
Programming with GNU Crypto
Version 2.0.0, 9 November 2003

Casey Marshall
Raif S. Naffah

This manual is for the GNU Crypto library, version 2.0.0.
Copyright c© 2003 The Free Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document under the terms
of the GNU Free Documentation License, Version 1.1 or any later version published by
the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no
Back Cover Texts. A copy of the license is included in the section entitled “GNU Free
Documentation License”.

In Hoc Signo Tectis

i

Table of Contents

1 Introduction . 1

Part 1: The GNU Crypto API 2

2 Ciphers . 3
2.1 The IBlockCipher Interface . 4
2.2 The CipherFactory Class . 6
2.3 Example . 6

3 Modes . 7
3.1 The IMode Interface . 7
3.2 The ModeFactory Class . 9
3.3 Example . 10

4 Padding . 11
4.1 The IPad Interface . 11
4.2 The PadFactory Class . 12
4.3 Example . 13

5 Cascades and Assemblies 14
5.4 Cascades . 14
5.5 Direction . 15
5.6 Stage . 15
5.7 Cascade . 17
5.8 Example . 19
5.9 Assemblies . 21
5.10 Operation . 21
5.11 Transformer . 21
5.12 Assembly . 24
5.13 Example. 26

6 Message Digests . 29
6.1 IMessageDigest Interface . 30
6.2 HashFactory Class . 31
6.3 Example . 31

7 Message Authentication Codes 32
7.1 IMac Interface . 32
7.2 MacFactory Class . 34
7.3 TMMH/16 . 34
7.4 UMAC-32 . 35
7.5 Example . 35

ii

8 Keypairs and Key Agreements. 36
8.6 Keypairs . 36
8.7 Algorithm-Specific Attributes . 37

8.7.1 Diffie-Hellman . 37
8.7.2 DSS . 38
8.7.3 RSA . 38
8.7.4 SRP6 . 39

8.8 The IKeyPairGenerator Interface . 40
8.9 The KeyPairGeneratorFactory Class . 40
8.10 The IKeyPairCodec Interface . 40
8.11 Example. 41
8.12 Key Agreements . 41
8.13 Protocols . 42
8.14 The IKeyAgreementParty Interface . 43
8.15 The KeyAgreementFactory class . 44
8.16 Example, Key agreement . 44

9 Signatures . 46
9.1 The ISignature Interface . 46
9.2 The SignatureFactory Class . 48
9.3 The ISignatureCodec Interface . 49
9.4 Signature Example . 50

10 Random Numbers . 51
10.1 The IRandom Interface . 51
10.2 The PRNGFactory Class . 52
10.3 ARCFour . 52
10.4 MDGenerator . 52
10.5 ICMGenerator . 53
10.6 UMacGenerator . 53
10.7 PRNG Example . 54

Part 2: External API Support 55

11 JCE Support . 56
11.1 Installing the JCE Classes . 56
11.2 Installing the GNU Crypto Provider . 56
11.3 List of Available Algorithms . 57

GNU Free Documentation License 58

Copying GNU Crypto . 65

GNU General Public License 66

iii

Acknowledgements . 73

Figure Index. 74

Index . 75

References . 79

Chapter 1: Introduction 1

1 Introduction

GNU Crypto is a free, high-quality, versatile, and provably correct implementation of a
wide array of cryptographic primitives and tools written in the Java programming language.
It provides an application programmer’s interface (API) to a number of cryptographic
algorithms, a variety of end-user tools, and a full Java cryptography architecture (JCA)
provider.

The algorithms implemented by GNU Crypto include symmetric key ciphers for pro-
tecting data, message digests and message authentication codes for proving the integrity
of data, digital signature schemes for proving the authenticity of data, and algorithms for
generating unguessable pseudo-random numbers. The API is deliberately designed to be
low-level, with access to the bare innards of the cryptographic algorithms involved, so more
complex libraries and programs can be built.

GNU Crypto does not implement any algorithms that are encumbered by patents, and
does not rely on any non-free code or documentation. GNU Crypto is designed to run in
any Java environment that is compatible with Sun’s Java runtime version 1.2 or later. This
includes GNU Classpath, a free software implementation of the Java class libraries, and free
virtual machines such as Kissme, Japhar, Kaffe, and the Jikes RVM.

This manual covers the basics for using the GNU Crypto API in new Java programs.
It describes the public API for all the implemented algorithms, describes which algorithms
are implemented, and provides simple examples of each. The reader is assumed to have
some knowledge about cryptography and the Java programming language.

This is not a reference about cryptography, the Java programming language, or the Java
cryptography architecture API. For an introduction to cryptography, we recommend the
following books:

• Bruce Schneier, Applied Cryptography: Protocols, Algorithms, and Source Code in C,
Second Edition [Sch95].

• Alfred J. Menezes, Paul C. Van Oorschot, and Scott A. Vanstone, Handbook of Applied
Cryptography [MOV96].

The JCA API documentation is available on-line from either Sun Microsystems
(http://java.sun.com/products/jce/doc/apidoc/) or the Legion of the Bouncy Castle
(http://www.bouncycastle.org/docs/index.html). There are copious references about
the Java programming language available (although, as far as the author is aware, no free
manuals are available at the time of writing).

GNU Crypto is always available on the web from http://www.gnu.org/software/gnu-
crypto/, via anonymous FTP from ftp://ftp.gnupg.org/gcrypt/gnu-crypto/.
The mailing list for bugs, help, and discussion is gnu-crypto-discuss@gnu.org,
and additional information about the project is available on Savannah at
http://savannah.gnu.org/projects/gnu-crypto/.

“Java” is a registered trademark of Sun Microsystems.

mailto:gnu-crypto-discuss@gnu.org

Part 1: The GNU Crypto API 2

Part 1: The GNU Crypto API

Chapter 2: Ciphers 3

2 Ciphers

This chapter describes the symmetric ciphers implemented by GNU Crypto, and how to
create and use them. The package name for all GNU Crypto ciphers is gnu.crypto.cipher.
The ciphers implemented by GNU Crypto are:

• The Advanced Encryption Standard, or the AES. The AES is a symmetric block cipher
with a 128 bit block size and a key size of 128, 192, or 256 bits. The AES was
adopted as US FIPS PUB 197 [NIST01] by the National Institute of Standards and
Technology (NIST) in November 2001 after a five-year process of standarization and
public comment. The AES was written by Joan Daemen and Vincent Rijmen for the
AES process, and is derived from the Rijndael cipher.

• Anubis. The Anubis cipher is a symmetric block cipher with a 128 bit block size and a
key size from 128 to 320 bits, with increments of 32 bits. Anubis was designed by Paulo
Barreto and Vincent Rijmen, and has been submitted as a candidate cipher to the New
European Schemes for Signatures, Integrity, and Encryption (NESSIE) process.

• Blowfish. The Blowfish symmetric block cipher was designed by Bruce Schneier. It has
a 64 bit block size and a key size of up to 448 bits. Blowfish encryption and decryption
are very fast in software, especially on 32 bit microprocessor architectures.

• DES. DES is the Data encryption standard, a 64-bit cipher with a 56-bit key. DES was
developed by IBM in the 1970’s for a standardization process begun by the National
Bureau of Standards (now NIST). DES should not be used in new applications in favor
of the new standard, AES, except for compatibility.

• Identity cipher. The identity, or null cipher, is not a true cipher as it does not transform
the data input, but rather copies it directly to the output.

• Khazad. The Khazad cipher is a symmetric block cipher with a 64 bit block size and a
128 bit key size. Khazad was designed by Paulo Barreto and Vincent Rijmen, and has
been submitted as a candidate cipher to the New European Schemes for Signatures,
Integrity, and Encryption (NESSIE) process.

• Rijndael. Rijndael is a symmetric block cipher written by Joan Daemen and Vincent
Rijmen as a candidate to the Advanced Encryption Standard process, and was adopted
as the AES. Rijndael additionally has a 192 and 256 bit block size.

• Serpent. The Serpent cipher was designed by Ross Anderson, Eli Biham, and Lars
Knudsen as a proposed cipher for the Advanced Encryption Standard. Serpent has a
128 bit block size, and a key size of 128, 192, or 256 bits.

• Square. The Square cipher was designed by Joan Daemen and Vincent Rijmen and
was cryptanalyzed by Lars Knudsen. It has a 128 bit block size and a 128 bit key size.

• Triple-DES, or DESede, is a combined cipher based on the Data Encryption Standard.
It is the iteration of three seperate instances of DES with three independent keys, and
therefore has a 64 bit block size and a key size of 168 bits.

• Twofish. The Twofish cipher was designed by Bruce Schneier, John Kelsey, Doug
Whiting, David Wagner, Chris Hall, and Niels Ferguson as a proposed cipher for the
Advanced Encryption Standard. Twofish has a 128 bit block size, and a key size of
128, 192, or 256 bits.

Chapter 2: Ciphers 4

2.1 The IBlockCipher Interface

Figure 1: Ciphers class diagram
All ciphers in GNU Crypto implement the IBlockCipher interface, and support all the

methods listed in this section.

[Variable]java.lang.String CIPHER BLOCK SIZE
A property name in the attributes map that is passed to the init method, represent-
ing the cipher’s desired block size. The mapped value should be a java.lang.Integer
of the cipher’s block size, in bytes. If this attribute is omitted, the cipher’s default
block size is used.

[Variable]java.lang.String KEY MATERIAL
A property name in the attributes map that is passed to the init method, represent-
ing the bytes that are to compose the cipher’s key. The mapped value must be a byte
array, and its length must be one of the cipher’s supported key sizes.

[Function]void init (java.util.Map attributes) throws
java.security.InvalidKeyException, java.lang.IllegalStateException

Initializes the cipher for transforming data. The attributes parameter must be a
java.util.Map that has, at least, a mapping between the KEY_MATERIAL property
name to a byte array containing the key. Ciphers may define other property
names. If the supplied byte array is not an acceptable key, this method throws a
java.security.InvalidKeyException. If this instance has already been initialized,
this method throws a java.lang.IllegalStateException.

[Function]java.lang.String name ()
Returns the cipher’s canonical name.

Chapter 2: Ciphers 5

[Function]int defaultBlockSize ()
Returns the default block size, in bytes.

[Function]int defaultKeySize ()
Returns the default key size, in bytes.

[Function]java.util.Iterator blockSizes ()
Returns a java.util.Iterator of the cipher’s supported block sizes. Each element
of the iterator is a java.lang.Integer.

[Function]java.util.Iterator keySizes ()
Returns a java.util.Iterator of the cipher’s supported key sizes. Each element of
the iterator is a java.lang.Integer.

[Function]java.lang.Object clone ()
Returns a clone of this cipher. The cloned instance must be initialized, as this method
will not clone the cipher’s internal key.

[Function]int currentBlockSize () throws java.lang.IllegalStateException
Returns the cipher’s current block size, in bytes, or will throw a
java.lang.IllegalStateException if this instance has not been initial-
ized.

[Function]void reset ()
Resets this instance, which may then be re-initialized.

[Function]void encryptBlock (byte[] plaintext, int inOffset, byte[]
ciphertext, int outOffset) throws java.lang.IllegalStateException

Encrypts a block of bytes from plaintext starting at inOffset, storing the encrypted
bytes in ciphertext, starting at outOffset. It is up to the programmer to ensure that
there is at least one full block in plaintext from inOffset and space for one full block
in ciphertext from outOffset. A java.lang.IllegalStateException will be thrown
if the cipher has not been initialized.

[Function]void decryptBlock (byte[] ciphertext, int inOffset, byte[]
plaintext, int outOffset) throws java.lang.IllegalStateException

Decrypts a block of bytes from ciphertext starting at inOffset, storing the encrypted
bytes in plaintext, starting at outOffset. It is up to the programmer to ensure that
there is at least one full block in ciphertext from inOffset and space for one full block
in plaintext from outOffset. A java.lang.IllegalStateException will be thrown
if the cipher has not been initialized.

[Function]boolean selfTest ()
Performs a simple test of conformance, to ensure that there are no implementation
or system errors. This method returns true if the test succeeds; false otherwise.

Chapter 2: Ciphers 6

2.2 The CipherFactory Class

The ciphers in GNU Crypto can usually be initiallized directly through their construc-
tors, but the preferred way is to use the CipherFactory class, with the following method:

[Function]static IBlockCipher getInstance (java.lang.String name)
Returns a new cipher instance for the cipher named name, or null if no such cipher
exists. This method will throw a java.lang.InternalError if the new instance’s
self-test fails.

The class also defines this method:

[Function]static java.util.Set getNames ()
This method returns a java.util.Set of the names (each element of type
java.lang.String) of all supported ciphers.

2.3 Example

The following example transforms the plaintext to the ciphertext, and the ciphertext
back to the plaintext, using the AES in electronic codebook mode with no padding. Note
also the classes for cipher modes and padding schemes for more complex constructions.

IBlockCipher cipher = CipherFactory.getInstance("AES");
Map attributes = new HashMap();
attributes.put(IBlockCipher.CIPHER_BLOCK_SIZE, new Integer(16));
attributes.put(IBlockCipher.KEY_MATERIAL, key_bytes);
cipher.init(attributes);
int bs = cipher.currentBlockSize();

for (int i = 0; i + bs < pt.length; i += bs)
{

cipher.encryptBlock(pt, i, ct, i);
}

for (int i = 0; i + bs < cpt.length; i += bs)
{

cipher.decryptBlock(ct, i, cpt, i);
}

Chapter 3: Modes 7

3 Modes

Cipher modes operate on the next level up from the underlying block cipher. They
transform the blocks going in and out of the cipher in ways to give them desirable prop-
erties in certain circumstances. The cipher modes implemented by GNU Crypto, which is
contained in the gnu.crypto.mode package and are referenced herein by their three-letter
abbreviations described below, are:

• Cipher block chaining mode. The “CBC” mode makes every block of the ciphertext
depend upon all previous blocks by adding feedback to the transformation. This is
done by XORing the plaintext with the previous ciphertext (or, with the first block,
an initialization vector) before it is transformed. That is, encryption looks like: Ci =
Ek(Pi ⊕ Ci−1); and decryption is Pi = Ci−1 ⊕ E−1

k (Ci).
• Counter mode. Counter mode, referred to as “CTR” mode, is one of a class of sequenced

cipher modes that turn the underlying cipher into a keystream. Counter mode relys
on a simple counter register that is updated for every block processed. For plaintexts
P1 . . . Pn, ciphertexts C1 . . . Cn, counter elements T1 . . . Tn, and an encryption function
Ek, encryption is defined as Ci = Pi ⊕ Ek(Ti) and decryption as Pi = Ci ⊕ Ek(Ti).

