
GNU Parallel

Page 1

NAME
parallel - build and execute shell command lines from standard input
in parallel

SYNOPSIS
parallel [options] [command [arguments]] < list_of_arguments

parallel [options] [command [arguments]] (::: arguments | :::+ arguments | :::: argfile(s) | ::::+
argfile(s)) ...

parallel --semaphore [options] command

#!/usr/bin/parallel --shebang [options] [command [arguments]]

#!/usr/bin/parallel --shebang-wrap [options] [command
[arguments]]

DESCRIPTION
STOP!

Read the Reader's guide below if you are new to GNU parallel.

GNU parallel is a shell tool for executing jobs in parallel using
one or more computers. A job can be a
single command or a small script
that has to be run for each of the lines in the input. The typical
input
is a list of files, a list of hosts, a list of users, a list of
URLs, or a list of tables. A job can also be a
command that reads from
a pipe. GNU parallel can then split the input into blocks and pipe
a block
into each command in parallel.

If you use xargs and tee today you will find GNU parallel very easy
to use as GNU parallel is written
to have the same options as
xargs. If you write loops in shell, you will find GNU parallel may
be able
to replace most of the loops and make them run faster by
running several jobs in parallel.

GNU parallel makes sure output from the commands is the same output
as you would get had you
run the commands sequentially. This makes it
possible to use output from GNU parallel as input for
other
programs.

For each line of input GNU parallel will execute command with
the line as arguments. If no command
is given, the line of input is
executed. Several lines will be run in parallel. GNU parallel can
often be
used as a substitute for xargs or cat | bash.

Reader's guide
GNU parallel includes the 4 types of documentation: Tutorial,
how-to, reference and
explanation/design.

Tutorial

If you prefer reading a book buy GNU Parallel 2018 at

https://www.lulu.com/shop/ole-tange/gnu-parallel-2018/paperback/product-23558902.html
or
download it at: https://doi.org/10.5281/zenodo.1146014 Read at
least chapter 1+2. It should take you
less than 20 minutes.

Otherwise start by watching the intro videos for a quick introduction:

https://youtube.com/playlist?list=PL284C9FF2488BC6D1

If you want to dive deeper: spend a couple of hours walking through
the tutorial (man
parallel_tutorial). Your command line will love
you for it.

How-to

You can find a lot of examples of use in man
parallel_examples. They will give you an idea of what
GNU parallel
is capable of, and you may find a solution you can simply adapt to
your situation.

If the example do not cover your exact needs, the options map

(https://www.gnu.org/software/parallel/parallel_options_map.pdf) can
help you identify options that are
related, so you can look these up
in the man page.

GNU Parallel

Page 2

Reference

If you need a one page printable cheat sheet you can find it on:

https://www.gnu.org/software/parallel/parallel_cheat.pdf

The man page is the reference for all options, and reading the man
page from cover to cover is
probably not what you need.

Design discussion

If you want to know the design decisions behind GNU parallel, try: man parallel_design. This is also
a good intro if you intend to
change GNU parallel.

OPTIONS
command

Command to execute.

If command or the following arguments contain
replacement strings (such as {}) every
instance will be substituted
with the input.

If command is given, GNU parallel solve the same tasks as xargs. If command is not given
GNU parallel will behave
similar to cat | sh.

The command must be an executable, a script, a composed command, an
alias, or a function.

Bash functions: export -f the function first or use env_parallel.

Bash, Csh, or Tcsh aliases: Use env_parallel.

Zsh, Fish, Ksh, and Pdksh functions and aliases: Use env_parallel.

{}

Input line.

This replacement string will be replaced by a full line read from the
input source. The input
source is normally stdin (standard input), but
can also be given with --arg-file, :::, or ::::.

The replacement string {} can be changed with -I.

If the command line contains no replacement strings then {} will be
appended to the command
line.

Replacement strings are normally quoted, so special characters are not
parsed by the shell.
The exception is if the command starts with a
replacement string; then the string is not quoted.

See also: --plus {.} {/} {//} {/.} {#} {%} {n} {=perl expression=}

{.}

Input line without extension.

This replacement string will be replaced by the input with the
extension removed. If the input
line contains . after the last /, the last . until the end of the string will be removed and {.} will be
replaced with the remaining. E.g. foo.jpg becomes foo, subdir/foo.jpg becomes subdir/foo,
sub.dir/foo.jpg becomes sub.dir/foo, sub.dir/bar remains sub.dir/bar. If the input line does not
contain . it will remain
unchanged.

The replacement string {.} can be changed with --extensionreplace

See also: {} --extensionreplace

{/}

Basename of input line.

This replacement string will be replaced by the input with the
directory part removed.

See also: {} --basenamereplace

{//}

Dirname of input line.

GNU Parallel

Page 3

This replacement string will be replaced by the dir of the input
line. See dirname(1).

See also: {} --dirnamereplace

{/.}

Basename of input line without extension.

This replacement string will be replaced by the input with the
directory and extension part
removed. {/.} is a combination of {/} and {.}.

See also: {} --basenameextensionreplace

{#}

Sequence number of the job to run.

This replacement string will be replaced by the sequence number of the
job being run. It
contains the same number as $PARALLEL_SEQ.

See also: {} --seqreplace

{%}

Job slot number.

This replacement string will be replaced by the job's slot number
between 1 and number of
jobs to run in parallel. There will never be 2
jobs running at the same time with the same job
slot number.

If the job needs to be retried (e.g using --retries or --retry-failed) the job slot is not
automatically updated. You
should then instead use $PARALLEL_JOBSLOT:

 $ do_test() {
 id="$3 {%}=$1 PARALLEL_JOBSLOT=$2"
 echo run "$id";
 sleep 1
 # fail if {%} is odd
 return `echo $1%2 | bc`
 }
 $ export -f do_test
 $ parallel -j3 --jl mylog do_test {%} \$PARALLEL_JOBSLOT {} ::: A B
 C D
 run A {%}=1 PARALLEL_JOBSLOT=1
 run B {%}=2 PARALLEL_JOBSLOT=2
 run C {%}=3 PARALLEL_JOBSLOT=3
 run D {%}=1 PARALLEL_JOBSLOT=1
 $ parallel --retry-failed -j3 --jl mylog do_test {%}
\$PARALLEL_JOBSLOT {} ::: A B C D
 run A {%}=1 PARALLEL_JOBSLOT=1
 run C {%}=3 PARALLEL_JOBSLOT=2
 run D {%}=1 PARALLEL_JOBSLOT=3

Notice how {%} and $PARALLEL_JOBSLOT differ in the retry run of C and D.

See also: {} --jobs --slotreplace

{n}

Argument from input source n or the n'th argument.

This positional replacement string will be replaced by the input from
input source n (when
used with --arg-file or ::::) or with the n'th argument (when used with -N). If n is negative it
refers
to the n'th last argument.

See also: {} {n.} {n/} {n//} {n/.}

{n.}

GNU Parallel

Page 4

Argument from input source n or the n'th argument without
extension.

{n.} is a combination of {n} and {.}.

This positional replacement string will be replaced by the input from
input source n (when
used with --arg-file or ::::) or with the n'th argument (when used with -N). The input will have
the
extension removed.

See also: {n} {.}

{n/}

Basename of argument from input source n or the n'th argument.

{n/} is a combination of {n} and {/}.

This positional replacement string will be replaced by the input from
input source n (when
used with --arg-file or ::::) or with the n'th argument (when used with -N). The input will have
the
directory (if any) removed.

See also: {n} {/}

{n//}

Dirname of argument from input source n or the n'th argument.

{n//} is a combination of {n} and {//}.

This positional replacement string will be replaced by the dir of the
input from input source n
(when used with --arg-file or ::::) or with
the n'th argument (when used with -N). See dirname
(1).

See also: {n} {//}

{n/.}

Basename of argument from input source n or the n'th argument
without extension.

{n/.} is a combination of {n}, {/}, and {.}.

This positional replacement string will be replaced by the input from
input source n (when
used with --arg-file or ::::) or with the n'th argument (when used with -N). The input will have
the
directory (if any) and extension removed.

See also: {n} {/.}

{=perl expression=}

Replace with calculated perl expression.

$_ will contain the same as {}. After evaluating perl
expression $_ will be used as the value. It
is recommended to only
change $_ but you have full access to all of GNU parallel's
internal
functions and data structures.

The expression must give the same result if evaluated twice -
otherwise the behaviour is
undefined. E.g. in some versions of GNU parallel this will not work as expected:

 parallel echo '{= $_= ++$wrong_counter =}' ::: a b c

A few convenience functions and data structures have been made:

 Q(string)

Shell quote a string. Example:

 parallel echo {} is quoted as '{= $_=Q($_) =}' ::: \$PWD

 pQ(string)

Perl quote a string. Example:

 parallel echo {} is quoted as '{= $_=pQ($_) =}' ::: \$PWD

 uq() (or uq)

GNU Parallel

Page 5

Do not quote current replacement string. Example:

 parallel echo {} has the value '{= uq =}' ::: \$PWD

 hash(val)

Compute B::hash(val). Example:

 parallel echo Hash of {} is '{= $_=hash($_) =}' ::: a b c

 total_jobs()

Number of jobs in total. Example:

 parallel echo Number of jobs: '{= $_=total_jobs() =}' ::: a b c

 slot()

Slot number of job. Example:

 parallel echo Job slot of {} is '{= $_=slot() =}' ::: a b c

 seq()

Sequence number of job. Example:

 parallel echo Seq number of {} is '{= $_=seq() =}' ::: a b c

 @arg

The arguments counting from 1 ($arg[1] = {1} = first argument). Example:

 parallel echo {1}+{2}='{=1 $_=$arg[1]+$arg[2] =}' \
 ::: 1 2 3 ::: 2 3 4

('{=1' forces this to be a positional replacement string, and
therefore will not repeat the
value for each arg.)

 skip()

Skip this job (see also --filter). Example:

 parallel echo '{= $arg[1] >= $arg[2] and skip =}' \
 ::: 1 2 3 ::: 2 3 4

 yyyy_mm_dd_hh_mm_ss(sec)

 yyyy_mm_dd_hh_mm(sec)

 yyyy_mm_dd(sec)

 hh_mm_ss(sec)

 hh_mm(sec)

 yyyymmddhhmmss(sec)

 yyyymmddhhmm(sec)

 yyyymmdd(sec)

 hhmmss(sec)

 hhmm(sec)

Time functions. sec is number of seconds since epoch. If left out
it will use current local
time. Example:

 parallel echo 'Now: {= $_=yyyy_mm_dd_hh_mm_ss() =}' ::: Dummy
 parallel echo 'The end: {= $_=yyyy_mm_dd_hh_mm_ss($_) =}' \
 ::: 2147483648

GNU Parallel

Page 6

Example:

 seq 10 | parallel echo {} + 1 is {= '$_++' =}
 parallel csh -c {= '$_="mkdir ".Q($_)' =} ::: '12" dir'
 seq 50 | parallel echo job {#} of {= '$_=total_jobs()' =}

See also: --rpl --parens {} {=n perl expression=} --filter

{=n perl expression=}

Positional equivalent to {=perl expression=}.

To understand positional replacement strings see {n}.

See also: {=perl expression=} {n}

::: arguments

Use arguments on the command line as input source.

Unlike other options for GNU parallel ::: is placed after the command and before the
arguments.

The following are equivalent:

 (echo file1; echo file2) | parallel gzip
 parallel gzip ::: file1 file2
 parallel gzip {} ::: file1 file2
 parallel --arg-sep ,, gzip {} ,, file1 file2
 parallel --arg-sep ,, gzip ,, file1 file2
 parallel ::: "gzip file1" "gzip file2"

To avoid treating ::: as special use --arg-sep to set the
argument separator to something else.

If multiple ::: are given, each group will be treated as an input
source, and all combinations of
input sources will be
generated. E.g. ::: 1 2 ::: a b c will result in the combinations
(1,a) (1,b)
(1,c) (2,a) (2,b) (2,c). This is useful for replacing
nested for-loops.

