G. MULLEY and W. LEMBERG: EXTENDING GNU TROFF TO PRODUCE HTML

EXTENDING GNU TROFF TO PRODUCE HTML
THROUGH THE TECHNIQUE OF NEXT EVENT
SIMULATION

GAIUS MULLEY and WERNER LEMBERG

School of Computing, University of Glamorgan, CF37 IDL, UK
E-Mail: gaius@glam.ac.uk
Kl. Beurhausstr. 1, 44137 Dortmund, Germany
E-Mail: wl@gnu.org

Abstract: This paper reports on a technique used to generate accurate HTML output from GNU Troff. GNU Troff
is a typesetting package which reads plain text mixed with formatting commands and produces formatted output.
It supports a number of devices and now supports the production of HTML. The paper discusses the design of the
HTML device driver grohtml and modifications made to GNU Troff. The front end program troff was modi-
fied to maintain a reduced state machine which is examined each time a glyph is passed to the back end device
driver (post—-grohtml). Any change in system state between the production of two glyphs results in a sequence
of events being passed to the device driver. There is a direct correspondence between this technique and creating
a script for a next event simulation queue. Furthermore the device driver reconstructs the system state and for-
mats the HTML according to state changes caused when processing the event queue. This technique works well,
as it minimises the state information passed from front end to back end device driver whilst still preserving the
high level layout of the text. Using this technique GNU Troff effectively translates input source into another
mark-up language and thus this technique could be extended to translate GNU Troff documents into any of the
OpenOffice supported formats. Troff has been in use for three decades now and is still actively used by authors.
Troff’s biggest use, however, is to format manual pages for GNU/Linux and other UNIX like operating systems.
Introducing this facility into GNU Troff provides users with the ability to translate legacy documents into HTML
and in the future to a format supported by OpenOffice.

Keywords: groff, troff, grohtml, HTML, simulation.

table [Lesk, 1976a], picture [Kernighan, 1991, Wyk,

1982] and equation handling [Kernighan, 1977,
INTRODUCTION Kernighan, 1976] (refer, tbl, pic and eqgn respec-
tively). These programs were executed in a pipeline
and troff transformed the heavily preprocessed
formatting commands and text into device dependent
output [Kernighan, 1978]. Although the input to
troff was device independent it was also very low
level and therefore users were encouraged to use
macro sets when producing documents [Lesk,
1976b]. During the 1980s the internals were mod-
estly revised and a number of new macro sets were
written [Allman, 1980, Smith, 1980]. The macro
sets provided freedom in document styling (similar
to modern HTML style sheets) and they included:
arbitrary style headers and footers; arbitrary style
footnotes; automatic sequence numbering for para-

GNU Troff is a reimplementation of the program
troff which is available on the UNIX operating sys-
tem. The original troff was written in PDP-11
assembly language by Joe Ossanna in 1973. Two
years later it was rewritten in C and afterwards it
went through a series of revisions until Joe Ossanna
died in 1977.

Brian Kernighan continued troff development for
the next 15 years and it is testament to the original
design that the input language remained the same.
Much of the original documentation received minor
changes as new troff releases were issued and
therefore Joe’s name was retained on these manu-

als [Ossanna, 1992] graphs, sections, etc; multiple column output;

’ ' dynamic font and point-size control; arbitrary hori-
Brian Kernighan modified troff so that it could zontal and vertical local motions at any point; math-
produce output for a number of different typesetting ematical bracket construction, and line drawing
devices, while at the same time retaining the same functions [Ossanna, 1992].

input language specification. The input language
was so robust that a number of preprocessors were
written to provide reference [Tuthill, 1986],

During the 1980s troff was extended to handle
many different devices, this was accomplished by

I.J. of SIMULATION Vol. 6 No 7-8 37 ISSN 1473-804x online, 1473-8031 print

G. MULLEY and W. LEMBERG: EXTENDING GNU TROFF TO PRODUCE HTML

splitting the task of troff into two components.
The front end ditroff produced device indepen-
dent code and the back end device driver which sim-
ply translated the device independent code into the
target device commands.

