Function Index
	Concept Index