:::, ::::, and --arg-file can be mixed. So these are equivalent:

 parallel echo {1} {2} {3} ::: 6 7 ::: 4 5 ::: 1 2 3
 parallel echo {1} {2} {3} :::: <(seq 6 7) <(seq 4 5) \
 :::: <(seq 1 3)
 parallel -a <(seq 6 7) echo {1} {2} {3} :::: <(seq 4 5) \
 :::: <(seq 1 3)
 parallel -a <(seq 6 7) -a <(seq 4 5) echo {1} {2} {3} \
 ::: 1 2 3
 seq 6 7 | parallel -a - -a <(seq 4 5) echo {1} {2} {3} \
 ::: 1 2 3
 seq 4 5 | parallel echo {1} {2} {3} :::: <(seq 6 7) - \
 ::: 1 2 3

See also: --arg-sep --arg-file :::: :::+ ::::+ --link

:::+ arguments

Like ::: but linked like --link to the previous input source.

Contrary to --link, values do not wrap: The shortest input source
determines the length.

Example:

 parallel echo ::: a b c :::+ 1 2 3 ::: X Y :::+ 11 22

See also: ::::+ --link

:::: argfiles

Another way to write --arg-file argfile1 --arg-file argfile2 ...

GNU Parallel

Page 7

::: and :::: can be mixed.

See also: --arg-file ::: ::::+ --link

::::+ argfiles

Like :::: but linked like --link to the previous input source.

Contrary to --link, values do not wrap: The shortest input source
determines the length.

See also: --arg-file :::+ --link

--null

-0

Use NUL as delimiter.

Normally input lines will end in \n (newline). If they end in \0
(NUL), then use this option. It is
useful for processing arguments
that may contain \n (newline).

Shorthand for --delimiter '\0'.

See also: --delimiter

--arg-file input-file

-a input-file

Use input-file as input source.

If multiple --arg-file are given, each input-file will be treated as an
input source, and all
combinations of input sources will be
generated. E.g. The file foo contains 1 2, the file bar
contains a b c. -a foo -a bar will result in the combinations
(1,a) (1,b) (1,c) (2,a) (2,b) (2,c).
This is useful for replacing
nested for-loops.

If input-file starts with + the file will be linked to the
previous --arg-file E.g. The file foo
contains 1 2, the file bar contains a b. -a foo -a +bar will result in the
combinations (1,a) (2,b)
like --link instead of generating all
combinations.

See also: --link {n} :::: ::::+ :::

--arg-file-sep sep-str

Use sep-str instead of :::: as separator string between command
and argument files.

Useful if :::: is used for something else by the command.

See also: ::::

--arg-sep sep-str

Use sep-str instead of ::: as separator string.

Useful if ::: is used for something else by the command.

Also useful if you command uses ::: but you still want to read
arguments from stdin (standard
input): Simply change --arg-sep to a
string that is not in the command line.

See also: :::

--bar

Show progress as a progress bar.

In the bar is shown: % of jobs completed, estimated seconds left, and
number of jobs started.

It is compatible with zenity:

 seq 1000 | parallel -j30 --bar '(echo {};sleep 0.1)' \
 2> >(perl -pe 'BEGIN{$/="\r";$|=1};s/\r/\n/g' |
 zenity --progress --auto-kill) | wc

See also: --eta --progress --total-jobs

--basefile file

GNU Parallel

Page 8

--bf file

file will be transferred to each sshlogin before first job is
started.

It will be removed if --cleanup is active. The file may be a script
to run or some common base
data needed for the job. Multiple --bf can be specified to transfer more basefiles. The file will
be
transferred the same way as --transferfile.

See also: --sshlogin --transfer --return --cleanup --workdir

--basenamereplace replace-str

--bnr replace-str

Use the replacement string replace-str instead of {/} for
basename of input line.

See also: {/}

--basenameextensionreplace replace-str

--bner replace-str

Use the replacement string replace-str instead of {/.} for basename of input line without
extension.

See also: {/.}

--bin binexpr

Use binexpr as binning key and bin input to the jobs.

binexpr is [column number|column name] [perlexpression] e.g.:

 3
 Address
 3 $_%=100
 Address s/\D//g

Each input line is split using --colsep. The value of the column is
put into $_, the perl
expression is executed, the resulting value is
is the job slot that will be given the line. If the
value is bigger
than the number of jobslots the value will be modulo number of jobslots.

This is similar to --shard but the hashing algorithm is a simple
modulo, which makes it
predictible which jobslot will receive which
value.

The performance is in the order of 100K rows per second. Faster if the bincol is small (<10),
slower if it is big (>100).

--bin requires --pipe and a fixed numeric value for --jobs.

See also: SPREADING BLOCKS OF DATA --group-by --round-robin --shard

--bg

Run command in background.

GNU parallel will normally wait for the completion of a job. With --bg GNU parallel will not
wait for completion of the command
before exiting.

This is the default if --semaphore is set.

Implies --semaphore.

See also: --fg man sem

--citation

Print the citation notice and BibTeX entry for GNU parallel,
silence citation notice for all future
runs, and exit. It will not run
any commands.

If it is impossible for you to run --citation you can instead use --will-cite, which will run
commands, but which will only silence
the citation notice for this single run.

If you use --will-cite in scripts to be run by others you are
making it harder for others to see
the citation notice. The
development of GNU parallel is indirectly financed through
citations,

GNU Parallel

Page 9

so if your users do not know they should cite then you are
making it harder to finance
development. However, if you pay 10000
EUR, you have done your part to finance future
development and should
feel free to use --will-cite in scripts.

If you do not want to help financing future development by letting
other users see the citation
notice or by paying, then please consider
using another tool instead of GNU parallel. You can
find some of
the alternatives in man parallel_alternatives.

--block size

--block-size size

Size of block in bytes to read at a time.

The size can be postfixed with K, M, G, T, P, k, m, g, t, or p.

GNU parallel tries to meet the block size but can be off by the
length of one record. For
performance reasons size should be bigger
than a two records. GNU parallel will warn you
and automatically
increase the size if you choose a size that is too small.

If you use -N, --block should be bigger than N+1 records.

size defaults to 1M.

When using --pipe-part a negative block size is not interpreted as a
blocksize but as the
number of blocks each jobslot should have. So
this will run 10*5 = 50 jobs in total:

 parallel --pipe-part -a myfile --block -10 -j5 wc

This is an efficient alternative to --round-robin because data is
never read by GNU parallel,
but you can still have very few
jobslots process large amounts of data.

See also: UNIT PREFIX -N --pipe --pipe-part --round-robin --block-timeout

--block-timeout duration

--bt duration

Timeout for reading block when using --pipe.

If it takes longer than duration to read a full block, use the
partial block read so far.

duration is in seconds, but can be postfixed with s, m, h, or d.

See also: TIME POSTFIXES --pipe --block

--cat

Create a temporary file with content.

Normally --pipe/--pipe-part will give data to the program on
stdin (standard input). With --cat
GNU parallel will create a
temporary file with the name in {}, so you can do: parallel
--pipe
--cat wc {}.

Implies --pipe unless --pipe-part is used.

See also: --pipe --pipe-part --fifo

--cleanup

Remove transferred files.

--cleanup will remove the transferred files on the remote computer
after processing is done.

 find log -name '*gz' | parallel \
 --sshlogin server.example.com --transferfile {} \
 --return {.}.bz2 --cleanup "zcat {} | bzip -9 >{.}.bz2"

With --transferfile {} the file transferred to the remote computer
will be removed on the
remote computer. Directories on the remote
computer containing the file will be removed if
they are empty.

With --return the file transferred from the remote computer will be
removed on the remote
computer. Directories on the remote
computer containing the file will be removed if they are

GNU Parallel

Page 10

empty.

--cleanup is ignored when not used with --basefile, --transfer, --transferfile or --return.

See also: --basefile --transfer --transferfile --sshlogin --return

--color

Colour output.

Colour the output. Each job gets its own colour combination
(background+foreground).

--color is ignored when using -u.

See also: --color-failed

--color-failed

--cf

Colour the output from failing jobs white on red.

Useful if you have a lot of jobs and want to focus on the failing
jobs.

--color-failed is ignored when using -u, --line-buffer and
unreliable when using --latest-line.

See also: --color

--colsep regexp

-C regexp

Column separator.

The input will be treated as a table with regexp separating the
columns. The n'th column can
be accessed using {n} or {n.}. E.g. {3} is the 3rd column.

If there are more input sources, each input source will be separated,
but the columns from
each input source will be linked.

 parallel --colsep '-' echo {4} {3} {2} {1} \
 ::: A-B C-D ::: e-f g-h

--colsep implies --trim rl, which can be overridden with --trim n.

regexp is a Perl Regular Expression:
https://perldoc.perl.org/perlre.html

See also: --csv {n} --trim --link

--combineexec name

--combine-executable name

Combine GNU parallel with another program into a single executable.

Let us say you have developed myprg which takes a single
argument. You do not want to
parallelize it yourself.

You could write a wrapper that uses GNU parallel called myparprg:

 #!/bin/sh

 parallel myprg ::: "$@"

But for others to use this, they need to install: GNU parallel, myprg, and myparprg.

It would be easier to install if all could be packed into a single
executable.

If myprg is written in shell, you can use --embed.

If myprg is a binary you can use --combineexec.

Here we use gzip as example:

 parallel --combineexec pargzip gzip -9 :::

You can now do:

GNU Parallel

Page 11

 ./pargzip foo bar baz

If you want to pass options to gzip you can do:

 parallel --combineexec pargzip gzip

Followed by:

 ./pargzip -1 ::: foo bar baz

See also: --embed --shebang --shebang-wrap

--compress

Compress temporary files.

If the output is big and very compressible this will take up less disk
space in $TMPDIR and
possibly be faster due to less disk I/O.

GNU parallel will try pzstd, lbzip2, pbzip2, zstd, pigz, lz4, lzop, plzip, lzip, lrz, gzip, pxz,
lzma, bzip2, xz, clzip, in that order, and use the first
available.

GNU parallel will use up to 8 processes per job waiting to be
printed. See man
parallel_design for details.

See also: --compress-program

--compress-program prg

--decompress-program prg

Use prg for (de)compressing temporary files.

It is assumed that prg -dc will decompress stdin (standard input)
to stdout (standard output)
unless --decompress-program is given.

See also: --compress

--csv

Treat input as CSV-format.

--colsep sets the field delimiter. It works very much like --colsep except it deals correctly with
quoting. Compare:

 echo '"1 big, 2 small","2""x4"" plank",12.34' |
 parallel --csv echo {1} of {2} at {3}

 echo '"1 big, 2 small","2""x4"" plank",12.34' |
 parallel --colsep ',' echo {1} of {2} at {3}

Even quoted newlines are parsed correctly:

 (echo '"Start of field 1 with newline'
 echo 'Line 2 in field 1";value 2') |
 parallel --csv --colsep ';' echo Field 1: {1} Field 2: {2}

When used with --pipe only pass full CSV-records.

See also: --pipe --link {n} --colsep --header

--ctag (obsolete: use --color --tag)

Color tag.

If the values look very similar looking at the output it can be hard
to tell when a new value is
used. --ctag gives each value a random
color.

See also: --color --tag

--ctagstring str (obsolete: use --color --tagstring)

GNU Parallel

Page 12

Color tagstring.

See also: --color --ctag --tagstring

--delay duration

Delay starting next job by duration.

GNU parallel will not start another job for the next duration.

duration is in seconds, but can be postfixed with s, m, h, or d.

If you append 'auto' to duration (e.g. 13m3sauto) GNU parallel
will automatically try to find the
optimal value: If a job fails, duration is increased by 30%. If a job succeeds, duration is

decreased by 10%.

See also: TIME POSTFIXES --retries --ssh-delay

--delimiter delim

-d delim

Input items are terminated by delim.

The specified delimiter may be characters, C-style character escapes
such as \n, or octal or
hexadecimal escape codes. Octal and
hexadecimal escape codes are understood as for the
printf command.

See also: --colsep

--dirnamereplace replace-str

--dnr replace-str

Use the replacement string replace-str instead of {//} for
dirname of input line.

See also: {//}

--dry-run

Print the job to run on stdout (standard output), but do not run the
job.

