MIT/GNU Scheme User’s Manual

for release 12.1
2021-02-19

by Stephen Adams
Chris Hanson
and the MIT Scheme Team

This manual documents the use of MIT/GNU Scheme 12.1.

Copyright (©) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013,
2014, 2015, 2016, 2017, 2018, 2019, 2020, 2021, 2022 Massachusetts Institute of Technology

Permission is granted to copy, distribute and/or modify this document under
the terms of the GNU Free Documentation License, Version 1.2 or any later
version published by the Free Software Foundation; with no Invariant Sections,
with no Front-Cover Texts and no Back-Cover Texts. A copy of the license is
included in the section entitled “GNU Free Documentation License.”

Table of Contents

Introduction 1
1 Installation................ 3
1.1 Unix Installation ... 3

2 Running Scheme.............. 5
2.1 Basics of Starting Scheme............ L. 5
2.2 Customizing Scheme........o i i 5
2.3 Memory Usage . ..o 6
2.4 Command-Line Optionscooiiiiiiiiiie ... 7
2.5 Custom Command-line Options............o, 9
2.6 Environment Variables 10
2.6.1 Environment Variables for the Microcode 10

2.6.2 Environment Variables for the Runtime System 11

2.6.3 Environment Variables for Edwin......................... 11

2.7 Leaving Scheme i 12

3 Using Schemeiiiii... 13
3.1 The Read-Eval-Print Loop............cooiiiiiiiiiiiiii, 13
3.1.1 The Prompt and Level Number........................... 13

3.1.2 Interruptingo 14

3.1.3 Restarting...... .o 14

3.1.4 The Current REPL Environment 15

3.1.5 REPL Escapes........ccouiiiiiii i 16

3.2 Loading Files. 20
3.3 World Tmagesouuriii i e 21
3.4 Garbage Collection 22

4 Compiling Programs........................... 25
4.1 Compilation Procedures i, 25
4.2 Declarations.t 26
4.2.1 Standard Names...........ooiiiiiiiiiiiiiiiiii . 26

4.2.2 In-line Coding........oouuiiiniii e 26

4.2.3 Operator Replacementcoiiiiiiiiiien... 28

4.2.4 Operator Reduction i 29

4.3 Efficiency Tipso 31
4.3.1 Coding style. ..o 32

4.3.2 Top-level variables............ ... 34

4.3.3 Type and range checkingo L 35

4.3.4 Fixnum arithmetic........... i 35

4.3.5 Flonum arithmetic........ ... 36

ii

5 Debugging......... ... 39
5.1 Subproblems and Reductions, 40
5.2 The Command-Line Debugger 40
5.3 Debugging Aidsot 43
5.4 Advising Procedures.o 46

6 Profiling......... 51

7 GNU Emacs Interface 53

8 Edwin........ 55
8.1 Starting Edwin........ ... i 55
8.2 Leaving EAdwin i 56
8.3 Scheme Mode ...ttt 56
8.4 Evaluation i 57
85 REPL Mode......ooiiii e e 57
8.6 The Edwin Debugger....... ... 58
8.7 Last Resorts.ooiiiii e 59

Appendix A GNU Free Documentation License .. 61
A.1 ADDENDUM: How to use this License for your documents.... 67

Appendix B Environment-variable Index....... 69
Appendix C Option Index....................... 71
Appendix D Variable Index 73

Appendix E Concept Index 75

Introduction

This document describes how to install and use MIT/GNU Scheme, the UnCommon Lisp. It
gives installation instructions for all of the platforms that we support; complete documen-
tation of the command-line options and environment variables that control how Scheme
works; and rudimentary descriptions of how to interact with the evaluator, compile and
debug programs, and use the editor.

This document discusses many operating-system specific features of the MIT/GNU
Scheme implementation. In order to simplify the discussion, we use abbreviations to refer
to some operating systems. When the text uses the term unix, this means any of the unix
systems that we support, including GNU /Linux, macOS, and the BSD variants.

The primary distribution site for this software is
https://www.gnu.org/software/mit-scheme/

Although our software is distributed from other sites and in other media, the complete
distribution and the most recent release is always available at our site.

The release notes for the current release are at
https://www.gnu.org/software/mit-scheme/release.html

To report bugs, use the bug-reporting tool at
https://savannah.gnu.org/projects/mit-scheme/

Please include the output of the identify-world procedure (see Section 2.1 [Basics of
Starting Scheme], page 5), so we know what version of the system you are using.

https://www.gnu.org/software/mit-scheme/
https://www.gnu.org/software/mit-scheme/release.html
https://savannah.gnu.org/projects/mit-scheme/

1 Installation

This chapter describes how to install MIT/GNU Scheme. The release is supported under
various unix operating systems. Read the section detailing the installation for the operating
system that you are using.

1.1 Unix Installation

We will use as an example the installation for GNU/Linux. The installation for other unix
systems is similar. There are several references to ARCH below; these refer to the computer
architecture that Scheme is compiled for: either ‘1386’ ‘x86-64’, ‘aarch64’, or ‘svml’.

MIT/GNU Scheme is distributed as a compressed ‘tar’ file. The tar file contains both
source and binary files; the binary files are pre-compiled Scheme code for a particular
computer architecture. The source files are C programs that need to be compiled.

Requirements
At a minimum, you will need a C compiler (e.g. ‘gcc’) and a ‘make’ program, and a “curses”
library. For example, here are the packages that must be installed on some popular systems:
e Debian-like systems: gcc make m4 libncurses-dev
e CentOS-like systems: gcc make m4 ncurses-devel

e macOS systems: Command line developer tools ‘xcode-select --install’

Additionally, if you want support for X11 graphics, you’ll need:
e Debian-like systems: libx11-dev
e CentOS-like systems: 1ibX11-devel
e macOS systems: XQuartz (from https://www.xquartz.org/)

Steps
In order to install the software, it’s necessary to configure and compile the C code, then to
install the combined C and Scheme binaries, with the following steps.

1. Unpack the tar file, mit-scheme-VERSION-ARCH.tar.gz, into the directory
mit-scheme-VERSION. For example,

tar xzf mit-scheme-VERSION-i386.tar.gz
will create a new directory mit-scheme-VERSION.
2. Move into the src subdirectory of the new directory:
cd mit-scheme-VERSION/src
3. Configure the software:
./configure

By default, the software will be installed in /usr/local, in the subdirectories bin
and 1ib. If you want it installed somewhere else, for example /opt/mit-scheme, pass
the —-prefix option to the configure script, as in ./configure —--prefix=/opt/mit-
scheme.

https://www.xquartz.org/

4 MIT/GNU Scheme 12.1

The configure script accepts all the normal arguments for such scripts, and additionally
accepts some that are specific to MIT/GNU Scheme. To see all the possible arguments
and their meanings, run the command ./configure --help. However, do not specify
the following options, which are all preconfigured to the right values; doing so will
probably cause the build to fail:
-—enable-native-code
—-—enable-host-scheme-test
--enable-cross-compiling
--with-compiler-target
--with-default-target
-—with-scheme-build
4. Build the software:
make
5. Install the software:
make install

Depending on configuration options and file-system permissions, you may need super-
user privileges to do the installation steps.

6. Build the documentation:

cd ../doc
./configure
make

7. Install the documentation:
make install-info install-html install-pdf

Depending on configuration options and file-system permissions, you may need super-
user privileges to do the installation step.

Plugins

After you have installed Scheme you may want to install several plugins. Scheme no longer
uses dynamically loaded microcode modules installed with Scheme. The micromodules have
been converted into plugins: new subsystems that use the C/FFI to dynamically load the
same code. Instead you configure, build, and install additional plugins after installing the
core system.

By default, the following plugins are built and installed: edwin, imail, x11, and
x11-screen. (The latter two only if X11 libraries are installed on your system.) To get all
of the functionality previously available in version 9.2 you will need to build and install the
remaining plugins included in the src subdirectory: blowfish, gdbm, and pgsql. These
plugins are all configured, built, and installed in the GNU standard way. See the README
file in each plugin’s source directory for complete details.

Cleanup

After installing Scheme and your desired plugins, you can delete the source directory:

cd ../..
rm -rf mit-scheme-VERSION

2 Running Scheme

This chapter describes how to run MIT/GNU Scheme. It also describes how you can
customize the behavior of MIT/GNU Scheme using command-line options and environment
variables.

2.1 Basics of Starting Scheme
Under unix, MIT/GNU Scheme is invoked by typing

mit-scheme

at your operating system’s command interpreter. In either case, Scheme will load itself and
print something like this:

Copyright (C) 2019 Massachusetts Institute of Technology
This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

Image saved on Tuesday May 26, 2020 at 10:23:04 PM
Release 10.90 || SF || LIAR/x86-64

This information, which can be printed again by evaluating
(identify-world)

tells you the following version information. ‘Release’ is the release number for the entire
Scheme system. This number is changed each time a new version of Scheme is released.

Following this there may be additional names for specific subsystems. ‘SF’ refers to the
scode optimization program sf; ‘LIAR/ARCH is the native-code compiler, where ARCH is
the native-code architecture it compiles to; ‘Edwin’ is the Emacs-like text editor. There are
other subsystems you can load that will add themselves to this list.

2.2 Customizing Scheme

You can customize your setup by using a variety of tools:

e Command-line options. Many parameters, like memory usage and the location of
libraries, may be varied by command-line options. See Section 2.4 [Command-Line
Options], page 7.

e Shell scripts. You might like to write scripts that invoke Scheme with your favorite
command-line options. For example, you might not have enough memory to run Edwin
or the compiler with its default memory parameters (it will print something like “Not
enough memory for this configuration” and halt when started), so you can write a shell
script that will invoke Scheme with the appropriate -—-heap and other parameters.

e Scheme supports init files: an init file is a file containing Scheme code that is loaded
when Scheme is started, immediately after the identification banner, and before the
input prompt is printed. This file is stored in your home directory, which is normally
specified by the HOME environment variable. Under unix, the file is called .scheme.init.

In addition, when Edwin starts up, it loads a separate init file from your home directory
into the Edwin environment. This file is called .edwin under unix (see Section 8.1
[Starting Edwin], page 55).

6 MIT/GNU Scheme 12.1

You can use both of these files to define new procedures or commands, or to change
defaults in the system.

The -—no-init-file command-line option causes Scheme to ignore the .scheme.init
file (see Section 2.4 [Command-Line Options], page 7).

e FEnvironment variables. Most microcode parameters, and some runtime system and
Edwin parameters, can be specified by means of environment variables. See Section 2.6
[Environment Variables], page 10.

e Icons. With some window managers under X11, it is possible to create icons that invoke
Scheme with different parameters.

2.3 Memory Usage

Some of the parameters that can be customized determine how much memory Scheme uses
and how that memory is used. This section describes how Scheme’s memory is organized
and used; subsequent sections describe command-line options and environment variables
that you can use to customize this usage for your needs.

Scheme uses four kinds of memory:
e A stack that is used for recursive procedure calls.

e A heap that is used for dynamically allocated objects, like cons cells and strings.
Storage used for objects in the heap that become unreferenced is eventually reclaimed
by garbage collection.

e A constant space that is used for allocated objects, like the heap. Unlike the heap,
storage used for objects in constant space is not reclaimed by garbage collection; any
unreachable objects in constant space remain there until the Scheme process is termi-
nated. Constant space is used for objects that are essentially permanent, like procedures
in the runtime system. Doing this reduces the expense of garbage collection because
these objects are no longer copied.

e Some extra storage that is used by the microcode (the part of the system that is
implemented in C).

All kinds of memory except the last may be controlled either by command-line options or
by environment variables.

MIT/GNU Scheme uses a two-space copying garbage collector for reclaiming storage in
the heap. The second space, used only during garbage collection, is dynamically allocated
as needed.

Once the storage is allocated for the constant space and the heap, Scheme will dynam-
ically adjust the proportion of the total that is used for constant space; the stack and
extra microcode storage is not included in this adjustment. Previous versions of MIT/GNU
Scheme needed to be told the amount of constant space that was required when loading
bands with the --band option. Dynamic adjustment of the heap and constant space avoids
this problem.

If the size of the constant space is not specified, it is automatically set to the correct size
for the band being loaded; it is rarely necessary to explicitly set the size of the constant
space. Additionally, each band requires a small amount of heap space; this amount is
added to any specified heap size, so that the specified heap size is the amount of free space
available.

Chapter 2: Running Scheme 7

The Scheme expression ‘(print-gc-statistics)’ shows how much heap and constant
space is available (see Section 3.4 [Garbage Collection], page 22).

2.4 Command-Line Options

Scheme accepts the command-line options detailed in the following sections. The options
may appear in any order, with the restriction that the microcode options must appear before
the runtime options, and the runtime options must appear before any other arguments on
the command line. Any arguments other than these options will generate a warning message
when Scheme starts. If you want to define your own command-line options, see Section 2.5
[Custom Command-line Options]|, page 9.

Note that MIT/GNU Scheme supports only long options, that is, options specified by
verbose names, as opposed to short options, which are specified by single characters. All
options start with two hyphens, for compatibility with GNU coding standards (and most
modern programs).

These are the microcode options:

--band filename

Specifies the initial world image file (band) to be loaded. Searches for filename
in the working directory and the library directories, using the full pathname of
the first readable file of that name. If filename is an absolute pathname (on
unix, this means it starts with /), then no search occurs—filename is tested
for readability and then used directly. If this option isn’t given, the filename is
the value of the environment variable MITSCHEME_BAND, or if that isn’t defined,
all.com; in these cases the library directories are searched, but not the working
directory.

--heap blocks
Specifies the size of the heap in 1024-word blocks. Overrides any default. The
size specified by this option is incremented by the amount of heap space needed
by the band being loaded. Consequently, -—heap specifies how much free space
will be available in the heap when Scheme starts, independent of the amount
of heap already consumed by the band.

—-—constant blocks
Specifies the size of constant space in 1024-word blocks. Overrides any default.
Constant space holds the compiled code for the runtime system and other sub-
systems.

--stack blocks
Specifies the size of the stack in 1024-word blocks. Overrides any default. This
is Scheme’s stack, not the unix stack used by C programs.

—--option-summary
Causes Scheme to write an option summary to standard error. This shows the
values of all of the settable microcode option variables.

--emacs Specifies that Scheme is running as a subprocess of GNU Emacs. This option
is automatically supplied by GNU Emacs, and should not be given under other
circumstances.

MIT/GNU Scheme 12.1

——interactive

——nocore

If this option isn’t specified, and Scheme’s standard I/O is not a terminal,
Scheme will detach itself from its controlling terminal, which prevents it from
getting signals sent to the process group of that terminal. If this option is
specified, Scheme will not detach itself from the controlling terminal.

This detaching behavior is useful for running Scheme as a background job. For
example, using Bourne shell, the following will run Scheme as a background job,
redirecting its input and output to files, and preventing it from being killed by
keyboard interrupts or by logging out:

mit-scheme < /usr/cph/foo.in > /usr/cph/foo.out 2>&1 &

This option is ignored under non-unix operating systems.
Specifies that Scheme should not generate a core dump under any circum-

stances. If this option is not given, and Scheme terminates abnormally, you
will be prompted to decide whether a core dump should be generated.