James Clark began to work on the GNU implemen-
tation of the troff family of tools in 1989. This was
to be a completely new implementation of all the
preprocessors, the ditroff program and the macro
sets. The first release of groff (version 0.3.1)
occurred in June 1990 and it included a replacement
for ditroff, eqn, tbl and pic. It also included a
replacement for the me macros and the man macros.
The replacement programs were mostly written in
C++ and often supported extensions and removed
various static data size limitations. Since 1999 the
groff package has had new maintainers and has
undergone active development. It supports the com-
mon macro sets associated with troff (man, me, ms,
mdoc and mm). However groff also provides a
modern macro set (mom) and also provides new pre-
processors and support for colour.

DESCRIPTION OF THE PROBLEM

Troff was widely used in the 1970s and 1980s. All
UNIX documentation, release notes for both the
AT&T and BSD UNIX variants was written in
troff. Many papers in the CACM and Software
Practice and Experience journals were also produced
using troff. Even today all UNIX and GNU/Linux
manual pages are written in troff using the man
macro set and some authors advocate using troff
above other WYSIWYG tools to typeset their
books [Tanenbaum, 1997, Stevens, 1998, Schaffter,
2004].

Groff provides compatibility with troff as well as
many modern enhancements, image handling, colour
and limited pdf mark capability. Clearly the addition
of an HTML device driver would be useful.

GNU Troff copied the original design of UNIX Troff
, which maps the input source onto a physical device
through the use of a device independent language.
Through this language it effectively plots each glyph
at Cartesian coordinate position on a page. The dif-
ficulty in translating troff source into HTML is
exacerbated by the fact that both HTML and troff
source are mark-up languages. As the GNU Troff
and original UNIX Troff packages rely heavily on the
pipeline principle it has naturally led to the pre-
processors (pic, tbl and eqn) translating their high
level commands onto much lower level troff com-
mands. In turn, this has meant that much of the high
level information (for example where a table starts
and ends) is lost. Furthermore, using any of the
macro packages will result in many low level

I.J. of SIMULATION Vol. 6 No 7-8

38

commands to format abstracts, titles, footnotes, para-
graphs, lists, hanging indents etc. Consequently,
translating trof £ input source into HTML cannot be
achieved by writing a device driver which simply
reads ditroff input and produces HTML output.
Consider the diagram in figure 1 which shows the
key components of a simple groff command line
invocation together with a synopsis of the data pass-
ing though the pipeline. In figure 1 the troff input
consists of requests or calls to macros (lines prefixed
with a period) and text. Troff input might also
include text with escapes, for example the word
program can be typeset by temporarily reducing the
point size by 1 and altering the font to Courier. The
word and escapes can be encoded as \s-1\fCpro-
gram\s+1\£P. In figure 1 the final output is Post-
Script (the default device) and the invocation also
includes the ms macro package. Figure 2 shows how
a PostScript printer interprets the output from Figure
1.

A basic title

1. Heading at level 1
1.1. Heading at level 2

1.1.1. Heading at level 3
First paragraph body

Figure 2: displaying the PostScript output

Notice how the ditroff output only knows which
font is to be used, the font size and position that the
glyph should be placed. Another example that an
HTML device driver must translate accurately is
shown in figure 3.

The start of an indented paragraph example
in which line 1, line 2 and line 3 are
vertically aligned.

.LP

.IP once

line 1

.IP twice

line 2

.IP threefold

line 3

Figure 3: examples of indented paragraphs

Here we see from the output shown in figure 4 that
the ms macro set diverted the indented paragraph
label parameter once, twice and threefold into a
macro. It then tests to see whether the macro width
is greater than a default length and if so it breaks the
line before starting the indented paragraph. Clearly
the HTML device driver needs to cope with these
constructs, as they are also heavily used in manual

pages.