Use -v -v to include the wrapping that GNU parallel generates
(for remote jobs, --tmux, --nice
, --pipe, --pipe-part, --fifo and --cat). Do not count on this literally, though, as
the job may be
scheduled on another computer or the local computer if
: is in the list.

See also: -v

-E eof-str

Set the end of file string to eof-str.

If the end of file string occurs as a line of input, the rest of the
input is not read. If neither -E
nor -e is used, no end of file
string is used.

--eof[=eof-str]

-e[eof-str]

This option is a synonym for the -E option.

Use -E instead, because it is POSIX compliant for xargs while
this option is not. If eof-str is
omitted, there is no end of file
string. If neither -E nor -e is used, no end of file string is
used.

--embed

Embed GNU parallel in a shell script.

If you need to distribute your script to someone who does not want to
install GNU parallel you
can embed GNU parallel in your own
shell script:

 parallel --embed > new_script

After which you add your code at the end of new_script. This is tested
on ash, bash, dash,
ksh, sh, and zsh.

GNU Parallel

Page 13

--env var

Copy exported environment variable var.

This will copy var to the environment that the command is run
in. This is especially useful for
remote execution.

In Bash var can also be a Bash function - just remember to export
-f the function.

The variable '_' is special. It will copy all exported environment
variables except for the ones
mentioned in ~/.parallel/ignored_vars.

To copy the full environment (both exported and not exported
variables, arrays, and functions)
use env_parallel.

See also: --record-env --session --sshlogin command env_parallel

--eta

Show the estimated number of seconds before finishing.

This forces GNU parallel to read all jobs before starting to find
the number of jobs (unless you
use --total-jobs). GNU parallel
normally only reads the next job to run.

The estimate is based on the runtime of finished jobs, so the first
estimate will only be shown
when the first job has finished.

Implies --progress.

See also: --bar --progress --total-jobs

--fg

Run command in foreground.

With --tmux and --tmuxpane GNU parallel will start tmux in
the foreground.

With --semaphore GNU parallel will run the command in the
foreground (opposite --bg), and
wait for completion of the command
before exiting. Exit code will be that of the command.

See also: --bg man sem

--fifo

Create a temporary fifo with content.

Normally --pipe and --pipe-part will give data to the program on
stdin (standard input). With
--fifo GNU parallel will create a
temporary fifo with the name in {}, so you can do:

 parallel --pipe --fifo wc {}

Beware: If the fifo is never opened for reading, the job will block forever:

 seq 1000000 | parallel --fifo echo This will block forever
 seq 1000000 | parallel --fifo 'echo This will not block < {}'

By using --fifo instead of --cat you may save I/O as --cat
will write to a temporary file,
whereas --fifo will not.

Implies --pipe unless --pipe-part is used.

See also: --cat --pipe --pipe-part

--filter filter

Only run jobs where filter is true.

filter can contain replacement strings and Perl code. Example:

 parallel --filter '{1}+{2}+{3} < 10' echo {1},{2},{3} \
 ::: {1..10} ::: {3..8} ::: {3..10}

Outputs: 1,3,3 1,3,4 1,3,5 1,4,3 1,4,4 1,5,3 2,3,3 2,3,4 2,4,3 3,3,3

 parallel --filter '{1} < {2}*{2}' echo {1},{2} \

GNU Parallel

Page 14

 ::: {1..10} ::: {1..3}

Outputs: 1,2 1,3 2,2 2,3 3,2 3,3 4,3 5,3 6,3 7,3 8,3

 parallel --filter '{choose_k}' --plus echo {1},{2},{3} \
 ::: {1..5} ::: {1..5} ::: {1..5}

Outputs: 1,2,3 1,2,4 1,2,5 1,3,4 1,3,5 1,4,5 2,3,4 2,3,5 2,4,5 3,4,5

See also: skip() --no-run-if-empty {choose_k}

--filter-hosts

Remove down hosts.

For each remote host: check that login through ssh works. If not: do
not use this host.

For performance reasons, this check is performed only at the start and
every time
--sshloginfile is changed. If an host goes down after
the first check, it will go undetected until
--sshloginfile is
changed; --retries can be used to mitigate this.

Currently you can not put --filter-hosts in a profile,
$PARALLEL, /etc/parallel/config or similar.
This is because GNU parallel uses GNU parallel to compute this, so you will get an
infinite
loop. This will likely be fixed in a later release.

See also: --sshloginfile --sshlogin --retries

--gnu

Behave like GNU parallel.

This option historically took precedence over --tollef. The --tollef option is now retired, and
therefore may not be
used. --gnu is kept for compatibility, but does nothing.

--group

Group output.

Output from each job is grouped together and is only printed when the
command is finished.
Stdout (standard output) first followed by stderr
(standard error).

This takes in the order of 0.5ms CPU time per job and depends on the
speed of your disk for
larger output.

--group is the default.

See also: --line-buffer --ungroup --tag

--group-by val

Group input by value.

Combined with --pipe/--pipe-part --group-by groups lines with
the same value into a record.

The value can be computed from the full line or from a single column.

val can be:

 column number

Use the value in the column numbered.

 column name

Treat the first line as a header and use the value in the column

named.

(Not supported with --pipe-part).

 perl expression

Run the perl expression and use $_ as the value.

 column number perl expression

GNU Parallel

Page 15

Put the value of the column put in $_, run the perl expression, and
use $_ as the value.

 column name perl expression

Put the value of the column put in $_, run the perl expression, and
use $_ as the value.

(Not supported with --pipe-part).

Example:

 UserID, Consumption
 123, 1
 123, 2
 12-3, 1
 221, 3
 221, 1
 2/21, 5

If you want to group 123, 12-3, 221, and 2/21 into 4 records and pass
one record at a time to
wc:

 tail -n +2 table.csv | \
 parallel --pipe --colsep , --group-by 1 -kN1 wc

Make GNU parallel treat the first line as a header:

 cat table.csv | \
 parallel --pipe --colsep , --header : --group-by 1 -kN1 wc

Address column by column name:

 cat table.csv | \
 parallel --pipe --colsep , --header : --group-by UserID -kN1 wc

If 12-3 and 123 are really the same UserID, remove non-digits in
UserID when grouping:

 cat table.csv | parallel --pipe --colsep , --header : \
 --group-by 'UserID s/\D//g' -kN1 wc

See also: SPREADING BLOCKS OF DATA --pipe --pipe-part --bin --shard --round-robin

--help

-h

Print a summary of the options to GNU parallel and exit.

--halt-on-error val

--halt val

When should GNU parallel terminate?

In some situations it makes no sense to run all jobs. GNU parallel should simply stop as soon
as a condition is met.

val defaults to never, which runs all jobs no matter what.

val can also take on the form of when,why.

when can be 'now' which means kill all running jobs and halt
immediately, or it can be 'soon'
which means wait for all running jobs
to complete, but start no new jobs.

why can be 'fail=X', 'fail=Y%', 'success=X', 'success=Y%',
'done=X', or 'done=Y%' where X is
the number of jobs that has to fail,
succeed, or be done before halting, and Y is the
percentage of jobs
that has to fail, succeed, or be done before halting.

Example:

GNU Parallel

Page 16

 --halt now,fail=1

exit when a job has failed. Kill running jobs.

 --halt soon,fail=3

exit when 3 jobs have failed, but wait for running
jobs to complete.

 --halt soon,fail=3%

exit when 3% of the jobs have failed, but wait for
running jobs to complete.

 --halt now,success=1

exit when a job has succeeded. Kill running jobs.

 --halt soon,success=3

exit when 3 jobs have succeeded, but wait for
running jobs to complete.

 --halt now,success=3%

exit when 3% of the jobs have succeeded. Kill
running jobs.

 --halt now,done=1

exit when a job has finished. Kill running jobs.

 --halt soon,done=3

exit when 3 jobs have finished, but wait for running
jobs to complete.

 --halt now,done=3%

exit when 3% of the jobs have finished. Kill running
jobs.

For backwards compatibility these also work:

0 never

1 soon,fail=1

2 now,fail=1

-1

soon,success=1

-2

now,success=1

1-99%

soon,fail=1-99%

--header regexp

Use regexp as header.

For normal usage the matched header (typically the first line: --header '.*\n') will be split using
--colsep (which will
default to '\t') and column names can be used as replacement
variables:
{column name}, {column name/}, {column name//}, {column name/.}, {column name.},
{=column name perl expression
=}, ..

For --pipe the matched header will be prepended to each output.

GNU Parallel

Page 17

--header : is an alias for --header '.*\n'.

If regexp is a number, it is a fixed number of lines.

--header 0 is special: It will make replacement strings for files
given with --arg-file or ::::. It will
make {foo/bar} for the
file foo/bar.

See also: --colsep --pipe --pipe-part --arg-file

--hostgroups

--hgrp

Enable hostgroups on arguments.

If an argument contains '@' the string after '@' will be removed and
treated as a list of
hostgroups on which this job is allowed to
run. If there is no --sshlogin with a corresponding
group, the job
will run on any hostgroup.

Example:

 parallel --hostgroups \
 --sshlogin @grp1/myserver1 -S @grp1+grp2/myserver2 \
 --sshlogin @grp3/myserver3 \
 echo ::: my_grp1_arg@grp1 arg_for_grp2@grp2 third@grp1+grp3

my_grp1_arg may be run on either myserver1 or myserver2, third may be run on either
myserver1 or myserver3,
but arg_for_grp2 will only be run on myserver2.

See also: --sshlogin $PARALLEL_HOSTGROUPS $PARALLEL_ARGHOSTGROUPS

-I replace-str

Use the replacement string replace-str instead of {}.

See also: {}

--replace [replace-str]

-i [replace-str]

This option is deprecated; use -I instead.

This option is a synonym for -Ireplace-str if replace-str is
specified, and for -I {} otherwise.

See also: {}

--joblog logfile

--jl logfile

Logfile for executed jobs.

Save a list of the executed jobs to logfile in the following TAB
separated format: sequence
number, sshlogin, start time as seconds
since epoch, run time in seconds, bytes in files
transferred, bytes in
files returned, exit status, signal, and command run.

For --pipe bytes transferred and bytes returned are number of input
and output of bytes.

If logfile is prepended with '+' log lines will be appended to the
logfile.

To convert the times into ISO-8601 strict do:

 cat logfile | perl -a -F"\t" -ne \
 'chomp($F[2]=`date -d \@$F[2] +%FT%T`); print join("\t",@F)'

If the host is long, you can use column -t to pretty print it:

 cat joblog | column -t

See also: --resume --resume-failed

--jobs num

-j num

GNU Parallel

Page 18

--max-procs num

-P num

Number of jobslots on each machine.

Run up to num jobs in parallel. Default is 100%.

num

Run up to num jobs in parallel.

0 Run as many as possible (this can take a while to determine).

Due to a bug -j 0 will also evaluate replacement strings twice up
to the number of
joblots:

 # This will not count from 1 but from number-of-jobslots
 seq 10000 | parallel -j0 echo '{= $_ = $foo++; =}' |
head
 # This will count from 1
 seq 10000 | parallel -j100 echo '{= $_ = $foo++; =}' |
head

num%

Multiply the number of CPU threads by num percent. E.g. 100% means
one job
per CPU thread on each machine.

+num

Add num to the number of CPU threads.

-num

Subtract num from the number of CPU threads.

expr

Evaluate expr. E.g. '12/2' to get 6, '+25%' gives the same as
'125%', or complex
expressions like '+3*log(55)%' which means:
multiply 3 by log(55), multiply that
by the number of CPU threads and
divide by 100, add this to the number of CPU
threads.

An expression that evalutates to less that 1 is replaced with 1.

procfile

Read parameter from file.

Use the content of procfile as parameter for -j. E.g. procfile could contain the
string 100% or +2 or 10.

If procfile is changed when a job completes, procfile is read
again and the new
number of jobs is computed. If the number is lower
than before, running jobs will
be allowed to finish but new jobs will
not be started until the wanted number of
jobs has been reached. This
makes it possible to change the number of
simultaneous running jobs
while GNU parallel is running.

If the evaluated number is less than 1 then 1 will be used.

If --semaphore is set, the default is 1 thus making a mutex.

See also: --use-cores-instead-of-threads --use-sockets-instead-of-threads

--keep-order

-k

Keep sequence of output same as the order of input.