This option is ignored under non-unix operating systems.

--library path

Sets the library search path to path. This is a list of directories that is searched
to find various library files, such as bands. If this option is not given, the
value of the environment variable MITSCHEME_LIBRARY_PATH is used; if that
isn’t defined, the default is used.

On unix, the elements of the list are separated by colons, and the default value
is /usr/local/lib/mit-scheme-ARCH.

—-fasl filename

Specifies that a cold load should be performed, using filename as the initial file
to be loaded. If this option isn’t given, a normal load is performed instead.
This option may not be used together with the —-band option. This option is
useful only for maintenance and development of the MIT/GNU Scheme runtime
system.

The following options are runtime options. They are processed after the microcode options
and after the image file is loaded.

—--no-init-file

This option causes Scheme to ignore the ${HOME}/ . scheme. init file, normally
loaded automatically when Scheme starts (if it exists).

--suspend-file

Under some circumstances Scheme can write out a file called scheme_suspend
in the user’s home directory.! This file is a world image containing the complete
state of the Scheme process; restoring this file continues the computation that
Scheme was performing at the time the file was written.

Normally this file is never written, but the --suspend-file option enables
writing of this file.

1 Under unix, this file is written when Scheme is terminated by the ‘SIGUSR1’, ‘SIGHUP’, or ‘SIGPWR’ signals.
Under other operating systems, this file is never written.

Chapter 2: Running Scheme 9

--eval expression ...
This option causes Scheme to evaluate the expressions following it on the com-
mand line, up to but not including the next argument that starts with a hyphen.
The expressions are evaluated in the user-initial-environment. Unless ex-
plicitly handled, errors during evaluation are silently ignored.

--load file ...
This option causes Scheme to load the files (or lists of files) following it on the
command line, up to (but not including) the next argument that starts with
a hyphen. The files are loaded in the user-initial-environment. Unless
explicitly handled, errors during loading are silently ignored.

--edit This option causes Edwin to be loaded and started immediately when Scheme
is started.

The following options allow arguments to be passed to scripts via the command-line-
arguments procedure.

command-line-arguments [procedure]
Returns a list of arguments (strings) gathered from the command-line by options like
--args or —-.

--args argument ...
This option causes Scheme to append the arguments, up to (but not includ-
ing) the next argument that starts with a hyphen, to the list returned by the
command-line-arguments procedure.

-— argument ...
This option causes Scheme to append the rest of the command-line arguments
(even those starting with a hyphen) to the list returned by the command-line-
arguments procedure.

2.5 Custom Command-line Options

MIT/GNU Scheme provides a mechanism for you to define your own command-line options.
This is done by registering handlers to identify particular named options and to process them
when Scheme starts. Unfortunately, because of the way this mechanism is implemented,
you must define the options and then save a world image containing your definitions (see
Section 3.3 [World Images], page 21). Later, when you start Scheme using that world image,
your options will be recognized.

The following procedures define command-line parsers. In each, the argument keyword
defines the option that will be recognized on the command line. The keyword must be a
string containing at least one character; do not include the leading hyphens.

simple-command-line-parser keyword thunk [help] [procedure]
Defines keyword to be a simple command-line option. When this keyword is seen on
the command line, it causes thunk to be executed. Help, when provided, should be a
string describing the option in the --help output.

10 MIT/GNU Scheme 12.1

argument-command-line-parser keyword multiple? procedure [procedure]
[help]
Defines keyword to be a command-line option that is followed by one or more
command-line arguments. Procedure is a procedure that accepts one argument;
when keyword is seen, it is called once for each argument. Help, when provided,
should be a string describing the option. It is included in the --help output. When
not provided, --help will say something lame about your command line option.

Multiple?, if true, says that keyword may be followed by more than one argument
on the command line. In this case, procedure is called once for each argument that
follows keyword and does not start with a hyphen. If multiple? is #f, procedure is
called once, with the command-line argument following keyword. In this case, it does
not matter if the following argument starts with a hyphen.

set-command-line-parser! keyword procedure [procedure]
This low-level procedure defines keyword to be a command-line option that is defined
by procedure. When keyword is seen, procedure is called with all of the command-line
arguments, starting with keyword, as a single list argument. Procedure must return
two values (using the values procedure): the unused command-line arguments (as a
list), and either #f or a thunk to invoke after the whole command line has been parsed
(and the init file loaded). Thus procedure has the option of executing the appropriate
action at parsing time, or delaying it until after the parsing is complete. The execution
of the procedures (or their associated delayed actions) is strictly left-to-right, with
the init file loaded between the end of parsing and the delayed actions.

2.6 Environment Variables

Scheme refers to many environment variables. This section lists these variables and de-
scribes how each is used. The environment variables are organized according to the parts
of MIT/GNU Scheme that they affect.

Environment variables that affect the microcode must be defined before you
start Scheme; others can be defined or overwritten within Scheme by using the
set-environment-variable! procedure, e.g.

(set-environment-variable! "EDWIN_FOREGROUND" "32")

2.6.1 Environment Variables for the Microcode

These environment variables are referred to by the microcode: the executable C program
called mit-scheme-ARCH-VERSION. The values they specify are overridden by the corre-
sponding command-line options, if given.

MITSCHEME_BAND
The initial band to be loaded. The default value is all.com.

MITSCHEME_LIBRARY_PATH
A list of directories. These directories are searched, left to right, to find bands
and various other files. On unix systems the list is colon-separated, with the
default /usr/local/lib/mit-scheme-ARCH-VERSION.

Chapter 2: Running Scheme 11

MITSCHEME_CONSTANT
The size of constant space, in 1024-word blocks; overridden by --constant.
The default value is computed to be the correct size for the band being loaded.

MITSCHEME_HEAP_SIZE
The size of the heap, in 1024-word blocks; overridden by --heap. The default
value depends on the architecture: for 32-bit machines the default is ‘3072,
and for 64-bit machines the default is ‘16384,

MITSCHEME_STACK_SIZE
The size of the stack, in 1024-word blocks; overridden by --stack. The default
value is ‘1024°.

2.6.2 Environment Variables for the Runtime System
These environment variables are referred to by the runtime system.

HOME Directory in which to look for init files, for example /home/joe. Under unix
HOME is set by the login shell.

TMPDIR

TEMP

TMP Directory for various temporary files. The variables are tried in the given order.
If none of them is suitable, built-in defaults are used: /var/tmp, /usr/tmp,
/tmp.

MITSCHEME_INF_DIRECTORY
Directory containing the debugging information files for the Scheme system.
Should contain subdirectories corresponding to the subdirectories in the source
tree. By default, the information is searched for on the library path.

MITSCHEME_LOAD_OPTIONS
Specifies the location of the options database file used by the load-option
procedure. The default is optiondb.scm on the library path.

2.6.3 Environment Variables for Edwin

These environment variables are referred to by Edwin.

EDWIN_BINARY_DIRECTORY
Directory where Edwin expects to find files providing autoloaded facilities. The
default is edwin on the library path.

EDWIN_INFO_DIRECTORY
Directory where Edwin expects to find files for the ‘info’ documentation sub-
system. The default is edwin/info on the library path.

EDWIN_ETC_DIRECTORY
Directory where Edwin expects to find utility programs and documentation
strings. The default is edwin on the library path.

ESHELL Filename of the shell program to use in shell buffers. If not defined, the SHELL
environment variable is used instead.

12

SHELL

PATH

DISPLAY

TERM
LINES

COLUMNS

MIT/GNU Scheme 12.1

Filename of the shell program to use in shell buffers and when executing shell
commands. Used to initialize the shell-path-name editor variable. The default
is /bin/sh on unix systems.

Used to initialize the exec-path editor variable, which is subsequently used for
finding programs to be run as subprocesses.

Used when Edwin runs under unix and uses X11. Specifies the display on which
Edwin will create windows.

Used when Edwin runs under unix on a terminal. Terminal type.

Used when Edwin runs under unix on a terminal. Number of text lines on the
screen, for systems that don’t support ‘TIOCGWINSZ’.

Used when Edwin runs under unix on a terminal. Number of text columns on
the screen, for systems that don’t support ‘TIOCGWINSZ’.

2.7 Leaving Scheme

There are several ways that you can leave Scheme: there are two Scheme procedures that you
can call; there are several Edwin commands that you can execute; and there are graphical-
interface buttons (and their associated keyboard accelerators) that you can activate.

o Two Scheme procedures that you can call. The first is to evaluate

(exit)

which will halt the Scheme system, after first requesting confirmation. Any information
that was in the environment is lost, so this should not be done lightly.

The second procedure suspends Scheme; when this is done you may later restart where
you left off. Unfortunately this is not possible in all operating systems; currently it
works under unix versions that support job control (i.e. all of the unix versions for
which we distribute Scheme). To suspend Scheme, evaluate
(quit)

If your system supports suspension, this will cause Scheme to stop, and you will be
returned to the shell. Scheme remains stopped, and can be continued using the job-
control commands of your shell. If your system doesn’t support suspension, this pro-
cedure does nothing. (Calling the quit procedure is analogous to typing C-z, but it
allows Scheme to respond by typing a prompt when it is unsuspended.)

Several Edwin commands that you can execute, including save-buffers-kill-scheme,
normally bound to C-x C-c, and suspend-scheme, normally bound to C-x C-z. These
two commands correspond to the procedures exit and quit, respectively.

Graphical-interface buttons that you can activate. Under any operating system, closing
an Edwin window causes that window to go away, and if it is the only Edwin window,
it terminates Scheme as well.

13

3 Using Scheme

This chapter describes how to use Scheme to evaluate expressions and load programs. It
also describes how to save custom “world images”, and how to control the garbage collector.
Subsequent chapters will describe how to use the compiler, and how to debug your programs.

3.1 The Read-Eval-Print Loop

When you first start up Scheme from the command line, you will be typing at a program
called the Read-Eval-Print Loop (abbreviated REPL). It displays a prompt at the left
hand side of the screen whenever it is waiting for input. You then type an expression
(terminating it with RET). Scheme evaluates the expression, prints the result, and gives you
another prompt.

3.1.1 The Prompt and Level Number

The REPL prompt normally has the form
1]1=>

The ‘1’ in the prompt is a level number, which is always a positive integer. This number is
incremented under certain circumstances, the most common being an error. For example,
here is what you will see if you type f o o RET after starting Scheme:

;Unbound variable: foo

;To continue, call RESTART with an option number:

; (RESTART 3) => Specify a value to use instead of foo.
; (RESTART 2) => Define foo to a given value.

; (RESTART 1) => Return to read-eval-print level 1.

2 error>

In this case, the level number has been incremented to ‘2’, which indicates that a new REPL
has been started (also the prompt string has been changed to remind you that the REPL was
started because of an error). The ‘2’ means that this new REPL is “over” the old one. The
original REPL still exists, and is waiting for you to return to it, for example, by entering
‘(restart 1)’. Furthermore, if an error occurs while you are in this REPL, yet another
REPL will be started, and the level number will be increased to ‘3’. This can continue ad
infinitum, but normally it is rare to use more than a few levels.

The normal way to get out of an error REPL and back to the top level REPL is to use
the C-g interrupt. This is a single-keystroke command executed by holding down the CTRL
key and pressing the G key. C-g always terminates whatever is running and returns you to
the top level REPL immediately.

Note: The appearance of the ‘error>’ prompt does not mean that Scheme is in some
weird inconsistent state that you should avoid. It is merely a reminder that your program
was in error: an illegal operation was attempted, but it was detected and avoided. Often
the best way to find out what is in error is to do some poking around in the error REPL. If
you abort out of it, the context of the error will be destroyed, and you may not be able to
find out what happened.

14 MIT/GNU Scheme 12.1

3.1.2 Interrupting

Scheme has several interrupt keys, which vary depending on the underlying operating sys-
tem; under unix they are C-g and C-c. The C-g key stops any Scheme evaluation that is
running and returns you to the top level REPL. C-c prompts you for another character and
performs some action based on that character. It is not necessary to type RET after C-g or
C-c, nor is it needed after the character that C-c will ask you for.

Here are the definitions of the more common interrupt keys; on unix, type C-c ? for

more possibilities.

C-c C-c
C-g Abort whatever Scheme evaluation is currently running and return to the top-
level REPL. If no evaluation is running, this is equivalent to evaluating

(cmdl-interrupt/abort-top-level)
C-c C-x Abort whatever Scheme evaluation is currently running and return to the “cur-
rent” REPL. If no evaluation is running, this is equivalent to evaluating
(cmdl-interrupt/abort-nearest)
C-c C-u Abort whatever Scheme evaluation is running and go up one level. If you are

already at level number 1, the evaluation is aborted, leaving you at level 1. If
no evaluation is running, this is equivalent to evaluating

(cmdl-interrupt/abort-previous)
C-c C-b Suspend whatever Scheme evaluation is running and start a breakpoint REPL.
The evaluation can be resumed by evaluating
(continue)

in that REPL at any time.

C-cq Similar to typing ‘(exit)’ at the REPL, except that it works even if Scheme is
running an evaluation.

C-c z Similar to typing ‘(quit)’ at the REPL, except that it works even if Scheme is
running an evaluation.

C-ci Ignore the interrupt. Type this if you made a mistake and didn’t really mean
to type C-c.

C-c? Print help information. This will describe any other options not documented
here.

3.1.3 Restarting

Another way to exit a REPL is to use the restart procedure:

restart (K] [procedure]
This procedure selects and invokes a restart method. The list of restart methods is
different for each REPL and for each error; in the case of an error REPL, this list is
printed when the REPL is started:

Chapter 3: Using Scheme 15

;Unbound variable: foo

;To continue, call RESTART with an option number:

; (RESTART 3) => Specify a value to use instead of foo.
; (RESTART 2) => Define foo to a given value.

; (RESTART 1) => Return to read-eval-print level 1.

2 error>
If the k argument is given, it must be a positive integer index into the list (in the
example it must be between one and three inclusive). The integer k selects an item
from the list and invokes it. If k is not given, restart prints the list and prompts for
the integer index:

2 error> (restart)

;Choose an option by number:

; 3: Specify a value to use instead of foo.

; 2: Define foo to a given value.

; 1: Return to read-eval-print level 1.

Option number:
The simplest restart methods just perform their actions. For example:

2 error> (restart 1)
;Abort!

11=>
Other methods will prompt for more input before continuing;:

2 error> (restart)

;Choose an option by number:

; 3: Specify a value to use instead of foo.
; 2: Define foo to a given value.

; 1: Return to read-eval-print level 1.

Option number: 3

Value to use instead of foo: ’(a b)
;Value: (a b)

1 1=

3.1.4 The Current REPL Environment

Every REPL has a current environment, which is the place where expressions are evaluated
and definitions are stored. When Scheme is started, this environment is the value of the
variable user-initial-environment. There are a number of other environments in the
system, for example system-global-environment, where the runtime system’s bindings
are stored.