ISSN 1473-804x online, 1473-8031 print

G. MULLEY and W. LEMBERG: EXTENDING GNU TROFF TO PRODUCE HTML

Troff source

ditroff intemediate language

postscript output

.TL x T ps %!'PS-Adobe-3.0

A basic title x res 72000 9% %Creator: groff

NH 1 X init 9% %DocumentNeed

Heading atlevel 1 |- _ _ » pl L | %%+font Times-Ro

NH 2 x font 6 TB 9% %DocumentSupp

Heading at level 2 fo % %Pages: 1

.LP s12 H123k V 123k % %PageOrder: Asc

First paragraph tA 9% %Orientation:

body wh3000 9% %EndComments
tbasic

Figure 1: Simple title, heading and paragraph

The start of an indented paragraph example in which line 1, line 2 and line
3 are vertically aligned.
once line 1
twice
line 2

threefold
line 3

Figure 4: result of processing figure 3 with groff -ms

Furthermore many documents will include encapsu-
lated PostScript as shown in figure 5. The processed
output is shown in figure 6. The issue here is that
PostScript has become the default device driver and
groff allows encapsulated PostScript to be handled
as a special device case. Nevertheless this feature is
so useful and it would be expected to be imple-
mented in the HTML device driver. Groff also allows
users to embed their own PostScript inside Troff
source files (a technique similar to inlining assembly
language within a high level language). In both
cases users could reasonably expect the HTML
device driver to translate the PostScript into a PNG
image which is referenced by the HTML output.

.TL

An example of encapsulated PostScript
.LP

.PSPIC -L tiger.eps 1i 11

Figure 5: example of encapsulated PostScript usage

An example of encapsulated postscript

Figure 6: result of processing figure 5 with groff -ms

A further problem which needs to be addressed is
the limited number of glyphs available in HTML.

I.J. of SIMULATION Vol. 6 No 7-8

For example HTML has a restricted set of mathemat-
ical glyphs and it is restricted in its ability to accu-
rately position these glyphs [Musciano, 1998]. Groff
in contrast can be used to typeset mathematical for-
mulae and users will at least expect the groff HTML
device driver to reproduce the formulae as an image.
Figure 7 shows Troff input, which describes the defi-
nite integral.

.EQ

delim $$

.EN

.LP

As $ delta x —> 0 $ then
.EQ

sum from x=a to b y . delta x ~ approx ~ \
int from a to b y 7 dx

.EN

Figure 7: eqn example

When processed with the command groff -e -ms
it produces the output as shown in figure 8.

As 6x — 0 then

b b
Zy.dxzjydx

Figure 8: output of figure 7 as rendered on a
PostScript device

Finally the troff language is very rich in com-
mands and requests. The language has the ability to
construct macros at run time and it does this by
diverting text and commands into a diversion. Some
authors of macro sets perform some highly impres-
sive programming tricks using this technique. For
example this technique has been used in the ms
macro set to handle the IP request and the TL
request seen earlier. It is also used to manage
abstracts, authors names and references for papers.
The problem is that when troff generates the

ISSN 1473-804x online, 1473-8031 print

G. MULLEY and W. LEMBERG: EXTENDING GNU TROFF TO PRODUCE HTML

ditroff output the meaning of the text is lost. The
HTML device driver needs to know whether a line
was centred, if the line was indented, when the cen-
tring ends, when indentation ends, when text is a
section heading and when text is a title. It cannot
guess this reliably by examining the glyph position
and font information.

Conveying the indentation information to the device
driver is particularly difficult as diversions can be
created to manipulate this value when the diversion
is re-read. Consider the example given in figure 9.

foo

.in +21
.foo
.in 411
.br
.foo

Figure 9: diversion and indentation example

When processed with the command groff -ms it
produces the output as shown in figure 9.

hello

hello

Figure 10: output of figure 9 as rendered on a
PostScript device

Clearly an HTML device driver must also understand
the diversions sufficiently so that the important for-
matting requests are accurately translated.