Normally the output of a job will be printed as soon as the job
completes. Try this to see the

GNU Parallel

Page 19

difference:

 parallel -j4 sleep {}\; echo {} ::: 2 1 4 3
 parallel -j4 -k sleep {}\; echo {} ::: 2 1 4 3

If used with --onall or --nonall the output will grouped by
sshlogin in sorted order.

--keep-order cannot keep the output order when used with --pipe
--round-robin. Here it
instead means, that the jobslots will get the
same blocks as input in the same order in every
run if the input is
kept the same. Run each of these twice and compare:

 seq 10000000 | parallel --pipe --round-robin 'sleep 0.$RANDOM; wc'
 seq 10000000 | parallel --pipe -k --round-robin 'sleep 0.$RANDOM;
wc'

-k only affects the order in which the output is printed - not the
order in which jobs are run.

See also: --group --line-buffer

-L recsize

When used with --pipe: Read records of recsize.

When used otherwise: Use at most recsize nonblank input lines per
command line. Trailing
blanks cause an input line to be logically
continued on the next input line.

-L 0 means read one line, but insert 0 arguments on the command
line.

recsize can be postfixed with K, M, G, T, P, k, m, g, t, or p.

Implies -X unless -m, --xargs, or --pipe is set.

See also: UNIT PREFIX -N --max-lines --block -X -m --xargs --pipe

--max-lines [recsize]

-l[recsize]

When used with --pipe: Read records of recsize lines.

When used otherwise: Synonym for the -L option. Unlike -L, the recsize argument is optional.
If recsize is not specified,
it defaults to one. The -l option is deprecated since the POSIX

standard specifies -L instead.

-l 0 is an alias for -l 1.

Implies -X unless -m, --xargs, or --pipe is set.

See also: UNIT PREFIX -N --block -X -m --xargs --pipe

--limit "command args"

Dynamic job limit.

Before starting a new job run command with args. The exit value
of command determines
what GNU parallel will do:

0 Below limit. Start another job.

1 Over limit. Start no jobs.

2 Way over limit. Kill the youngest job.

You can use any shell command. There are 3 predefined commands:

"io n"

Limit for I/O. The amount of disk I/O will be computed as a value
0-100,
where 0 is no I/O and 100 is at least one disk is 100%
saturated.

"load n"

Similar to --load.

GNU Parallel

Page 20

"mem n"

Similar to --memfree.

See also: --memfree --load

--latest-line

--ll

Print the lastest line. Each job gets a single line that is updated
with the lastest output from the
job.

Example:

 slow_seq() {
 seq "$@" |
 perl -ne '$|=1; for(split//){ print; select($a,$a,$a,0.03);}'
 }
 export -f slow_seq
 parallel --shuf -j99 --ll --tag --bar --color slow_seq {} :::
{1..300}

See also: --line-buffer

--line-buffer

--lb

Buffer output on line basis.

--group will keep the output together for a whole job. --ungroup
allows output to mixup with
half a line coming from one job and half a
line coming from another job. --line-buffer fits
between these two:
GNU parallel will print a full line, but will allow for mixing
lines of different
jobs.

--line-buffer takes more CPU power than both --group and --ungroup, but can be much
faster than --group if the CPU is not
the limiting factor.

Normally --line-buffer does not buffer on disk, and can thus
process an infinite amount of
data, but it will buffer on disk when
combined with: --keep-order, --results, --compress, and
--files. This will make it as slow as --group and will limit
output to the available disk space.

With --keep-order --line-buffer will output lines from the first
job continuously while it is
running, then lines from the second job
while that is running. It will buffer full lines, but jobs will
not
mix. Compare:

 parallel -j0 'echo [{};sleep {};echo {}]' ::: 1 3 2 4
 parallel -j0 --lb 'echo [{};sleep {};echo {}]' ::: 1 3 2 4
 parallel -j0 -k --lb 'echo [{};sleep {};echo {}]' ::: 1 3 2 4

See also: --group --ungroup --keep-order --tag

--link

--xapply

Link input sources.

Read multiple input sources like the command xapply. If multiple
input sources are given, one
argument will be read from each of the
input sources. The arguments can be accessed in the
command as {1}
.. {n}, so {1} will be a line from the first input source,
and {6} will refer to the
line with the same line number from the
6th input source.

Compare these two:

 parallel echo {1} {2} ::: 1 2 3 ::: a b c
 parallel --link echo {1} {2} ::: 1 2 3 ::: a b c

Arguments will be recycled if one input source has more arguments than the others:

GNU Parallel

Page 21

 parallel --link echo {1} {2} {3} \
 ::: 1 2 ::: I II III ::: a b c d e f g

See also: --header :::+ ::::+

--load max-load

Only start jobs if load is less than max-load.

Do not start new jobs on a given computer unless the number of running
processes on the
computer is less than max-load. max-load uses
the same syntax as --jobs, so 100% for one
per CPU is a valid
setting. Only difference is 0 which is interpreted as 0.01.

See also: --limit --jobs

--controlmaster

-M

Use ssh's ControlMaster to make ssh connections faster.

Useful if jobs run remote and are very fast to run. This is disabled
for sshlogins that specify
their own ssh command.

See also: --ssh --sshlogin

-m

Multiple arguments.

Insert as many arguments as the command line length permits. If
multiple jobs are being run
in parallel: distribute the arguments
evenly among the jobs. Use -j1 or --xargs to avoid this.

If {} is not used the arguments will be appended to the
line. If {} is used multiple times each {}
will be replaced
with all the arguments.

Support for -m with --sshlogin is limited and may fail.

If in doubt use -X as that will most likely do what is needed.

See also: -X --xargs

--memfree size

Minimum memory free when starting another job.

The size can be postfixed with K, M, G, T, P, k, m, g, t, or p.

If the jobs take up very different amount of RAM, GNU parallel will
only start as many as there
is memory for. If less than size bytes
are free, no more jobs will be started. If less than 50%
size bytes
are free, the youngest job will be killed (as per --term-seq), and
put back on the
queue to be run later.

--retries must be set to determine how many times GNU parallel
should retry a given job.

See also: UNIT PREFIX --term-seq --retries --memsuspend

--memsuspend size

Suspend jobs when there is less memory available.

If the available memory falls below 2 * size, GNU parallel will
suspend some of the running
jobs. If the available memory falls below size, only one job will be running.

If a single job fits in the given size, all jobs will complete without
running out of memory. If you
have swap available, you can usually
lower size to around half the size of a single job - with
the slight
risk of swapping a little.

Jobs will be resumed when more RAM is available - typically when the
oldest job completes.

--memsuspend only works on local jobs because there is no obvious
way to suspend remote
jobs.

size can be postfixed with K, M, G, T, P, k, m, g, t, or p.

GNU Parallel

Page 22

See also: UNIT PREFIX --memfree

--minversion version

Print the version GNU parallel and exit.

If the current version of GNU parallel is less than version the
exit code is 255. Otherwise it is
0.

This is useful for scripts that depend on features only available from
a certain version of GNU
parallel:

 parallel --minversion 20170422 &&
 echo halt done=50% supported from version 20170422 &&
 parallel --halt now,done=50% echo ::: {1..100}

See also: --version

--max-args max-args

-n max-args

Use at most max-args arguments per command line.

Fewer than max-args arguments will be used if the size (see the -s option) is exceeded,
unless the -x option is given, in which
case GNU parallel will exit.

-n 0 means read one argument, but insert 0 arguments on the command
line.

max-args can be postfixed with K, M, G, T, P, k, m, g, t, or p (see
UNIT PREFIX).

Implies -X unless -m is set.

See also: -X -m --xargs --max-replace-args

--max-replace-args max-args

-N max-args

Use at most max-args arguments per command line.

Like -n but also makes replacement strings {1}
.. {max-args} that represents argument 1 ..
max-args. If
too few args the {n} will be empty.

-N 0 means read one argument, but insert 0 arguments on the command
line.

This will set the owner of the homedir to the user:

 tr ':' '\n' < /etc/passwd | parallel -N7 chown {1} {6}

Implies -X unless -m or --pipe is set.

max-args can be postfixed with K, M, G, T, P, k, m, g, t, or p.

When used with --pipe -N is the number of records to read. This
is somewhat slower than
--block.

See also: UNIT PREFIX --pipe --block -m -X --max-args

--nonall

--onall with no arguments.

Run the command on all computers given with --sshlogin but take no
arguments. GNU
parallel will log into --jobs number of computers
in parallel and run the job on the computer. -j
adjusts how many
computers to log into in parallel.

This is useful for running the same command (e.g. uptime) on a list of
servers.

See also: --onall --sshlogin

--onall

Run all the jobs on all computers given with --sshlogin.

GNU parallel will log into --jobs number of computers in
parallel and run one job at a time on

GNU Parallel

Page 23

the computer. The order of the
jobs will not be changed, but some computers may finish
before others.

When using --group the output will be grouped by each server, so
all the output from one
server will be grouped together.

--joblog will contain an entry for each job on each server, so
there will be several job
sequence 1.

See also: --nonall --sshlogin

--open-tty

-o

Open terminal tty.

Similar to --tty but does not set --jobs or --ungroup.

See also: --tty

--output-as-files

--outputasfiles

--files

--files0

Save output to files.

Instead of printing the output to stdout (standard output) the output
of each job is saved in a
file and the filename is then printed.

--files0 uses NUL (\0) instead of newline (\n) as separator.

See also: --results

--pipe

--spreadstdin

Spread input to jobs on stdin (standard input).

Read a block of data from stdin (standard input) and give one block of
data as input to one
job.

The block size is determined by --block (default: 1M).

Except for the first and last record GNU parallel only passes full
records to the job. The
strings --recstart and --recend
determine where a record starts and ends: The border
between two
records is defined as --recend immediately followed by --recstart. GNU parallel
splits exactly after --recend and
before --recstart. The block will have the last partial record

removed before the block is passed on to the job. The partial record
will be prepended to next
block.

You can limit the number of records to be passed with -N, and set
the record size with -L.

--pipe maxes out at around 1 GB/s input, and 100 MB/s output. If
performance is important
use --pipe-part.

--fifo and --cat will give stdin (standard input) on a fifo or a
temporary file.

If data is arriving slowly, you can use --block-timeout to finish
reading a block early.

The data can be spread between the jobs in specific ways using --round-robin, --bin, --shard
, --group-by. See the
section: SPREADING BLOCKS OF DATA

See also: --block --block-timeout --recstart --recend --fifo --cat --pipe-part -N -L
--round-robin

--pipe-part

Pipe parts of a physical file.

--pipe-part works similar to --pipe, but is much faster. 5 GB/s
can easily be delivered.

GNU Parallel

Page 24

--pipe-part has a few limitations:

The file must be a normal file or a block device (technically it must
be seekable) and
must be given using --arg-file or ::::. The file cannot
be a pipe, a fifo, or a stream as
they are not seekable.

If using a block device with lot of NUL bytes, remember to set --recend ''.

Record counting (-N) and line counting (-L/-l) do not
work. Instead use --recstart and
--recend to determine
where records end.

See also: --pipe --recstart --recend --arg-file ::::

--plain

Ignore --profile, $PARALLEL, and ~/.parallel/config.

Ignore any --profile, $PARALLEL, and ~/.parallel/config to get full
control on the command
line (used by GNU parallel internally when
called with --sshlogin).

See also: --profile

--plus

Add more replacement strings.

Activate additional replacement strings: {+/} {+.} {+..} {+...} {..}
{...} {/..} {/...} {##}. The idea
being that '{+foo}' matches the
opposite of '{foo}' so that:

{} = {+/}/{/} = {.}.{+.} = {+/}/{/.}.{+.} = {..}.{+..} =
{+/}/{/..}.{+..} = {...}.{+...} = {+/}/{/...}.{+...}

{##} is the total number of jobs to be run. It is incompatible with -X/-m/--xargs.

{0%} zero-padded jobslot.

{0#} zero-padded sequence number.

{slot-1} jobslot - 1 (i.e. counting from 0).

{seq-1} sequence number - 1 (i.e. counting from 0).