You can get the current REPL environment by evaluating

(nearest-repl/environment)

16 MIT/GNU Scheme 12.1

There are several other ways to obtain environments. For example, if you have a proce-
dure object, you can get a pointer to the environment in which it was closed by evaluating

(procedure-environment procedure)

Here are some procedures that manage the REPL’s environment:

ge environment [procedure]
Changes the current REPL environment to be environment (ge stands for “Goto
Environment”). Environment is allowed to be a procedure as well as an environment
object. If it is a procedure, then the closing environment of that procedure is used in
its place.

ve environment [procedure]
Starts a sub-REPL with it’s environment set to environment (ve stands for “Visit
Environment”). Environment is allowed to be a procedure as well as an environment
object. If it is a procedure, then the closing environment of that procedure is used in
its place.

pe [procedure]
This procedure is useful for finding out which environment you are in (pe stands for
“Print Environment”). If the current REPL environment belongs to a package, then
pe returns the package name (a list of symbols). If the current REPL environment
does not belong to a package then the environment is returned.

3.1.5 REPL Escapes

Normally the REPL evaluates an expression and prints the value it returns. The REPL also
supports a set of special escapes that bypass the normal evaluation. There are two kinds
of escapes:

, (command arg ...)

,command tells the REPL to perform a special action. The symbol command specifies the
action to perform; the arg elements are command specific. A command that can
be used with no arg elements can be abbreviated by dropping the parentheses.
Additionally, command can be shortened to any unique prefix, such as po for
pop. Note that command is not evaluated. An arg is not evaluated, unless
it starts with a comma, in which case it is evaluated in the current REPL
environment.

, ,expression
evaluates expression in user-initial-environment instead of the current
REPL environment. This is especially useful when working with library
environments, where many of the usual definitions, for example debug, are not
available.

The rest of this section documents the commands that can be used with the first form
of escape. The most important command is help:

help [name] [REPL command]
Prints each of the available commands along with a summary of what they do. If
name is given, show only commands that match name.

Chapter 3: Using Scheme 17

, (help p)

- 5,pop

—H Pops an environment off the stack and moves the REPL there.

- ;,push

- ;,(push env)

= Push the REPL env on the env stack and move the REPL to a new env.

-

=4 If ENV is provided, it is converted to an environment in the usual
- way. The the current REPL env is pushed on the env stack and the REPL
= is moved to ENV.

-

= If ENV is not provided, the current REPL env is exchanged with the top
= of the env stack.

A number of the commands manipulate the REPL’s environment in various ways. These
involve the following parts:

e The current REPL environment is the environment that’s used to evaluate expressions.

e The environment stack contains additional environments that are saved for future use.
This stack is modified by the push, pop, bury, and ge commands.

e A set of named environments that have been given symbolic names. This set is modified
by name and unname.

envs [env-name] [REPL command]
Prints a summary of the environments. If env-name is given, prints only the named
environments matching env-name.

For example, here is the output when the system is started:

,envs

-4 ;here: (user) #[environment 12]
- ;The env stack is empty

- ;no named envs

Where ;here: marks the current REPL environment.

Several commands take an env argument, specifying an environment. This argument
can have several forms:

a symbol Refers to a named environment.

a library name
Refers to the environment of a loaded library. For example, ‘(scheme base)’.

a package name
Refers to the environment of a loaded MIT/GNU Scheme package. For example,
‘(runtime)’.

,expression
Evaluates expression in the current environment; its value must be an environ-
ment object.

push [env] [REPL command]
Pushes the current REPL environment on the environment stack, then moves the
REPL to a new environment. If env is not given, then this swaps the current REPL

18 MIT/GNU Scheme 12.1

environment and the environment on the top of the stack. Otherwise env specifies
the new environment in the usual way.

If the command completes successfully, it prints the current REPL environment and
the environment stack:

, (push (srfi 133))

- ;here: #[environment 28]

- ;stack:

- 0: (user) #[environment 12]

We can swap the two environments:

,push
4 ;Package: (user)
- ;here: (user) #[environment 12]

- ;stack:
- 0: #[environment 28]
pop [REPL command]
Pops off the top of the environment stack and moves the current REPL environment
there.
»pop
4 ;Package: (user)
- ;here: (user) #[environment 12]
-1 ;The env stack is empty
bury [REPL command]

Saves the current REPL environment at the bottom of the stack, then pops off the
top of the environment stack and moves the current REPL environment there.

, (push (runtime))

- ;Package: (runtime)

-4 ;here: (runtime) #[environment 30]

- ;stack:

- 0: #[environment 28]

= 1: (user) #[environment 12]

,bury

- ;here: #[environment 28]

- ;stack:

- 0: (user) #[environment 12]

= 1: (runtime) #[environment 30]
ge [env] [REPL command]

Sets the current REPL environment to the specified environment without affecting
the environment stack. If env is not given, a newly created top-level environment is
used.

This is basically the same as the ge procedure.

Chapter 3: Using Scheme 19

ve [env] [REPL command]
Creates a new child REPL, setting its current environment to the specified one. If
env is not given, a newly created top-level environment is used.

This is basically the same as the ve procedure.

name env-name [REPL command|
Gives the current REPL environment a name env-name and adds it to the set of
named environments. The argument env-name must be a symbol.

, (name foobar)
-| ;env named foobar has been assigned

,envs

-4 ;here: foobar #[environment 28]

- ;stack:

- 0: (user) #[environment 12]

- 1: (runtime) #[environment 30]
- ;named envs

- foobar #[environment 28]

unname [env-name] [REPL command]
Removes the environment with name env-name from the set of named environments.
If env-name is not given, removes all named environments.

, (unname foobar)
- ;env named foobar has been unassigned

,envs

- ;here: #[environment 28]

- ;stack:

= 0: (user) #[environment 12]

—H 1: (runtime) #[environment 30]
-4 ;no named envs

This group of commands manages nested REPL instances.

down [REPL command]
Creates a new child REPL with the same current environment as this one.

import import-set . .. [REPL command]
Imports the given import-sets into the current REPL environment. The syntax is
described in R7RS section 5.2.

up [REPL command]
Pops up one level to the parent REPL.
This is equivalent to calling cmdl-interrupt/abort-previous.

top-level [REPL command]
Pops up to the top-level REPL.

This is equivalent to calling cmdl-interrupt/abort-top-level.

20 MIT/GNU Scheme 12.1

3.2 Loading Files

To load files of Scheme code, use the procedure load:

load filename [environment [syntax-table [purify?]]] [procedure]
Filename may be a string naming a file, or a list of strings naming multiple files.
Environment, if given, is the environment to evaluate the file in; if not given the
current REPL environment is used.

Syntax-table is no longer used and if supplied will be ignored.

The optional argument purify? is a boolean that says whether to move the contents
of the file into constant space after it is loaded but before it is evaluated. This is
performed by calling the procedure purify (see Section 3.4 [Garbage Collection],
page 22). If purify? is given and true, this is done; otherwise it is not.

load determines whether the file to be loaded is binary or source code, and performs
the appropriate action. By convention, files of source code have names ending in
.scm, and files of binary SCode have names ending in .bin. Native-code binaries
have names ending in .com. R7RS library files conventionally end in .sld, .binld,
and .comld respectively.

If no file-name suffix is specified, load will choose a file by trying different suffixes,
preferring in order native-code binaries, SCode binaries, and source files.

All file names are interpreted relative to a working directory, which is initialized when
Scheme is started. The working directory can be obtained by calling the procedure pwd
or modified by calling the procedure cd; see Section “Working Directory” in MIT/GNU
Scheme Reference Manual.

load-option symbol [no-error?] [procedure]
Loads the option specified by symbol; if already loaded, does nothing. Returns sym-
bol; if there is no such option, an error is signalled. However, if no-error? is specified
and true, no error is signalled in this case, and #£ is returned.

A number of built-in options are defined:

compress Support to compress and uncompress files. Undocumented; see the source
file runtime/cpress.scm. Used by the runtime system for compression
of compiled-code debugging information.

format The format procedure. See Section “Format” in MIT/GNU Scheme Ref-
erence Manual.

gdbm Support to access gdbm databases. Undocumented; see the source files
runtime/gdbm.scm and microcode/prgdbm.c.

ordered-vector
Support to search and do completion on vectors of ordered elements.
Undocumented; see the source file runtime/ordvec.scm.

regular-expression
Support to search and match strings for regular expressions. See Section
“Regular Expressions” in MIT/GNU Scheme Reference Manual.

Chapter 3: Using Scheme 21

stepper Support to step through the evaluation of Scheme expressions. Undoc-
umented; see the source file runtime/ystep.scm. Used by the Edwin
command step-expression.

subprocess
Support to run other programs as subprocesses of the Scheme process.
Undocumented; see the source file runtime/process.scm. Used exten-
sively by Edwin.

synchronous—-subprocess
Support to run synchronous subprocesses. See Section “Subprocesses” in
MIT/GNU Scheme Reference Manual.

In addition to the built-in options, you may define other options to be loaded by
load-options by modifying the file optiondb.scm on the library path. An example file is
included with the distribution; normally this file consists of a series of calls to the procedure
define-load-option, terminated by the expression

(further-load-options standard-load-options)

define-load-option symbol thunk . .. [procedure]
Each thunk must be a procedure of no arguments. Defines the load option named
symbol. When the procedure load-option is called with symbol as an argument, the
thunk arguments are executed in order from left to right.

3.3 World Images

A world image, also called a band, is a file that contains a complete Scheme system, perhaps
additionally including user application code. Scheme provides a method for saving and
restoring world images. The method writes a file containing all of the Scheme code and
data in the running process. The file all.com that is loaded by the microcode is just such
a band. To make your own band, use the procedure disk-save.

disk-save filename [identify] [procedure]
Causes a band to be written to the file specified by filename. The optional argument
identify controls what happens when that band is restored, as follows:

not specified
Start up in the top-level REPL, identifying the world in the normal way.

a string Do the same thing except print that string instead of ‘Scheme’ when
restarting.

the constant #t
Restart exactly where you were when the call to disk-save was per-
formed. This is especially useful for saving your state when an error has
occurred and you are not in the top-level REPL.

the constant #f
Just like #t, except that the runtime system will not perform normal
restart initializations; in particular, it will not load your init file.

22 MIT/GNU Scheme 12.1

To restore a saved band, give the --band option when starting Scheme. Alternatively,
evaluate ‘(disk-restore filename)’, which will destroy the current world, replacing it
with the saved world. The argument to disk-restore may be omitted, in which case it
defaults to the filename from which the current world was last restored.

3.4 Garbage Collection

This section describes procedures that control garbage collection. See Section 2.3 [Memory
Usage], page 6, for a discussion of how MIT/GNU Scheme uses memory.

gc-flip [safety-margin] [procedure]
Forces a garbage collection to occur. Returns the number of words of storage available
after collection, an exact non-negative integer.

Safety-margin determines the number of words of storage available to system tasks
after the need for a garbage collection is detected and before the garbage collector
is started. (An example of such a system task is changing the run-light to show
“gc” when scheme is running under Emacs.) Caution: You should not specify safety-
margin unless you know what you are doing. If you specify a value that is too small,
you can put Scheme in an unusable state.

purify object [pure-space? [queue?] [procedure]
Moves object from the heap into constant space. Has no effect if object is already
stored in constant space. Object is moved in its entirety; if it is a compound object
such as a list, a vector, or a record, then all of the objects that object points to are
also moved to constant space. See Section 2.3 [Memory Usage|, page 6.

The optional argument pure-space? is obsolete; it defaults to #t and when explicitly
specified should always be #t.

The optional argument queue?, if #£, specifies that object should be moved to constant
space immediately; otherwise object is queued to be moved during the next garbage
collection. This argument defaults to #t. The reason for queuing these requests is that
moving an object to constant space requires a garbage collection to occur, a relatively
slow process. By queuing the requests, this overhead is avoided, because moving
an object during a garbage collection has minimal effect on the time of the garbage
collection. Furthermore, if several requests are queued, they can all be processed
together in one garbage collection, while if done separately they would each require
their own garbage collection.

flush-purification-queue! [procedure]
Forces any pending queued purification requests to be processed. This examines the
purify queue, and if it contains any requests, forces a garbage collection to process
them. If the queue is empty, does nothing.

print-gc-statistics [procedure]
Prints out information about memory allocation and the garbage collector. The
information is printed to the current output port. Shows how much space is “in use”
and how much is “free”, separately for the heap and constant space. The amounts are
shown in words, and also in 1024-word blocks; the block figures make it convenient
to use these numbers to adjust the arguments given to the --heap and --constant

Chapter 3: Using Scheme 23

command-line options. Following the allocation figures, information about the most
recent 8 garbage collections is shown, in the same format as a GC notification.

Note that these numbers are accurate at the time that print-gc-statistics is
called. In the case of the heap, the “in use” figure shows how much memory has
been used since the last garbage collection, and includes all live objects as well as
any uncollected garbage that has accumulated since then. The only accurate way to
determine the size of live storage is to subtract the value of ‘(gc-flip)’ from the
size of the heap. The size of the heap can be determined by adding the “in use” and
“free” figures reported by print-gc-statistics.

(print-gc-statistics)

constant in use: 2302316 words = 2248 blocks + 364 words

constant free: 128 words = 0 blocks + 128 words

heap in use: 1747805 words = 1706 blocks + 861 words

heap free: 49682723 words = 48518 blocks + 291 words
set-gc-notification! [on?] [procedure]

Controls whether the user is notified of garbage collections. If on? is true, notification
is enabled; otherwise notification is disabled. If on? is not given, it defaults to #t.
When Scheme starts, notification is disabled.

The notification appears as a single line like the following, showing how many garbage
collections have occurred, the time taken to perform the garbage collection and the
free storage remaining (in words) after collection.

GC #5: took: 0.50 (8%) CPU time, 0.70 (2%) real time; free: 364346

To operate comfortably, the amount of free storage after garbage collection should be
a substantial proportion of the heap size. If the CPU time percentage is consistently
high (over 20%), you should consider running with a larger heap. A rough rule of
thumb to halve the GC overhead is to take the amount of free storage, divide by 1000,
and add this figure to the current value used for the --heap command-line option.
Unfortunately there is no way to adjust the heap size without restarting Scheme.

toggle-gc—notification! [procedure]
Toggles GC notification on and off. If GC notification is turned on, turns it off;
otherwise turns it on.

25

4 Compiling Programs

4.1 Compilation Procedures

ct filename [destination] [procedure]
This is the program that transforms a source-code file into native-code binary form.
If destination is not given, as in

(cf "foo")

cf compiles the file foo.scm, producing the file foo. com. It will also produce foo.bin,
foo.bci, and possibly foo.ext. The corresponding names for R7RS libraries are
foo.sld, foo.comld, foo.binld, and foo.bcild (libraries never generate .ext files).
If you later evaluate

(load "foo")
foo.com (or foo.comld) will be loaded.

If destination is given, it says where the output files should go. If this argument is a
directory, they go in that directory, e.g.:

(cf "foo" "../bar/")

will take foo.scm and generate the file ../bar/foo.com. If destination is not a
directory, it is the root name of the output:

(Cf "foo "bar")

takes foo.scm and generates bar. com.