• Electronic codebook mode. Or “ECB” mode, is the most obvious cipher mode: the
cipher block is the direct output of the forward function, and the plain block is the
direct output of the inverse function. That is, encryption is Ci = Ek(Pi) and decryption
is Pi = E−1

k (Ci).
• Integer counter mode. “ICM” mode has features in common with counter mode de-

scribed above. The counter, Ti, is computed by Ti = (T0 + i) mod 256b, where b is the
cipher’s block size. T0 is initialized to the integer representation of some initialization
vector. The keystream bytes are then Ek(Ti). Encryption and decryption are then
Ci = Pi ⊕ Ek(Ti) and Pi = Ci ⊕ Ek(Ti), respectively.

• Output feeback mode. “OFB” mode creates a keystream by repeatedly iterating the
underlying block cipher over an initialization vector. That is, the ith keystream block
is Xi = E(Xi−1) for 1 < i ≤ n, and X1 = IV . Like the other stream modes, the input
block i is transformed by the exclusive-or of the block with Xi.

3.1 The IMode Interface

The IMode interface is similar to the IBlockCipher interface, except modes have a state
associated with them, e.g. whether the instance is used for encryption or decryption. The
IMode interface is usually the one that is used when encrypting or decrypting; IBlockCipher
is used when the lowest level—the cipher function itself—needs to be accessed. IMode ex-
tends IBlockCipher interface, and thus all methods specified in that interface are imple-
mented in modes, and have the same meaning. The properties passed to the init method
of IBlockCipher may also be passed to the init mehtod of IMode, along with the following
property names.

Chapter 3: Modes 8

Figure 2: Modes class diagram

[Variable]java.lang.String STATE
The property name for the mode’s state, as passed to the init method. Values for
this property are an java.lang.Integer containing either the ENCRYPTION constant
or the DECRYPTION constant.

[Variable]int ENCRYPTION
The value passed for the STATE property, wrapped in a java.lang.Integer, which
indicates that the instance is to be used for encryption.

[Variable]int DECRYPTION
The value passed for the STATE property, wrapped in a java.lang.Integer, which
indicates that the instance is to be used for decryption.

[Variable]java.lang.String MODE BLOCK SIZE
The property name for the block size of this mode. The value for this propery should
be a java.lang.Integer of the block size. If omitted, the underlying cipher’s block
size is used.

[Variable]java.lang.String IV
The property name for the initialization vector to initialize this mode with, if required.
The value should be a byte array equal in size to the MODE_BLOCK_SIZE property. If
omitted a byte array consisting of zeros is used.

Chapter 3: Modes 9

[Function]void update (byte[] in, int inOffset, byte[] out, int outOffset)
throws java.lang.IllegalStateException

Transforms the block in in starting at inOffset into the block in out starting
at outOffset. Encryption or decryption is performed depending upon the
value passed along with the state property given to the init method. A
java.lang.IllegalStateException is thrown if this instance has not been
initialized, and it is up to the programmer to ensure that there is one full block in in
starting at inOffset, and enough space for one full block in out starting at outOffset.
Since modes can have states, and may require that the be used in a particular
sequence, using this method is preferred over the encryptBlock and decryptBlock
methods of IBlockCipher.

3.2 The ModeFactory Class

The preferred way to get mode instances is through the ModeFactory class, from one of
the following methods:

[Function]static IMode getInstance (java.lang.String mode,
java.lang.String cipher, int cipherBlockSize)

Returns an instance of cipher wrapped in an instance of mode, initialized to a block
size of cipherBlockSize, or returns null if no appropriate cipher or mode is available.
The mode argument is one of the names described above, and cipher is one of the
names described in the Ciphers chapter.

[Function]static IMode getInstance (java.lang.String mode, IBlockCipher
cipher, int cipherBlockSize)

Returns an instance of mode using the already-initialized cipher, initializing the mode
with a block size of cipherBlockSize, or returns null if no appropriate mode is avail-
able.

Additionally the following method is defined:

[Function]static java.util.Set getNames ()
This method returns a java.util.Set of the names (each element of type
java.lang.String) of all supported modes.

Chapter 3: Modes 10

3.3 Example

The following example encrypts and decrypts a byte array with the AES in CFB mode.
See the next chapter on padding for instances where the input is not a multiple of the cipher
or mode’s block size.

IMode mode = ModeFactory.getInstance("CFB", "AES", 16);
Map attributes = new HashMap();

// These attributes are defined in gnu.crypto.cipher.IBlockCipher.
attributes.put(IMode.KEY_MATERIAL, key_bytes);
attributes.put(IMode.CIPHER_BLOCK_SIZE, new Integer(16));

// These attributes are defined in IMode.
attributes.put(IMode.STATE, new Integer(IMode.ENCRYPTION));
attributes.put(IMode.IV, iv_bytes);
mode.init(attributes);
int bs = mode.currentBlockSize();

for (int i = 0; i + bs < pt.length; i += bs)
{

mode.update(pt, i, ct, i);
}

mode.reset();
attributes.put(IMode.STATE, new Integer(IMode.DECRYPTION);
mode.init(attributes);

for (int i = 0; i + bs < ct.length; i += bs)
{

mode.update(ct, i, cpt, i);
}

Chapter 4: Padding 11

4 Padding

A padding scheme is merely a standard method of ensuring that the input to be encrypted
is a multiple of the cipher’s block size. The padding schemes of GNU Crypto are in package
gnu.crypto.pad and include:

• PKCS #7. PKCS #7 (referred to as “PKCS7” in GNU Crypto) pads the input P
with the quantity w = b− (|P | mod b), where b is the cipher’s block size, encoded as w
bytes. That is, if the input is 5 bytes shorter than the required length, then the input
is padded with the byte equal to 5 five times. This padding scheme supports block
sizes of 2 ≤ b ≤ 256 bytes.

• Trailing bit complement. The “TBC” pad appends the complement of the last bit in
the input until the input is the desired length. That is, if the last bit is 1, then the
input is padded with 0, and if the last bit is 0, then the input is padded with 1. This
padding scheme supports block sizes up to 256 bytes.

4.1 The IPad Interface

Figure 3: Padding class diagram
The IPad interface is used seperately from ciphers and modes. The methods defined by

padding schemes are:

[Function]void init (int bs) throws java.lang.IllegalStateException,
java.lang.IllegalArgumentException

Initializes this padding scheme for the specified block size. This method throws a
java.lang.IllegalStateException if this instance has already been initialized but
not reset, and will throw a java.lang.IllegalArgumentException if bs is not a
supported block size.

Chapter 4: Padding 12

[Function]void reset ()
Resets this instance, which may then be re-initialized later.

[Function]byte[] pad (byte[] input, int offset, int length)
Examines the bytes in input as the plaintext, starting at offset and considering length
bytes, and returns the appropriate, possibly empty, byte array containing the padding.

[Function]int unpad (byte[] input, int offset, int length) throws
WrongPaddingException

Examines the bytes in input as the plaintext, starting at offset and considering length
bytes, and returns the number of bytes that should be trimmed off the end of input
to unpad the plaintext. Throws a WrongPaddingException if the padding bytes to
not correspond to the bytes expected by this padding scheme.

[Function]java.lang.String name ()
Returns the canonical name of this instance.

[Function]boolean selfTest ()
Performs a simple conformance test on the padding scheme, to avoid implementation
or run time errors.

4.2 The PadFactory Class

Padding instances are created with the following method in the PadFactory class:

[Function]static IPad getInstance (String pad)
Gets an instance of the padding scheme with name pad, or null if no such padding
scheme is available.

This class also defines this method:

[Function]static java.util.Set getNames ()
Returns a set of strings with the names of all padding schemes implemented by GNU
Crypto.

Chapter 4: Padding 13

4.3 Example

The following example pads an input buffer, transforms the padded buffer with already-
initialized IMode instances, then unpads the output buffer.

IPad padding = IPad.getInstance("PKCS7");
padding.init(blockSize);
byte[] pad = padding.pad(input, 0, input.length);
byte[] pt = new byte[input.length + pad.length];
byte[] ct = new byte[pt.length];
byte[] cpt = new byte[pt.length];
System.arraycopy(input, 0, pt, 0, input.length);
System.arraycopy(pad, 0, pt, input.length, pad.length);

for (int i = 0; i + blockSize < pt.length; i += blockSize)
{

enc.update(pt, i, ct, i);
}

for (int i = 0; i + blockSize < ct.length; i += blockSize)
{

dec.update(ct, i, cpt, i);
}

int unpad = padding.unpad(cpt, 0, cpt.length);
byte[] output = new byte[cpt.length - unpad];
System.arraycopy(cpt, 0, output, 0, output.length);

Chapter 5: Cascades and Assemblies 14

5 Cascades and Assemblies

This chapter describes two patterns implemneted by the GNU Crypto library that allow
users to combine the basic cipher (and other) primitives into higher level components in
order to offer more flexible functionalities. These two patterns are: Cascade and Assembly.

The Cascade is a means of assembling block cipher Modes of Operations into an or-
dered sequence of stages. A stage is a representation of a Mode (of Operations) wired in
a designated direction: FORWARD or REVERSED. A Mode staged in the FORWARD
direction would encrypt input blocks, producing ciphertext, while the same Mode, wired in
the REVERSED direction would do the opposite; i.e. decrypt an input text producing a
plaintext.

In the simplest case, all stages in a Cascade have k-bit keys, and the stage inputs and
outputs are all n-bit quantities. The stage ciphers may differ (general cascade of ciphers),
or all be identical (cascade of identical ciphers).

An Assembly is a construction of an ordered set of Transformer objects. Each Trans-
former is wired to operate in PRE PROCESSING or POST PROCESSING mode –the
Transformer’s Operation. In PRE PROCESSING, the input is first processed by the Trans-
former before being passed to the rest of the chain, while in POST PROCESSING state,
the Transformer first passes the input to the rest of the chain and only processes the output
of the returned data.

5.4 Cascades

Figure 4: Cascade class diagram

Chapter 5: Cascades and Assemblies 15

5.5 Direction

An enumeration type for wiring Stage instances into Cascade chains, as well as for
operating a Cascade in a given direction.

This class cannot be instantiated; but its (only) two possible values can be used for
constructing Stage elements, and initializing Cascade instances:
• FORWARD: equivalent to gnu.crypto.mode.IMode#ENCRYPTION; and its inverse value
• REVERSED: equivalent to gnu.crypto.mode.IMode#DECRYPTION.

This class offers a Factory method to return the inverse of a designated Direction in-
stance:

[Function]Direction reverse (Direction d)

5.6 Stage

This class represents a Stage in a Cascade cipher.
Each stage may be either an implementation of a Block Cipher Mode of Operation (an

instance of gnu.crypto.mode.IMode) or another Cascade cipher (an instance of Cascade).
Each Stage has also a natural operational direction when constructed for inclusion within a
Cascade. This natural direction dictates how data flows from one Stage into another when
stages are chained together in a Cascade. One can think of a Stage and its natural direction
as the specification of how to wire the Stage into the chain.

The following diagrams may help understand the paradigm. The first shows two stages
chained together, each wired in the same direction (Direction#FORWARD).

Chapter 5: Cascades and Assemblies 16

Figure 5: Stages wired in same direction
The second diagram shows two stages, one in a Direction#FORWARD direction, while the

other is wired in a Direction#REVERSED direction.

Figure 6: Stages wired in different directions

[Variable]gnu.crypto.assembly.Stage DIRECTION
A property name in the attributes map that is passed to the init method,
representing the stage’s desired wiring direction. The mapped value should be
a valid gnu.crypto.assembly.Direction value. If this attribute is omitted,
Direction.FORWARD is used.

The following Factory methods, allow instantiation of concrete Stage class instances that
adapt instances of either gnu.crypto.mode.IMode or (other) Cascade classes to operate as
a Stage in a Cascade:

[Function]Stage getInstance (IMode mode, Direction forwardDirection)
Given a designated mode (an instance of gnu.crypto.mode.IMode, and a Direction,
this method returns a Stage instance that adapts this designated mode to operate as
a Stage in a Cascade.

[Function]Stage getInstance (Cascade cascade, Direction forwardDirection)
Given a designated cascade (an instance of gnu.crypto.assembly.Cascade, and a
Direction, this method returns a Stage instance that adapts this designated cascade
to operate as a Stage in another Cascade.

The following instance methods are also available:

[Function]java.util.Set blockSizes ()
Returns the Set of supported block sizes for this Stage. Each element in the returned
Set is an instance of Integer.

Chapter 5: Cascades and Assemblies 17

[Function]void init (java.util.Map attributes) throws
java.security.InvalidKeyException

Initializes the stage for operation with specific characteristics. Those characteristics
are defined in attributes: a set of name-value pairs that describes the desired future
behavior of this instance. This method throws an IllegalStateException if the
instance is already initialized. It throws an java.security.InvalidKeyException
if the key data (used to initialize the underlying Mode or Cascade) is invalid.

[Function]int currentBlockSize () throws IllegalStateException
Returns the current block size for this stage. Throws an IllegalStateException if
the instance is not yet initialized.

[Function]void reset ()
Resets the stage for re-initialization and use with other characteristics. This method
always succeeds.

[Function]void update (byte[] in, int inOffset, byte[] out, int outOffset)
Processes exactly one block of plaintext (if wired in the Direction#FORWARD direc-
tion) or ciphertext (if wired in the Direction#REVERSED direction), from in start-
ing at inOffset, and storing the resulting bytes in out, starting at outOffset. An
IllegalStateException will be thrown if the stage has not yet been initialized.

[Function]boolean selfTest ()
Conducts a simple correctness test that consists of basic symmetric encryption /
decryption test(s) for all supported block and key sizes of underlying block cipher(s)
wrapped by Mode leafs. The test also includes one (1) variable key Known Answer
Test (KAT) for each block cipher. It returns true if the tests succeed, and false
otherwise.

5.7 Cascade

A Cascade Cipher is the concatenation of two or more block ciphers each with indepen-
dent keys. Plaintext is input to the first stage; the output stage i is input to stage i + 1;
and the output of the last stage is the Cascade’s ciphertext output.

In the simplest case, all stages in a Cascade have k-bit keys, and the stage inputs and
outputs are all n-bit quantities. The stage ciphers may differ (general cascade of ciphers),
or all be identical (cascade of identical ciphers).

The term block ciphers used above refers to implementations of gnu.crypto.mode.IMode,
including the gnu.crypto.mode.ECB mode which basically exposes a symmetric-key block
cipher algorithm as a Mode of Operations.

Chapter 5: Cascades and Assemblies 18

[Variable]String DIRECTION
The name of a property in the attributes map that is passed to the init method,
representing the cascade’s desired wiring direction. The mapped value should
be a valid gnu.crypto.assembly.Direction value. If this attribute is omitted,
gnu.crypto.assembly.Direction.FORWARD is used.

[Function]Object append (Stage stage) throws IllegalArgumentException
Adds to the end of the current chain, a designated stage. Returns a unique identifier
for this added stage, within this cascade. An IllegalArgumentException is thrown
if stage is already in the chain, or it has incompatible characteristics with the current
elements already in the chain. On the other hand, an IllegalStateException will
be thrown if the cascade has already been initialized, or if the designated stage is
null.