{choose_k} is inspired by n choose k: Given a list of n elements,
choose k. k is the number of
input sources and n is the number of
arguments in an input source. The content of the input
sources must
be the same and the arguments must be unique.

{uniq} skips jobs where values from two input sources are the same.

Shorthands for variables:

 {slot} $PARALLEL_JOBSLOT (see {%})
 {sshlogin} $PARALLEL_SSHLOGIN
 {host} $PARALLEL_SSHHOST
 {agrp} $PARALLEL_ARGHOSTGROUPS
 {hgrp} $PARALLEL_HOSTGROUPS

The following dynamic replacement strings are also activated. They are
inspired by bash's
parameter expansion:

 {:-str} str if the value is empty
 {:num} remove the first num characters
 {:pos:len} substring from position pos length len
 {#regexp} remove prefix regexp (non-greedy)
 {##regexp} remove prefix regexp (greedy)
 {%regexp} remove postfix regexp (non-greedy)
 {%%regexp} remove postfix regexp (greedy)
 {/regexp/str} replace one regexp with str
 {//regexp/str} replace every regexp with str
 {^str} uppercase str if found at the start
 {^^str} uppercase str
 {,str} lowercase str if found at the start

GNU Parallel

Page 25

 {,,str} lowercase str

See also: --rpl {}

--process-slot-var varname

Set the environment variable varname to the jobslot number-1.

 seq 10 | parallel --process-slot-var=name echo '$name' {}

--progress

Show progress of computations.

List the computers involved in the task with number of CPUs detected
and the max number of
jobs to run. After that show progress for each
computer: number of running jobs, number of
completed jobs, and
percentage of all jobs done by this computer. The percentage will only
be
available after all jobs have been scheduled as GNU parallel
only read the next job when
ready to schedule it - this is to avoid
wasting time and memory by reading everything at
startup.

By sending GNU parallel SIGUSR2 you can toggle turning on/off --progress on a running
GNU parallel process.

See also: --eta --bar

--max-line-length-allowed

Print maximal command line length.

Print the maximal number of characters allowed on the command line and
exit (used by GNU
parallel itself to determine the line length
on remote computers).

See also: --show-limits

--number-of-cpus (obsolete)

Print the number of physical CPU cores and exit.

--number-of-cores

Print the number of physical CPU cores and exit (used by GNU parallel itself
to determine the
number of physical CPU cores on remote computers).

See also: --number-of-sockets --number-of-threads --use-cores-instead-of-threads --jobs

--number-of-sockets

Print the number of filled CPU sockets and exit (used by GNU parallel itself to determine the
number of filled CPU sockets on
remote computers).

See also: --number-of-cores --number-of-threads --use-sockets-instead-of-threads --jobs

--number-of-threads

Print the number of hyperthreaded CPU cores and exit (used by GNU parallel itself to
determine the number of hyperthreaded CPU cores
on remote computers).

See also: --number-of-cores --number-of-sockets --jobs

--no-keep-order

Overrides an earlier --keep-order (e.g. if set in ~/.parallel/config).

--nice niceness

Run the command at this niceness.

By default GNU parallel will run jobs at the same nice level as GNU parallel is started - both
on the local machine and remote servers,
so you are unlikely to ever use this option.

Setting --nice will override this nice level. If the nice level is
smaller than the current nice level,
it will only affect remote jobs
(e.g. if current level is 10 then --nice 5 will cause local jobs to
be

GNU Parallel

Page 26

run at level 10, but remote jobs run at nice level 5).

--interactive

-p

Ask user before running a job.

Prompt the user about whether to run each command line and read a line
from the terminal.
Only run the command line if the response starts
with 'y' or 'Y'. Implies -t.

--_parset type,varname

Used internally by parset.

Generate shell code to be eval'ed which will set the variable(s) varname. type can be 'assoc'
for associative array or 'var' for
normal variables.

The only supported use is as part of parset.

--parens parensstring

Use parensstring instead of {==}.

Define start and end parenthesis for {=perl expression=}. The
left and the right parenthesis
can be multiple characters and are
assumed to be the same length. The default is {==} giving
{= as
the start parenthesis and =} as the end parenthesis.

Another useful setting is ,,,, which would make both parenthesis ,,:

 parallel --parens ,,,, echo foo is ,,s/I/O/g,, ::: FII

See also: --rpl {=perl expression=}

--profile profilename

-J profilename

Use profile profilename for options.

This is useful if you want to have multiple profiles. You could have
one profile for running jobs
in parallel on the local computer and a
different profile for running jobs on remote computers.

profilename corresponds to the file ~/.parallel/profilename.

You can give multiple profiles by repeating --profile. If parts of
the profiles conflict, the later
ones will be used.

Default: ~/.parallel/config

See also: PROFILE FILES

--quote

-q

Quote command.

If your command contains special characters that should not be
interpreted by the shell (e.g. ;
\ | *), use --quote to escape
these. The command must be a simple command (see man bash
) without
redirections and without variable assignments.

Most people will not need this. Quoting is disabled by default.

See also: QUOTING command --shell-quote uq() Q()

--no-run-if-empty

-r

Do not run empty input.

If the stdin (standard input) only contains whitespace, do not run the
command.

If used with --pipe this is slow.

See also: command --pipe --interactive

GNU Parallel

Page 27

--noswap

Do not start job is computer is swapping.

Do not start new jobs on a given computer if there is both swap-in and
swap-out activity.

The swap activity is only sampled every 10 seconds as the sampling
takes 1 second to do.

Swap activity is computed as (swap-in)*(swap-out) which in practice is
a good value:
swapping out is not a problem, swapping in is not a
problem, but both swapping in and out
usually indicates a problem.

--memfree and --memsuspend may give better results, so try using
those first.

See also: --memfree --memsuspend

--record-env

Record exported environment.

Record current exported environment variables in ~/.parallel/ignored_vars. This will ignore
variables currently set
when using --env _. So you should set the variables/fuctions, you
want
to use after running --record-env.

See also: --env --session env_parallel

--recstart startstring

--recend endstring

Split record between endstring and startstring.

If --recstart is given startstring will be used to split at record start.

If --recend is given endstring will be used to split at record end.

If both --recstart and --recend are given the combined string endstringstartstring will have to
match to find a split
position. This is useful if either startstring or endstring
match in the middle
of a record.

If neither --recstart nor --recend are given, then --recend
defaults to '\n'. To have no record
separator (e.g. for binary files)
use --recend "".

--recstart and --recend are used with --pipe.

Use --regexp to interpret --recstart and --recend as regular
expressions. This is slow,
however.

Use --remove-rec-sep to remove --recstart and --recend before
passing the block to the job.

See also: --pipe --regexp --remove-rec-sep

--regexp

Use --regexp to interpret --recstart and --recend as regular
expressions. This is slow,
however.

See also: --pipe --regexp --remove-rec-sep --recstart --recend

--remove-rec-sep

--removerecsep

--rrs

Remove record separator.

Remove the text matched by --recstart and --recend before piping
it to the command.

Only used with --pipe/--pipe-part.

See also: --pipe --regexp --pipe-part --recstart --recend

--results name

--res name

Save the output into files.

GNU Parallel

Page 28

Simple string output dir

If name does not contain replacement strings and does not end in .csv/.tsv, the output will be
stored in a directory tree rooted at name. Within this directory tree, each command will result
in
three files: name/<ARGS>/stdout and name/<ARGS>/stderr, name/<ARGS>/seq, where
<ARGS> is a sequence of directories
representing the header of the input source (if using
--header :)
or the number of the input source and corresponding values.

E.g:

 parallel --header : --results foo echo {a} {b} \
 ::: a I II ::: b III IIII

will generate the files:

 foo/a/II/b/III/seq
 foo/a/II/b/III/stderr
 foo/a/II/b/III/stdout
 foo/a/II/b/IIII/seq
 foo/a/II/b/IIII/stderr
 foo/a/II/b/IIII/stdout
 foo/a/I/b/III/seq
 foo/a/I/b/III/stderr
 foo/a/I/b/III/stdout
 foo/a/I/b/IIII/seq
 foo/a/I/b/IIII/stderr
 foo/a/I/b/IIII/stdout

and

 parallel --results foo echo {1} {2} ::: I II ::: III IIII

will generate the files:

 foo/1/II/2/III/seq
 foo/1/II/2/III/stderr
 foo/1/II/2/III/stdout
 foo/1/II/2/IIII/seq
 foo/1/II/2/IIII/stderr
 foo/1/II/2/IIII/stdout
 foo/1/I/2/III/seq
 foo/1/I/2/III/stderr
 foo/1/I/2/III/stdout
 foo/1/I/2/IIII/seq
 foo/1/I/2/IIII/stderr
 foo/1/I/2/IIII/stdout

CSV file output

If name ends in .csv/.tsv the output will be a CSV-file
named name.

.csv gives a comma separated value file. .tsv gives a TAB
separated value file.

-.csv/-.tsv are special: It will give the file on stdout
(standard output).

JSON file output

If name ends in .json the output will be a JSON-file
named name.

-.json is special: It will give the file on stdout (standard
output).

Replacement string output file

If name contains a replacement string and the replaced result does
not end in /, then the
standard output will be stored in a file named
by this result. Standard error will be stored in the
same file name
with '.err' added, and the sequence number will be stored in the same
file

GNU Parallel

Page 29

name with '.seq' added.

E.g.

 parallel --results my_{} echo ::: foo bar baz

will generate the files:

 my_bar
 my_bar.err
 my_bar.seq
 my_baz
 my_baz.err
 my_baz.seq
 my_foo
 my_foo.err
 my_foo.seq

Replacement string output dir

If name contains a replacement string and the replaced result ends
in /, then output files will
be stored in the resulting dir.

E.g.

 parallel --results my_{}/ echo ::: foo bar baz

will generate the files:

 my_bar/seq
 my_bar/stderr
 my_bar/stdout
 my_baz/seq
 my_baz/stderr
 my_baz/stdout
 my_foo/seq
 my_foo/stderr
 my_foo/stdout

See also: --output-as-files --tag --header --joblog

--resume

Resumes from the last unfinished job.

By reading --joblog or the --results dir GNU parallel will figure out the last unfinished
job and
continue from there. As GNU parallel only looks at the
sequence numbers in --joblog then
the input, the command, and --joblog all have to remain unchanged; otherwise GNU parallel

may run wrong commands.

See also: --joblog --results --resume-failed --retries

--resume-failed

Retry all failed and resume from the last unfinished job.

By reading --joblog GNU parallel will figure out the failed jobs and run
those again. After that
it will resume last unfinished job and
continue from there. As GNU parallel only looks at the
sequence
numbers in --joblog then the input, the command, and --joblog
all have to remain
unchanged; otherwise GNU parallel may run wrong
commands.

See also: --joblog --resume --retry-failed --retries

--retry-failed

Retry all failed jobs in joblog.

By reading --joblog GNU parallel will figure out the failed jobs and run those again.

GNU Parallel

Page 30

--retry-failed ignores the command and arguments on the command
line: It only looks at the
joblog.