PREVIOUS WORK

There have been a number of scripting solutions
implemented which translate troff documents into
HTML. These scripts operate at the macro set level
and they independently translate the functionality of
the various macros into HTML. For example scripts
exists to translate the ms macros IP, TL, LP, PP, DS
into indented paragraph; title; left aligned paragraph;
paragraph and block text. The advantage of this
approach is its simplicity but the disadvantages are
that the scripts need to be maintained independently
to the corresponding macro set and more importantly
the scripts do not understand user defined macros.
Often these scripts do not honour all the macro
optional arguments or allow inclusion of encapsu-
lated PostScript.

is unroff [Laumann, 1996],
a Scheme-based, programmable and

Another solution
which is

I.J. of SIMULATION Vol. 6 No 7-8

40

extensible troff translator which translates troff
files into HTML-2.0. It supports the me, ms, and man
macro sets as well as the front end preprocessors
tbl and eqn. This is an ambitious project and it has
been successful in translating manual pages and
troff documents. The success is partly due to
unroff understanding many of the underlying
troff requests and having extra tag information
inside its macro set descriptions. The main disadvan-
tages to unroff are that it does not have a seamless
interface to the pic preprocessor and currently it
does not handle encapsulated PostScript or diver-
sions.

The doclifter project [Raymond, 2005a] provides
a means whereby many documents written in mm, ms,
me and mdoc can be translated into XML-Doc-
book [Walsh, 1999]. Eric Raymond designed
doclifter to operate at the semantic level and he
acknowledges that to do a really good job requires
some human polishing. Nevertheless doclifter
has successfully translated 95% of all manual pages
in Fedora Core 3.

Doclifter translates tbl tables into DocBook table
markup and pic input into SVG, however egn is not
translated.

OVERVIEW OF GROHTML

The approach taken by the authors in the design of
grohtml was to modify the front end groff binary
so that when the HTML device is requested the
troff input is run through the PostScript device
driver and later through the HTML device driver. All
images are created by converting the relevant Post-
Script page into a bitmap image after which the
required area is cut and converted into the
PNG [Roelofs, 1999] format. The pipeline structure
is outlined in figure 11. The preprocessors tbl, eqn
and pic were modified to indicate where the start
and end of a table, equation and picture occur. This
information is then transparently read by the front
end and determines the area of the bitmap file which
is required for an image. The advantage of this
approach is that grohtml can fully support encapsu-
lated PostScript inclusion and it also allows users to
use this feature together with any combination of
glyphs to generate web images.

The macro sets ms and man were also slightly modi-
fied to issue a tag when troff encounters a section
heading, title or indented paragraph. All tags are
emitted together with the ditroff intermediate
code to the device driver post—grohtml.

The troff program was also modified to handle
another escape \0 which has five variants and they
are described in table 1. These escapes are

ISSN 1473-804x online, 1473-8031 print

G. MULLEY and W. LEMBERG: EXTENDING GNU TROFF TO PRODUCE HTML

L groff -ms -e -Tps -rps4html=1} _,| intemediate
users troff document p PostScript
r : output
e generate | — — — — — — — — _ _ J ‘
Definite integral g images image coordinates |
.EQ L] T from € — — — - el ___ 4
sum from x=a to b.|. o PostScript| _ _ _ _ _ _ _ _ _ _ __ __ __ __ ______ .
.EN h file png images E E
t
m
1 L groft -Thtml -e -ms -Z)— — -» post e HTML
grohtml outpu
Figure 11: the groff -Thtml -ms -e pipe line
Escape Meaning
\00 Disable any glyphs from being emitted at the outer level.
\o1 Enable output of glyphs, provided that the escape occurs at the outer level.
\02 Providing the escape occurs at the outer level, enable output of glyphs and also write out
to stderr the page number and four registers encompassing the glyphs previously writ-
ten since the last call to \o.
\03 Begin a nesting level.
\04 End a nesting level.

\O [5P filename]

HTML device specific. Provided that this escape occurs at the outer nesting level write
the filename to stderr. The position of the image, P, must be specified and must be one
of 1, r, c or i (left, right, centre, inline).

Table 1: new troff escapes and their meaning

important as they allow preprocessors to tell troff
to skip a block of text or issue a box of coordinates
which define the area for a set of glyphs. This func-
tionality is used during the PostScript pass to deter-
mine the region used by a table, picture or equation.
Conversely it is used by the HTML pass to stop pro-
ducing glyphs when a table, equation or picture is
encountered; but replace these items with an HTML
reference to an image.