About the .bci files: these files contain the debugging information that Scheme uses
when you call debug to examine compiled code. When you load a . com file, Scheme remem-
bers where it was loaded from, and when the debugger (or pp) looks at the compiled code
from that file, it attempts to find the .bci file in the same directory from which the .com
file was loaded. Thus it is a good idea to leave these files together.

load-debugging-info-on-demand? [variable]
If this variable is #f, then printing a compiled procedure will print the procedure’s
name only if the debugging information for that procedure is already loaded. Other-
wise, it will force loading of the debugging information.

The default value is #£.

st filename [destination] [procedure]
sf is the program that transforms a source-code file into binary SCode form; it is
used on machines that do not support native-code compilation. It performs numerous
optimizations that can make your programs run considerably faster than unoptimized
interpreted code. Also, the binary files that it generates load very quickly compared
to source-code files.

The simplest way to use sf is just to say:
(sf filename)

This will cause your file to be transformed, and the resulting binary file to be written
out with the same name, but with the suffix .bin. If you do not specify a suffix on
the input file, .scm is assumed.

26 MIT/GNU Scheme 12.1

Like load, the first argument to sf may be a list of filenames rather than a single
filename.

sf takes an optional second argument, which is the filename of the output file. If this
argument is a directory, then the output file has its normal name but is put in that
directory instead.

4.2 Declarations

Several declarations can be added to your programs to help cf and sf make them more
efficient.

4.2.1 Standard Names

This section doesn’t apply to R7RS source or library files, since their environments are
completely specified by import statements.

Other source files usually contain a line
(declare (usual-integrations))

near their beginning, which tells the compiler that free variables whose names are defined in
system-global-environment will not be shadowed by other definitions when the program
is loaded. If you redefine some global name in your code, for example car, cdr, and cons,
you should indicate it in the declaration:

(declare (usual-integrations car cdr cons))

You can obtain an alphabetically-sorted list of the names that the usual-integrations
declaration affects by evaluating the following expression:

(eval ’(sort (append usual-integrations/constant-names
usual-integrations/expansion-names)
(lambda (x y)
(string<=? (symbol->string x)
(symbol->string y))))
(->environment ’(scode-optimizer)))

4.2.2 In-line Coding

Another useful facility is the ability to in-line code procedure definitions. In fact, the
compiler will perform full beta conversion, with automatic renaming, if you request it. Here
are the relevant declarations:

integrate name ... [declaration]
The variables names must be defined in the same file as this declaration. Any reference
to one of the named variables that appears in the same block as the declaration, or
one of its descendant blocks, will be replaced by the corresponding binding’s value
expression.

integrate-operator name ... [declaration]
Similar to the integrate declaration, except that it only substitutes for references
that appear in the operator position of a combination. All other references are ignored.

Chapter 4: Compiling Programs 27

integrate-external filename [declaration]
Causes the compiler to use the top-level integrations provided by filename. filename
should not specify a file type, and the source-code file that it names must have been
previously processed by the compiler.

If filename is a relative filename (the normal case), it is interpreted as being relative
to the file in which the declaration appears. Thus if the declaration appears in file
/usr/cph/foo.scm, then the compiler looks for a file called /usr/cph/filename.ext.

Note: When the compiler finds top-level integrations, it collects them and out-
puts them into an auxiliary file with extension .ext. This .ext file is what the
integrate-external declaration refers to.

Note that the most common use of this facility, in-line coding of procedure definitions,
requires a somewhat complicated use of these declarations. Because this is so common, there
is a special form, define-integrable, which is like define but performs the appropriate
declarations. For example:

(define-integrable (foo-bar foo bar)
(vector-ref (vector-ref foo bar) 3))

Here is how you do the same thing without this special form: there should be an
integrate-operator declaration for the procedure’s name, and (internal to the proce-
dure’s definition) an integrate declaration for each of the procedure’s parameters, like
this:

(declare (integrate-operator foo-bar))
(define (foo-bar foo bar)
(declare (integrate foo bar))
(vector-ref (vector-ref foo bar) 3))

The reason for this complication is as follows: the integrate-operator declaration
finds all the references to foo-bar and replaces them with the lambda expression from the
definition. Then, the integrate declarations take effect because the combination in which
the reference to foo-bar occurred supplies code that is substituted throughout the body of
the procedure definition. For example:

(foo-bar (car baz) (cdr baz))
First use the integrate-operator declaration:
((lambda (foo bar)
(declare (integrate foo bar))
(vector-ref (vector-ref foo bar) 3))
(car baz)
(cdr baz))
Next use the internal integrate declaration:
((lambda (foo bar)
(vector-ref (vector-ref (car baz) (cdr baz)) 3))
(car baz)
(cdr baz))
Next notice that the variables foo and bar are not used, and eliminate them:

((lambda ()
(vector-ref (vector-ref (car baz) (cdr baz)) 3)))

28 MIT/GNU Scheme 12.1

Finally, remove the ‘((lambda () ...))’ to produce

(vector-ref (vector-ref (car baz) (cdr baz)) 3)

Useful tip

To see the effect of integration declarations (and of macros) on a source file, pretty-print
the .bin file like this (be prepared for a lot of output).

(sf "foo.scm")
(pp (fasload "foo.bin"))

4.2.3 Operator Replacement

The replace-operator declaration is provided to inform the compiler that certain oper-
ators may be replaced by other operators depending on the number of arguments. For
example:

Declaration:
(declare (replace-operator (map (2 map-2) (3 map-3))))
Replacements:

(map f x y z) — (map f x y z)

(map f x y) — (map-3 f x y)

(map f x) — (map-2 f x)

(map f) +— (map f)

(map) — (map)
Presumably map-2 and map-3 are efficient versions of map that are written for exactly two
and three arguments respectively. All the other cases are not expanded but are handled by

the original, general map procedure, which is less efficient because it must handle a variable
number of arguments.

replace-operator name ... [declaration]
The syntax of this declaration is

(replace-operator
(name
(nargs1 valuel)
(nargs2 value2)
c))

where
e name is a symbol.

e nargsl, nargs2 etc. are non-negative integers, or one of the following symbols:
any, else or otherwise.

e valuel, value2 etc. are simple expressions in one of these forms:

’constant
A constant.

variable A variable.

Chapter 4: Compiling Programs 29

(primitive primitive-name [arity])
The primitive procedure named primitive-name. The optional ele-
ment arity, a non-negative integer, specifies the number of arguments
that the primitive accepts.

(global var)
A global variable.
The meanings of these fields are:

e name is the name of the operator to be reduced. If is is not shadowed (for
example, by a let) then it may be replaced according to the following rules.

e If the operator has nargsN arguments then it is replaced with a call to valueN
with the same arguments.

e If the number of arguments is not listed, and one of the nargsN is any, else
or otherwise, then the operation is replaced with a call to the corresponding
valueN. Only one of the nargsN may be of this form.

e If the number of arguments is not listed and none of the nargsN is any, else or
otherwise, then the operation is not replaced.

4.2.4 Operator Reduction

The reduce-operator declaration is provided to inform the compiler that certain names
are n-ary versions of binary operators. Here are some examples:

Declaration:
(declare (reduce-operator (cons* cons)))
Replacements:

(cons* x y z w) +— (cons x (cons y (cons z w))),
(cons* x y) — (cons x y)

(cons* x) — x

(cons*) too few arguments

Declaration:
(declare (reduce-operator (list cons (null-value ’() any))))
Replacements:

(list x y z w) — (cons x (cons y (cons z (cons w ’()))))
(list x y) ~ (cons x (cons y >()))

(list x) +— (cons x *())

(list) — 0

Declaration:

(declare (reduce-operator (- %- (null-value O single) (group left))))
Replacements:

Cxyzww— b G- G-xy) 2) w

Cxy) = C-xy

(- x) — (% 0 x)

(=) —» 0

30 MIT/GNU Scheme 12.1

Declaration:
(declare (reduce-operator (+ %+ (null-value O none) (group right))))
Replacements:

+txyzw— Ut x G+t y Ot zw))
+xy) — U+t xy)

+ x) — x

+) —» 0

Note: This declaration does not cause an appropriate definition of %+ (in the last ex-
ample) to appear in your code. It merely informs the compiler that certain optimizations
can be performed on calls to + by replacing them with calls to %+. You should provide a
definition of %+ as well, although it is not required.

Declaration:

(declare (reduce-operator (apply (primitive cons)
(group right)
(wrapper (global apply) 1))))

Replacements:

(apply f x y z w)
— ((access apply #f) f (cons x (cons y (cons z w))))
(apply f x y)
— ((access apply #f) f (cons x y))
(apply f x) +— (apply f x)
(apply f) +— (apply f)
(apply) ~ (apply)

reduce-operator name . .. [declaration]
The general format of the declaration is (brackets denote optional elements):

(reduce-operator
(name
binop
[(group ordering)]
[(null-value value null-option)]
[(singleton unop)]
[(wrapper wrap [n])]
[(maximum m)]

where
e n and m are non-negative integers.
e name is a symbol.

e binop, value, unop, and wrap are simple expressions in one of these forms:

’constant
A constant.

variable A variable.

Chapter 4:

Compiling Programs 31

(primitive primitive-name [arity])
The primitive procedure named primitive-name. The optional el-
ement arity specifies the number of arguments that the primitive
accepts.

(global var)
A global variable.
null-option is either always, any, one, single, none, or empty.

ordering is either left, right, or associative.

meaning of these fields is:

name is the name of the n-ary operation to be reduced.

binop is the binary operation into which the n-ary operation is to be reduced.
The group option specifies whether name associates to the right or left.

The null-value option specifies a value to use in the following cases:

none

empty When no arguments are supplied to name, value is returned.

one

single When a single argument is provided to name, value becomes the
second argument to binop.

any

always binop is used on the “last” argument, and value provides the remain-

ing argument to binop.

In the above options, when value is supplied to binop, it is supplied on the left
if grouping to the left, otherwise it is supplied on the right.

The singleton option specifies a function, unop, to be invoked on the single
argument given. This option supersedes the null-value option, which can only
take the value none.

The wrapper option specifies a function, wrap, to be invoked on the result of the
outermost call to binop after the expansion. If n is provided it must be a non-
negative integer indicating a number of arguments that are transferred verbatim
from the original call to the wrapper. They are passed to the left of the reduction.

The maximum option specifies that calls with more than m arguments should
not be reduced.

4.3 Efficiency Tips

How you write your programs can have a large impact on how efficiently the compiled
program runs. The most important thing to do, after choosing suitable data structures, is
to put the following declaration near the beginning of the file.

(declare (usual-integrations))

Without this declaration the compiler cannot recognize any of the common operators
and compile them efficiently.

32 MIT/GNU Scheme 12.1

The usual-integrations declaration is usually sufficient to get good quality compiled
code.

If you really need to squeeze more performance out of your code then we hope that you
find the following grab-bag of tips, hints and explanations useful.

4.3.1 Coding style

Scheme is a rich language, in which there are usually several ways to say the same thing. A
coding style is a set of rules that a programmer uses for choosing an expressive form to use in
a given situation. Usually these rules are aesthetic, but sometimes there are efficiency issues
involved; this section describes a few choices that have non-obvious efficiency consequences.

Better predicates

Consider the following implementation of map as might be found in any introductory book
on Scheme:

(define (map f 1st)
(if (null? 1st)
0
(cons (f (car 1st)) (map f (cdr 1st)))))

The problem with this definition is that at the points where car and cdr are called
we still do not know that Ist is a pair. The compiler must insert a type check, or if type
checks are disabled, the program might give wrong results. Since one of the fundamental
properties of map is that it transforms lists, we should make the relationship between the
input pairs and the result pairs more apparent in the code:

(define (map f 1st)
(cond ((pair? 1st)
(cons (f (car 1st)) (map f (cdr 1lst))))
((null? 1st)
0]
(else
(error "Not a proper list:" 1st))))

Note also that the pair? case comes first because we expect that map will be called on
lists which have, on average, length greater that one.

Internal procedures

Calls to internal procedures are faster than calls to global procedures. There are two things
that make internal procedures faster: First, the procedure call is compiled to a direct jump
to a known location, which is more efficient that jumping ‘via’ a global binding. Second,
there is a knock-on effect: since the compiler can see the internal procedure, the compiler
can analyze it and possibly produce better code for other expressions in the body of the
loop too:

Chapter 4: Compiling Programs 33

(define (map f original-1lst)
(let walk ((1lst original-1st))
(cond ((pair? 1lst)
(cons (f (car 1st)) (walk (cdr 1st))))
((null? 1st)
0))
(else
(error "Not a proper list:" original-1st)))))

Internal defines

Internal definitions are a useful tool for structuring larger procedures. However, certain in-
ternal definitions can thwart compiler optimizations. Consider the following two procedures,
where compute-100 is some unknown procedure that we just know returns ‘100’.
(define (f1)
(define v 100)
(lambda) v))

(define (£2)
(define v (compute-100))
(lambda () v))

The procedure returned by f1 will always give the same result and the compiler can
prove this. The procedure returned by £2 may return different results, even if £2 is only
called once. Because of this, the compiler has to allocate a memory cell to v. How can the
procedure return different results?

The fundamental reason is that the continuation may escape during the evaluation of
(compute-100), allowing the rest of the body of £2 to be executed again:
(define keep)

(define (compute-100)
(call-with-current-continuation
(lambda (k)
(set! keep k)
100)))

(define p (£2))

(p) = 100
(keep -999) = p re-define v and p
(P = -999

To avoid the inefficiency introduced to handle the general case, the compiler must prove
that the continuation cannot possibly escape. The compiler knows that lambda expressions
and constants do not let their continuations escape, so order the internal definitions so that
definitions of the following forms come first:

(define x ’something)
(define x (lambda (...) ...))
(define (f u v) ...)

34 MIT/GNU Scheme 12.1

4.3.2 Top-level variables

Compiled code usually accesses variables in top-level first-class environments via variable
caches. Each compiled procedure has a set of variable caches for the top-level variables
that it uses. There are three kinds of variable cache—read caches for getting the value of a
variable (referencing the variable), write caches for changing the value, and execute caches
for calling the procedure assigned to that variable.

Sometimes the variable caches contain special objects, called reference traps, that in-
dicate that the operation cannot proceed normally and must either be completed by the
system (in order to keep the caches coherent) or must signal an error. For example, the
assignment

(set! newline my-better-newline)

will cause the system to go to each compiled procedure that calls newline and update its
execute cache to call the new procedure. Obviously you want to avoid updating hundreds
of execute caches in a critical loop. Using fluid-let to temporarily redefine a procedure
has the same inefficiency (but twice!), which is a great reason to use parameterize instead.

To behave correctly in all situations, each variable reference or assignment must check
for the reference traps.