[Function]Object prepend (Stage stage) throws IllegalArgumentException
Adds to the beginning of the current chain, a designated stage. Returns a unique
identifier for this added stage, within this cascade. An IllegalArgumentException
is thrown if stage is already in the chain, or it has incompatible characteristics
with the current elements already in the chain. On the other hand, an
IllegalStateException will be thrown if the cascade has already been initialized,
or if the designated stage is null.

[Function]Object insert (int index, Stage stage) throws
IllegalArgumentException, IndexOutOfBoundsException

Inserts a designate stage Stage into the current Cascade, at the specified index (zero-
based) position. Returns a unique identifier for this added stage, within this cascade.
Throws an IllegalArgumentException if stage is already in the chain, or it has
incompatible characteristics with the current elements already in the chain. Throws
an IllegalStateException if the instance is already initialized. Finally, this method
throws an IndexOutOfBoundsException if index is less than 0 or greater than the
current size of this cascade.

[Function]int size ()
Returns the current number of stages in this chain.

[Function]java.util.Iterator stages ()
Returns an java.util.Iterator over the stages contained in this instance. Each ele-
ment of this iterator is a concrete implementation of a gnu.crypto.assembly.Stage.

[Function]java.util.Set blockSizes ()
Returns a java.util.Set of supported block sizes for this Cascade that are common
to all of its chained stages. Each element in the returned set is an instance of Integer.

Chapter 5: Cascades and Assemblies 19

[Function]void init (java.util.Map attributes) throws InvalidKeyException
Initializes the chain for operation with specific characteristics, as specified by the
contents of attributes –a set of name-value pairs that describes the desired future
behavior of this instance. Throws an IllegalStateException if the chain, or any of
its stages, is already initialized. Throws an InvalidKeyException if the initialization
data provided with the stage is incorrect or causes an invalid key to be generated.

[Function]int currentBlockSize ()
Returns the currently set block size for the chain. Throws an IllegalStateException
if the instance is not yet initialized.

[Function]void reset ()
Resets the chain for re-initialization and use with other characteristics. This method
always succeeds.

[Function]void update (byte[] in, int inOffset, byte[] out, int outOffset)
Processes exactly one block of plaintext (if initialized in the gnu.crypto.assembly.Direction#FORWARD
direction) or ciphertext (if initialised in the gnu.crypto.assembly.Direction#REVERSED
direction), from in, starting at index position inOffset, returning the result in out,
starting at index position outOffset. Throws an IllegalStateException if the
instance is not yet initialized.

[Function]boolean selfTest ()
Conducts a simple correctness test that consists of basic symmetric encryption /
decryption test(s) for all supported block and key sizes of underlying block cipher(s)
wrapped by Mode leafs. The test also includes one (1) variable key Known Answer
Test (KAT) for each block cipher. Returns true if the implementation passes the
tests. Returns false otherwise.

5.8 Example

The following example demonstrates how a DES-EDE block cipher can be constructed
as a Cascade of three DES Stages.

HashMap map = new HashMap();
HashMap map1 = new HashMap();
HashMap map2 = new HashMap();
HashMap map3 = new HashMap();

Cascade new3DES = new Cascade();
Object des1 = new3DES.append(

Stage.getInstance(
ModeFactory.getInstance(Registry.ECB_MODE, new DES(), 8),
Direction.FORWARD));

Chapter 5: Cascades and Assemblies 20

Object des2 = new3DES.append(
Stage.getInstance(

ModeFactory.getInstance(Registry.ECB_MODE, new DES(), 8),
Direction.REVERSED));

Object des3 = new3DES.append(
Stage.getInstance(

ModeFactory.getInstance(Registry.ECB_MODE, new DES(), 8),
Direction.FORWARD));

map.put(des1, map1);
map.put(des2, map2);
map.put(des3, map3);

map1.put(IBlockCipher.KEY_MATERIAL, key1material);
map2.put(IBlockCipher.KEY_MATERIAL, key2material);
map3.put(IBlockCipher.KEY_MATERIAL, key3material);

// encryption
map.put(Cascade.DIRECTION, Direction.FORWARD);
byte[] pt = ...; // some plaintext to encrypt
byte[] ct = new byte[pt.length]; // where ciphertext is returned

try
{

new3DES.init(map);
new3DES.update(pt, 0, ct, 0);

}
catch (InvalidKeyException x)
{

x.printStackTrace(System.err);
}

Chapter 5: Cascades and Assemblies 21

5.9 Assemblies

Figure 7: Assembly class diagram

5.10 Operation

An enumeration type for specifying the mode of operation of a Transformer instance,
when wired into an Assembly.

This class cannot be instantiated; but its (only) two possible values can be used for
constructing Transformer elements:
• PRE PROCESSING: to mean that the input data is first processed by the current

Transformer before being passed to the rest of the chain; and
• POST PROCESSING: to mean that the input data is first passed to the rest of the

chain, and the resulting bytes are then processed by the current Transformer.

5.11 Transformer

A Transformer is an abstract representation of a two-way transformation that can be
chained together with other instances of this type. Examples of such transformations in
this library are:
• CascadeTransformer that adapts an instance of a Cascade,
• PaddingTransformer that adapts an instance of gnu.crypto.pad.IPad, and finally
• DeflateTransformer that adapts a ZLib-based deflater/inflater algorithm implementa-

tion.

The special type LoopbackTransformer is also available and is implicitly (and silently)
added to each instance of an Assembly.

A Transformer is characterized by the followings:

Chapter 5: Cascades and Assemblies 22

• It can be chained to other instances, to form an Assembly.
• When configured in an Assembly, it can be set to apply its internal transformation

on the input data stream before (pre-processing) or after (post-processing) passing the
input data to the next element in the chain. Note that the same type Transformer can
be used in either pre-processing, or post-processing modes.

• A special transformer –LoopbackTransformer– is used to close the chain.
• A useful type of Transformer –one we’re interested in– has internal buffers. The dis-

tinction between a casual push (update) operation, and the last one, allows to correctly
flush any intermediate bytes that may exist in those buffers.

To allow wiring Transformer instances together, a minimal output size in bytes is nec-
essary. The trivial case of a value of 1 for such attribute practically means that no output
buffering, from the previous element, is needed –which is independent of buffering the input
if the Transformer implementation itself is block-based.

This class exposes one class attribute and three Factory methods. They are:

[Variable]String DIRECTION
The name of a property in the attributes map that is passed to the init method,
representing the transformation’s desired wiring direction. The mapped value should
be a valid Direction value. If this attribute is omitted, Direction.FORWARD is used.

[Function]Transformer getCascadeTransformer (Cascade cascade)
Returns the designated cascade instance wrapped in an Adapter for use as a Trans-
former.

[Function]Transformer getPaddingTransformer (IPad padding)
Returns the designated padding instance wrapped in an Adapter for use as a Trans-
former.

[Function]Transformer getDeflateTransformer ()
Returns a Transformer that underlies an implementation of the ZLib algorithm, able
to deflate (compress) and inflate (decompress) data.

Concrete class instances of this abstract class, also expose the following instance methods:

[Function]void setMode (final Operation mode)
Sets the operational mode of this Transformer to the designated mode value. Throws
IllegalStateException if this instance has already been assigned an operational
mode.

[Function]boolean isPreProcessing ()
Returns true if this Transformer has been wired in pre-processing mode; returns
false otherwise. Throws an IllegalStateException if this instance has not yet
been assigned an operational mode.

Chapter 5: Cascades and Assemblies 23

[Function]boolean isPostProcessing ()
Returns true if this Transformer has been wired in post-processing mode; returns
false otherwise. Throws an IllegalStateException if this instance has not yet
been assigned an operational mode.

[Function]void init (java.util.Map attributes) throws TransformerException
Initializes the Transformer for operation with specific characteristics, indicated by
the designated attributes. The latter being a set of name-value pairs that describes
the desired future behavior of this instance. Throws an IllegalStateException if
the instance is already initialized.

[Function]int currentBlockSize ()
Returns the block-size of this Transformer. A value of 1 indicates that this instance
is block-agnostic.

[Function]void reset ()
Resets the Transformer for re-initialization and use with other characteristics. This
method always succeeds.

[Function]byte[] update (byte b) throws TransformerException
Convenience method that calls the method with same name and three arguments,
using a byte array of length 1 whose contents are the designated byte b. Returns
the result of transformation. Throws an IllegalStateException if the instance is
not yet initialized. Throws an TransformerException if a transformation-related
exception occurs during the operation.

[Function]byte[] update (byte[] in) throws TransformerException
Convenience method that calls the same method with three arguments. All bytes in in,
starting from index position 0 are considered. Returns the result of transformation.
Throws an IllegalStateException if the instance is not yet initialized. Throws
a TransformerException if a transformation-related exception occurs during the
operation.

[Function]byte[] update (byte[] in, int offset, int length) throws
TransformerException

Returns the result of processing a designated length bytes from a given in byte array,
starting at position offset. Throws an IllegalStateException if the instance is
not yet initialized. Throws an TransformerException if a transformation-related
exception occurs during the operation.

Chapter 5: Cascades and Assemblies 24

[Function]byte[] lastUpdate () throws TransformerException
Convenience method that calls the same method with three arguments. A
zero-long byte array is used. Returns the result of transformation. Throws
an IllegalStateException if the instance is not yet initialized. Throws an
TransformerException if a transformation-related exception occurs during the
operation.

[Function]byte[] lastUpdate (byte b) throws TransformerException
Convenience method that calls the method with same name and three arguments,
using a byte array of length 1 whose contents are the designated byte b. Returns
the result of transformation. Throws an IllegalStateException if the instance is
not yet initialized. Throws an TransformerException if a transformation-related
exception occurs during the operation.

[Function]byte[] lastUpdate (byte[] in) throws TransformerException
Convenience method that calls the same method with three arguments. All bytes in in,
starting from index position 0 are considered. Returns the result of transformation.
Throws an IllegalStateException if the instance is not yet initialized. Throws
an TransformerException if a transformation-related exception occurs during the
operation.

[Function]byte[] lastUpdate (byte[] in, int offset, int length) throws
TransformerException

Returns the result of processing a designated length bytes from the given in byte array,
starting at index position offset and signals, at the same time, that this is the last push
operation on this Transformer. Throws an IllegalStateException if the instance
is not yet initialized. Throws an TransformerException if a transformation-related
exception occurs during the operation.

5.12 Assembly

An Assembly is a construction consisting of a chain of Transformer elements; each
wired in pre- or post- operational mode. This chain is (always) terminated by one
LoopbackTransformer element.

Once constructed, and correctly initialized, the bulk of the methods available on the
Assembly are delegated to the head of the Transformer chain of the Assembly.

[Variable]String DIRECTION
The name of a property in the attributes map that is passed to the init method,
representing the assembly’s desired wiring direction. The mapped value should be a
valid Direction value. If this attribute is omitted, Direction.FORWARD is used.

Chapter 5: Cascades and Assemblies 25

[Function]boolean addPreTransformer (Transformer t)
Adds the designated Transformer t, to the head of the current chain, and signals
that it should operate in pre-processing mode; i.e. it should apply its internal trans-
formation algorithm on the input data stream, before it passes that stream to the
next element in the chain. Throws an IllegalArgumentException if the designated
Transformer has a non-null tail; i.e. it is already an element of a chain.

[Function]boolean addPostTransformer (Transformer t)
Adds the designated Transformer t, to the head of the current chain, and signals
that it should operate in post-processing mode; i.e. it should apply its internal trans-
formation algorithm on the input data stream, after it passes that stream to the
next element in the chain. Throws an IllegalArgumentException if the designated
Transformer has a non-null tail; i.e. it is already an element of a chain.

[Function]void init (java.util.Map attributes) throws TransformerException
Initializes the Assembly for operation with specific characteristics, indicated by the
designated attributes. The latter being a set of name-value pairs that describes the
desired future behavior of this instance. Throws an IllegalStateException if the
instance is already initialized.

[Function]void reset ()
Resets the Assembly for re-initialization and use with other characteristics. This
method always succeeds.

[Function]byte[] update (byte b) throws TransformerException
Convenience method that calls the method with same name and three arguments,
using a byte array of length 1 whose contents are the designated byte b. Returns
the result of transformation. Throws an IllegalStateException if the instance is
not yet initialized. Throws an TransformerException if a transformation-related
exception occurs during the operation.

[Function]byte[] update (byte[] in) throws TransformerException
Convenience method that calls the same method with three arguments. All bytes in in,
starting from index position 0 are considered. Returns the result of transformation.
Throws an IllegalStateException if the instance is not yet initialized. Throws
a TransformerException if a transformation-related exception occurs during the
operation.

[Function]byte[] update (byte[] in, int offset, int length) throws
TransformerException

Returns the result of processing a designated length bytes from a given in byte array,
starting at position offset. Throws an IllegalStateException if the instance is
not yet initialized. Throws an TransformerException if a transformation-related
exception occurs during the operation.

Chapter 5: Cascades and Assemblies 26

[Function]byte[] lastUpdate () throws TransformerException
Convenience method that calls the same method with three arguments. A
zero-long byte array is used. Returns the result of transformation. Throws
an IllegalStateException if the instance is not yet initialized. Throws an
TransformerException if a transformation-related exception occurs during the
operation.

[Function]byte[] lastUpdate (byte b) throws TransformerException
Convenience method that calls the method with same name and three arguments,
using a byte array of length 1 whose contents are the designated byte b. Returns
the result of transformation. Throws an IllegalStateException if the instance is
not yet initialized. Throws an TransformerException if a transformation-related
exception occurs during the operation.

[Function]byte[] lastUpdate (byte[] in) throws TransformerException
Convenience method that calls the same method with three arguments. All bytes in in,
starting from index position 0 are considered. Returns the result of transformation.
Throws an IllegalStateException if the instance is not yet initialized. Throws
an TransformerException if a transformation-related exception occurs during the
operation.

[Function]byte[] lastUpdate (byte[] in, int offset, int length) throws
TransformerException

Returns the result of processing a designated length bytes from the given in byte array,
starting at index position offset and signals, at the same time, that this is the last push
operation on this Transformer. Throws an IllegalStateException if the instance
is not yet initialized. Throws an TransformerException if a transformation-related
exception occurs during the operation.