STATE MACHINE SOLUTION

If grohtml is implemented as described in the last
section it will be able to translate all: encapsulated
PostScript, tbl, pic, egn, section headings, num-
bered headings and titles accurately. However it will
still fail to accurately translate: centred lines, any
indentation, preformatted blocks, tabulated text, line
breaks and vertical spaces. A solution to this prob-
lem is to extend the repertoire of tags which are
passed from troff to post-grohtml. This
requires further modification to the troff so that it
will issue tags whenever the above formatting
requests are encountered. In essence the back end of
troff maintains a simple state machine which rep-
resents the minimum information required to cor-
rectly reproduce the formatting requests listed above.

I.J. of SIMULATION Vol. 6 No 7-8

41

Whenever a glyph is about to be written in the
ditroff output, troff needs to check whether this
state has changed since the last glyph was written. If
the state has changed then troff emits a series of
tags which define the change in state. There is clear
correspondence between tags appearing in the
ditroff intermediate output and a next event queue
albeit without any time component. The HTML
driver post-grohtml reconstructs the system state
according to the events it reads and in the process
translates the glyphs into HTML text surrounded by
the appropriate HTML tags [Musciano, 1998]. Fur-
thermore troff can handle requests read from
diversions by pushing the current minimal HTML
state before a diversion is read and popping it later
once the diversion has finished. This allows diver-
sions to centre lines, alter the indentation, and emit
preformatted text, whilst restoring the state once the
diversion has ended.

The complete set of tags which post-grohtml under-
stands is shown in table 2. Figure 16 shows the
extended ditroff output when GNU Troff processes
Figure 9. The command line to generate this

T Both \00 and \o1 reset four troff registers which
mark the top left and bottom right hand corners of an
area containing all written glyphs.

ISSN 1473-804x online, 1473-8031 print

G. MULLEY and W. LEMBERG: EXTENDING GNU TROFF TO PRODUCE HTML

information is shown below:

’groff -7 -ms —-Thtml ex9.n ‘

and the output in Figure 16 contains the minimum
tags necessary in order to convey the meaning of the
glyph formatting. The example shown in figure 9
produces two lines with a single word hello on
each line. The first line hello is indented at three
inches and on the second line hello is indented at
four inches. The example starts by declaring a left
adjusted paragraph .LP and then it creates the diver-
sion .di foo. All subsequent text and requests are
diverted into foo until the second .di is encoun-
tered. The next request .in +21i informs the type-
setter that an indentation of two inches is required.
When . foo is encountered it rereads the diversion
which performs another relative indent of one inch
before emitting the glyph hello. The diversion
then reduces the indentation by one inch before fin-
ishing. Textual input is resumed after the diversion
.foo at the request .in +1i which performs a rela-
tive indent of one inch (at this point the indentation
is set at three inches). Lastly the diversion is run
again which emits the final hello four inches from
the left hand margin.

Figure 16 shows the ditroff output together with an
annotated description. It also shows extensions
made to ditroff which include the extra tag informa-
tion (lines starting with x X devtag: convey the
minimum events necessary such that post-gro-
html can reconstruct the troff state machine. As
post—-grohtml reconstructs the state machine it
generates the appropriate HTML. Critically for this
example it can be seen that here are only two x X
devtag: .in events, one at 3 inches and the second
at 4 inches, despite the example in figure 9 having
four . in requests.

EXAMPLES OF GROHTML OUTPUT

The examples shown in this section were produced
with groff version 1.19.2 and the test cases are
those from figures 3, 5, 7 and 9. All the examples
were constructed using the following pipeline:

groff -Thtml filename.ms |

html2ps

—-e —ms

and these are shown in figures 12, 13, 14 and 15
respectively. The test results appear satisfactory and
show that the indentation using the IP macro works
as expected. This macro uses a diversion to detect
the width of its first argument before emitting the
paragraph. The example shows how each line 1, line
2 and line 3 are vertically aligned. Notice that line 3
has a vertical space between itself and threefold.
Figure 13 shows that groff can translate eqn input

I.J. of SIMULATION Vol. 6 No 7-8

42

into HTML and images and figure 15 shows that
indentation within diversions behave correctly.