Sometimes you can prove that the variable (a) will always be bound, (b) will never be
unassigned, and (c) there will never be any compiled calls to that variable. The compiler
can’t prove this because it assumes that other independently compiled files might be loaded
that invalidate these assumptions. If you know that these conditions hold, the following
declarations can speed up and reduce the size of a program that uses global variables.

ignore-reference-traps variables [declaration]
This declaration tells the compiler that it need not check for reference-trap objects
when referring to the given variables. If any of the variables is unbound or unassigned
then a variable reference will yield a reference-trap object rather than signaling an
error. This declaration is relatively safe: the worst that can happen is that a reference-
trap object finds its way into a data structure (e.g. a list) or into interpreted code, in
which case it will probably cause some ‘unrelated’ variable to mysteriously become
unbound or unassigned.

ignore-assignment-traps variables [declaration]
This declaration tells the compiler that it need not check for reference-trap objects
when assigning to the given variables. An assignment to a variable that ignores
assignment traps can cause a great deal of trouble. If there is a compiled procedure
call anywhere in the system to this variable, the execute caches will not be updated,
causing an inconsistency between the value used for the procedure call and the value
seen by reading the variable. This mischief is compounded by the fact that the
assignment can cause other assignments that were compiled with checks to behave
this way too.

The variables are specified with expressions from the following set language:

set name . .. [variable-specification]
All of the explicitly listed names.

Chapter 4: Compiling Programs 35

all [variable-specification]
none [variable-specification]
free [variable-specification]
bound [variable-specification]
assigned [variable-specification]
These expressions name sets of variables. all is the set of all variables, none is the
empty set, free is all of the variables bound outside the current block, bound is all
of the variables bound in the current block and assigned is all of the variables for
which there exists an assignment (i.e. set!).

union setl set2 [variable-specification]
intersection setl set2 [variable-specification]
difference setl set2 [variable-specification]

For example, to ignore reference traps on all the variables except x, y and any variable
that is assigned to

(declare (ignore-reference-traps
(difference all (union assigned (set x y)))))

4.3.3 Type and range checking

The compiler inserts type (and range) checks so that e.g. applying vector-ref to a string
(or an invalid index) signals an error. Without these checks, an in-lined vector-ref appli-
cation will return garbage — an object with random type and address. At best, accessing
any part of that object will produce an invalid address trap. At worst, the garbage collector
is confused and your world is destroyed.

The compiler punts type and range checks when it can prove they are not necessary.
Using “Better Predicates” helps (see Section 4.3.1 [Coding style], page 32), but many checks
will remain. If you know a data structure will be read-only, a certain size, etc. many of
the remaining checks can prove unnecessary. To make these decisions for yourself, you can
turn off the compiler’s implicit checks. The following procedure definition ensures minimum
flonum consing (i.e. none, see Section 4.3.5 [Flonum arithmetic], page 36) and maximum
speed. It’s safe use is entirely up to you.

(declare (usual-integrations) (integrate-operator %increment!))
(define (Yincrement! v i)

(declare (no-type-checks) (no-range-checks))

(flo:vector-set! v i (flo:+ (flo:vector-ref v i) 1.)))

Here are the relevant declarations:

no-type-checks [declaration]
In-lined primitives within the block will not check their arguments’ types.

no-range-checks [declaration]
In-lined primitives within the block will not check that indices are valid.
4.3.4 Fixnum arithmetic

The usual arithmetic operations like + and < are called generic arithmetic operations because
they work for all (appropriate) kinds of number.

36 MIT/GNU Scheme 12.1

A fixnum is an exact integer that is small enough to fit in a machine word. In MIT/GNU
Scheme, fixnums are 26 bits on 32-bit machines, and 58 bits on 64-bit machines; it is
reasonable to assume that fixnums are at least 24 bits. Fixnums are signed; they are
encoded using 2’s complement.

All exact integers that are small enough to be encoded as fixnums are always encoded
as fixnums—in other words, any exact integer that is not a fixnum is too big to be encoded
as such. For this reason, small constants such as 0 or 1 are guaranteed to be fixnums. In
addition, the lengths of and valid indexes into strings and vectors are also always fixnums.

If you know that a value is always a small fixnum, you can substitute the equivalent
fixnum operation for the generic operation. However, care should be exercised: if used
improperly, these operations can return incorrect answers, or even malformed objects that
confuse the garbage collector. For a listing of all fixnum operations, see Section “Fixnum
Operations” in MIT/GNU Scheme Reference Manual.

A fruitful area for inserting fixnum operations is in the index operations in tight loops.

4.3.5 Flonum arithmetic

Getting efficient flonum arithmetic is much more complicated and harder than getting effi-
cient fixnum arithmetic.

Flonum consing

One of the main disadvantages of generic arithmetic is that not all kinds of number fit in a
machine register. Flonums have to be boxed because a 64-bit IEEE floating-point number
(the representation that MIT/GNU Scheme uses) does not fit in a regular machine word on
32-bit machines. Boxing is also done on 64-bit machines because some extra bits are needed
to distinguish floating-point numbers from other objects like pairs and strings. Values are
boxed by storing them in a small record in the heap. Every floating-point value that you
see at the REPL is boxed. Floating-point values are unboxed only for short periods of time
when they are in the machine’s floating-point unit and actual floating-point operations are
being performed.

Numerical calculations that happen to be using floating-point numbers cause many tem-
porary floating-point numbers to be allocated. It is not uncommon for numerical programs
to spend over half of their time creating and garbage collecting the boxed flonums.

Consider the following procedure for computing the distance of a point (x,y) from the
origin.
(define (distance x y)
(sqrt (+ (*x x x) (x y y))))

The call ‘(distance 0.3 0.4)’ returns a new, boxed flonum, 0.5. The calculation also
generates three intermediate boxed flonums. This next version works only for flonum inputs,
generates only one boxed flonum (the result) and runs eight times faster:

(define (flo:distance x y)
(flo:sqrt (flo:+ (flo:* x x) (flo:* y y))))

Note that flo: operations are usually effective only within a single arithmetic expression.
If the expression contains conditionals or calls to procedures then the values tend to get
boxed anyway.

Chapter 4: Compiling Programs 37

Flonum vectors

Flonum vectors are vectors that contain only floating-point values, in much the same way
as a string is a ‘vector’ containing only character values.

Flonum vectors have the advantages of compact storage (about half that of a conventional
vector of flonums on 32-bit machines and about one-third on 64-bit machines) and judicious
use of flonum vectors can decrease flonum consing.

The disadvantages are that flonum vectors are incompatible with ordinary vectors, and
if not used carefully, can increase flonum consing. Flonum vectors are a pain to use because
they require you to make a decision about the representation and stick with it, and it might
not be easy to ascertain whether the advantages in one part of the program outweigh the
disadvantages in another.

The flonum vector operations are:
flo:vector-cons n [procedure]

Create a flonum vector of length n. The contents of the vector are arbitrary and
might not be valid floating-point numbers. The contents should not be used until

initialized.
flo:vector-ref flonum-vector index [procedure]
flo:vector-set! flonum-vector index value [procedure]
flo:vector-length flonum-vector [procedure]

These operations are analogous to the ordinary vector operations.

Examples

The following operation causes no flonum consing because the flonum is loaded directly from
the flonum vector into a floating-point machine register, added, and stored again. There is
no need for a temporary boxed flonum.

(flo:vector-set! v 0 (flo:+ (flo:vector-ref v 0) 1.2))

In this next example, every time g is called, a new boxed flonum has to be created so
that a valid Scheme object can be returned. If g is called more often than the elements of
v are changed then an ordinary vector might be more efficient.

(define (g i)
(flo:vector-ref v i))

Common pitfalls

Pitfall 1: Make sure that your literals are floating-point constants:
(define (f1 a) (flo:+ a 1))
(define (£f2 a) (flo:+ a 1.))

f£1 will most likely cause a hardware error, and certainly give the wrong answer. £2 is
correct.

Pitfall 2: It is tempting to insert calls to inexact to coerce values into flonums. This
does not always work because complex numbers may be exact or inexact too. Also, the
current implementation of inexact is slow.

Pitfall 3: A great deal of care has to be taken with the standard math procedures. For
example, when called with a flonum, both sqrt and asin can return a complex number
(e.g with argument -1.5).

39

5 Debugging

Parts of this chapter are adapted from Don’t Panic: A 6.001 User’s Guide to the Chipmunk
System, by Arthur A. Gleckler.

Even computer software that has been carefully planned and well written may not always
work correctly. Mysterious creatures called bugs may creep in and wreak havoc, leaving the
programmer to clean up the mess. Some have theorized that a program fails only because its
author made a mistake, but experienced computer programmers know that bugs are always
to blame. This is why the task of fixing broken computer software is called debugging.

It is impossible to prove the correctness of any non-trivial program; hence the Cynic’s
First Law of Debugging:

Programs don’t become more reliable as they are debugged; the bugs just get
harder to find.

Scheme is equipped with a variety of special software for finding and removing bugs.
The debugging tools include facilities for tracing a program’s use of specified procedures,
for examining Scheme environments, and for setting breakpoints, places where the program
will pause for inspection.

Many bugs are detected when programs try to do something that is impossible, like
adding a number to a symbol, or using a variable that does not exist; this type of mistake
is called an error. Whenever an error occurs, Scheme prints an error message and starts a
new REPL. For example, using a nonexistent variable foo will cause Scheme to respond

1]=> foo

;Unbound variable: foo

;To continue, call RESTART with an option number:

; (RESTART 3) => Specify a value to use instead of foo.
; (RESTART 2) => Define foo to a given value.

; (RESTART 1) => Return to read-eval-print level 1.

2 error>

Sometimes, a bug will never cause an error, but will still cause the program to operate
incorrectly. For instance,

(prime? 7) = #f

In this situation, Scheme does not know that the program is misbehaving. The program-
mer must notice the problem and, if necessary, start the debugging tools manually.

There are several approaches to finding bugs in a Scheme program:
e Inspect the original Scheme program.
e Use the debugging tools to follow your program’s progress.
e Edit the program to insert checks and breakpoints.
Only experience can teach how to debug programs, so be sure to experiment with all these

approaches while doing your own debugging. Planning ahead is the best way to ward off
bugs, but when bugs do appear, be prepared to attack them with all the tools available.

40 MIT/GNU Scheme 12.1

5.1 Subproblems and Reductions

Understanding the concepts of reduction and subproblem is essential to good use of the
debugging tools. The Scheme interpreter evaluates an expression by reducing it to a simpler
expression. In general, Scheme’s evaluation rules designate that evaluation proceeds from
one expression to the next by either starting to work on a subexpression of the given
expression, or by reducing the entire expression to a new (simpler, or reduced) form. Thus,
a history of the successive forms processed during the evaluation of an expression will show
a sequence of subproblems, where each subproblem may consist of a sequence of reductions.

For example, both ‘(+ 5 6)’ and ‘(+ 7 9)’ are subproblems of the following combination:
(x (+ 56) (+79))
If ‘(prime? n)’ is true, then ‘(cons ’prime n)’ is a reduction for the following expression:

(if (prime? n)
(cons ’prime n)
(cons ’not-prime n))

This is because the entire subproblem of the if expression can be reduced to the problem
‘(cons ’prime n)’, once we know that ‘(prime? n)’ is true; the ‘(cons ’not-prime n)’ can
be ignored, because it will never be needed. On the other hand, if ‘(prime? n)’ were false,
then ‘(cons ’not-prime n)’ would be the reduction for the if expression.

The subproblem level is a number representing how far back in the history of the current
computation a particular evaluation is. Consider factorial:

(define (factorial n)
(if (« n 2)
1
(x n (factorial (- n 1)))))

If we stop factorial in the middle of evaluating ‘(- n 1)’, the ‘(- n 1)’ is at subproblem
level 0. Following the history of the computation “upwards,” ‘(factorial (- n 1))’ is at
subproblem level 1, and ‘(* n (factorial (- n 1)))’ is at subproblem level 2. These ex-
pressions all have reduction number 0. Continuing upwards, the if expression has reduction
number 1.

Moving backwards in the history of a computation, subproblem levels and reduction
numbers increase, starting from zero at the expression currently being evaluated. Reduction
numbers increase until the next subproblem, where they start over at zero. The best way to
get a feel for subproblem levels and reduction numbers is to experiment with the debugging
tools, especially debug.

5.2 The Command-Line Debugger

There are two debuggers available with MIT/GNU Scheme. One of them runs under Ed-
win, and is described in that section of this document (see Section 8.6 [Edwin Debugger],
page 58). The other is command-line oriented, does not require Edwin, and is described
here.

The command-line debugger, called debug, is the tool you should use when Scheme
signals an error and you want to find out what caused the error. When Scheme signals an
error, it records all the information necessary to continue running the Scheme program that

Chapter 5: Debugging 41

caused the error; the debugger provides you with the means to inspect this information.
For this reason, the debugger is sometimes called a continuation browser.

Here is the transcript of a typical Scheme session, showing a user evaluating the expres-
sion ‘(£ib 10)’, Scheme responding with an unbound variable error for the variable fob,
and the user starting the debugger:

1 J=> (fib 10)

;Unbound variable: fob

;To continue, call RESTART with an option number:

; (RESTART 3) => Specify a value to use instead of fob.
; (RESTART 2) => Define fob to a given value.

; (RESTART 1) => Return to read-eval-print level 1.

2 error> (debug)
There are 6 subproblems on the stack.

Subproblem level: O (this is the lowest subproblem level)
Expression (from stack):
fob
Environment created by the procedure: FIB
applied to: (10)
The execution history for this subproblem contains 1 reduction.
You are now in the debugger. Type q to quit, 7 for commands.

3 debug>

This tells us that the error occurred while trying to evaluate the expression ‘fob’ while
running ‘(£ib 10)’. It also tells us this is subproblem level 0, the first of 6 subproblems
that are available for us to examine. The expression shown is marked ‘(from stack)’,
which tells us that this expression was reconstructed from the interpreter’s internal data
structures. Another source of information is the execution history, which keeps a record
of expressions evaluated by the interpreter. The debugger informs us that the execution
history has recorded some information for this subproblem, specifically a description of one
reduction.

What follows is a description of the commands available in the debugger. To understand
how the debugger works, you need to understand that the debugger has an implicit state that
is examined and modified by commands. The state consists of three pieces of information: a
subproblem, a reduction, and an environment frame. Each of these parts of the implicit state
is said to be selected; thus one refers to the selected subproblem, and so forth. The debugger
provides commands that examine the selected state, and allow you to select different states.

Here are the debugger commands. Each of these commands consists of a single letter,
which is to be typed by itself at the debugger prompt. It is not necessary to type RET after
these commands.

42 MIT/GNU Scheme 12.1

Traversing subproblems

The debugger has several commands for traversing the structure of the contin-
uation. It is useful to think of the continuation as a two-dimensional structure:
a backbone consisting of subproblems, and associated ribs consisting of reduc-
tions. The bottom of the backbone is the most recent point in time; that is
where the debugger is positioned when it starts. Each subproblem is numbered,
with 0 representing the most recent time point, and ascending integers number-
ing older time points. The u command moves up to older points in time, and
the d command moves down to newer points in time. The g command allows
you to select a subproblem by number, and the h command will show you a
brief summary of all of the subproblems.