5.13 Example

The following example shows an Assembly that compresses its input data, before en-
crypting it with a Blowfish algorithm, in OFB mode, with PKCS7 padding.

import gnu.crypto.Registry;
import gnu.crypto.util.Util;
import gnu.crypto.assembly.Assembly;
import gnu.crypto.assembly.Cascade;
import gnu.crypto.assembly.Direction;
import gnu.crypto.assembly.Stage;
import gnu.crypto.assembly.Transformer;
import gnu.crypto.assembly.TransformerException;
import gnu.crypto.cipher.Blowfish;
import gnu.crypto.cipher.IBlockCipher;
import gnu.crypto.mode.IMode;

Chapter 5: Cascades and Assemblies 27

import gnu.crypto.mode.ModeFactory;
import gnu.crypto.pad.IPad;
import gnu.crypto.pad.PadFactory;

HashMap attributes = new HashMap();
HashMap modeAttributes = new HashMap();

Cascade ofbBlowfish = new Cascade();
Object modeNdx = ofbBlowfish.append(

Stage.getInstance(
ModeFactory.getInstance(Registry.OFB_MODE, new Blowfish(), 8),
Direction.FORWARD));

attributes.put(modeNdx, modeAttributes);
IPad pkcs7 = PadFactory.getInstance(Registry.PKCS7_PAD);

Assembly asm = new Assembly();
asm.addPreTransformer(Transformer.getCascadeTransformer(ofbBlowfish));
asm.addPreTransformer(Transformer.getPaddingTransformer(pkcs7));
asm.addPreTransformer(Transformer.getDeflateTransformer());

// plaintext and key material
byte[] km = new byte[] { 0, 1, 2, 3, 4, 5, 6, 7, 8};
byte[] iv = new byte[] {-1, -2, -3, -4, -5, -6, -7, -8, -9};
byte[] pt = new byte[] { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11};
byte[] tpt = new byte[11 * pt.length];

// forward transformation
modeAttributes.put(IBlockCipher.KEY_MATERIAL, km);
modeAttributes.put(IMode.IV, iv);
attributes.put(Assembly.DIRECTION, Direction.FORWARD);
try
{

asm.init(attributes);
}

catch (TransformerException x)
{

x.printStackTrace(System.err);
}

byte[] ct = null;
ByteArrayOutputStream baos = new ByteArrayOutputStream();
try
{

for (int i = 0; i < 10; i++)
{ // transform in parts of 12-byte a time
System.arraycopy(pt, 0, tpt, i * pt.length, pt.length);

Chapter 5: Cascades and Assemblies 28

ct = asm.update(pt);
baos.write(ct, 0, ct.length);

}
}

catch (TransformerException x)
{

x.printStackTrace(System.err);
}

try
{

System.arraycopy(pt, 0, tpt, 10 * pt.length, pt.length);
ct = asm.lastUpdate(pt);

}
catch (TransformerException x)
{

x.printStackTrace(System.err);
}

baos.write(ct, 0, ct.length);
ct = baos.toByteArray();

// reversed transformation
attributes.put(Assembly.DIRECTION, Direction.REVERSED);
try
{

asm.init(attributes);
}

catch (TransformerException x)
{

x.printStackTrace(System.err);
}

byte[] ot = null;
try
{

ot = asm.lastUpdate(ct); // transform the lot in one go
}

catch (TransformerException x)
{

x.printStackTrace(System.err);
}

Chapter 6: Message Digests 29

6 Message Digests

Message digests, or one-way hash functions, generate fixed-sized signatures from variable-
sized texts, in such a way that it is computationally infeasible to determine the source text
from the signature or to find a different text that hashes to the same signature. Hash
functions in GNU Crypto are in the gnu.crypto.hash package, and are:

• MD2. MD2 is an early-generation hash function with an 128 bit output size, developed
by Ron Rivest at RSA Data Security, Inc., and described by Burton Kaliski in RFC
1319 [Kal92]. No significant cryptanalysis has been published about MD2, but it is
still recommended that new applications use a different message digest algorithm.

• MD4. MD4 was also developed by Ron Rivest at RSA Data Security, Inc. and is
described by Rivest in RFC 1320 [Riv92a]. MD4 has a 128 bit output size. It is not
recommended that MD4 be used in new applications.

• MD5. MD5 is a successor to MD4, developed by Ron Rivest and described in RFC
1321 [Riv92b], and has a 128 bit output size. MD5 is not widely considered secure any
longer, and using other message digests with longer output sizes is recommended.

• RIPEMD. RIPEMD-128 and RIPEMD-160 have 128 bit and 160 bit output sizes, and
were developed by Hans Dobbertin, Antoon Bosselaers, and Bart Preneel as successors
to the RIPEMD hash.

• The Secure Hash Algorithm, SHA-1. The secure hash algorithm was developed by
the National Institute for Standards and Technology, published in FIPS 180-1. SHA-1
has a 160 bit output length. FIPS 180-2, dated August 2002, added the specifications
for three additional SHA implementations for output sizes of 256-, 384- and 512-bit
respectively. These three algorithms are referred to as SHA-256, SHA-384 and SHA-
512.

• Tiger is a hash function created by Lars Anderson and Eli Biham, optimized for 64-bit
architectures. It can produce a 192, 160, or 128 bit hash. [AnB96]

• Whirlpool. Whirlpool was designed by Paulo S. L. M. Barreto and Vincent Rijmen,
and has a 512 bit output length.

Chapter 6: Message Digests 30

6.1 IMessageDigest Interface

Figure 8: Message Digest class diagram

[Function]void update (byte b)
Updates the hash being computed with a single byte.

[Function]void update (byte[] buf, int offset, int length)
Update the hash being computed with length of the bytes in buf starting at offset.
The programmer should ensure that buf is at least offset + length bytes long.

[Function]byte[] digest ()
Finishes the computation of the hash and returns the result as a byte array. The input
read thusfar may be padded first (depending on the algorithm), and the instance is
reset.

[Function]java.lang.String name ()
Returns the canonical name of this message digest.

[Function]int hashSize ()
Returns the size of the final hash (the byte array returned by digest()) in bytes.

Chapter 6: Message Digests 31

[Function]int blockSize ()
Returns the algorithm’s internal block size, in bytes.

[Function]void reset ()
Resets the internal state of the hash, making its state equivalent to that of a newly-
created instance.

[Function]boolean selfTest ()
Performs a simple conformance test of the underlying implementation, to guard
against implementation or environment errors. Returns true if the test succeeds,
false if it fails.

[Function]java.lang.Object clone ()
Copies the state of this instance into a new instance, returning the copy. This copy
can then be used in the same way as the original instance.

6.2 HashFactory Class

Message digest instances are created with the static factory method:

[Function]IMessageDigest getInstance (java.lang.String name)
Creates a message digest instance for the algorithm name, or null if there is no such
algorithm.

The HashFactory class also defines the method:

[Function]java.util.Set getNames ()
Returns a set of the names (strings) of all available message digest implementations.

6.3 Example

IMessageDigest md = HashFactory.getInstance("SHA-1");
md.update(input, 0, input.length);

byte[] digest = md.digest();

Chapter 7: Message Authentication Codes 32

7 Message Authentication Codes

A message authentication code, or MAC, is akin to a keyed hash function, in that it
produces a fixed-length identifier for variable-length data along with a key. The purpose
of a MAC is to guarantee the integrity and authenticity of data, as it is computationally
infesible to fake a MAC without knowledge of the key. MAC algorithms in GNU Crypto
are in the gnu.crypto.mac package, and include:
• Hash-based MAC. Hash-based MACs, also called HMACs, use a normal message digest

algorithm to compute the code based on input data and the key. GNU Crypto therefore
implements an HMAC for every message digest it supports, and the name of a HMAC
is usually “HMAC-” concatenated with the message digest’s name; see the previous
chapter on message digests for further discussion.

• The Truncated Multi-Modular Hash function, TMMH. TMMH/16 and TMMH/32
are universal hash functions; GNU Crypto implements TMMH/16. TMMH/16 has a
variety of parameters, which are described later in this chapter. TMMH is described
in [McG02].

• UHASH-32. UHASH-32 is a keyed hash function that outputs a hash of 8 bytes. The
key supplied to this MAC must be 16 bytes long. UHASH is described in [Kro00].

• UMAC-32. The UMAC family of algorithms are parameterized, meaning that low-level
choices such as endianness and the underlying cryptographic primitive are not fixed.
The UMAC algorithms are described in [Kro00]. GNU Crypto implements UMAC-32,
which performs well on 32- and 64-bit architectures, and has a key length of 16 bytes
and an output length of 8 bytes. See the section on UMAC-32 for further discussion.

7.1 IMac Interface

[Variable]java.lang.String MAC KEY MATERIAL
A key in the attributes map passed to the init method. The value is taken to be a
byte array, which contains the key as raw bytes. The length of the key must be at
least the length of the computed hash in the case of hash-based MACs.

[Variable]java.lang.String TRUNCATED SIZE
The actual size of the returned hash, taken from the first bytes of the raw result. The
value must be a java.lang.Integer containing the desired length, which should not
be smaller than 80 bits or one half the MAC’s usual output length, whichever is larger.

[Function]void init (java.util.Map attributes) throws
java.security.InvalidKeyException, java.lang.IllegalStateException

Initializes this MAC instance with a specified attributes map, which maps keys
(such as MAC_KEY_MATERIAL) to parameters (such as the key bytes). Throws a
java.security.InvalidKeyException if the key is unacceptable or omitted, and
trows a java.lang.IllegalStateException if this instance has already been ini-
tialized.

Chapter 7: Message Authentication Codes 33

Figure 9: Message Authentication Code (MAC) class diagram

[Function]void update (byte b)
Continues the computation of the MAC with a single input byte, b.

[Function]void update (byte[] in, int offset, int length)
Continues the computation of the MAC with a portion of the byte array in, starting
at offset and considering length bytes.

[Function]byte[] digest ()
Finishes the computation of the MAC and returns it in a new byte array. The instance
is reset after this method returns.

[Function]void reset ()
Resets the internal state of this instance, which may then be re-initialized.

Chapter 7: Message Authentication Codes 34

[Function]int macSize ()
Returns the size of the final MAC, in bytes.

[Function]java.lang.String name ()
Returns the canonical name of this algorithm.

[Function]java.lang.Object clone ()
Returns a copy of this instance, which may be used the same way as the original.

[Function]boolean selfTest ()
Performs a simple conformance test on this implementation; returns true if the test
is successful, false if not.

7.2 MacFactory Class

MAC instances are created with the following factory method:

[Function]IMac getInstance (java.lang.String name)
Returns an instance of the MAC algorithm named name, or null if no such algorithm
exists.

Additionally the MacFactory class defines the following method:

[Function]java.util.Set getNames ()
Returns a java.util.Set of the names of all available MAC algorithms.

7.3 TMMH/16

In addition to the key, the TMMH/16 requires three more parameters passed to its init
method, using the following three keys:

[Variable]java.lang.String TAG LENGTH
The output length, in bytes, represented as a java.lang.Integer. This value must
be an even integer between 2 and 64.

[Variable]java.lang.String KEYSTREAM
An instance of gnu.crypto.prng.IRandom, which is to serve as the source of random
bytes for this instance.

[Variable]java.lang.String PREFIX
A byte array of TAG_LENGTH bytes. If this parameter is omitted an all-zero byte array
will be used. This value is XORed with the digest just before it is returned.

Chapter 7: Message Authentication Codes 35

7.4 UMAC-32

The UMAC-32 algorithm requires, in addition to the key, a nonce byte array. The byte
array must be 1–16 bytes of random data, which is passed to the init method of IMac in
the attributes map. UMac32 defined an additional key for this map:

[Variable]java.lang.String NONCE MATERIAL
The key for the nonce material for the attributes map. The value mapped must be a
byte array of size 1–16 bytes.

7.5 Example

IMac mac = MacFactory.getInstance("HMAC-SHA-160");
HashMap attributes = new HashMap();
attributes.put(IMac.MAC_KEY_MATERIAL, key_bytes);
attributes.put(IMac.TRUNCATED_SIZE, new Integer(12));
mac.init(attributes);

mac.update(input, 0, input.length);

byte[] result = mac.digest();

Chapter 8: Keypairs and Key Agreements 36

8 Keypairs and Key Agreements

This chapter is about keypairs. In the first section, keypair generation and keypair
encoding and decoding concepts and API are described. The second section deals with key
agreement protocols.

The code is organised into subpackages, each pertaining to a keypair algorithm. Four
such algorithms are covered in this version of the library. They are:

• dh: Diffie-Hellman. The apparent intractability of this algorithm forms the basis for
the security of many cryptographic schemes.

• dss: Digital Signature Standard.
• rsa: Named after its inventors Ron Rivest, Adi Shamir, and Leonard Adleman. Its

security is based on the intractibility of the integer factorization problem.
• srp6: As described in Thomas Wu’s paper "SRP-6: Improvements and Refinements to

the Secure Remote Password Protocol," dated October 29, 2002. [Wu02]

8.6 Keypairs

The following class diagram shows the most important classes in the library that collab-
orate to implement the keypair generation functionality:

Chapter 8: Keypairs and Key Agreements 37

Figure 10: Keypair generation class diagram
The next figure is a sequence diagram showing the entities and messages involved in

using those classes:

Figure 11: Keypair generation sequence diagram

8.7 Algorithm-Specific Attributes

8.7.1 Diffie-Hellman

Each of these constants are defined in the gnu.crypto.key.dh.GnuDHKeyPairGenerator
class.

[Variable]java.lang.String SOURCE OF RANDOMNESS
Property name for the source of random bits to use when generating keys. The value
mapped by this property must be of type gnu.crypto.prng.IRandom which must
have been previously initialized. If undefined, then a default PRNG is used.

[Variable]java.lang.String DH PARAMETERS
Property name for an optional javax.crypto.spec.DHGenParameterSpec instance
to use for this generator.

[Variable]java.lang.String PRIME SIZE
Property name of the size in bits (an instance of java.lang.Integer) of the public
prime p.

[Variable]java.lang.String EXPONENT SIZE
Property name of the size in bits (an instance of java.lang.Integer) of the private
exponent x.

Chapter 8: Keypairs and Key Agreements 38

8.7.2 DSS

Each of these constants are defined in the gnu.crypto.key.dss.DSSKeyPairGenerator
class.

[Variable]java.lang.String SOURCE OF RANDOMNESS
Property name for the source of random bits to use when generating keys. The value
mapped by this property must be of type gnu.crypto.prng.IRandom which must
have been previously initialized. If undefined, then a default PRNG is used.

[Variable]java.lang.String DSS PARAMETERS
Property name of an optional java.security.spec.DSAParameterSpec instance to
use for this generator’s p, q, and g values. The default is to generate these values or
use pre-computed ones, depending on the value of the USE DEFAULTS attribute.

[Variable]java.lang.String MODULUS LENGTH
Property name for the modulus length, in bits. The value mapped by this property
must be of type java.lang.Integer.

[Variable]java.lang.String USE DEFAULTS
Property name of an instance of java.lang.Boolean indicating wether or not
to use pre-computed default values for the algorithm parameters. Three sets of
such parameters are also provided covering 512-bit (KEY PARAMS 512, 768-bit
(KEY PARAMS 768) and 1024-bit (KEY PARAMS 512) keylength.

8.7.3 RSA

Each of these constants are defined in the gnu.crypto.key.rsa.RSAPSSKeyPairGenerator
class.

[Variable]java.lang.String SOURCE OF RANDOMNESS
Property name for the source of random bits to use. The value mapped by this prop-
erty must be of type gnu.crypto.prng.IRandom, which must have been previously
initialized. If undefined, then a default PRNG is used.