At present the GNU Troff macro sets: ms, man, and
mwww have the extra HTML tags included. Figure 17
shows the output of a component from the GNU pic
guide [Raymond, 2005b] when processed through
the following pipeline.

’groff -pet -ms -Thtml pic.ms | html2ps —52‘

It can be seen that grohtml correctly determines
that the equation is inside a picture and generates
one image. Figure 18 shows the grohtml manual
page after it was processed by the pipeline:

’groff -pet -man -Thtml grohtml.man ‘

and viewed through a browser. In this case we can
clearly see the vertical alignment correctly repre-
sented between lines which contain a command line
option and those lines which are a component of a
hanging paragraph. Figure 19 shows how the GNU
Troff homepage appears when printed from a
browser. The homepage was created by the follow-
ing command line.

’groff -pet -ms -Thtml webpage.ms ‘

The file webpage.ms make extensive use of the
mwww macro set which provides drop capital,
unordered line list, URL and image related macros. It
also makes use of colour which was recently added
to GNU Troff.

CONCLUSIONS AND FURTHER WORK

In conclusion the grohtml device driver has been
constructed and integrated into groff. This work
has taken six years of part time effort and amounts to
approximately 9600 lines of C++ code (not includ-
ing macro set modifications). In due course the
groff-1.19.2 will be formally released and this
will be the first beta release of grohtml. During the
development of grohtml a number of additional
features were needed to produce useful HTML.
These features were applied generically as possible
and include the introduction of colour. Colour is now
supported by the ASCII, PostScript, HTML, and DVI
devices. GNU pic has also been extended to sup-
port colour.

The principles behind the HTML device driver
appear sound, however there are still minor bugs in
grohtml. Future work will include bug fixing and
also modifications to tbl so that troff tables can
be translated into HTML <table> constructs rather
than an image. The remaining macro sets (mm, me,
mdoc and mom) will also be updated to include the
devtag requests necessary for grohtml to detect

ISSN 1473-804x online, 1473-8031 print

G. MULLEY and W. LEMBERG: EXTENDING GNU TROFF TO PRODUCE HTML

section headings, titles and indented paragraphs.

As the OpenOffice file formats are fully published it
should be possible to construct a new GNU Troff
device driver (grodoc) which utilizes the extended
ditroff intermediate language. This new device
driver could be built using a similar design to that of
grohtml.

ACKNOWLEDGEMENTS

The authors would like to thank all the readers and
contributors of the groff mailing list for their
patience with this project and also for their many
valuable bug reports over the last six years. We
would also like to thank our respective employers for
funding our time while we were working on groff.

Finally a great debt of thanks is owed to James Clark
without whom there would be no groff.

The start of an indented paragraph example in which line 1, line 2 and line 3 are vertically aligned.

once line 1
twice line 2

threefold

line 3

Figure 12: the result of HTML output from figure 3

An example of encapsulated postscript

Figure 13: the result of HTML output from figure 5

As dx —3 Othen
b

)E y.6x = J- ydx

x=a
a

Figure 14: the result of HTML output from figure 7

hello

hello

Figure 15: the result of HTML output from figure 9

I.J. of SIMULATION Vol. 6 No 7-8

43

Tag Description

.SH start of section heading

.NH start of numbered heading

.col n start of column n

.eo.h end of heading

.tl start of title

.eo.tl end of title

.fin if n is O then treat as preformatted
text

.sp vertical line space

.in n indent next line n units

.11 n line is n units long

.po n left offset is n units

.ta list | list defines the tab settings

.tin next line is temporarily indented n
units

.ce n centre next n lines

.eol end of input line

.br line break forced

Table 2: tags passed from troff to post—grohtml

pl page 1
V280 vertical resolution 280 units/inch

H240 horizontal resolution 240 units/inch
DFd default background colour

F ./ex9.n input file ex9.n

V360 move to vertical position 360 units
H720 move to horizontal position 3 inches
x X devtag:.fi 1 word wrap is on