Traversing reductions

If the subproblem description says that ‘The execution history for this
subproblem contains N reductions’, then there is a “rib” of reductions
for this subproblem. You can see a summary of the reductions for this
subproblem using the r command. You can move to the next reduction using
the b command; this moves you to the next older reduction. The f command
moves in the opposite direction, to newer reductions. If you are at the oldest
reduction for a given subproblem and use the b command, you will move to
the next older subproblem. Likewise, if you are at the newest reduction and
use £, you'll move to the next newer subproblem.

Examining subproblems and reductions
The following commands will show you additional information about the cur-
rently selected subproblem or reduction. The t command will reprint the stan-
dard description (in case it has scrolled off the screen). The 1 command will
pretty-print (using pp) the subproblem’s expression.

Traversing environments
Nearly all subproblems and all reductions have associated environments. Select-
ing a subproblem or reduction also selects the associated environment. However,
environments are structured as a sequence of frames, where each frame corre-
sponds to a block of environment variables, as bound by lambda or let. These
frames collectively represent the block structure of a given environment.

Once an environment frame is selected by the debugger, it is possible to select
the parent frame of that frame (in other words, the enclosing block) using the
p command. You can subsequently return to the original child frame using the
s command. The s command works because the p command keeps track of the
frames that you step through as you move up the environment hierarchy; the
s command just retraces the path of saved frames. Note that selecting a frame
using p or s will print the bindings of the newly selected frame.

Examining environments
The following commands allow you to examine the contents of the selected
frame. The ¢ command prints the bindings of the current frame. The a com-
mand prints the bindings of the current frame and each of its ancestor frames.
The e command enters a read-eval-print loop in the selected environment frame;
expressions typed at that REPL will be evaluated in the selected environment.

Chapter 5: Debugging 43

To exit the REPL and return to the debugger, evaluate ‘(abort->previous)’
or use restart. The v command prompts for a single expression and evalu-
ates it in the selected environment. The w command invokes the environment
inspector (where); quitting the environment inspector returns to the debugger.
Finally, the o command pretty-prints the procedure that was called to create
the selected environment frame.

Continuing the computation
There are three commands that can be used to restart the computation that
you are examining. The first is the k command, which shows the currently
active restarts, prompts you to select one, and passes control to the it. It is
very similar to evaluating ‘(restart)’.

The other two commands allow you to invoke internal continuations. This
should not be done lightly; invoking an internal continuation can violate as-
sumptions that the programmer made and cause unexpected results. Each of
these commands works in the same way: it prompts you for an expression, which
is evaluated in the selected environment to produce a value. The appropriate
internal continuation is then invoked with that value as its sole argument. The
two commands differ only in which internal continuation is to be invoked.

The j command invokes the continuation associated with the selected subprob-
lem. What this means is as follows: when the description of a subproblem is
printed, it consists of two parts, and “expression” and a “subproblem being
executed”. The latter is usually marked in the former by the specific character
sequence ‘###’. The internal continuation of the subproblem is the code that
is waiting for the “subproblem being executed” to return a value. So, in effect,
you are telling the program what the “subproblem being executed” will evaluate
to, and bypassing further execution of that code.

The z command is slightly different. It instead invokes the continuation that is
waiting for the outer “expression” to finish. In other words, it is the same as
invoking the j command in the next frame up. So you can think of this as an
abbreviation for the u command followed by the j command.

Wizard commands
The m, x, and y commands are for Scheme wizards. They are used to debug
the MIT/GNU Scheme implementation. If you want to find out what they do,
read the source code.

Miscellaneous commands
The i command will reprint the error message for the error that was in effect
immediately before the debugger started. The q command quits the debugger,
returning to the caller. And the ? command prints a brief summary of the
debugger’s commands.

5.3 Debugging Aids

This section describes additional commands that are useful for debugging.

44 MIT/GNU Scheme 12.1

bkpt datum argument . .. [procedure]
Sets a breakpoint. When the breakpoint is encountered, datum and the arguments
are typed (just as for error) and a read-eval-print loop is entered. The environment
of the read-eval-print loop is derived by examining the continuation of the call to
bkpt; if the call appears in a non-tail-recursive position, the environment will be that
of the call site. To exit from the breakpoint and proceed with the interrupted process,
call the procedure continue. Sample usage:

1 1=> (begin (write-line ’foo)
(bkpt ’test-2 ’test-3)
(write-line ’bar)
’done)

foo

test-2 test-3

;To continue, call RESTART with an option number:

; (RESTART 2) => Return from BKPT.

; (RESTART 1) => Return to read-eval-print level 1.

2 bkpt> (+ 3 3)
;Value: 6
2 bkpt> (continue)

bar
;Value: done

pp object [output-port [as-code?]] [procedure]
The pp procedure is described in Section “Output Procedures” in MIT/GNU Scheme
Reference Manual. However, since this is a very useful debugging tool, we also mention
it here. pp provides two very useful functions:

1. pp will print the source code of a given procedure. Often, when debugging, you
will have a procedure object but will not know exactly what procedure it is.
Printing the procedure using pp will show you the source code, which greatly
aids identification.

2. pp will print the fields of a record structure. If you have a compound object
pointer, print it using pp to see the component fields, like this:

(pp (->pathname "~"))

#[pathname 14 "/usr/home/cph"]
(host #[host 15])

(device unspecific)

(directory (absolute "usr" "home"))
(name "cph")

(type O)

(version unspecific)

I I

Chapter 5: Debugging 45

When combined with use of the #@ syntax, pp provides the functionality of a
simple object inspector. For example, let’s look at the fields of the host object
from the above example:

(pp #015)

- #[host 15]

4 (type-index 0)
- (name ())

pa procedure [procedure]
pa prints the arguments of procedure. This can be used to remind yourself, for
example, of the correct order of the arguments to a procedure.

for-all?
= #[compiled-procedure 40 ("boole" #x6) #xC #x20ECBO]

(pa for-all?)
< (items predicate)

(pp for-all?)

| (named-lambda (for-all? items predicate)
-4 (let loop ((items items))

o (or (null? items)

- (and (predicate (car items))

- (loop (cdr items))))))

where [obj]] [procedure]
The procedure where enters the environment examination system. This allows en-
vironments and variable bindings to be examined and modified. where accepts one-
letter commands. The commands can be found by typing 7 to the ‘where>’ prompt.
The optional argument, obj, is an object with an associated environment: an environ-
ment, a procedure, or a promise. If obj is omitted, the environment examined is the
read-eval-print environment from which where was called (or an error or breakpoint
environment if called from the debugger). If a procedure is supplied, where lets the
user examine the closing environment of the procedure. This is useful for debugging
procedure arguments and values.

apropos string [environment [search-parents?]] [procedure]
Search an environment for bound names containing string and print out the matching
bound names. If environment is specified, it must be an environment or package name,
and it defaults to the current REPL environment. The flag search-parents? specifies
whether the environment’s parents should be included in the search. The default is
#f if environment is specified, and #t if environment is not specified.

(apropos "search")

#[package 12 (user)]
#[package 13 ()]
alist-table-search
re-string-search-backward
re-string-search-forward

[

46 MIT/GNU Scheme 12.1

re-substring-search-backward
re-substring-search-forward
regexp-search
regexp-search-all
regsexp-search-string-forward
search-gc-finalizer
search-ordered-subvector
search-ordered-vector
string-search-all
string-search-backward
string-search-forward
substring-search-all
substring-search-backward
substring-search-forward
vector-binary-search
weak-alist-table-search

O

5.4 Advising Procedures

Giving advice to procedures is a powerful debugging technique. trace and break are
useful examples of advice-giving procedures. Note that the advice system only works for
interpreted procedures.

trace-entry procedure [procedure]
Causes an informative message to be printed whenever procedure is entered. The
message is of the form
[Entering #[compound-procedure 1 foo]
Args: vall
val2
..

where vall, val2 etc. are the evaluated arguments supplied to the procedure.

(trace-entry fib)

(fib 3)
- [Entering #[compound-procedure 19 fib]
= Args: 3]
- [Entering #[compound-procedure 19 fib]
o Args: 1]
4 [Entering #[compound-procedure 19 fib]
- Args: 2]
= 3
trace-exit procedure [procedure]

Causes an informative message to be printed when procedure terminates. The mes-
sage contains the procedure, its argument values, and the value returned by the
procedure.

(trace-exit fib)
(fib 3)

Chapter 5: Debugging 47

4 [

= == #[compound-procedure 19 fib]

o Args: 1]

4 [2

o == #[compound-procedure 19 fib]

- Args: 2]

4 [3

- <== #[compound-procedure 19 fib]

. Args: 3]

= 3
trace-both procedure [procedure]
trace procedure [procedure]

Equivalent to calling both trace-entry and trace-exit on procedure. trace is the
same as trace-both.

(trace-both fib)

(fib 3)
- [Entering #[compound-procedure 19 fib]
—| Args: 3]
- [Entering #[compound-procedure 19 fib]
= Args: 1]
4 [
= == #[compound-procedure 19 fib]
o Args: 1]
- [Entering #[compound-procedure 19 fib]
= Args: 2]
4 [2
. <== #[compound-procedure 19 fib]
o Args: 2]
4 [3
- == #[compound-procedure 19 fib]
- Args: 3]
= 3

untrace-entry [procedure] [procedure]

Stops tracing the entry of procedure. If procedure is not given, the default is to stop
tracing the entry of all entry-traced procedures.

untrace-exit [procedure] [procedure]
Stops tracing the exit of procedure. If procedure is not given, the default is all
exit-traced procedures.

untrace [procedure] [procedure]
Stops tracing both the entry to and the exit from procedure. If procedure is not
given, the default is all traced procedures.

break-entry procedure [procedure]
Like trace-entry with the additional effect that a breakpoint is entered when pro-
cedure is invoked. Both procedure and its arguments can be accessed by calling the

48 MIT/GNU Scheme 12.1

procedures *proc* and *args#*, respectively. Use restart or continue to continue
from a breakpoint.

break-exit procedure [procedure]
Like trace-exit, except that a breakpoint is entered just prior to leaving procedure.
Procedure, its arguments, and the result can be accessed by calling the procedures
xproc*, *args*, and *result#, respectively. Use restart or continue to continue
from a breakpoint.

break-both procedure [procedure]

break procedure [procedure]
Sets a breakpoint at the beginning and end of procedure. This is break-entry and
break-exit combined.

unbreak [procedure] [procedure]
Discontinues the entering of a breakpoint on the entry to and exit from procedure. If
procedure is not given, the default is all breakpointed procedures.

unbreak-entry [procedure] [procedure]
Discontinues the entering of a breakpoint on the entry to procedure. If procedure is
not given, the default is all entry-breakpointed procedures.

unbreak-exit [procedure] [procedure]
Discontinues the entering of a breakpoint on the exit from procedure. If procedure is
not given, the default is all exit-breakpointed procedures.

The following three procedures are valid only within the dynamic extent of a breakpoint.
In other words, don’t call them unless you are stopped inside a breakpoint.

*Procx [procedure]
Returns the procedure in which the breakpoint has stopped.

args [procedure]
Returns the arguments to the procedure in which the breakpoint has stopped. The
arguments are returned as a newly allocated list.

xresult* [procedure]
Returns the result yielded by the procedure in which the breakpoint has stopped.
This is valid only when in an exit breakpoint.

The following procedures install advice procedures that are called when the advised
procedure is entered or exited. An entry-advice procedure must accept three arguments:
the advised procedure, a list of the advised procedure’s arguments, and the advised proce-
dure’s application environment (that is, the environment in which the procedure’s formal
parameters are bound). An exit-advice procedure must accept four arguments: the advised
procedure, a list of the advised procedure’s arguments, the result yielded by the advised
procedure, and the advised procedure’s application environment.

Note that the trace and breakpoint procedures described above are all implemented by
means of the more general advice procedures, so removing advice from an advised procedure
will also remove traces and breakpoints.

Chapter 5: Debugging 49

advise-entry procedure advice [procedure]
Advice must be an entry-advice procedure. Advice is attached to procedure, so that
whenever procedure is entered, advice is called.

advise-exit procedure advice [procedure]
Advice must be an exit-advice procedure. Advice is attached to procedure, so that
whenever procedure returns, advice is called.

advice procedure [procedure]
Returns the advice procedures, if any, that are attached to procedure. This is returned
as a list of two lists: the first list is all of the entry-advice procedures attached to
procedure, and the second is all of the exit-advice procedures.

unadvise-entry [procedure] [procedure]
Removes all entry-advice procedures from procedure. If procedure is not given, the
default is all entry-advised procedures.

unadvise-exit [procedure] [procedure]
Removes exit-advice procedures from procedure. If procedure is not given, the default
is all exit-advised procedures.

unadvise [procedure] [procedure]
Removes all advice procedures from procedure. This is a combination of
unadvise-entry and unadvise-exit. If procedure is not given, the default is all
advised procedures.

o1

6 Profiling

MIT/GNU Scheme provides a simple-minded statistical profiler called the stack sampler,
which periodically interrupts the program and records the return addresses that it finds on
the stack. For each return address, the stack sampler records two counts: the number of
times that return address was at the top of the stack, called the sampled count, and the
number of times that return address was somewhere else in the stack, called the waiting
count. The topmost ‘return address’ may correspond with a procedure rather than a con-
tinuation, if the procedure was about to be called in a tail position when the stack sampler
interrupted.

If a return address has a high sampled count, it is in a specific part of the program
that may warrant micro-optimization. If a return address has a high waiting count, then
the program spends a long time computing the expression for whose value continuations
corresponding with the return address are waiting, and the expression may warrant a better
algorithm.

The stack sampling is very coarse-grained, because the program is interrupted only at
safe points, which are a subset of procedure calls and returns. Another approach to profiling
is to record the address of the machine instruction the program is about to have the machine
execute, and then to find where in the program that instruction is. This could provide finer-
grained sampled counts, but it requires a lower-level implementation, and cannot provide
waiting counts, because the stack may not be in a consistent, inspectable state except at
safe points.

Finally, the stack sampler gives information only about compiled code; it ignores contin-
uations on the stack for interpreted code. This is because continuations for compiled code
are easier to deal with, and in any case, if a program is too slow when interpreted, the first
step is to compile it, not to profile it.

with-stack-sampling interval procedure [procedure]
Applies procedure to zero arguments. During the dynamic extent of the call to
procedure, the stack sampler interrupts the program at intervals of approximately
interval milliseconds. When procedure returns, with-stack-sampling displays the
waiting and sampled counts it gathered.

More precisely, after each sample, the stack sampler will not sample again before
interval milliseconds of real time (in the sense of real-time-clock; see Section “Ma-
chine Time” in MIT/GNU Scheme Reference Manual) have elapsed, although more
time may elapse before the next sample.

stack-sampler:show-expressions? [variable]
If true, the output of with-stack-sampling shows the subexpression corresponding
with each return address, and the expression enclosing it. If false, the output is shorter
(one line per return address), and just shows the names of procedures forming the
environment hierarchy corresponding with the return address.

stack-sampler:debug-internal-errors? [variable]
If false, the default, errors signalled while recording a sample are ignored. Set this to
true only if you are debugging the internals of the system.