[Variable]java.lang.String MODULUS LENGTH
Property name for the length, in bits, of the modulus. The value mapped by this
property must be of type java.lang.Integer.

[Variable]java.lang.String RSA PARAMETERS
Property name for the optional values of e and n. The value mapped by this property
must be of type java.security.spec.RSAKeyGenParameterSpec Random or default
values will be used instead if this parameter is not specified.

Chapter 8: Keypairs and Key Agreements 39

8.7.4 SRP6

Each of these constants are defined in the gnu.crypto.key.srp6.SRPKeyPairGenerator
class.

[Variable]java.lang.String SOURCE OF RANDOMNESS
Property name for the source of random bits to use. The value mapped by this prop-
erty must be of type gnu.crypto.prng.IRandom, which must have been previously
initialized. If undefined, then a default PRNG is used.

[Variable]java.lang.String MODULUS LENGTH
Property name of the length (an instance of java.lang.Integer) of the modulus N
of an SRP key.

[Variable]java.lang.String SHARED MODULUS
Property name of the value of the modulus N of an SRP key. The value mapped by
this property, if/when defined, must be of type java.math.BigInteger. It is an op-
tional parameter. If undefined, then a new value is generated, unless USE DEFAULTS
is set to TRUE.

[Variable]java.lang.String GENERATOR
Property name of the value of the generator g of an SRP key. The value mapped by
this property, if/when defined, must be of type java.math.BigInteger. It is an op-
tional parameter. If undefined, then a new value is generated, unless USE DEFAULTS
is set to TRUE.

[Variable]java.lang.String USE DEFAULTS
Property name of an instance of java.lang.Boolean indicating wether or not to use
pre-computed default values for the algorithm parameters. Seven sets of such parame-
ters are also provided covering 512-bit (N 512, 640-bit (N 640), 768-bit (N 768), 1024-
bit (N 1024), 1280-bit (N 1280), 1536-bit (N 1536) and 2048-bit (N 2048) shared
modulus length.

Chapter 8: Keypairs and Key Agreements 40

8.8 The IKeyPairGenerator Interface

All signature algorithms in GNU Crypto have their corresponding key pair generators,
which implement this interface and provide the following methods:

[Function]void setup (java.util.Map attributes) throws
java.lang.IllegalArgumentException

Initializes this key pair generator with the given attrubutes. The property names
used are algorithm-dependent, and are described in the next section. This method
throws a java.lang.IllegalArgumentException if the given attributes are incorrect
or incomplete.

[Function]java.security.KeyPair generate ()
Generates and returns a new key pair based on the attributes used to configure this
instance.

[Function]java.lang.String name ()
Returns the canonical name of the algorithm this class generates key pairs for.

8.9 The KeyPairGeneratorFactory Class

[Function]IKeyPairGenerator getInstance (java.lang.String algorithm)
Returns an instance of a key pair generator for algorithm, or null if no such generator
is available.

[Function]java.util.Set getNames ()
Returns an unmodifiable set of all available key pair generator algorithms, each entry
a java.lang.String.

8.10 The IKeyPairCodec Interface

A key pair codec is used to externalize and de-externalize the key pairs used in GNU
Crypto. There is no factory class, but rather the implementations have public, zero-
argument constructors. The available codecs are:
• gnu.crypto.key.dh.DHKeyPairRawCodec, for encoding and decoding Diffie-Hellman

key pairs.
• gnu.crypto.key.dss.DSSKeyPairRawCodec, for encoding and decoding DSS key pairs.
• gnu.crypto.key.rsa.RSAKeyPairRawCodec, for encoding and decoding RSA key

pairs.
• gnu.crypto.key.srp6.SRPKeyPairRawCodec, for encoding and decoding SRP key

pairs.

[Variable]int RAW FORMAT
Constant identifying the “raw” format used by GNU Crypto.

Chapter 8: Keypairs and Key Agreements 41

[Function]java.security.PrivateKey decodePrivateKey (byte[] encoded)
Decodes a private key from its external representation, returning it as an
appropriate instance of java.security.PrivateKey. This function will throw a
java.lang.IllegalArgumentException if the encoded bytes cannot be decoded or
are incorrect.

[Function]java.security.PublicKey decodePublicKey (byte[] encoded)
Decodes a public key from its external representation, returning it as an
appropriate instance of java.security.PublicKey. This function will throw a
java.lang.IllegalArgumentException if the encoded bytes cannot be decoded or
are incorrect.

[Function]byte[] encodePrivateKey (java.security.PrivateKey key)
Encodes a private key to its external representation, returning the encoded bytes.
This function will throw a java.lang.IllegalArgumentException if the key cannot
be encoded by this instance.

[Function]byte[] encodePublicKey (java.security.PublicKey key)
Encodes a public key to its external representation, returning the encoded bytes. This
function will throw a java.lang.IllegalArgumentException if the key cannot be
encoded by this instance.

[Function]int getFormatID ()
Returns the format identifier of this codec, such as RAW_FORMAT.

8.11 Example

The following example demonstrates how to generate a DSS keypair.

IKeyPairGenerator kpg = KeyPairGeneratorFactory.getInstance(Registry.DSS_KPG);
HashMap map = new HashMap();
map.put(DSSKeyPairGenerator.MODULUS_LENGTH, new Integer(512));
map.put(DSSKeyPairGenerator.USE_DEFAULTS, new Boolean(false));
kpg.setup(map);
KeyPair kp = kpg.generate();

BigInteger p1 = ((DSAPublicKey) kp.getPublic()).getParams().getP();
BigInteger p2 = ((DSAPrivateKey) kp.getPrivate()).getParams().getP();

BigInteger q1 = ((DSAPublicKey) kp.getPublic()).getParams().getQ();
BigInteger q2 = ((DSAPrivateKey) kp.getPrivate()).getParams().getQ();

BigInteger g1 = ((DSAPublicKey) kp.getPublic()).getParams().getG();
BigInteger g2 = ((DSAPrivateKey) kp.getPrivate()).getParams().getG();

8.12 Key Agreements

Chapter 8: Keypairs and Key Agreements 42

8.13 Protocols

A key agreement protocol is a means by which two parties engage in an exchange of
incoming/outgoing messages, at the end of which, both participants would share a common
secret. Such a shared secret can then be used to provide different security services such as
replay detection, integrity protection, and confidentiality protection.

Figure 12: Key agreement class diagram
Four key agreement protocols are implemented in this library. They are:

• Diffie-Hellman basic version, also known as the Static-Static Mode in RFC-2631.
[RFC2631]

• ElGamal version, knwon as half-certified Diffie-Hellman key agreement, as well as
Ephemeral-Static Mode in RFC-2631. [RFC2631]

• Secure Remote Password protocol known as SRP-6. [Wu02]
• The version of SRP-6 as used in the SASL-SRP proposed mechanism.

The following sequence diagram shows a possible use of the key agreement API classes
to negotiate a Diffie-Hellman protocol:

Chapter 8: Keypairs and Key Agreements 43

Figure 13: Key agreement sequence diagram

8.14 The IKeyAgreementParty Interface

[Function]java.lang.String name ()
Returns the canonical name of the key agreement protocol.

[Function]void init (java.util.Map attributes) throws
gnu.crypto.key.KeyAgreementException

Initializes this instance. The attributes parameter must be a java.util.Map
that has the required name-value pairs needed for this instance. An instance of
gnu.crypto.key.KeyAgreementException is thrown if an exception occurs during
this process.

[Function]gnu.crypto.key.OutgoingMessage processMessage
(gnu.crypto.key.IncomingMessage in) throws
gnu.crypto.key.KeyAgreementException

Processes an incoming message (in) at one end, generating a message (the returned
object which may be null) that will be processed by the other party(ies). A
gnu.crypto.key.KeyAgreementException may be thrown if an exception occurs
during this process.

[Function]boolean isComplete ()
Returns true if the party in the key agreement protocol exchange has completed
its part of the exchange; and false otherwise. If this method returns false, then
an java.lang.IllegalStateException is thrown for any method invocation except
init.

Chapter 8: Keypairs and Key Agreements 44

[Function]byte[] getSharedSecret () throws
gnu.crypto.key.KeyAgreementException

Returns the byte array containing the shared secret as generated by this party. A
gnu.crypto.key.KeyAgreementException is thrown if the key agreement is not yet
initialised, or is initialised but the exchange is still in progress.

[Function]void reset ()
Resets this instance for re-use with another set of attributes.

8.15 The KeyAgreementFactory class

Instances for two-party key agreement protocols can be instantiated with the Factory
methods of this class:

[Function]gnu.crypto.key.IKeyAgreementParty getPartyAInstance
(java.lang.String name)

Creates an instance of an initiator of a key agreement protocol given the name of
this protocol. A null if there is no such protocol implementation.

[Function]gnu.crypto.key.IKeyAgreementParty getPartyBInstance
(java.lang.String name)

Creates an instance of a recipient of a key agreement protocol given the name of this
protocol. A null if there is no such protocol implementation.

[Function]java.util.Set getNames ()
Returns a set of the names (java.lang.String) of all available key agreement pro-
tocols.

8.16 Example, Key agreement

The following example shows ...

IKeyPairGenerator kpg =
KeyPairGeneratorFactory.getInstance(Registry.DH_KPG);

kpg.setup(new HashMap()); // use default values
KeyPair kpA = kpg.generate();
KeyPair kpB = kpg.generate();
IKeyAgreementParty A = new DiffieHellmanSender();
IKeyAgreementParty B = new DiffieHellmanReceiver();

Map mapA = new HashMap();
mapA.put(DiffieHellmanKeyAgreement.KA_DIFFIE_HELLMAN_OWNER_PRIVATE_KEY,

kpA.getPrivate());
Map mapB = new HashMap();
mapB.put(DiffieHellmanKeyAgreement.KA_DIFFIE_HELLMAN_OWNER_PRIVATE_KEY,

Chapter 8: Keypairs and Key Agreements 45

kpB.getPrivate());

A.init(mapA);
B.init(mapB);

// (1) A -> B: g**x mod p
OutgoingMessage out = A.processMessage(null);

// (2) B -> A: g^^y mod p
out = B.processMessage(new IncomingMessage(out.toByteArray()));

byte[] k2 = B.getSharedSecret();

// A computes the shared secret
out = A.processMessage(new IncomingMessage(out.toByteArray()));

byte[] k1 = A.getSharedSecret();

Chapter 9: Signatures 46

9 Signatures

This chapter describes the digital signature schemes implemented in GNU Crypto. The
package for all signature and related classes is gnu.crypto.sig. The following signature
schemes are implemented:

• DSS, the Digital Signature Standard, was standardized in 1994 by the National Institute
of Standards and Technology in the Federal Information Processing Standards (FIPS)
Publication 186 [FIPS186]. DSS uses the secure hash algorithm (SHA-1) internally,
and produces a 160 bit signature.

• RSA-PSS. This is a digital signature scheme based on the combination of the RSA
algorithm with the Probabilistic Signature Scheme (PSS) encoding scheme. RSA was
invented by Ron Rivest, Adi Shamir, and Leonard Adleman; the PSS encoding was
developed by Mihir Bellare and Phillip Rogaway. During efforts to adopt RSA-PSS
into the IEEE P1363a standards effort, certain adaptations to the original version of
RSA-PSS were made by Mihir Bellare and Phillip Rogaway and also by Burt Kaliski
(the editor of IEEE P1363a) to facilitate implementation and integration into existing
protocols. [JoK00]

9.1 The ISignature Interface

Chapter 9: Signatures 47

Figure 14: Signature class diagram
All digital signature schemes implement the ISignature interface, and support the fol-

lowing methods:

[Variable]java.lang.String SIGNER KEY
A property name in the attributes map that is passed to instances being prepared for
signing. The value mapped by this key must be a java.security.PrivateKey that
is appropriate for the instance’s algorithm (e.g. an instance of DSS would require a
subclass of java.security.interfaces.DSAPrivateKey).

[Variable]java.lang.String VERIFIER KEY
A property name in the attributes map that is passed to instances being
prepared for verifying a signature. The value mapped by this key must be a
java.security.PublicKey that is appropriate for the instance’s algorithm, just as
is the case with the signing key.

[Variable]java.lang.String SOURCE OF RANDOMNESS
A property name in the attributes map that is passed to instances being prepared for
use as either signers or verifiers. The value mapped must be an already-initialized
instance of gnu.crypto.prng.IRandom.

[Function]void setupSign (java.util.Map attributes) throws
java.lang.IllegalArgumentException

Initializes this instance for signing. The attributes parameter must be a
java.util.Map that has, at least, a mapping between the SIGNER_KEY property and
the appropriate private key.

[Function]void setupVerify (java.util.Map attributes) throws
java.lang.IllegalArgumentException

Initializes this instance for verifying a signature. The attributes parameter must be
a java.util.Map that has, at least, a mapping between the VERIFIER_KEY property
and the appropriate public key.

[Function]void update (byte b) throws java.lang.IllegalStateException
Update either the signing or verifying operation with the next byte in the message.
This method will throw a java.lang.IllegalStateException if this instance has
not been initialized for either signing or verifying.

[Function]void update (byte[] buf, int off, int len) throws
java.lang.IllegalStateException

Update either the signing or verifying operation with the next len bytes of buf, start-
ing at offset. This method will throw a java.lang.IllegalStateException if this
instance has not been initialized for either signing or verifying.

Chapter 9: Signatures 48

[Function]java.lang.Object sign () throws java.lang.IllegalStateException
Finishes a signing operation and returns the final signature. This method will throw
a java.lang.IllegalStateException if this instance has not been initialized for
signing.

[Function]boolean verify (java.lang.Object signature) throws
java.lang.IllegalStateException

Finishes a verifying operation by checking if the argument, a native signature object,
matches the expected signature. This methods returns true if the signature is valid,
false otherwise. This method will throw a java.lang.IllegalStateException if
this instance has not been initialized for verifying.

[Function]java.lang.String name ()
Returns the canonical name of this instance’s signature algorithm.

[Function]java.lang.Object clone ()
Returns a copy of this signature object.

9.2 The SignatureFactory Class

Instances of ISignature can be retrieved with the class methods of the
SignatureFactory class:

[Function]ISignature getInstance (java.lang.String name)
Creates an instance of the signature scheme for name, or null if there is no such
algorithm.

[Function]java.util.Set getNames ()
Returns a set of the names (java.lang.String) of all available signature schemes.

Chapter 9: Signatures 49

9.3 The ISignatureCodec Interface

The ISignatureCodec interface defines methods for externalizing and de-externalizing
native signature results, as would be returned by the ISignature.sign() method, or passed
to ISignature.verify() method. The only format currently supported is the “RAW”
codec, which is specific to GNU Crypto.

Each signature scheme implements its own raw codec. There is no factory for codecs,
but rather you should create instances of
• gnu.crypto.sig.dss.DSSSignatureRawCodec if you are reading or writing DSS sig-

natures, or
• gnu.crypto.sig.rsa.RSAPSSSignatureRawCodec if you are reading or writing RSA-

PSS signatures.