x X devtag:.in 720 3 inch indentation

x X devtag:.ll 1440 line length is 6 inches
x X devtag:.po 0 page offset 0 inches
x X devtag:.ce 0 centre lines is off

x X devtag:.br line break

x font 1 R times roman font indexed as the first font
fl use times roman font

s10 point size 10

V360 move to vertical position 360 units
H720 move to horizontal position 3 inches
md default foreground colour

thello emit glyph hello

n40 0O emit space

V400 move to vertical position 400 units
H960 move to horizontal position 4 inches

x X devtag:.in 960

x X devtag:.br

4 inch indent requested
line break requested

V400 move to vertical position 400 units
H960 move to horizontal position 4 inches
thello emit glyph hello

Figure 16: extended ditroff intermediate output

ISSN 1473-804x online, 1473-8031 print

G. MULLEY and W. LEMBERG: EXTENDING GNU TROFF TO PRODUCE HTML

17.4. PIC and EQN

The Kernighan paper notes that there is a subtle
problem with complicated equations inside pic pictures;
they come out wrong if egn(1) has to leave extra
vertical space for the equation. If your equation
involves more than subscripts and superscripts, you
must add to the beginning of each equation the extra
information space 0. He gives the following example:

arrow
box "$space 0 {H(omega)} over {1 — H(omega)}$"
arrow
H)
1— H{mw)

Figure 17-1: Equations within pictures

by Eric S. Raymond

GROHTML

SNU/groff h

GROHTML

NAME
OPTIONS

NAME
grohtml — html driver for groff
OPTIONS

-a aa-text-bits
Number of bits of antialiasing information to be used by rext when generating png images.
‘The default is 4 but valid values are 0, 1, 2, and 4. Note your version of gs needs to support
the ~dTextAlphaBits and ~dGraphicAlphaBits options in order to exploit antialiasing.
A value of 0 stops grohtml from issuing antialiasing commands to gs.

-b Initialize the background color to white.

-D dir Inform grohtml to place all image files into directory dir.

~F dir Prepend directory dirfdevname to the search path for font and device description files;
name is the name of the device, usually html.
g aa-graphic-bits
Number of bits of antialiasing
images. The default is 4 but v . y
support the ~dTextAlphaBits and ~dGraphicAlphaBits_options in order to exploit
antialiasing. A value of 0 stops grohtml from issuing antialiasing commands to gs.

formation to be used by graphics when generating png
values are 0, 1 4. Note your version of gs needs to

Lof 1 21/05/05 00:1

Figure 18: grohtml manual page showing
vertical alignment of hanging paragraphs

I.J. of SIMULATION Vol. 6 No 7-8

Figure 17: extract from "Making Pictures With GNU PIC"

44

Home of Groff (GNU Troff)

INUgrof ch ze.h

GNU Trofft

GNU Troff (Groff) — a GNU project.

s

HE groff (GNU Troff) software is a typesetting package which reads plain text mixed
with formatting commands and produces formatted output. Groff now supports

Download

The source code of the currently released versions of groff is available at the FFII host
Germany), GNU host (USA), and its mirrors. The USA site also contains older, obsolete

versions.

The most actual pre-release, development version is available from a CVS repository, see
below. Development snapshots (produced twice a day from the CVS repository) can be
downloaded from here.

For a special version of groff on the Microsoft operating systems, see Groff for Windows.
GNU troff is released under the GNU Copyright License.

User issues lead: Ted Harding.
Technical issues lead: Werner Lemberg.

README

This is the GNU groff document formatting system. The version number is given in the
file VERSION.

Included in this release are implementations of troff, pic, eqn, tbl, grn, refer, —man,
—mdoc, and —ms macros, and drivers for PostScript, TeX dvi format, HP LaserJet 4
printers, Canon CAPSL printers, HTML format (beta status), and typewriter-like devices.
Also included is a modified version of the Berkeley —me macros, an enhanced version of
the X11 xditview previewer, and an implementation of the —-mm macros contributed by
Jorgen Higg .

See the file INSTALL for installation instructions. You will require a C++ compiler.

The file NEWS describes recent user-visible changes to groff.