93

7 GNU Emacs Interface

GNU Emacs is distributed with a loadable package xscheme, which facilitates running
Scheme as a subprocess of Emacs.

To invoke Scheme from Emacs, load the xscheme package (for example by ‘(require
’xscheme)’, then use M-x run-scheme. You may give run-scheme a prefix argument, in
which case it will allow you to edit the command line that is used to invoke Scheme. Do
not remove the ——emacs option!

Note carefully: In Emacs 19 and later, the run-scheme command exists, but is different
from the one described here! In order to get this interface, you must load the xscheme
library before executing run-scheme.

Scheme will be started up as a subprocess in a buffer called ‘*schemex*’. This buffer will
be in scheme-interaction-mode and all output from the Scheme process will go there.
The mode line for the ‘*schemex*’ buffer will have this form:

——**—*xschemex: 1 [Evaluator] (Scheme Interaction: input)------
The first field, showing ‘1’ in this example, is the level number.

The second field, showing ‘ [Evaluator]’ in this example, describes the type of REPL that
is running. Other values include:

[Debugger]

[Where]
The mode after ‘Scheme Interaction’ is one of:
‘input’ Scheme is waiting for input.
‘run’ Scheme is running an evaluation.
‘gc’ Scheme is garbage collecting.

When the xscheme package is loaded into Emacs, scheme-mode is extended to include
commands for evaluating expressions (do C-h m in any scheme-mode buffer for the most
up-to-date information):

M-o Evaluates the current buffer (xscheme-send-buffer).

M-z Evaluates the current definition (xscheme-send-definition). This is also
bound to C-M-x.

C-M-z Evaluates the current region (xscheme-send-region).

C-x C-e Evaluates the expression to the left of point (xscheme-send-previous-
expression). This is also bound to M-RET.

C-c C-s Selects the ‘*schemex’ buffer and places you at its end (xscheme-select-
process-buffer).

C-c C-y Yanks the most recently evaluated expression, placing it at point
(xscheme-yank-previous-send). This works only in the ‘*scheme*’ buffer.

The following commands provide interrupt capability:

C-c C-c Like typing C-g when running Scheme in a terminal. (xscheme-send-control-
g-interrupt)

54

C-c C-x

C-c C-u

C-c C-b

C-c C-p

MIT/GNU Scheme 12.1

Like typing C-c C-x when running Scheme in a terminal.
control-x-interrupt)

Like typing C-c C-u when running Scheme in a terminal.
control-u-interrupt)

Like typing C-c C-b when running Scheme in a terminal.
breakpoint-interrupt)

Like evaluating ‘(continue)’. (xscheme-send-proceed)

(xscheme-send-
(xscheme-send-

(xscheme-send-

95

8 Edwin

This chapter describes how to start Edwin, the MIT/GNU Scheme text editor. Edwin
is a clone of GNU Emacs version 18—you should refer to the GNU Emacs manual for
information about Edwin’s commands and key bindings—except that Edwin’s extension
language is MIT/GNU Scheme, while GNU Emacs extensions are written in Emacs Lisp.
This manual does not discuss customization of Edwin.

8.1 Starting Edwin

To use Edwin, start Scheme with the following command-line options:
mit-scheme --edit

Alternatively, you can load Edwin by calling the procedure edit:

edit [procedure]

edwin [procedure]
Enter the Edwin text editor. If entering for the first time, the editor is initialized
(by calling create-editor with no arguments). Otherwise, the previously-initialized
editor is reentered.

The procedure edwin is an alias for edit.

inhibit-editor-init-file? [variable]
When Edwin is first initialized, it loads your init file (called ~/.edwin under unix) if
you have one. If the Scheme variable inhibit-editor-init-file? is true, however,
your init file will not be loaded even if it exists. By default, this variable is false.

Note that you can set this variable in your Scheme init file (see Section 2.2 [Customiz-
ing Scheme], page 5).

create-editor arg ... [procedure]
Initializes Edwin, or reinitializes it if already initialized. create-editor is normally
invoked automatically by edit.

If no args are given, the value of create-editor-args is used instead. In other
words, the following are equivalent:

(create-editor)

(apply create-editor create-editor-args)

On the other hand, if args are given, they are used to update create-editor-args,
making the following equivalent:

(apply create-editor args)
(begin (set! create-editor-args args) (create-editor))

create-editor-args [variable]
This variable controls the initialization of Edwin. The following values are defined:

(#1£) This is the default. Creates a window of some default size, and uses that
window as Edwin’s main window. Under unix, if X11 is not available
or if the DISPLAY environment variable is undefined, Edwin will run on
Scheme’s console.

56 MIT/GNU Scheme 12.1

(x) Unix only. Creates an X window and uses it as Edwin’s main window.
This requires the DISPLAY environment variable to have been set to the
appropriate value before Scheme was started.

(x geometry)
Unix only. Like ‘(x)’ except that geometry specifies the window’s ge-
ometry in the usual way. Geometry must be a character string whose
contents is an X geometry specification.

(console)
Unix only. Causes Edwin to run on Scheme’s console, or in unix termi-
nology, the standard input and output. If the console is not a terminal
device, or is not powerful enough to run Edwin, an error will be signalled
at initialization time.

8.2 Leaving Edwin
Once Edwin has been entered, it can be exited in the following ways:

C-x z Stop Edwin and return to Scheme (suspend-edwin). The call to the procedure
edit that entered Edwin returns normally. A subsequent call to edit will
resume Edwin where it was stopped.

C-xc Offer to save any modified buffers, then kill Edwin, returning to Scheme
(save-buffers-kill-edwin). This is like the suspend-edwin command,
except that a subsequent call to edit will reinitialize the editor.

C-x C-z Stop Edwin and suspend Scheme, returning control to the operating system’s
command interpreter (suspend-scheme). When Scheme is resumed (using
the command interpreter’s job-control commands), Edwin is automatically
restarted where it was stopped. This command corresponds to the C-x C-z
command of GNU Emacs.

C-x C-c Offer to save any modified buffers, then kill both Edwin and Scheme
(save-buffers-kill-scheme). Control is returned to the operating system’s
command interpreter, and the Scheme process is terminated. This command
corresponds to the C-x C-c command of GNU Emacs.

8.3 Scheme Mode

As you might expect, Edwin has special support for editing and evaluating Scheme code.
This section describes Scheme Mode, the appropriate mode for editing MIT/GNU Scheme
programs.

Scheme mode is normally entered automatically by visiting a file whose file name ends
in ‘.scm’. You can also mark a file as Scheme code by placing the string ‘~*-Scheme-*-’
on the first line of the file. Finally, you can put any buffer in Scheme mode by executing
the command M-x scheme-mode.

Scheme mode is similar to the Emacs modes that edit Lisp code. So, for example, C-i
indents the current line, and C-M-q indents the expression to the right of point. The close
parenthesis will temporarily flash the matching open parenthesis. Most Scheme constructs

Chapter 8: Edwin 57

requiring special indentation are recognized by Scheme mode, for example, begin, do, and
let.

Scheme mode also provides support that is specific to Scheme programs, much as Emacs-
Lisp mode does in Emacs. Completion of global variable names is provided: type the first
few characters of a variable, then type C-M-i, and Edwin will attempt to complete the
variable name using the current set of bound variables. If C-M-i is given a prefix argument,
it will complete the name using the current set of interned symbols (which includes the
bound variables as a subset).

The M-A command (note the uppercase 4) will show the parameters of a procedure when
point is inside a procedure call. For example, type the string ‘(quotient’, then press M-A4,
and the command will echo ‘(n d)’ in the echo area. With a prefix argument, M-4 will insert
the parameter names in the buffer at point, so in this example, the buffer would contain
‘(quotient n 4’ after running C-u M-A.

8.4 Evaluation

Scheme mode also provides commands for evaluating Scheme expressions. The simplest
evaluation command is C-x C-e, which evaluates the expression to the left of point. (This
key is bound in all buffers, even if they don’t contain Scheme code.) The command M-z
evaluates the definition that point is in (a definition is an expression starting with a left
parenthesis in the leftmost column). The command M-: prompts for an expression in the
minibuffer, evaluates it, and prints the value in the echo area.

Other commands that evaluate larger amounts of code are C-M-z, which evaluates all
of the expressions in the region, and M-o, which evaluates the entire buffer. Both of these
commands are potentially dangerous in that they will evaluate anything that appears to be
an expression, even if it isn’t intended to be.

Normally, these commands evaluate expressions by sending them to a REPL buffer, which
performs the evaluations in a separate thread. This has two advantages: it allows you to
continue editing while the evaluation is happening, and it keeps a record of each evaluation
and its printed output. If you wish to stop a running evaluation and to erase any pending
expressions, use the C-c¢ C-c command from any Scheme buffer. (Note that by default,
Edwin starts up with one REPL buffer, called ‘*schemex’.)

If you would prefer to have Scheme mode evaluation commands evaluate directly,
rather than sending expressions to the REPL buffer, set the Edwin variable evaluate-in-
inferior-repl to #f. In this case, you will not be able to use Edwin while evaluation
is occurring; any output from the evaluation will be shown in a pop-up buffer when the
evaluation finishes; and you abort the evaluation using C-g.

8.5 REPL Mode

Edwin provides a special mechanism for interacting with Scheme read-eval-print loops:
REPL buffers. A REPL buffer is associated with a Scheme REPL running in a separate
thread of execution; because of this, expressions may be evaluated in this buffer while you
simultaneously do other things with the editor. A REPL buffer captures all printed output
from an evaluated expression, as well as supporting interactive programs such as debug.
For these and other reasons, REPL buffers are the preferred means for interacting with the
Scheme interpreter.

58 MIT/GNU Scheme 12.1

When Edwin starts, it has one buffer: a REPL buffer called ‘*scheme*’. The command
M-x repl selects this buffer, if it exists; otherwise it creates a new REPL buffer. If you want
two REPL buffers, just rename the ‘*scheme*’ buffer to something else and run M-x repl
again.

REPL buffers support all the same evaluation commands that Scheme mode does; in fact,
REPL buffers use a special mode called REPL mode that inherits from Scheme mode. Thus,
any key bindings defined in Scheme mode are also defined in REPL mode. One exception to
this is the M-o command, which is deliberately undefined in REPL mode; otherwise it would
be too easy to re-evaluate all the previously evaluated expressions in the REPL buffer.

In addition to evaluation commands, REPL mode provides a handful of special commands
for controlling the REPL itself. The commands C-c C-x and C-c C-u abort the current
evaluation, returning to the current or previous REPL levels, respectively. The command
C-c C-b interrupts the current evaluation, entering a breakpoint.

Each REPL buffer maintains a history of the expressions that were typed into it. Sev-
eral commands allow you to access the contents of this history. The command M-p moves
backwards through the history, inserting previously evaluated expressions at point. Like-
wise, M-n moves forward through the history. The commands C-c C-r and C-c C-s search
backward and forward through the history for a particular string. The command C-c C-o
deletes any output from the previous evaluation; use this command with care since it cannot
be undone. The command C-c C-1 finds the most recent expression in the buffer and moves
point there.

When an expression that you evaluate signals an error, the REPL buffer notices this
and offers to run the debugger for you. Answer this question with a ‘y’ or ‘n’ response.
You can start the debugger whenever the REPL buffer is listening by executing the C-c C-d
command. In either case, this starts the Edwin debugger, which pops up a new window
containing the debugger. Your REPL buffer remains in the error state, allowing you to
examine it further if you wish.

8.6 The Edwin Debugger

The Edwin debugger is similar to the command-line debugger, except that it takes advantage
of multiple windows and Edwin’s command structure to provide a more intuitive interface.
The debugger operates as a browser, much like Dired, presenting you with an overview
of the subproblem structure, and allowing you to examine parts of that structure in more
detail by selecting the parts. When started, the debugger creates a buffer ‘*debug*’ showing
the subproblem structure, and selects the first line.

Each line beginning with ‘S’ represents either a subproblem or stack frame. A subproblem
line may be followed by one or more indented lines (beginning with the letter ‘R’) which
represent reductions associated with that subproblem. The subproblems are indexed with
the natural numbers. To obtain a more complete description of a subproblem or reduction,
click the mouse on the desired line or move the cursor to the line using the arrow keys (or
C-n and C-p). The description buffer will display the additional information.

The description buffer contains three major regions. The first region contains a pretty-
printed version of the current expression. The current subproblem within the expression is
highlighted. The second region contains a representation of the frames of the environment
of the current expression. The bindings of each frame are listed below the frame header. If

Chapter 8: Edwin 59

there are no bindings in the frame, none will be listed. The frame of the current expression
is preceded with ‘==>".

The bottom of the description buffer contains a third region for evaluating expressions
in the environment of the selected subproblem or reduction. This is the only portion of
the buffer where editing is possible. This region can be used to find the values of variables
in different environments, or even to modify variable values or data structures (note that
variables in compiled code cannot usually be modified).

Typing e creates a new buffer in which you may browse through the current environment.
In this new buffer, you can use the mouse, the arrows, or C-n and C-p to select lines and view
different environments. The environments listed are the same as those in the description
buffer. If the selected environment structure is too large to display (i.e. if the number of
bindings in the environment exceeds the value of the editor variable environment-package-
limit) a message to that effect is displayed. To display the environment in this case, use
M-x set-variable to set environment-package-limit to #f. At the bottom of the new
buffer is a region for evaluating expressions, similar to that of the description buffer.

The appearance of environment displays is controlled by the editor variables
debugger-show-inner-frame-topmost? and debugger-compact-display? which affect
the ordering of environment frames and the line spacing respectively.

Type q to quit the debugger, killing its primary buffer, any others that it has created,
and the window that was popped up to show the debugger.

Note: The description buffers created by the debugger are given names beginning with
spaces so that they do not appear in the buffer list; these buffers are automatically deleted
when you quit the debugger. If you wish to keep one of these buffers, simply rename it
using M-x rename-buffer: once it has been renamed, it will not be automatically deleted.

8.7 Last Resorts

When Scheme exits abnormally it tries to save any unsaved Edwin buffers. The buffers are
saved in an auto-save file in case the original is more valuable than the unsaved version.
You can use the editor command M-x recover-file to recover the auto-saved version. The
name used to specify an auto-save file is operating-system dependent: under unix foo.scm
will be saved as #foo.scm#.

The following Scheme procedures are useful for recovering from bugs in Edwin’s imple-
mentation. All of them are designed for use when Edwin is not running—they should not be
used when Edwin is running. These procedures are designed to help Edwin’s implementors
deal with bugs during the implementation of the editor; they are not intended for casual
use, but as a means of recovering from bugs that would otherwise require reloading the
editor’s world image from the disk.

save-editor-files [procedure]
Examines Edwin, offering to save any unsaved buffers. This is useful if some bug
caused Edwin to die while there were unsaved buffers, and you want to save the
information without restarting the editor.

reset-editor [procedure]
Resets Edwin, causing it to be reinitialized the next time that edit is called. If you
encounter a fatal bug in Edwin, a good way to recover is to first call save-editor-

60 MIT/GNU Scheme 12.1

files, and then to call reset-editor. That should completely reset the editor to
its initial state.

reset-editor-windows [procedure]
Resets Edwin’s display structures, without affecting any of the buffers or their con-
tents. This is useful if a bug in the display code causes Edwin’s internal display data
structures to get into an inconsistent state that prevents Edwin from running.