Differences between --resume, --resume-failed, --retry-failed

In this example exit {= $_%=2 =} will cause every other job to fail.

 timeout -k 1 4 parallel --joblog log -j10 \
 'sleep {}; exit {= $_%=2 =}' ::: {10..1}

4 jobs completed. 2 failed:

 Seq	 [...]	 Exitval	 Signal	 Command
 10	 [...]	 1	 0	 sleep 1; exit 1
 9	 [...]	 0	 0	 sleep 2; exit 0
 8	 [...]	 1	 0	 sleep 3; exit 1
 7	 [...]	 0	 0	 sleep 4; exit 0

--resume does not care about the Exitval, but only looks at Seq. If
the Seq is run, it will not be
run again. So if needed, you can change
the command for the seqs not run yet:

 parallel --resume --joblog log -j10 \
 'sleep .{}; exit {= $_%=2 =}' ::: {10..1}

 Seq	 [...]	 Exitval	 Signal	 Command
 [... as above ...]
 1	 [...]	 0	 0	 sleep .10; exit 0
 6	 [...]	 1	 0	 sleep .5; exit 1
 5	 [...]	 0	 0	 sleep .6; exit 0
 4	 [...]	 1	 0	 sleep .7; exit 1
 3	 [...]	 0	 0	 sleep .8; exit 0
 2	 [...]	 1	 0	 sleep .9; exit 1

--resume-failed cares about the Exitval, but also only looks at Seq
to figure out which
commands to run. Again this means you can change
the command, but not the arguments. It
will run the failed seqs and
the seqs not yet run:

 parallel --resume-failed --joblog log -j10 \
 'echo {};sleep .{}; exit {= $_%=3 =}' ::: {10..1}

 Seq	 [...]	 Exitval	 Signal	 Command
 [... as above ...]
 10	 [...]	 1	 0	 echo 1;sleep .1; exit 1
 8	 [...]	 0	 0	 echo 3;sleep .3; exit 0
 6	 [...]	 2	 0	 echo 5;sleep .5; exit 2
 4	 [...]	 1	 0	 echo 7;sleep .7; exit 1
 2	 [...]	 0	 0	 echo 9;sleep .9; exit 0

--retry-failed cares about the Exitval, but takes the command from
the joblog. It ignores any
arguments or commands given on the command
line:

 parallel --retry-failed --joblog log -j10 this part is ignored

 Seq	 [...]	 Exitval	 Signal	 Command
 [... as above ...]
 10	 [...]	 1	 0	 echo 1;sleep .1; exit 1
 6	 [...]	 2	 0	 echo 5;sleep .5; exit 2
 4	 [...]	 1	 0	 echo 7;sleep .7; exit 1

See also: --joblog --resume --resume-failed --retries

--retries n

GNU Parallel

Page 31

Try failing jobs n times.

If a job fails, retry it on another computer on which it has not
failed. Do this n times. If there are
fewer than n computers in --sshlogin GNU parallel will re-use all the computers. This is

useful if some jobs fail for no apparent reason (such as network
failure).

n=0 means infinite.

See also: --term-seq --sshlogin

--return filename

Transfer files from remote computers.

--return is used with --sshlogin when the arguments are files on the remote computers.
When
processing is done the file filename will be transferred
from the remote computer using
rsync and will be put relative to
the default login dir. E.g.

 echo foo/bar.txt | parallel --return {.}.out \
 --sshlogin server.example.com touch {.}.out

This will transfer the file $HOME/foo/bar.out from the computer server.example.com to the file
foo/bar.out after running touch foo/bar.out on server.example.com.

 parallel -S server --trc out/./{}.out touch {}.out ::: in/file

This will transfer the file in/file.out from the computer server.example.com to the files
out/in/file.out after running touch in/file.out on server.

 echo /tmp/foo/bar.txt | parallel --return {.}.out \
 --sshlogin server.example.com touch {.}.out

This will transfer the file /tmp/foo/bar.out from the computer server.example.com to the file
/tmp/foo/bar.out after running touch /tmp/foo/bar.out on server.example.com.

Multiple files can be transferred by repeating the option multiple
times:

 echo /tmp/foo/bar.txt | parallel \
 --sshlogin server.example.com \
 --return {.}.out --return {.}.out2 touch {.}.out {.}.out2

--return is ignored when used with --sshlogin : or when not used
with --sshlogin.

For details on transferring see --transferfile.

See also: --transfer --transferfile --sshlogin --cleanup --workdir

--round-robin

--round

Distribute chunks of standard input in a round robin fashion.

Normally --pipe will give a single block to each instance of the
command. With --round-robin
all blocks will at random be written to
commands already running. This is useful if the
command takes a long
time to initialize.

With --keep-order and --round-robin the jobslots will get the
same blocks as input in the
same order in every run if the input is
kept the same. See details under --keep-order.

--round-robin implies --pipe, except if --pipe-part is given.

See the section: SPREADING BLOCKS OF DATA.

See also: --bin --group-by --shard

--rpl 'tag perl expression'

Define replacement string.

Use tag as a replacement string for perl expression. This makes
it possible to define your own
replacement strings. GNU parallel's
7 replacement strings are implemented as:

GNU Parallel

Page 32

 --rpl '{} '
 --rpl '{#} 1 $_=$job->seq()'
 --rpl '{%} 1 $_=$job->slot()'
 --rpl '{/} s:.*/::'
 --rpl '{//} $Global::use{"File::Basename"} ||=
 eval "use File::Basename; 1;"; $_ = dirname($_);'
 --rpl '{/.} s:.*/::; s:\.[^/.]+$::;'
 --rpl '{.} s:\.[^/.]+$::'

The --plus replacement strings are implemented as:

 --rpl '{+/} s:/[^/]*$:: || s:.*$::'
 --rpl '{+.} s:.*\.:: || s:.*$::'
 --rpl '{+..} s:.*\.([^/.]+\.[^/.]+)$:$1: || s:.*$::'
 --rpl '{+...} s:.*\.([^/.]+\.[^/.]+\.[^/.]+)$:$1: || s:.*$::'
 --rpl '{..} s:\.[^/.]+\.[^/.]+$::'
 --rpl '{...} s:\.[^/.]+\.[^/.]+\.[^/.]+$::'
 --rpl '{/..} s:.*/::; s:\.[^/.]+\.[^/.]+$::'
 --rpl '{/...} s:.*/::; s:\.[^/.]+\.[^/.]+\.[^/.]+$::'
 --rpl '{choose_k}
 for $t (2..$#arg){ if($arg[$t-1] ge $arg[$t]) { skip() } }'
 --rpl '{##} 1 $_=total_jobs()'
 --rpl '{0%} 1 $f=1+int((log($Global::max_jobs_running||1)/
 log(10))); $_=sprintf("%0${f}d",slot())'
 --rpl '{0#} 1 $f=1+int((log(total_jobs())/log(10)));
 $_=sprintf("%0${f}d",seq())'
 --rpl '{seq(.*?)} $_=eval q{$job->seq()}.qq{$$1}'
 --rpl '{slot(.*?)} $_=eval q{$job->slot()}.qq{$$1}'

 --rpl '{:-([^}]+?)} $_ ||= $$1'
 --rpl '{:(\d+?)} substr($_,0,$$1) = ""'
 --rpl '{:(\d+?):(\d+?)} $_ = substr($_,$$1,$$2);'
 --rpl '{#([^#}][^}]*?)} $nongreedy=::make_regexp_ungreedy($$1);
 s/^$nongreedy(.*)/$1/;'
 --rpl '{##([^#}][^}]*?)} s/^$$1//;'
 --rpl '{%([^}]+?)} $nongreedy=::make_regexp_ungreedy($$1);
 s/(.*)$nongreedy$/$1/;'
 --rpl '{%%([^}]+?)} s/$$1$//;'
 --rpl '{/([^}]+?)/([^}]*?)} s/$$1/$$2/;'
 --rpl '{^([^}]+?)} s/^($$1)/uc($1)/e;'
 --rpl '{^^([^}]+?)} s/($$1)/uc($1)/eg;'
 --rpl '{,([^}]+?)} s/^($$1)/lc($1)/e;'
 --rpl '{,,([^}]+?)} s/($$1)/lc($1)/eg;'

 --rpl '{slot} 1 $_="\${PARALLEL_JOBSLOT}";uq()'
 --rpl '{host} 1 $_="\${PARALLEL_SSHHOST}";uq()'
 --rpl '{sshlogin} 1 $_="\${PARALLEL_SSHLOGIN}";uq()'
 --rpl '{hgrp} 1 $_="\${PARALLEL_HOSTGROUPS}";uq()'
 --rpl '{agrp} 1 $_="\${PARALLEL_ARGHOSTGROUPS}";uq()'

If the user defined replacement string starts with '{' it can also be
used as a positional
replacement string (like {2.}).

It is recommended to only change $_ but you have full access to all
of GNU parallel's internal
functions and data structures.

Here are a few examples:

 Is the job sequence even or odd?
 --rpl '{odd} $_ = seq() % 2 ? "odd" : "even"'

GNU Parallel

Page 33

 Pad job sequence with leading zeros to get equal width
 --rpl '{0#} $f=1+int("".(log(total_jobs())/log(10)));
 $_=sprintf("%0${f}d",seq())'
 Job sequence counting from 0
 --rpl '{#0} $_ = seq() - 1'
 Job slot counting from 2
 --rpl '{%1} $_ = slot() + 1'
 Remove all extensions
 --rpl '{:} s:(\.[^/]+)*$::'

You can have dynamic replacement strings by including parenthesis in
the replacement string
and adding a regular expression between the
parenthesis. The matching string will be inserted
as $$1:

 parallel --rpl '{%(.*?)} s/$$1//' echo {%.tar.gz} ::: my.tar.gz
 parallel --rpl '{:%(.+?)} s:$$1(\.[^/]+)*$::' \
 echo {:%_file} ::: my_file.tar.gz
 parallel -n3 --rpl '{/:%(.*?)} s:.*/(.*)$$1(\.[^/]+)*$:$1:' \
 echo job {#}: {2} {2.} {3/:%_1} ::: a/b.c c/d.e f/g_1.h.i

You can even use multiple matches:

 parallel --rpl '{/(.+?)/(.*?)} s/$$1/$$2/;'
 echo {/replacethis/withthis} {/b/C} ::: a_replacethis_b

 parallel --rpl '{(.*?)/(.*?)} $_="$$2$_$$1"' \
 echo {swap/these} ::: -middle-

See also: {=perl expression=} --parens

--rsync-opts options

Options to pass on to rsync.

Setting --rsync-opts takes precedence over setting the environment
variable
$PARALLEL_RSYNC_OPTS.

--max-chars max-chars

-s max-chars

Limit length of command.

Use at most max-chars characters per command line, including the
command and
initial-arguments and the terminating nulls at the ends of
the argument strings. The largest
allowed value is system-dependent,
and is calculated as the argument length limit for exec,
less the size
of your environment. The default value is the maximum.

max-chars can be postfixed with K, M, G, T, P, k, m, g, t, or p
(see UNIT PREFIX).

Implies -X unless -m or --xargs is set.

See also: -X -m --xargs --max-line-length-allowed --show-limits

--show-limits

Display limits given by the operating system.

Display the limits on the command-line length which are imposed by the
operating system and
the -s option. Pipe the input from /dev/null
(and perhaps specify --no-run-if-empty) if you don't
want GNU parallel
to do anything.

See also: --max-chars --max-line-length-allowed --version

--semaphore

Work as a counting semaphore.

GNU Parallel

Page 34

--semaphore will cause GNU parallel to start command in the
background. When the number
of jobs given by --jobs is reached, GNU parallel will wait for one of these to complete before
starting
another command.

--semaphore implies --bg unless --fg is specified.

The command sem is an alias for parallel --semaphore.

See also: man sem --bg --fg --semaphore-name --semaphore-timeout --wait

--semaphore-name name

--id name

Use name as the name of the semaphore.

The default is the name of the controlling tty (output from tty).

The default normally works as expected when used interactively, but
when used in a script
name should be set. $$ or my_task_name
are often a good value.

The semaphore is stored in ~/.parallel/semaphores/

Implies --semaphore.

See also: man sem --semaphore

--semaphore-timeout secs

--st secs

If secs > 0: If the semaphore is not released within secs
seconds, take it anyway.

If secs < 0: If the semaphore is not released within secs
seconds, exit.

secs is in seconds, but can be postfixed with s, m, h, or d (see
the section TIME POSTFIXES).

Implies --semaphore.

See also: man sem

--seqreplace replace-str

Use the replacement string replace-str instead of {#} for
job sequence number.

See also: {#}

--session

Record names in current environment in $PARALLEL_IGNORED_NAMES and
exit.

Only used with env_parallel. Aliases, functions, and variables with
names in
$PARALLEL_IGNORED_NAMES will not be copied. So you should
set variables/function you
want copied after running --session.

It is similar to --record-env, but only for this session.

Only supported in Ash, Bash, Dash, Ksh, Sh, and Zsh.

See also: --env --record-env env_parallel

--shard shardexpr

Use shardexpr as shard key and shard input to the jobs.

shardexpr is [column number|column name] [perlexpression] e.g.:

 3
 Address
 3 $_%=100
 Address s/\d//g

Each input line is split using --colsep. The string of the column
is put into $_, the perl
expression is executed, the resulting string
is hashed so that all lines of a given value is given
to the same job
slot.