Each of these classes has a zero-argument constructor, needs no initialization, and defines
these methods:

[Function]java.lang.Object decodeSignature (byte[] encoded)
Decodes a signature from the byte represention encoded, and returns the signature
in the signature algorithm’s native form. Implementations may throw an unchecked
exception (such as java.lang.IlligalArgumentException) if the argument is im-
properly formatted.

[Function]byte[] encodeSignature (java.lang.Object signature)
Encodes a native signature to an external byte representation. Implementations may
throw an unchecked exception (such as java.lang.IlligalArgumentException) if
the argument is not of the algorithm’s native signature type.

[Function]int getFormatID ()
Returns the format identifier for this codec, such as RAW_FORMAT.

[Variable]int RAW FORMAT
Format identifier for GNU’s “raw” codec.

Chapter 9: Signatures 50

9.4 Signature Example

ISignature dss = SignatureFactory.getInstance("DSS");
Map attrib = new HashMap();
attrib.put(ISignature.SIGNER_KEY, privateDsaKey);
dss.setupSign(attrib);

dss.update(message, 0, message.length);
Object sig = dss.sign();

ISignatureCodec codec = new DSSSignatureRawCodec();
byte[] encoded = codec.encodeSignature(sig);

Object sig2 = codec.decodeSignature(encoded);

attrib.clear();
attrib.put(ISignature.VERIFIER_KEY, publicDsaKey);
dss.setupVerify(attrib);

dss.update(message, 0, message.length);
boolean valid = dss.verify(sig);

Figure 15: Signature sequence diagram

Chapter 10: Random Numbers 51

10 Random Numbers

The pseudo-random number generator (PRNG) classes of GNU Crypto are used to
generate streams of cryptographically secure pseudo-random bytes.

• ARCFOUR is an implementation of the ARCFOUR stream cipher’s keystream gener-
ator. ARCFOUR is the name of a stream cipher that is believed to be compatible with
RSA Data Security, Inc.’s RC4 stream cipher, and is a decendent of an algorithm that
was posted anonymously to a mailing list in 1994.

• ICM, or the Integer Counter Mode PRNG, is an algorithm that creates a PRNG around
a block cipher. The default cipher used in this implementation is Rijndael, the AES.
ICM is described in [McG01].

• MD, or PRNGs based around a cryptographic hash function.
• UMAC-KDF is a PRNG based on the UMAC key derivation function.

Figure 16: PRNG class diagram

10.1 The IRandom Interface

[Function]void init (java.util.Map attributes)
Initializes this PRNG, preparing it for use. Throws an IllegalArgumentException
if the given attributes are not appropriate for this PRNG algorithm.

[Function]byte nextByte () throws LimitReachedException
Returns the next pseudo-random byte in this generator’s sequence. Throws a
LimitReachedException if this generator cannot produce any more bytes of any
quality.

[Function]void nextBytes (byte[] out, int off, int len) throws
LimitReachedException

Fills the buffer out with the next len bytes in this generator’s sequence, storing the
bytes beginning at off. Throws a LimitReachedException if this generator cannot
produce any more bytes of any quality.

Chapter 10: Random Numbers 52

[Function]java.lang.String name ()
Returns the canonical name of this PRNG algorithm.

[Function]java.lang.Object clone ()
Returns a copy of this instance. The copy will be in the exact same state as this
instance, and will be independent of this instance.

10.2 The PRNGFactory Class

[Function]IRandom getInstance (java.lang.String name)
Returns an instance of the named PRNG algorithm, or null if no such named algo-
rithm exists.

[Function]java.util.Set names ()
Returns a java.util.Set of the names (java.lang.String) of all available PRNG
algorithms.

10.3 ARCFour

The ARCFour keystream is implemented in the class ARCFour, which defines the follow-
ing additional constant:

[Variable]java.lang.String ARCFOUR KEY MATERIAL
A property name in the attributes map used to initialize instances of ARCFour. The
value mapped must be a byte array of the secret key, which can be up to 256 bytes
long.

Also note that using the ARCFour PRNG as a stream cipher is as simple as:
IRandom arcfour; // initialized elsewhere.
byte in, out;

out = in ^ arcfour.next();

10.4 MDGenerator

Generic message digest-based PRNGs are implemented via the MDGenerator class, which
defines the following additional constants:

[Variable]java.lang.String MD NAME
A property name in the attributes map used to initialize instances of MDGenerator.
The value mapped must be a String representing the name of the hash function to
use, such as “MD5”. If this attribute is omitted the secure hash algorithm, SHA-1,
is used.

[Variable]java.lang.String SEEED
A property name in the attributes map used to initialize instances of MDGenerator.
The value mapped must be a byte array carrying the seed, with which to seed the
PRNG. This attribute is optional.

Chapter 10: Random Numbers 53

10.5 ICMGenerator

The ICM generator accepts a number of additional parameters, all contained in the
following constants of the ICMGenerator class. The appropriate values, including the limits
of the integral types, are specific to the ICM generator algorithm.

[Variable]java.lang.String BLOCK INDEX LENGTH
A property name in the attributes map used to initialize instances of ICMGenerator.
The value mapped must be a java.lang.Integer.

[Variable]java.lang.String CIPHER
A property name in the attributes map used to initialize instances of ICMGenerator.
The value mapped must be a gnu.crypto.cipher.IBlockCipher, and is the under-
lying cipher used in the algorithm.

[Variable]java.lang.String OFFSET
A property name in the attributes map used to initialize instances of ICMGenerator.
The value mapped must be a java.math.BigInteger or a byte array of the same
length of the underlying cipher’s block size.

[Variable]java.lang.String SEGMENT INDEX
A property name in the attributes map used to initialize instances of ICMGenerator.
The value mapped must be a java.math.BigInteger.

[Variable]java.lang.String SEGMENT INDEX LENGTH
A property name in the attributes map used to initialize instances of ICMGenerator.
The value mapped must be a java.lang.Integer.

10.6 UMacGenerator

The UMac KDF generator accepts the following additional parameters, which are con-
tained in the UMacGenerator class.

[Variable]java.lang.String CIPHER
A property name in the attributes map used to initialize instances of UMacGenerator.
The value mapped must be of type gnu.crypto.cipher.IBlockCipher.

[Variable]java.lang.String INDEX
A property name in the attributes map used to initialize instances of UMacGenerator.
The value mapped must be of type java.lang.Integer.

Chapter 10: Random Numbers 54

10.7 PRNG Example

Map attrib = ...;
IRandom rand = PRNGFactory.getInstance("MD");

attrib.put(MDGenerator.MD_NAME, "MD5");
attrib.put(MDGenerator.SEEED, seedBytes);

random.init(attrib);

for (int i = 0; i < bytes.length; i++)
{

in[i] ^= random.nextByte();
}

random.nextBytes(bytes, 0, bytes.length);

Part 2: External API Support 55

Part 2: External API Support

Chapter 11: JCE Support 56

11 JCE Support

GNU Crypto provides a full JCE (Java Cryptography Environment) provider for all its
algorithms. This chapter breifly describes these classes and how to use them.

11.1 Installing the JCE Classes

Java runtimes such as those based around Classpath, Kaffe, and JREs from Sun and
IBM up to version 1.4 do not include the JCE classes, encompassed by the javax.crypto
package and its subpackages. Furthermore, many commercial Java 1.4 and later runtime
environments do not allow providers to be installed if they are not digitally signed by an
authority. The GNU Crypto developers do not agree with this practice and are not seeking
to have GNU Crypto’s provider signed.

To overcome this GNU Crypto includes a clean-room implementation of the
javax.crypto packages, which is a modified version of the clean-room JCE distributed by
the Legion of the Bouncy Castle http://bouncycastle.org/. If building these classes is
enabled at compile-time, a Java archive file javax-crypto.jar will be built, along with
the appropriate shared native libraries if you are using GCJ. Simply adding it to your
system classpath should suffice, possibly replacing or superceding the jce.jar file that
came with your virtual machine.

The JCE included mirrors most of the features of the reference JCE, except the
ExemptionMechanism classes are omitted. U.S. export rules as of January 2000 no longer
apply to open source software that is freely available on the Internet, so these classes have
no practical use in GNU Crypto.

11.2 Installing the GNU Crypto Provider

The GNU Crypto provider is implemented in the class gnu.crypto.jce.GnuCrypto,
and is available by the name “GNU Crypto”. You can install this provider at run-time by
including in your program a statement such as:

java.security.Security.addProvider(new gnu.crypto.jce.GnuCrypto());

Or by putting the following in your security properties file, usually located at ${JRE_
HOME}/lib/security/${VM_NAME}.security:

security.provider.N=gnu.crypto.jce.GnuCrypto

Where ‘N’ is the appropriate preference number. Doing this, and asserting that the
gnu-crypto.jar file is in your classpath, will complete the installation of the provider.

Chapter 11: JCE Support 57

11.3 List of Available Algorithms

The algorithms available through the GNU Crypto provider are, grouped by type, with
alternate names in parentheses:

Cipher: AES, ANUBIS, ARCFOUR (RC4), BLOWFISH, DES, KHAZAD, RIJN-
DAEL, SERPENT, SQUARE, TRIPLEDES, TWOFISH.
Ciphers may, of course, be appended with any of the modes and paddings available in
GNU Crypto, such as “AES/CBC/TBC”.
KeyPairGenerator: DSS (DSA), RSA.
MAC: HMAC-MD2, HMAC-MD4, HMAC-MD5, HMAC-RIPEMD128 (HMAC-
RIPEMD-128), HMAC-RIPEMD160 (HMAC-RIPEMD-160), HMAC-SHA160
(HMAC-SHA, HMAC-SHA1, HMAC-SHA-160, HMAC-SHS), HMAC-TIGER,
HMAC-WHIRLPOOL, TMMH16, UHASH32, UMAC32.
MessageDigest: MD2, MD4, MD5, RIPEMD128 (RIPEMD-128), RIPEMD-160
(RIPEMD-160), SHA-160 (SHA, SHA1, SHA-1, SHS), TIGER, WHIRLPOOL.
SecureRandom: ARCFOUR (RC4), ICM, MD2PRNG, MD4PRNG, MD5PRNG,
RIPEMD128PRNG, RIPEMD160PRNG, SHA-160PRNG (SHAPRNG, SHA-1PRNG,
SHA1PRNG), TIGERPRNG, WHIRLPOOLPRNG, UMAC-KDF.
Signature: DSS/RAW (SHA/DSA, SHA1/DSA, SHA-1/DSA, SHA-160/DSA, DSAw-
ithSHA, DSAwithSHA1, DSAwithSHA160), RSA-PSS/RAW (RSA-PSS, RSAPSS).

GNU Free Documentation License 58

GNU Free Documentation License

Version 1.1, March 2000
Copyright c© 2000 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE
The purpose of this License is to make a manual, textbook, or other written document
free in the sense of freedom: to assure everyone the effective freedom to copy and
redistribute it, with or without modifying it, either commercially or noncommercially.
Secondarily, this License preserves for the author and publisher a way to get credit for
their work, while not being considered responsible for modifications made by others.
This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.
We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS
This License applies to any manual or other work that contains a notice placed by
the copyright holder saying it can be distributed under the terms of this License. The
“Document”, below, refers to any such manual or work. Any member of the public is
a licensee, and is addressed as “you”.
A “Modified Version” of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into
another language.
A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that
could fall directly within that overall subject. (For example, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding
them.
The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released
under this License.
The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License.

GNU Free Documentation License 59

A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, whose contents can
be viewed and edited directly and straightforwardly with generic text editors or (for
images composed of pixels) generic paint programs or (for drawings) some widely avail-
able drawing editor, and that is suitable for input to text formatters or for automatic
translation to a variety of formats suitable for input to text formatters. A copy made
in an otherwise Transparent file format whose markup has been designed to thwart or
discourage subsequent modification by readers is not Transparent. A copy that is not
“Transparent” is called “Opaque”.
Examples of suitable formats for Transparent copies include plain ascii without
markup, Texinfo input format, LaTEX input format, sgml or xml using a
publicly available dtd, and standard-conforming simple html designed for human
modification. Opaque formats include PostScript, pdf, proprietary formats that can
be read and edited only by proprietary word processors, sgml or xml for which the
dtd and/or processing tools are not generally available, and the machine-generated
html produced by some word processors for output purposes only.
The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

2. VERBATIM COPYING
You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and
that you add no other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for copies.
If you distribute a large enough number of copies you must also follow the conditions
in section 3.
You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY
If you publish printed copies of the Document numbering more than 100, and the
Document’s license notice requires Cover Texts, you must enclose the copies in covers
that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front
cover, and Back-Cover Texts on the back cover. Both covers must also clearly and
legibly identify you as the publisher of these copies. The front cover must present the
full title with all words of the title equally prominent and visible. You may add other
material on the covers in addition. Copying with changes limited to the covers, as long
as they preserve the title of the Document and satisfy these conditions, can be treated
as verbatim copying in other respects.
If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.
If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque

GNU Free Documentation License 60

copy, or state in or with each Opaque copy a publicly-accessible computer-network
location containing a complete Transparent copy of the Document, free of added ma-
terial, which the general network-using public has access to download anonymously at
no charge using public-standard network protocols. If you use the latter option, you
must take reasonably prudent steps, when you begin distribution of Opaque copies
in quantity, to ensure that this Transparent copy will remain thus accessible at the
stated location until at least one year after the last time you distribute an Opaque
copy (directly or through your agents or retailers) of that edition to the public.
It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. MODIFICATIONS
You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of
it. In addition, you must do these things in the Modified Version:
A. Use in the Title Page (and on the covers, if any) a title distinct from that of the

Document, and from those of previous versions (which should, if there were any,
be listed in the History section of the Document). You may use the same title as
a previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has less
than five).

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.
E. Add an appropriate copyright notice for your modifications adjacent to the other

copyright notices.
F. Include, immediately after the copyright notices, a license notice giving the public

permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.
I. Preserve the section entitled “History”, and its title, and add to it an item stating

at least the title, year, new authors, and publisher of the Modified Version as
given on the Title Page. If there is no section entitled “History” in the Document,
create one stating the title, year, authors, and publisher of the Document as given
on its Title Page, then add an item describing the Modified Version as stated in
the previous sentence.

GNU Free Documentation License 61

J. Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
“History” section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

K. In any section entitled “Acknowledgments” or “Dedications”, preserve the sec-
tion’s title, and preserve in the section all the substance and tone of each of the
contributor acknowledgments and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

M. Delete any section entitled “Endorsements”. Such a section may not be included
in the Modified Version.

N. Do not retitle any existing section as “Endorsements” or to conflict in title with
any Invariant Section.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their
titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.
You may add a section entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties—for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.
You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but
you may replace the old one, on explicit permission from the previous publisher that
added the old one.
The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS
You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice.
The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or

GNU Free Documentation License 62

publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.
In the combination, you must combine any sections entitled “History” in the various
original documents, forming one section entitled “History”; likewise combine any sec-
tions entitled “Acknowledgments”, and any sections entitled “Dedications”. You must
delete all sections entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS
You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.
You may extract a single document from such a collection, and distribute it individu-
ally under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.