Lof 18 20/05/05 23:59)

Figure 19: GNU Troff homepage when printed
from a browser

REFERENCES

Allman Eric P. 1980, Writing Papers with NROFF
using —me, University of California, Berkeley,
Berkeley, California 94720.

Kernighan Brian W. 1991, “PIC — A Graphics Lan-
guage for Typesetting,” Revised User Manual, 116,
Bell Labs Computing Science Technical Report.

Kernighan Brian W. 1978, A TROFF Tutorial, P. 13,
Bell Laboratories, Murray Hill, New Jersey 07974.

Kernighan Brian W. and Cherry Lorinda L. 1977, A
System for Typesetting Mathematics, Bell Laborato-
ries, Murray Hill, New Jersey 07974.

Kernighan Brian W. and Cherry Lorinda L. 1976,
Typesetting Mathematics User’s Guide, Bell Labora-
tories, Murray Hill, New Jersey 07974.

Laumann Oliver 1996, Unroff - programmable,
extensible troff translator. http://www—
rn.informatik.uni-bremen.de/software
/unroff.

Lesk M. E. 1976, Thl — A Program to Format

Tables, Bell Laboratories, Murray Hill, New Jersey
07974.

ISSN 1473-804x online, 1473-8031 print

G. MULLEY and W. LEMBERG: EXTENDING GNU TROFF TO PRODUCE HTML

Lesk M. E. 1976, Typing Documents on the UNIX
System: Using the —ms Macros with Troff and Nroff,
Bell Laboratories, Murray Hill, New Jersey 07974.

Musciano Chuck and Kennedy Bill 1998, HTML The
definitive guide, Third Edition, O’Reilly & Asso-
ciates. ISBN 1-68592-492-4.

Ossanna Joseph F. and Kernighan Brian W. 1992,
Nroff/Troff User’s Manual, Bell Laboratories, Mur-
ray Hill, New Jersey 07974.

Raymond Eric S. 2005, Doclifter. http:

//www.catb.org/ esr/doclifter.

Raymond Eric S. 2005, Making Pictures With GNU
PIC. ftp://ftp.gnu.org/gnu/groff/.

Roelofs Greg 1999, PNG The Definitive Guide, First

Edition, O’Reilly & Associates. ISBN
1-56592-542-4.
Schaffter Peter 2004, The Schumann Proof,

Napoleon Publishing. ISBN 1-89491-706-5.

Smith D. W., Mashey J. R., Pariser E. C. and Smith
N. W. 1980, MM — Memorandum Macros, Bell
Laboratories internal memorandum, Murray Hill,
New Jersey 07974.

Stevens Richard W. 1998, UNIX Network Program-
ming, 1, P. xx, Prentice-Hall International.

Tanenbaum A.S. 1997, Computer Networks, 3rd Edi-
tion, Prentice-Hall.

Tuthill Bill 1986, Refer — A Bibliography System,
Computing Services, University of California,
Berkeley, CA 94720.

Walsh Norman and Muellner Leonard 1999, Doc-
Book: The Definitive Guide, First Edition, O’Reilly
& Associates. ISBN: 1-56592-580-7.

Wyk C. J. Van 1982, “A high-level language for
specifying pictures,” ACM Transactions On Graph-
ics, 1(2), Pp. 163-182.

BIOGRAPHY OF AUTHORS

Gaius Mulley is a senior lecturer at the University of
Glamorgan. He is the author of GNU Modula-2 and
the groff HTML device driver grohtml. His
research interests also include performance of micro-
kernels and compiler design. He obtained a
BSc(Hons) and PhD in Computer Science from the
University of Reading and later worked for Meiko
Scientific.

I.J. of SIMULATION Vol. 6 No 7-8

45

Werner Lemberg (born 1968 in Vienna, Austria) is
working as a conductor and singers’ coach at the
municipal theatre of Koblenz, Germany. In his spare
time he maintains the groff package and actively
develops the FreeType font rendering library.

ISSN 1473-804x online, 1473-8031 print

	An example of encapsulated postscript
	
	
	17.4. PIC and EQN