This is similar to sharding in databases.

GNU Parallel

Page 35

The performance is in the order of 100K rows per second. Faster if the shardcol is small (<10),
slower if it is big (>100).

--shard requires --pipe and a fixed numeric value for --jobs.

See the section: SPREADING BLOCKS OF DATA.

See also: --bin --group-by --round-robin

--shebang

--hashbang

GNU parallel can be called as a shebang (#!) command as the first
line of a script. The
content of the file will be treated as
inputsource.

Like this:

 #!/usr/bin/parallel --shebang -r wget

 https://ftpmirror.gnu.org/parallel/parallel-20120822.tar.bz2
 https://ftpmirror.gnu.org/parallel/parallel-20130822.tar.bz2
 https://ftpmirror.gnu.org/parallel/parallel-20140822.tar.bz2

--shebang must be set as the first option.

On FreeBSD env is needed:

 #!/usr/bin/env -S parallel --shebang -r wget

 https://ftpmirror.gnu.org/parallel/parallel-20120822.tar.bz2
 https://ftpmirror.gnu.org/parallel/parallel-20130822.tar.bz2
 https://ftpmirror.gnu.org/parallel/parallel-20140822.tar.bz2

There are many limitations of shebang (#!) depending on your operating
system. See details
on https://www.in-ulm.de/~mascheck/various/shebang/

See also: --shebang-wrap

--shebang-wrap

GNU parallel can parallelize scripts by wrapping the shebang
line. If the program can be run
like this:

 cat arguments | parallel the_program

then the script can be changed to:

 #!/usr/bin/parallel --shebang-wrap /original/parser --options

E.g.

 #!/usr/bin/parallel --shebang-wrap /usr/bin/python

If the program can be run like this:

 cat data | parallel --pipe the_program

then the script can be changed to:

 #!/usr/bin/parallel --shebang-wrap --pipe /orig/parser --opts

E.g.

 #!/usr/bin/parallel --shebang-wrap --pipe /usr/bin/perl -w

--shebang-wrap must be set as the first option.

See also: --shebang

GNU Parallel

Page 36

--shell-completion shell

Generate shell completion code for interactive shells.

Supported shells: bash zsh.

Use auto as shell to automatically detect running shell.

Activate the completion code with:

 zsh% eval "$(parallel --shell-completion auto)"
 bash$ eval "$(parallel --shell-completion auto)"

Or put this `/usr/share/zsh/site-functions/_parallel`, then `compinit`
to generate
`~/.zcompdump`:

 #compdef parallel

 (($+functions[_comp_parallel])) ||
 eval "$(parallel --shell-completion auto)" &&
 _comp_parallel

--shell-quote

Does not run the command but quotes it. Useful for making quoted
composed commands for
GNU parallel.

Multiple --shell-quote with quote the string multiple times, so parallel --shell-quote | parallel
--shell-quote can be written as parallel --shell-quote --shell-quote.

See also: --quote

--shuf

Shuffle jobs.

When having multiple input sources it is hard to randomize
jobs. --shuf will generate all jobs,
and shuffle them before
running them. This is useful to get a quick preview of the results

before running the full batch.

Combined with --halt soon,done=1% you can run a random 1% sample of
all jobs:

 parallel --shuf --halt soon,done=1% echo ::: {1..100} ::: {1..100}

See also: --halt

--skip-first-line

Do not use the first line of input (used by GNU parallel itself
when called with --shebang).

--sql DBURL (obsolete)

Use --sql-master instead.

--sql-master DBURL

Submit jobs via SQL server. DBURL must point to a table, which will
contain the same
information as --joblog, the values from the input
sources (stored in columns V1 .. Vn), and
the output (stored in
columns Stdout and Stderr).

If DBURL is prepended with '+' GNU parallel assumes the table is
already made with the
correct columns and appends the jobs to it.

If DBURL is not prepended with '+' the table will be dropped and
created with the correct
amount of V-columns unless

--sqlmaster does not run any jobs, but it creates the values for
the jobs to be run. One or
more --sqlworker must be run to actually
execute the jobs.

If --wait is set, GNU parallel will wait for the jobs to
complete.

The format of a DBURL is:

GNU Parallel

Page 37

 [sql:]vendor://[[user][:pwd]@][host][:port]/[db]/table

E.g.

 sql:mysql://hr:hr@localhost:3306/hrdb/jobs
 mysql://scott:tiger@my.example.com/pardb/paralleljobs
 sql:oracle://scott:tiger@ora.example.com/xe/parjob
 postgresql://scott:tiger@pg.example.com/pgdb/parjob
 pg:///parjob
 sqlite3:///%2Ftmp%2Fpardb.sqlite/parjob
 csv:///%2Ftmp%2Fpardb/parjob

Notice how / in the path of sqlite and CVS must be encoded as
%2F. Except the last / in CSV
which must be a /.

It can also be an alias from ~/.sql/aliases:

 :myalias mysql:///mydb/paralleljobs

See also: --sql-and-worker --sql-worker --joblog

--sql-and-worker DBURL

Shorthand for: --sql-master DBURL --sql-worker DBURL.

See also: --sql-master --sql-worker

--sql-worker DBURL

Execute jobs via SQL server. Read the input sources variables from the
table pointed to by
DBURL. The command on the command line
should be the same as given by --sqlmaster.

If you have more than one --sqlworker jobs may be run more than
once.

If --sqlworker runs on the local machine, the hostname in the SQL
table will not be ':' but
instead the hostname of the machine.

See also: --sql-master --sql-and-worker

--ssh sshcommand

GNU parallel defaults to using ssh for remote access. This can
be overridden with --ssh. It
can also be set on a per server
basis with --sshlogin.

See also: --sshlogin

--ssh-delay duration

Delay starting next ssh by duration.

GNU parallel will not start another ssh for the next duration.

duration is in seconds, but can be postfixed with s, m, h, or d.

See also: TIME POSTFIXES --sshlogin --delay

--sshlogin [@hostgroups/][ncpus/]sshlogin[,[@hostgroups/][ncpus/]sshlogin[,...]]

--sshlogin @hostgroup

-S [@hostgroups/][ncpus/]sshlogin[,[@hostgroups/][ncpus/]sshlogin[,...]]

-S @hostgroup

Distribute jobs to remote computers.

The jobs will be run on a list of remote computers.

If hostgroups is given, the sshlogin will be added to that
hostgroup. Multiple hostgroups are
separated by '+'. The sshlogin
will always be added to a hostgroup named the same as
sshlogin.

If only the @hostgroup is given, only the sshlogins in that
hostgroup will be used. Multiple

GNU Parallel

Page 38

@hostgroup can be given.

GNU parallel will determine the number of CPUs on the remote
computers and run the
number of jobs as specified by -j. If the
number ncpus is given GNU parallel will use this
number for
number of CPUs on the host. Normally ncpus will not be
needed.

An sshlogin is of the form:

 [sshcommand [options]] [username[:password]@]hostname

If password is given, sshpass will be used. Otherwise the
sshlogin must not require a
password (ssh-agent and ssh-copy-id
may help with that).

If the hostname is an IPv6 address, the port can be given separated
with p or #. If the address
is enclosed in [] you can also use :.
E.g. ::1p2222 ::1#2222 [::1]:2222

Ranges of hostnames can be given in [] like this: server[1,3,8-10]
(for server1, server3,
server8, server9, server10) or
server[001,003,008-010] (for server001, server003, server008,

server009, server010). With Bash's brace expansion you can do:
-S{dev,prod}[001-100] to get
-Sdev[001-100] -Sprod[001-100]
More [] are allowed: server[1-10].cluster[1-5].example.net

The sshlogin ':' is special, it means 'no ssh' and will therefore run
on the local computer.

The sshlogin '..' is special, it read sshlogins from ~/.parallel/sshloginfile or

$XDG_CONFIG_HOME/parallel/sshloginfile

The sshlogin '-' is special, too, it read sshlogins from stdin
(standard input).

To specify more sshlogins separate the sshlogins by comma, newline (in
the same string), or
repeat the options multiple times.

GNU parallel splits on , (comma) so if your sshlogin contains ,
(comma) you need to replace it
with \, or ,,

For examples: see --sshloginfile.

The remote host must have GNU parallel installed.

--sshlogin is known to cause problems with -m and -X.

See also: --basefile --transferfile --return --cleanup --trc --sshloginfile --workdir
--filter-hosts --ssh

--sshloginfile filename

--slf filename

File with sshlogins. The file consists of sshlogins on separate
lines. Empty lines and lines
starting with '#' are ignored. Example:

 server.example.com
 username@server2.example.com
 8/my-8-cpu-server.example.com
 2/my_other_username@my-dualcore.example.net
 # This server has SSH running on port 2222
 ssh -p 2222 server.example.net
 4/ssh -p 2222 quadserver.example.net
 # Use a different ssh program
 myssh -p 2222 -l myusername hexacpu.example.net
 # Use a different ssh program with default number of CPUs
 //usr/local/bin/myssh -p 2222 -l myusername hexacpu
 # Use a different ssh program with 6 CPUs
 6//usr/local/bin/myssh -p 2222 -l myusername hexacpu
 # Assume 16 CPUs on the local computer
 16/:
 # Put server1 in hostgroup1
 @hostgroup1/server1
 # Put myusername@server2 in hostgroup1+hostgroup2
 @hostgroup1+hostgroup2/myusername@server2

GNU Parallel

Page 39

 # Force 4 CPUs and put 'ssh -p 2222 server3' in hostgroup1
 @hostgroup1/4/ssh -p 2222 server3

When using a different ssh program the last argument must be the hostname.

Multiple --sshloginfile are allowed.

GNU parallel will first look for the file in current dir; if that
fails it look for the file in ~/.parallel.

The sshloginfile '..' is special, it read sshlogins from
~/.parallel/sshloginfile

The sshloginfile '.' is special, it read sshlogins from
/etc/parallel/sshloginfile

The sshloginfile '-' is special, too, it read sshlogins from stdin
(standard input).

If the sshloginfile is changed it will be re-read when a job finishes
though at most once per
second. This makes it possible to add and
remove hosts while running.

This can be used to have a daemon that updates the sshloginfile to
only contain servers that
are up:

 cp original.slf tmp2.slf
 while [1] ; do
 nice parallel --nonall -j0 -k --slf original.slf \
 --tag echo | perl 's/\t$//' > tmp.slf
 if diff tmp.slf tmp2.slf; then
 mv tmp.slf tmp2.slf
 fi
 sleep 10
 done &
 parallel --slf tmp2.slf ...

See also: --filter-hosts

--slotreplace replace-str

Use the replacement string replace-str instead of {%} for
job slot number.

See also: {%}

--silent

Silent.

The job to be run will not be printed. This is the default. Can be
reversed with -v.

See also: -v

--template file=repl

--tmpl file=repl

Replace replacement strings in file and save it in repl.

All replacement strings in the contents of file will be
replaced. All replacement strings in the
name repl will be
replaced.

With --cleanup the new file will be removed when the job is done.

If my.tmpl contains this:

 Xval: {x}
 Yval: {y}
 FixedValue: 9
 # x with 2 decimals
 DecimalX: {=x $_=sprintf("%.2f",$_) =}
 TenX: {=x $_=$_*10 =}
 RandomVal: {=1 $_=rand() =}

it can be used like this:

GNU Parallel

Page 40

 myprog() { echo Using "$@"; cat "$@"; }
 export -f myprog
 parallel --cleanup --header : --tmpl my.tmpl={#}.t myprog {#}.t \
 ::: x 1.234 2.345 3.45678 ::: y 1 2 3

See also: {} --cleanup

--tty

Open terminal tty.

If GNU parallel is used for starting a program that accesses the
tty (such as an interactive
program) then this option may be
needed. It will default to starting only one job at a time
(i.e.
-j1), not buffer the output (i.e. -u), and it will open a
tty for the job.

You can of course override -j1 and -u.

Using --tty unfortunately means that GNU parallel cannot kill
the jobs (with --timeout,
--memfree, or --halt). This is due
to GNU parallel giving each child its own process group,
which is
then killed. Process groups are dependant on the tty.

See also: --ungroup --open-tty

--tag

Tag lines with arguments.