61

Appendix A GNU Free Documentation License

Version 1.2, November 2002

Copyright (©) 2000,2001,2002 Free Software Foundation, Inc.
51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and
useful document free in the sense of freedom: to assure everyone the effective freedom
to copy and redistribute it, with or without modifying it, either commercially or non-
commercially. Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible for modifications
made by others.

This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a
notice placed by the copyright holder saying it can be distributed under the terms
of this License. Such a notice grants a world-wide, royalty-free license, unlimited in
duration, to use that work under the conditions stated herein. The “Document”,
below, refers to any such manual or work. Any member of the public is a licensee, and
is addressed as “you”. You accept the license if you copy, modify or distribute the work
in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into
another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that
could fall directly within that overall subject. (Thus, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding
them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released

62

MIT/GNU Scheme 12.1

under this License. If a section does not fit the above definition of Secondary then it is
not allowed to be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may
be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, that is suitable for
revising the document straightforwardly with generic text editors or (for images com-
posed of pixels) generic paint programs or (for drawings) some widely available drawing
editor, and that is suitable for input to text formatters or for automatic translation to
a variety of formats suitable for input to text formatters. A copy made in an otherwise
Transparent file format whose markup, or absence of markup, has been arranged to
thwart or discourage subsequent modification by readers is not Transparent. An image
format is not Transparent if used for any substantial amount of text. A copy that is
not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without
markup, Texinfo input format, LaTEX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML, PostScript or PDF designed
for human modification. Examples of transparent image formats include PNG, XCF
and JPG. Opaque formats include proprietary formats that can be read and edited
only by proprietary word processors, SGML or XML for which the DTD and/or
processing tools are not generally available, and the machine-generated HTML,
PostScript or PDF produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such
as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve
the Title” of such a section when you modify the Document means that it remains a
section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to
be included by reference in this License, but only as regards disclaiming warranties:
any other implication that these Warranty Disclaimers may have is void and has no
effect on the meaning of this License.

VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and

Appendix A: GNU Free Documentation License 63

that you add no other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for copies.
If you distribute a large enough number of copies you must also follow the conditions
in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of
the Document, numbering more than 100, and the Document’s license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify you as the publisher
of these copies. The front cover must present the full title with all words of the title
equally prominent and visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verbatim copying in other
respects.

If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a computer-network location from which
the general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material. If
you use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will
remain thus accessible at the stated location until at least one year after the last time
you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of
it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any,
be listed in the History section of the Document). You may use the same title as
a previous version if the original publisher of that version gives permission.

64

o

N.

0.

MIT/GNU Scheme 12.1

List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has fewer
than five), unless they release you from this requirement.

State on the Title page the name of the publisher of the Modified Version, as the
publisher.

Preserve all the copyright notices of the Document.

Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

Include an unaltered copy of this License.

Preserve the section Entitled “History”, Preserve its Title, and add to it an item
stating at least the title, year, new authors, and publisher of the Modified Version
as given on the Title Page. If there is no section Entitled “History” in the Docu-
ment, create one stating the title, year, authors, and publisher of the Document
as given on its Title Page, then add an item describing the Modified Version as
stated in the previous sentence.

Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
“History” section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

Delete any section Entitled “Endorsements”. Such a section may not be included
in the Modified Version.

Do not retitle any existing section to be Entitled “Endorsements” or to conflict in
title with any Invariant Section.

Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their
titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.

Appendix A: GNU Free Documentation License 65

You may add a section Entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties—for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but
you may replace the old one, on explicit permission from the previous publisher that
added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections Entitled “History” in the vari-
ous original documents, forming one section Entitled “History”; likewise combine any
sections Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You
must delete all sections Entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.

You may extract a single document from such a collection, and distribute it individu-
ally under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called

66

10.

MIT/GNU Scheme 12.1

an “aggregate” if the copyright resulting from the compilation is not used to limit the
legal rights of the compilation’s users beyond what the individual works permit. When
the Document is included an aggregate, this License does not apply to the other works
in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they
must appear on printed covers that bracket the whole aggregate.

TRANSLATION

Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original versions
of these Invariant Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warrany Disclaimers, provided that you
also include the original English version of this License and the original versions of
those notices and disclaimers. In case of a disagreement between the translation and
the original version of this License or a notice or disclaimer, the original version will
prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “His-
tory”, the requirement (section 4) to Preserve its Title (section 1) will typically require
changing the actual title.

TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided for under this License. Any other attempt to copy, modify, sublicense or
distribute the Document is void, and will automatically terminate your rights under
this License. However, parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such parties remain in full
compliance.

FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See https://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of
this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation.

https://www.gnu.org/copyleft/

Appendix A: GNU Free Documentation License 67

A.1 ADDENDUM: How to use this License for your
documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (C) year your name.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.2
or any later version published by the Free Software Foundation;
with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
A copy of the license is included in the section entitled ‘‘GNU
Free Documentation License’’.
If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with...Texts.” line with this:

with the Invariant Sections being list their titles, with
the Front-Cover Texts being list, and with the Back-Cover Texts
being list.
If you have Invariant Sections without Cover Texts, or some other combination of the
three, merge those two alternatives to suit the situation.
If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.

69

Appendix B Environment-variable Index

COLUMNS ... e 12
DISPLAY ... 12
E

EDWIN_BINARY_DIRECTORY...................... 11
EDWIN_ETC_DIRECTORY...............coiiin... 11
EDWIN_INFO_DIRECTORYcnnt. 11
ESHELL. e 11
HOME 11

MITSCHEME _BAND........... ..., 7, 10
MITSCHEME_CONSTANT..............ooviiiiinnn.. 11
MITSCHEME_HEAP_SIZE............ ... cocn... 11
MITSCHEME_INF_DIRECTORY..................... 11
MITSCHEME_LIBRARY_PATH.................... 8, 10
MITSCHEME_LOAD_OPTIONS...................... 11
MITSCHEME_STACK_SIZE 11
PATH. ... o 12
SHELL . ..o i e 12
TEMP ... 11
TERM. .. 12
TMP .o 11
TMPDIR. ... 11

Appendix C Option Index

71

P 9 ——interactive........... .. 8
= == T P 9 —=1library 8
TTband. L 7 —=10ad . 9
TTCOMSTANT ...t O AMET£E1€ eeunttetee e 8
—medit . 9 3
STEMACS L e 7, 53 TLOCOTE wvvvvvvvevve

——eVaALl. 9 ~TOPLION=SUMBATY .. vvvvtiiii e 7
e FAST e 8 —=StACK L. 7

73

Appendix D Variable Index

*
AT ES . Lot 48
KDLOCK . ittt 48
result 48

AdVICE. ..ot 49
advise—entry..... ...ttt 49
advise-exit........... oo 49
Ald . 35
APTOPOS .« oottt e 45
argument-command-line-parser............... 10
assigned.............iiiiiiii 35

DRPE . 44
bound....... ... 35
BreaK. . ot 48
break-both.......coiiiiiiiinii i 48
break-entry.............. ... 47
break-exit....... ..o 48
bury..... ... 18

Cd o 20
CE 25
cmdl-interrupt/abort-nearest 14
cmdl-interrupt/abort-previous.............. 14
cmdl-interrupt/abort-top-level............. 14
command-line-arguments 9
continuel 14
create-editorl 55
create-editor-args........................... 55

debug. ... 40
define..... ... 27
define-integrable............ccoviuiiiiiinnnnn. 27
define-load-option............. 21
difference....... ... 35
disk-TresStore.oiviiii it 22
AiSK=SAVe ..ottt ittt i 21
o X 35 19

edit .. . e 55
EAWID . .t 55
13 4 72 17
EXIT Lo 12, 14

flo:vector—conscovviiiiiinninnan.. 37
flo:vector-length............................ 37
flo:vector-refl 37
flo:vector-set! 37
flush-purification-queue!................... 22
free. .. e 35

identify-world i i 5
ignore-assignment-traps..................... 34
ignore-reference-traps...................... 34
Import. ... 19
inhibit-editor-init-file?................... 55
integrate........................ool 26
integrate-external........................... 27
integrate-operator.................. 26
intersection........... il 35

load. ..o 20
load-debugging-info-on-demand?............. 25
load-option. ... 20

DAME . o ot ettt ettt e e e 19
nearest-repl/environment.................... 15
no-range-checks 35
no-type-checksol 35

74

S Y PP 45
PO 16
POt ettt 18
<2< 44
print-gc-statistics.......... ... ool 22
procedure-environment 16
purify............oo 20, 22
PUSh. .. 17
PWA . 20

reduce-operator.................. ... 29, 30
replace-operator.................iiiiiii... 28
reset-editor........ ...t 59
reset-editor-windows 60
restart e 14
run-scheme............. .. i 53

S

save-buffers-kill-edwin..................... 56
save-buffers-kill-scheme.................... 56
save-editor-files................ 59
scheme-interaction-mode..................... 53
scheme-mode...........coiiiiiiiiiiiii 53
Set . 34
set-command-line-parser!.................... 10
set-gc-notification! Ll 23
SE 25
simple-command-line-parser................... 9
stack-sampler:debug-internal-errors?...... 51
stack-sampler:show-expressions?............ 51
suspend-edwin i 56
suspend-schemel 56
system-global-environment................... 15

MIT/GNU Scheme 12.1

T

toggle-gc-notification! 23
top-level ... 19
7% oY o2 47
trace-both............ il 47
trace-entry........... L 46
trace-exit........... ..ol 46

UNAdViSe .o ii it e 49
unadvise-entryia 49
unadvise-exit 49
UNDTEAK .ottt e 48
unbreak-entryol 48
unbreak-exit..........iiiii i 48
UNIOM. .ttt e 35
UNNAME . .« ot eve e et e et e e e ie e e ienennas 19
UNETACE .« ottt et ettt et e 47
Untrace—entryoiiiiiiiiiiiii. 47
untrace-exit........ .. i 47
L P 19
user-initial-environment.................... 15
usual-integrations........................... 26

X

xscheme-select-process-buffer.............. 53
xscheme-send-breakpoint-interrupt 54
xscheme-send-buffer....................... ... 53
xscheme-send-control-g-interrupt........... 53
xscheme-send-control-u-interrupt........... 54
xscheme-send-control-x-interrupt........... 54
xscheme-send-definition..................... 53
xscheme-send-previous-expression........... 53
xscheme-send-proceed 54
xscheme-send-region...................... ... 53

xscheme-yank-previous-send.................. 53

75

Appendix E Concept Index

band........ ... 7,21
breakpoint...... o i 14
breakpoints.......... ... i i 39
browser, Continuation.......................... 40
DUES . o oo 39
bugs, reporting.oo it 1

[14
CmC T et 14
C=C Cb ettt 14, 54
C=C CmC it 14, 53
C-CC-p.e 54
C-C CmS. i 53
CmC Gttt 14, 54
C=C CmX ot 14, 54
C-CC-y. 53
CmC d 14
G Qe 14
CmC Z ettt 14
L 14
CMzZ . 53
o Gttt 56
CmX Gt ottt e e 56
CmX G ettt 53
CmX Gzttt 56
G Z 56
command-line debugger 40
command-line options........................... 5
compatibility package, version................... 5
compiler, version........... i 5
constant space............ il 6
continuation Browser o o 40
current REPL environment..................... 15

D

debugger....... i 40
Debugger command 7..........o L 43
Debugger command a...................... ..., 42
Debugger command b................ 42
Debugger command c.......... oL 42
Debugger command d................... 42
Debugger command e............. ... oL 42
Debugger command f.......................... 42
Debugger command g.............. 42
Debugger command h............... 42
Debugger command i............. 43
Debugger command j............... ... 43
Debugger command k.......... 43
Debugger command 1 42

Debugger command m......................... 43

Debugger command o.............., 42
Debugger command p.................oooia 42
Debugger command q................... 43
Debugger command r.......................... 42
Debugger command s.......................... 42
Debugger command to 42
Debugger command u................ 42
Debugger command v............... 42
Debugger command w 42
Debugger command x............... 43
Debugger command y............... 43
Debugger command z.......................... 43
debuggingo 39
declarations. ... 26

E

Edwin, version......... ... oot 5
environments, examining 45
1S5 5 0 PP 39
examining environments. 45
execution history........ol 41

F

FDL, GNU Free Documentation License........ 61
finding proceduresot 45
fixnum (defn)............. ..o 35
flonum consing...........c.ooiiiiiiiiii 36

H

heap Space.......ccovi i 6
help oo 45

16703 1T 6
index checking il 35
init file......o 5
inspecting environments................... 45
integrations, seeing effects of 28

L

level number, REPL........................ 13, 53

M

M0 et 53
M=z 53
0013016) oy 6

76

P

procedures, finding............ oL 45
prompt, REPL....... o .. o 13

R

range checking......... oo 35
reductionoiiiiii 40
reference traps....... ...t 34
release Notes 1
release number....... ... o oo 5
REPL ..o 13
REPL, restarting from......................... 14
reporting bugs i 1

S

SE, Version.o 5
shell scripts. ... 5
SEACK SPACE ..\ttt 6
student package, version................. 5
SUbEeXPression.........o.ooovviiiii. ., 40
subproblem 40

MIT/GNU Scheme 12.1

subsystem versions............. 5

T

type checking oo il 35

variable caches................. 34

A%

Web site. ... 1
working directory ool 20
world image 7,21

	Introduction
	1 Installation
	Unix Installation

	2 Running Scheme
	Basics of Starting Scheme
	Customizing Scheme
	Memory Usage
	Command-Line Options
	Custom Command-line Options
	Environment Variables
	Environment Variables for the Microcode
	Environment Variables for the Runtime System
	Environment Variables for Edwin

	Leaving Scheme

	3 Using Scheme
	The Read-Eval-Print Loop
	The Prompt and Level Number
	Interrupting
	Restarting
	The Current REPL Environment
	REPL Escapes

	Loading Files
	World Images
	Garbage Collection

	4 Compiling Programs
	Compilation Procedures
	Declarations
	Standard Names
	In-line Coding
	Operator Replacement
	Operator Reduction

	Efficiency Tips
	Coding style
	Top-level variables
	Type and range checking
	Fixnum arithmetic
	Flonum arithmetic

	5 Debugging
	Subproblems and Reductions
	The Command-Line Debugger
	Debugging Aids
	Advising Procedures

	6 Profiling
	7 GNU Emacs Interface
	8 Edwin
	Starting Edwin
	Leaving Edwin
	Scheme Mode
	Evaluation
	REPL Mode
	The Edwin Debugger
	Last Resorts

	A GNU Free Documentation License
	ADDENDUM: How to use this License for your documents

	B Environment-variable Index
	C Option Index
	D Variable Index
	E Concept Index