7. AGGREGATION WITH INDEPENDENT WORKS
A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, does not
as a whole count as a Modified Version of the Document, provided no compilation
copyright is claimed for the compilation. Such a compilation is called an “aggregate”,
and this License does not apply to the other self-contained works thus compiled with
the Document, on account of their being thus compiled, if they are not themselves
derivative works of the Document.
If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one quarter of the entire aggregate, the Document’s
Cover Texts may be placed on covers that surround only the Document within the
aggregate. Otherwise they must appear on covers around the whole aggregate.

8. TRANSLATION
Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original versions
of these Invariant Sections. You may include a translation of this License provided that
you also include the original English version of this License. In case of a disagreement
between the translation and the original English version of this License, the original
English version will prevail.

9. TERMINATION
You may not copy, modify, sublicense, or distribute the Document except as expressly
provided for under this License. Any other attempt to copy, modify, sublicense or
distribute the Document is void, and will automatically terminate your rights under
this License. However, parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such parties remain in full
compliance.

GNU Free Documentation License 63

10. FUTURE REVISIONS OF THIS LICENSE
The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.
Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of
this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation.

http://www.gnu.org/copyleft/

GNU Free Documentation License 64

ADDENDUM: How to use this License for your
documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (C) year your name.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.1
or any later version published by the Free Software Foundation;
with the Invariant Sections being list their titles, with the
Front-Cover Texts being list, and with the Back-Cover Texts being list.
A copy of the license is included in the section entitled ‘‘GNU
Free Documentation License’’.

If you have no Invariant Sections, write “with no Invariant Sections” instead of saying
which ones are invariant. If you have no Front-Cover Texts, write “no Front-Cover Texts”
instead of “Front-Cover Texts being list”; likewise for Back-Cover Texts.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.

Copying GNU Crypto 65

Copying GNU Crypto

GNU Crypto is free software; you can redistribute it and/or modify it under the terms
of the GNU General Public License as published by the Free Software Foundation; either
version 2, or (at your option) any later version.

GNU Crypto is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this
program; see the section “The GNU General Public License” in this manual. If not, write
to the

Free Software Foundation Inc.
59 Temple Place—Suite 330
Boston, MA 02111–1307
USA

Linking this library statically or dynamically with other modules is making a combined
work based on this library. Thus, the terms and conditions of the GNU General Public
License cover the whole combination.

As a special exception, the copyright holders of this library give you permission to link
this library with independent modules to produce an executable, regardless of the license
terms of these independent modules, and to copy and distribute the resulting executable
under terms of your choice, provided that you also meet, for each linked independent module,
the terms and conditions of the license of that module. An independent module is a module
which is not derived from or based on this library. If you modify this library, you may
extend this exception to your version of the library, but you are not obligated to do so. If
you do not wish to do so, delete this exception statement from your version.

GNU General Public License 66

GNU General Public License

Version 2, June 1991
Copyright c© 1989, 1991 Free Software Foundation, Inc.
59 Temple Place - Suite 330, Boston, MA 02111-1307, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share and
change it. By contrast, the GNU General Public License is intended to guarantee your
freedom to share and change free software—to make sure the software is free for all its users.
This General Public License applies to most of the Free Software Foundation’s software
and to any other program whose authors commit to using it. (Some other Free Software
Foundation software is covered by the GNU Library General Public License instead.) You
can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General
Public Licenses are designed to make sure that you have the freedom to distribute copies
of free software (and charge for this service if you wish), that you receive source code or
can get it if you want it, that you can change the software or use pieces of it in new free
programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you
these rights or to ask you to surrender the rights. These restrictions translate to certain
responsibilities for you if you distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you
must give the recipients all the rights that you have. You must make sure that they, too,
receive or can get the source code. And you must show them these terms so they know
their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this
license which gives you legal permission to copy, distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that everyone
understands that there is no warranty for this free software. If the software is modified by
someone else and passed on, we want its recipients to know that what they have is not the
original, so that any problems introduced by others will not reflect on the original authors’
reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid
the danger that redistributors of a free program will individually obtain patent licenses, in
effect making the program proprietary. To prevent this, we have made it clear that any
patent must be licensed for everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

GNU General Public License 67

TERMS AND CONDITIONS FOR COPYING,
DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains a notice placed
by the copyright holder saying it may be distributed under the terms of this General
Public License. The “Program”, below, refers to any such program or work, and a
“work based on the Program” means either the Program or any derivative work under
copyright law: that is to say, a work containing the Program or a portion of it, either
verbatim or with modifications and/or translated into another language. (Hereinafter,
translation is included without limitation in the term “modification”.) Each licensee is
addressed as “you”.
Activities other than copying, distribution and modification are not covered by this
License; they are outside its scope. The act of running the Program is not restricted,
and the output from the Program is covered only if its contents constitute a work based
on the Program (independent of having been made by running the Program). Whether
that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s source code as you
receive it, in any medium, provided that you conspicuously and appropriately publish
on each copy an appropriate copyright notice and disclaimer of warranty; keep intact
all the notices that refer to this License and to the absence of any warranty; and give
any other recipients of the Program a copy of this License along with the Program.
You may charge a fee for the physical act of transferring a copy, and you may at your
option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming a
work based on the Program, and copy and distribute such modifications or work under
the terms of Section 1 above, provided that you also meet all of these conditions:
a. You must cause the modified files to carry prominent notices stating that you

changed the files and the date of any change.
b. You must cause any work that you distribute or publish, that in whole or in part

contains or is derived from the Program or any part thereof, to be licensed as a
whole at no charge to all third parties under the terms of this License.

c. If the modified program normally reads commands interactively when run, you
must cause it, when started running for such interactive use in the most ordinary
way, to print or display an announcement including an appropriate copyright notice
and a notice that there is no warranty (or else, saying that you provide a warranty)
and that users may redistribute the program under these conditions, and telling
the user how to view a copy of this License. (Exception: if the Program itself is
interactive but does not normally print such an announcement, your work based
on the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections
of that work are not derived from the Program, and can be reasonably considered
independent and separate works in themselves, then this License, and its terms, do not
apply to those sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based on the Program,
the distribution of the whole must be on the terms of this License, whose permissions

GNU General Public License 68

for other licensees extend to the entire whole, and thus to each and every part regardless
of who wrote it.
Thus, it is not the intent of this section to claim rights or contest your rights to
work written entirely by you; rather, the intent is to exercise the right to control the
distribution of derivative or collective works based on the Program.
In addition, mere aggregation of another work not based on the Program with the
Program (or with a work based on the Program) on a volume of a storage or distribution
medium does not bring the other work under the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under Section 2)
in object code or executable form under the terms of Sections 1 and 2 above provided
that you also do one of the following:
a. Accompany it with the complete corresponding machine-readable source code,

which must be distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange; or,

b. Accompany it with a written offer, valid for at least three years, to give any third
party, for a charge no more than your cost of physically performing source distri-
bution, a complete machine-readable copy of the corresponding source code, to be
distributed under the terms of Sections 1 and 2 above on a medium customarily
used for software interchange; or,

c. Accompany it with the information you received as to the offer to distribute cor-
responding source code. (This alternative is allowed only for noncommercial dis-
tribution and only if you received the program in object code or executable form
with such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modifi-
cations to it. For an executable work, complete source code means all the source code
for all modules it contains, plus any associated interface definition files, plus the scripts
used to control compilation and installation of the executable. However, as a spe-
cial exception, the source code distributed need not include anything that is normally
distributed (in either source or binary form) with the major components (compiler,
kernel, and so on) of the operating system on which the executable runs, unless that
component itself accompanies the executable.
If distribution of executable or object code is made by offering access to copy from
a designated place, then offering equivalent access to copy the source code from the
same place counts as distribution of the source code, even though third parties are not
compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense or
distribute the Program is void, and will automatically terminate your rights under this
License. However, parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such parties remain in full
compliance.

5. You are not required to accept this License, since you have not signed it. However,
nothing else grants you permission to modify or distribute the Program or its derivative
works. These actions are prohibited by law if you do not accept this License. Therefore,
by modifying or distributing the Program (or any work based on the Program), you
indicate your acceptance of this License to do so, and all its terms and conditions for
copying, distributing or modifying the Program or works based on it.

GNU General Public License 69

6. Each time you redistribute the Program (or any work based on the Program), the
recipient automatically receives a license from the original licensor to copy, distribute
or modify the Program subject to these terms and conditions. You may not impose
any further restrictions on the recipients’ exercise of the rights granted herein. You are
not responsible for enforcing compliance by third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringement or for any
other reason (not limited to patent issues), conditions are imposed on you (whether by
court order, agreement or otherwise) that contradict the conditions of this License, they
do not excuse you from the conditions of this License. If you cannot distribute so as
to satisfy simultaneously your obligations under this License and any other pertinent
obligations, then as a consequence you may not distribute the Program at all. For
example, if a patent license would not permit royalty-free redistribution of the Program
by all those who receive copies directly or indirectly through you, then the only way
you could satisfy both it and this License would be to refrain entirely from distribution
of the Program.
If any portion of this section is held invalid or unenforceable under any particular
circumstance, the balance of the section is intended to apply and the section as a
whole is intended to apply in other circumstances.
It is not the purpose of this section to induce you to infringe any patents or other
property right claims or to contest validity of any such claims; this section has the
sole purpose of protecting the integrity of the free software distribution system, which
is implemented by public license practices. Many people have made generous contri-
butions to the wide range of software distributed through that system in reliance on
consistent application of that system; it is up to the author/donor to decide if he or
she is willing to distribute software through any other system and a licensee cannot
impose that choice.
This section is intended to make thoroughly clear what is believed to be a consequence
of the rest of this License.

8. If the distribution and/or use of the Program is restricted in certain countries either
by patents or by copyrighted interfaces, the original copyright holder who places the
Program under this License may add an explicit geographical distribution limitation
excluding those countries, so that distribution is permitted only in or among countries
not thus excluded. In such case, this License incorporates the limitation as if written
in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the General
Public License from time to time. Such new versions will be similar in spirit to the
present version, but may differ in detail to address new problems or concerns.
Each version is given a distinguishing version number. If the Program specifies a
version number of this License which applies to it and “any later version”, you have
the option of following the terms and conditions either of that version or of any later
version published by the Free Software Foundation. If the Program does not specify a
version number of this License, you may choose any version ever published by the Free
Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs whose distri-
bution conditions are different, write to the author to ask for permission. For software
which is copyrighted by the Free Software Foundation, write to the Free Software Foun-
dation; we sometimes make exceptions for this. Our decision will be guided by the two

GNU General Public License 70

goals of preserving the free status of all derivatives of our free software and of promoting
the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLI-
CABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPY-
RIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM “AS
IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE
RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH
YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST
OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO
MAY MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED
ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL,
SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF
THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT
LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR
LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE
PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH
HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

END OF TERMS AND CONDITIONS

GNU General Public License 71

Appendix: How to Apply These Terms to Your New
Programs

If you develop a new program, and you want it to be of the greatest possible use to
the public, the best way to achieve this is to make it free software which everyone can
redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the
start of each source file to most effectively convey the exclusion of warranty; and each file
should have at least the “copyright” line and a pointer to where the full notice is found.

one line to give the program’s name and a brief idea of what it does.

Copyright (C) yyyy name of author

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the

Free Software Foundation, Inc.
59 Temple Place - Suite 330
Boston, MA 02111-1307
USA

Also add information on how to contact you by electronic and paper mail.
If the program is interactive, make it output a short notice like this when it starts in an

interactive mode:

Gnomovision version 69, Copyright (C) 19yy name of author

Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type
‘show w’. This is free software, and you are welcome to redistribute
it under certain conditions; type ‘show c’ for details.

The hypothetical commands ‘show w’ and ‘show c’ should show the appropriate parts of
the General Public License. Of course, the commands you use may be called something
other than ‘show w’ and ‘show c’; they could even be mouse-clicks or menu items—whatever
suits your program.

You should also get your employer (if you work as a programmer) or your school, if any,
to sign a “copyright disclaimer” for the program, if necessary. Here is a sample; alter the
names:

GNU General Public License 72

Yoyodyne, Inc., hereby disclaims all copyright interest in the program
‘Gnomovision’ (which makes passes at compilers) written by James Hacker.

signature of Ty Coon, 1 April 1989
Ty Coon, President of Vice

This General Public License does not permit incorporating your program into proprietary
programs. If your program is a subroutine library, you may consider it more useful to permit
linking proprietary applications with the library. If this is what you want to do, use the
GNU Library General Public License instead of this License.

Acknowledgements 73

Acknowledgements

Many people contribute to the GNU Crypto project, and in many different capacities.
Any omission to this list is accidental. Feel free to contact raif@fl.net.au if you have
been left out.

Barreto, Paulo S. L. M. paulo.barreto@terra.com.br

Ferrier, Nic nferrier@tapsellferrier.co.uk

Kmett, Edward ekmett@cxss.com

Koch, Werner wk@gnupg.org

Louchart-Fletcher, Olivier olivier@zipworld.com.au

Marshall, Casey rsdio@metastatic.org

Naffah, Raif S. raif@fl.net.au

Osvik, Dag Arne osvik@ii.uib.no

Selensminde, Gisle gselens@broadpark.no

Wielaard, Mark mark@klomp.org

Wu, Thomas J. tom@arcot.com

mailto:raif@fl.net.au
mailto:paulo.barreto@terra.com.br
mailto:nferrier@tapsellferrier.co.uk
mailto:ekmett@cxss.com
mailto:wk@gnupg.org
mailto:olivier@zipworld.com.au
mailto:rsdio@metastatic.org
mailto:raif@fl.net.au
mailto:osvik@ii.uib.no
mailto:gselens@broadpark.no
mailto:mark@klomp.org
mailto:tom@arcot.com

Figure Index 74

Figure Index

A
Assembly class diagram . 21

C
Cascade class diagram . 14
Ciphers class diagram . 4

K
Key agreement class diagram 42
Key agreement sequence diagram 42
Keypair generation class diagram 36
Keypair generation sequence diagram 37

M

Message Authentication Code (MAC) class
diagram . 33

Message Digest class diagram 30
Modes class diagram . 7

P
Padding class diagram . 11
PRNG class diagram . 51

S
Signature class diagram . 46
Signature sequence diagram 50
Stages wired in different directions 16
Stages wired in same direction 15

Index 75

Index

A
addPostTransformer function (Assembly) 25
addPreTransformer function (Assembly) 24
Adleman, Leonard . 36, 46
Advanced Encryption Standard (AES) 3
Algorithm-Specific Attributes 36
Anderson, Ross . 3, 29
Anubis cipher . 3
append function (Cascade) 18
Applied Cryptography . 1
Arcfour PRNG . 51
ARCFOUR KEY MATERIAL variable (ARCFour)

. 52
Assembly . 21

B
Barreto, Paulo . 3, 29, 73
Bellare, Mihir . 46
Biham, Eli . 3, 29
blockSize function (IMessageDigest) 30
blockSizes function (Cascade) 18
blockSizes function (IBlockCipher). 5
blockSizes function (Stage) 16
Blowfish cipher . 3
Bosselaers, Antoon . 29

C
Cascade . 14
CBC, cipher block chaining mode 7
CIPHER BLOCK SIZE variable (IBlockCipher)

. 4
ciphers . 3
Classpath . 1
clone function (IBlockCipher) 5
clone function (IMac) . 34
clone function (IMessageDigest) 31
clone function (ISignature) 48
cryptography . 1
CTR, counter mode . 7
currentBlockSize function (Cascade) 19
currentBlockSize function (IBlockCipher) 5
currentBlockSize function (Stage) 17
currentBlockSize function (Transformer) 23

D
Daemen, Joan . 3
Data Encryption Standard. 3
decodeSignature function (ISignatureCodec) . . 49
decryptBlock function (IBlockCipher) 5
DECRYPTION variable (IMode) 8
defaultBlockSize function (IBlockCipher) 5
defaultKeySize function (IBlockCipher) 5
DES cipher . 3

DH algorithm . 36
DH PARAMETERS variable

(GnuDHKeyPairGenerator) 37
Diffie-Hellman algorithm . 36
Diffie-Hellman, key agreement 42
digest function (IMac) . 33
digest function (IMessageDigest) 30
Digital Signature Algorithm 36
Digital Signature Standard 36, 46
Digital Signature Standard (DSS) algorithm . . . 36
Direction . 14
DIRECTION variable (Assembly) 24
DIRECTION variable (Cascade) 17
DIRECTION variable (Stage) 16
DIRECTION variable (Transformer) 22
Dobbertin, Hans . 29
DSA . 36
DSS signature . 46
DSS, algorithm . 36
DSS PARAMETERS variable

(DSSKeyPairGenerator) 38

E
ECB, electronic codebook mode 7
ElGamal, key agreement . 42
encodeSignature function (ISignatureCodec) . . 49
encryptBlock function (IBlockCipher) 5
ENCRYPTION variable (IMode) 8
example, Assembly . 26
example, Cascade . 19
example, cipher . 6
example, Key Agreement . 44
example, Keypair Generation 41
example, message digest . 31
example, modes . 10
example, padding . 13
EXPONENT SIZE variable

(GnuDHKeyPairGenerator) 37

F
FDL, GNU Free Documentation License 58
Ferguson, Neils . 3
Ferrier, Nic . 73

G
generate function (IKeyPairFactory) 40
GENERATOR variable (SRPKeyPairGenerator)

. 39
getCascadeTransformer function (Transformer)

. 22
getDeflateTransformer function (Transformer)

. 22
getFormatID function (ISignatureCodec) 49

Index 76

getInstance function (CipherFactory) 6
getInstance function (HashFactory) 31
getInstance function (MacFactory) 34
getInstance function (ModeFactory) 9
getInstance function (PadFactory) 12
getInstance function (PRNGFactory) 52
getInstance function (SignatureFactory) 48
getInstance function (Stage) 16
getNames function (CipherFactory) 6
getNames function (HashFactory) 31
getNames function (KeyAgreementFactory) 44
getNames function (MacFactory) 34
getNames function (ModeFactory) 9
getNames function (PadFactory) 12
getNames function (SignatureFactory) 48
getPaddingTransformer function (Transformer)

. 22
getPartyAInstance function

(KeyAgreementFactory) 44
getPartyBInstance function

(KeyAgreementFactory) 44
getSharedSecret function (IKeyAgreementParty)

. 43
gnu.crypto.assembly package 14
gnu.crypto.assembly.Assembly class 24
gnu.crypto.assembly.Cascade class 17
gnu.crypto.assembly.Direction class 15
gnu.crypto.assembly.Operation class 21
gnu.crypto.assembly.Stage class 15
gnu.crypto.assembly.Transformer class 21
gnu.crypto.cipher package 3
gnu.crypto.key package . 36
gnu.crypto.key.IKeyAgreementParty class 43
gnu.crypto.key.IKeyPairCodec class 40
gnu.crypto.key.IKeyPairGenerator class 40
gnu.crypto.key.KeyAgreementFactory class. . . 44
gnu.crypto.key.KeyPairGeneratorFactory class

. 40
gnu.crypto.mode package . 7
gnu.crypto.pad package . 11
gnu.crypto.prng package . 51
gnu.crypto.sig package . 46
GPL, GNU General Public License 65, 66

H
Hall, Chris . 3
Handbook of Applied Cryptography 1
hash-based PRNG . 51
HashFactory class . 31
hashSize function (IMessageDigest) 30

I
IBlockCipher interface . 4
ICM PRNG . 51
ICM, integer counter mode . 7
identity cipher . 3
IMessageDigest interface . 30
IMode interface . 7

init function (Assembly) . 25

init function (Cascade) . 18

init function (IBlockCipher) 4

init function (IKeyAgreementParty) 43

init function (IMac) . 32

init function (IPad) . 11

init function (Stage) . 16

init function (Transformer) 23

insert function (Cascade) . 18

introduction . 1

IPad interface . 11

isComplete function (IKeyAgreementParty) 43

ISignatureCodec interface . 49

isPostProcessing function (Transformer) 22

isPreProcessing function (Transformer) 22

IV variable (IMode) . 8

K
Kaliski, Burton . 29

Kelsey, John . 3

KEY MATERIAL variable (IBlockCipher) 4

keySizes function (IBlockCipher) 5

KEYSTREAM variable (TMMH16) 34

Khazad cipher . 3

Kmett, Edward . 73

Knudsen, Lars . 3

Koch, Werner . 73

L
lastUpdate function (Assembly) 26

lastUpdate function (Transformer) 23, 24

Louchart-Flecher, Olivier . 73

M
MAC example . 35

MAC KEY MATERIAL variable (IMac) 32

macSize function (IMac) . 34

Marshall, Casey . 73

MD2 hash . 29

MD4 hash . 29

MD5 hash . 29

Menezes, Alfred J. 1

MODE BLOCK SIZE variable (IMode) 8

ModeFactory class . 9, 34

modes . 7

MODULUS LENGTH variable
(DSSKeyPairGenerator) 38

MODULUS LENGTH variable
(RSAPSSKeyPairGenerator) 38

MODULUS LENGTH variable
(SRPKeyPairGenerator) 39

Index 77

N
Naffah, Raif . 73
name function (IBlockCipher) 4
name function (IKeyAgreementParty) 43
name function (IKeyPairFactory). 40
name function (IMac) . 34
name function (IMessageDigest) 30
name function (IPad) . 12
name function (ISignature) 48
names function (PRNGFactory) 52
National Institute for Standards and Technology

(NIST) . 3, 29
New European Schemes for Signatures, Integrity,

and Encryption (NESSIE) 3
NONCE MATERIAL variable (UMac32). 35

O
OFB, output feedback mode 7
Operation . 21
Osvik, Dag Arne . 73

P
pad function (IPad) . 12
padding . 11
padding schemes . 11
PadFactory class . 12
PKCS #7 padding . 11
PREFIX variable (TMMH16) 34
Preneel, Bart . 29
prepend function (Cascade) 18
PRIME SIZE variable (GnuDHKeyPairGenerator)

. 37
processMessage function (IKeyAgreementParty)

. 43
Protocols. 41

R
Random Numbers . 51
RAW FORMAT variable (ISignatureCodec) . . . 49
RC4 . 51
reset function (Assembly) . 25
reset function (Cascade) . 19
reset function (IBlockCipher) 5
reset function (IKeyAgreementParty) 44
reset function (IMac) . 33
reset function (IMessageDigest) 31
reset function (IPad) . 11
reset function (Stage) . 17
reset function (Transformer) 23
reverse function (Direction) 15
RFC-2631, Ephemeral-Static Mode 42
RFC-2631, Static-Static Mode 42
Rijmen, Vincent . 3, 29
Rijndael cipher . 3
RIPEMD hash . 29
Rivest, Ron . 29, 36, 46
Rogaway, Phillip . 46

RSA algorithm . 36

RSA-PSS signature . 46

RSA PARAMETERS variable
(RSAPSSKeyPairGenerator) 38

S

SASL-SRP, key agreement . 42

Schneier, Bruce. 1, 3

Secure Hash Algorithm . 29

Secure Remote Password algorithm 36

Selensminde, Gisle . 73

selfTest function (Cascade) 19

selfTest function (IBlockCipher) 5

selfTest function (IMac) . 34

selfTest function (IMessageDigest) 31

selfTest function (IPad) . 12

selfTest function (Stage) . 17

Serpent cipher . 3

setMode function (Transformer) 22

setup function (IKeyPairFactory) 40

setupSign function (ISignature) 47

setupVerify function (ISignature) 47

Shamir, Adi . 36, 46

SHARED MODULUS variable
(SRPKeyPairGenerator) 39

sign function (ISignature) 48

signatures . 46

SIGNER KEY variable (ISignature) 47

size function (Cascade) . 18

SOURCE OF RANDOMNESS variable
(DSSKeyPairGenerator) 38

SOURCE OF RANDOMNESS variable
(GnuDHKeyPairGenerator) 37

SOURCE OF RANDOMNESS variable
(ISignature). 47

SOURCE OF RANDOMNESS variable
(RSAPSSKeyPairGenerator) 38

SOURCE OF RANDOMNESS variable
(SRPKeyPairGenerator) 39

Square cipher . 3

SRP . 36

SRP-6, key agreement . 42

SRP-6, SASL . 42

Stage . 14

stages function (Cascade) . 18

STATE variable (IMode) . 7

Index 78

T
TAG LENGTH variable (TMMH16) 34
TBC, trailing bit complement padding 11
The IKeyAgreementParty Interface 41
The IKeyPairCodec Interface 36
The IKeyPairGenerator Interface 36
The KeyAgreementFactory class 41
The KeyPairGeneratorFactory Class 36
Tiger hash . 29
Transformer . 21
Triple-DES cipher . 3
TRUNCATED SIZE variable (IMac) 32
Twofish cipher . 3

U
UMAC-KDF . 51
unpad function (IPad) . 12
update function (Assembly) 25
update function (Cascade) . 19
update function (IMac) . 33
update function (IMessageDigest) 30
update function (IMode) . 8

update function (ISignature). 47
update function (Stage) . 17
update function (Transformer) 23
USE DEFAULTS variable (DSSKeyPairGenerator)

. 38
USE DEFAULTS variable (SRPKeyPairGenerator)

. 39

V
Van Oorschot, Paul C. 1
Vanstone, Scott A. 1
VERIFIER KEY variable (ISignature) 47
verify function (ISignature) 48

W
Wagner, David . 3
Whirlpool hash . 29
Whiting, Doug . 3
Wielaard, Mark . 73
Wu, Thomas . 73
Wu, Thomas J. 36

References 79

References

[Kal92] Burton Kaliski, The MD2 Message-Digest Algorithm, RFC 1319.
See http://www.ietf.org/rfc/rfc1319.txt.

[Kro00] Ted Krovetz, John Black, Shai Halevi, Alejandro Hevia, Hugo Krawczyk, and
Phillip Rogaway, UMAC: Message Authentication Code using Universal Hash-
ing, Internet-Draft, October 2000.
See http://www.cs.ucdavis.edu/~rogaway/umac/draft-krovetz-umac-
01.txt.

[McG02] David A. McGrew, The Truncated Multi-Modular Hash Function (TMMH),
Version Two, Internet-Draft, October 2002.
See http://www.ietf.org/internet-drafts/draft-irtf-cfrg-tmmh-
00.txt.

[MOV96] Alfred J. Menezes, Paul C. Van Oorschot, Scott A. Vanstone (Editor); Handbook
of Applied Cryptography (1992 CRC Press); ISBN 0849385237.

[NIST95] Federal Information Processing Standards Publication 180-1: Secure Hash Stan-
dard. 17 April 1995, National Institute for Standards and Technology.
See http://www.itl.nist.gov/fipspubs/fip180-1.htm.

[NIST01] Federal Information Processing Standards Publication 197: Advanced Encryp-
tion Standard (AES). 26 November 2001, National Institute for Standards and
Technology.
See http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf.

[RFC2631]
Eric Rescorla. Diffie-Hellman Key Agreement Method.
See http://www.ietf.org/rfc/rfc2631.txt.

[Riv92a] Ron Rivest, The MD4 Message-Digest Algorithm, RFC 1320.
See http://www.ietf.org/rfc/rfc1320.txt.

[Riv92b] Ron Rivest, The MD5 Message-Digest Algorithm, RFC 1321.
See http://www.ietf.org/rfc/rfc1321.txt.

[Sch95] Bruce Schneier, Applied Cryptography: Protocols, Algorithms, and Source Code
in C, Second Edition (1995 John Wiley & Sons); ISBN 0471117099.

[Wu02] Thomas J. Wu, SRP-6: Improvements and Refinements to the Secure Remote
Password Protocol (29 October 2002).
See http://srp.stanford.edu/srp6.ps.

	Introduction
	Part 1: The GNU Crypto API
	Ciphers
	The IBlockCipher Interface
	The CipherFactory Class
	Example

	Modes
	The IMode Interface
	The ModeFactory Class
	Example

	Padding
	The IPad Interface
	The PadFactory Class
	Example

	Cascades and Assemblies
	Cascades
	Direction
	Stage
	Cascade
	Example
	Assemblies
	Operation
	Transformer
	Assembly
	Example

	Message Digests
	IMessageDigest Interface
	HashFactory Class
	Example

	Message Authentication Codes
	IMac Interface
	MacFactory Class
	TMMH/16
	UMAC-32
	Example

	Keypairs and Key Agreements
	Keypairs
	Algorithm-Specific Attributes
	Diffie-Hellman
	DSS
	RSA
	SRP6

	The IKeyPairGenerator Interface
	The KeyPairGeneratorFactory Class
	The IKeyPairCodec Interface
	Example
	Key Agreements
	Protocols
	The IKeyAgreementParty Interface
	The KeyAgreementFactory class
	Example, Key agreement

	Signatures
	The ISignature Interface
	The SignatureFactory Class
	The ISignatureCodec Interface
	Signature Example

	Random Numbers
	The IRandom Interface
	The PRNGFactory Class
	ARCFour
	MDGenerator
	ICMGenerator
	UMacGenerator
	PRNG Example

	Part 2: External API Support
	JCE Support
	Installing the JCE Classes
	Installing the GNU Crypto Provider
	List of Available Algorithms

	GNU Free Documentation License
	Copying GNU Crypto
	GNU General Public License
	Acknowledgements
	Figure Index
	Index
	References