Each output line will be prepended with the arguments and TAB
(\t). When combined with
--onall or --nonall the lines will be
prepended with the sshlogin instead.

--tag is ignored when using -u.

See also: --tagstring --ctag

--tagstring str

Tag lines with a string.

Each output line will be prepended with str and TAB (\t). str
can contain replacement strings
such as {}.

--tagstring is ignored when using -u, --onall, and --nonall.

See also: --tag --ctagstring

--tee

Pipe all data to all jobs.

Used with --pipe/--pipe-part and :::.

 seq 1000 | parallel --pipe --tee -v wc {} ::: -w -l -c

How many numbers in 1..1000 contain 0..9, and how many bytes do they
fill:

 seq 1000 | parallel --pipe --tee --tag \
 'grep {1} | wc {2}' ::: {0..9} ::: -l -c

How many words contain a..z and how many bytes do they fill?

 parallel -a /usr/share/dict/words --pipe-part --tee --tag \
 'grep {1} | wc {2}' ::: {a..z} ::: -l -c

See also: ::: --pipe --pipe-part

--term-seq sequence

Termination sequence.

When a job is killed due to --timeout, --memfree, --halt, or
abnormal termination of GNU
parallel, sequence determines how
the job is killed. The default is:

 TERM,200,TERM,100,TERM,50,KILL,25

GNU Parallel

Page 41

which sends a TERM signal, waits 200 ms, sends another TERM signal,
waits 100 ms, sends
another TERM signal, waits 50 ms, sends a KILL
signal, waits 25 ms, and exits. GNU parallel
detects if a process
dies before the waiting time is up.

See also: --halt --timeout --memfree

--total-jobs jobs

--total jobs

Provide the total number of jobs for computing ETA which is also used
for --bar.

Without --total-jobs GNU Parallel will read all jobs before
starting a job. --total-jobs is useful
if the input is generated
slowly.

See also: --bar --eta

--tmpdir dirname

Directory for temporary files.

GNU parallel normally buffers output into temporary files in
/tmp. By setting --tmpdir you can
use a different dir for the
files. Setting --tmpdir is equivalent to setting $TMPDIR.

See also: --compress $TMPDIR $PARALLEL_REMOTE_TMPDIR

--tmux (Long beta testing)

Use tmux for output. Start a tmux session and run each job in a
window in that session. No
other output will be produced.

See also: --tmuxpane

--tmuxpane (Long beta testing)

Use tmux for output but put output into panes in the first window.
Useful if you want to monitor
the progress of less than 100 concurrent
jobs.

See also: --tmux

--timeout duration

Time out for command. If the command runs for longer than duration
seconds it will get killed
as per --term-seq.

If duration is followed by a % then the timeout will dynamically be
computed as a percentage
of the median average runtime of successful
jobs. Only values > 100% will make sense.

duration is in seconds, but can be postfixed with s, m, h, or d.

See also: TIME POSTFIXES --term-seq --retries

--verbose

-t

Print the job to be run on stderr (standard error).

See also: -v --interactive

--transfer

Transfer files to remote computers.

Shorthand for: --transferfile {}.

See also: --transferfile.

--transferfile filename

--tf filename

Transfer filename to remote computers.

--transferfile is used with --sshlogin to transfer files to the
remote computers. The files will be
transferred using rsync and
will be put relative to the work dir.

GNU Parallel

Page 42

The filename will normally contain a replacement string.

If the path contains /./ the remaining path will be relative to the
work dir (for details: see rsync
). If the work dir is /home/user, the transferring will be as follows:

 /tmp/foo/bar => /tmp/foo/bar
 tmp/foo/bar => /home/user/tmp/foo/bar
 /tmp/./foo/bar => /home/user/foo/bar
 tmp/./foo/bar => /home/user/foo/bar

Examples

This will transfer the file foo/bar.txt to the computer server.example.com to the file
$HOME/foo/bar.txt before running wc foo/bar.txt on server.example.com:

 echo foo/bar.txt | parallel --transferfile {} \
 --sshlogin server.example.com wc

This will transfer the file /tmp/foo/bar.txt to the computer server.example.com to the file
/tmp/foo/bar.txt before running wc /tmp/foo/bar.txt on server.example.com:

 echo /tmp/foo/bar.txt | parallel --transferfile {} \
 --sshlogin server.example.com wc

This will transfer the file /tmp/foo/bar.txt to the computer server.example.com to the file
foo/bar.txt before running wc ./foo/bar.txt on server.example.com:

 echo /tmp/./foo/bar.txt | parallel --transferfile {} \
 --sshlogin server.example.com wc {= s:.*/\./:./: =}

--transferfile is often used with --return and --cleanup. A
shorthand for --transferfile {} is
--transfer.

--transferfile is ignored when used with --sshlogin : or when
not used with --sshlogin.

See also: --workdir --sshlogin --basefile --return --cleanup

--trc filename

Transfer, Return, Cleanup. Shorthand for: --transfer --return filename --cleanup

See also: --transfer --return --cleanup

--trim <n|l|r|lr|rl>

Trim white space in input.

n

No trim. Input is not modified. This is the default.

l

Left trim. Remove white space from start of input. E.g. " a bc " -> "a bc ".

r

Right trim. Remove white space from end of input. E.g. " a bc " -> " a bc".

lr

rl

Both trim. Remove white space from both start and end of input. E.g. "
a bc " -> "a bc".
This is the default if --colsep is used.

See also: --no-run-if-empty {} --colsep

--ungroup

-u

GNU Parallel

Page 43

Ungroup output.

Output is printed as soon as possible and bypasses GNU parallel
internal processing. This
may cause output from different commands to
be mixed thus should only be used if you do not
care about the
output. Compare these:

 seq 4 | parallel -j0 \
 'sleep {};echo -n start{};sleep {};echo {}end'
 seq 4 | parallel -u -j0 \
 'sleep {};echo -n start{};sleep {};echo {}end'

It also disables --tag. GNU parallel outputs faster with -u. Compare the speeds of these:

 parallel seq ::: 300000000 >/dev/null
 parallel -u seq ::: 300000000 >/dev/null
 parallel --line-buffer seq ::: 300000000 >/dev/null

Can be reversed with --group.

See also: --line-buffer --group

--extensionreplace replace-str

--er replace-str

Use the replacement string replace-str instead of {.} for input
line without extension.

See also: {.}

--use-sockets-instead-of-threads

See also: --use-cores-instead-of-threads

--use-cores-instead-of-threads

--use-cpus-instead-of-cores (obsolete)

Determine how GNU parallel counts the number of CPUs.

GNU parallel uses this number when the number of jobslots
(--jobs) is computed relative to
the number of CPUs (e.g. 100% or
+1).

CPUs can be counted in three different ways:

sockets

The number of filled CPU sockets (i.e. the number of physical chips).

cores

The number of physical cores (i.e. the number of physical compute
cores).

threads

The number of hyperthreaded cores (i.e. the number of virtual
cores - with
some of them possibly being hyperthreaded)

Normally the number of CPUs is computed as the number of CPU
threads. With
--use-sockets-instead-of-threads or --use-cores-instead-of-threads you can force it to be
computed as
the number of filled sockets or number of cores instead.

Most users will not need these options.

--use-cpus-instead-of-cores is a (misleading) alias for --use-sockets-instead-of-threads
and is kept for backwards
compatibility.

See also: --number-of-threads --number-of-cores --number-of-sockets

-v

Verbose.

Print the job to be run on stdout (standard output). Can be reversed
with --silent.

GNU Parallel

Page 44

Use -v -v to print the wrapping ssh command when running remotely.

See also: -t

--version

-V

Print the version GNU parallel and exit.

--workdir mydir

--wd mydir

Jobs will be run in the dir mydir. The default is the current dir
for the local machine, and the
login dir for remote computers.

Files transferred using --transferfile and --return will be
relative to mydir on remote
computers.

The special mydir value ... will create working dirs under ~/.parallel/tmp/. If --cleanup is given
these dirs will be
removed.

The special mydir value . uses the current working dir. If the
current working dir is beneath
your home dir, the value . is
treated as the relative path to your home dir. This means that if
your
home dir is different on remote computers (e.g. if your login is
different) the relative path
will still be relative to your home dir.

To see the difference try:

 parallel -S server pwd ::: ""
 parallel --wd . -S server pwd ::: ""
 parallel --wd ... -S server pwd ::: ""

mydir can contain GNU parallel's replacement strings.

--wait

Wait for all commands to complete.

Used with --semaphore or --sqlmaster.

See also: man sem

-X

Multiple arguments with context replace. Insert as many arguments as
the command line
length permits. If multiple jobs are being run in
parallel: distribute the arguments evenly among
the jobs. Use -j1
to avoid this.

If {} is not used the arguments will be appended to the line. If {} is used as part of a word (like
pic{}.jpg) then the whole
word will be repeated. If {} is used multiple times each {} will
be
replaced with the arguments.

Normally -X will do the right thing, whereas -m can give
unexpected results if {} is used as part
of a word.

Support for -X with --sshlogin is limited and may fail.

See also: -m

--exit

-x

Exit if the size (see the -s option) is exceeded.

--xargs

Multiple arguments. Insert as many arguments as the command line
length permits.

If {} is not used the arguments will be appended to the
line. If {} is used multiple times each {}
will be replaced
with all the arguments.

GNU Parallel

Page 45

Support for --xargs with --sshlogin is limited and may fail.

See also: -X

EXAMPLES
See: man parallel_examples

SPREADING BLOCKS OF DATA
--round-robin, --pipe-part, --shard, --bin and --group-by are all specialized versions of --pipe.

In the following n is the number of jobslots given by --jobs. A
record starts with --recstart and ends
with --recend. It is
typically a full line. A chunk is a number of full records that is
approximately the
size of a block. A block can contain half records, a
chunk cannot.

--pipe starts one job per chunk. It reads blocks from stdin
(standard input). It finds a record end near
a block border and passes
a chunk to the program.

--pipe-part starts one job per chunk - just like normal --pipe. It first finds record endings near all block
borders in the
file and then starts the jobs. By using --block -1 it will set the
block size to size-of-file/n.
Used this way it will start n
jobs in total.

--round-robin starts n jobs in total. It reads a block and
passes a chunk to whichever job is ready to
read. It does not parse
the content except for identifying where a record ends to make sure it
only
passes full records.

--shard starts n jobs in total. It parses each line to read the
string in the given column. Based on this
string the line is passed to
one of the n jobs. All lines having this string will be given to the
same
jobslot.

--bin works like --shard but the value of the column must be
numeric and is the jobslot number it will
be passed to. If the value
is bigger than n, then n will be subtracted from the value until
the value is
smaller than or equal to n.

--group-by starts one job per chunk. Record borders are not given
by --recend/--recstart. Instead a
record is defined by a group
of lines having the same string in a given column. So the string of a
given
column changes at a chunk border. With --pipe every line is
parsed, with --pipe-part only a few lines
are parsed to find the
chunk border.

--group-by can be combined with --round-robin or --pipe-part.

TIME POSTFIXES
Arguments that give a duration are given in seconds, but can be
expressed as floats postfixed with s,
m, h, or d which
would multiply the float by 1, 60, 60*60, or 60*60*24. Thus these are
equivalent:
100000 and 1d3.5h16.6m4s.

UNIT PREFIX
Many numerical arguments in GNU parallel can be postfixed with K,
M, G, T, P, k, m, g, t, or p which
would multiply the number with
1024, 1048576, 1073741824, 1099511627776, 1125899906842624,
1000,
1000000, 1000000000, 1000000000000, or 1000000000000000, respectively.

You can even give it as a math expression. E.g. 1000000 can be written
as 1M-12*2.024*2k.

QUOTING
GNU parallel is very liberal in quoting. You only need to quote
characters that have special meaning
in shell:

 () $ ` ' " < > ; | \

and depending on context these needs to be quoted, too:

 ~ & # ! ? space * {

GNU Parallel

Page 46

Therefore most people will never need more quoting than putting '\'
in front of the special characters.

Often you can simply put \' around every ':

 perl -ne '/^\S+\s+\S+$/ and print $ARGV,"\n"' file

can be quoted:

 parallel perl -ne \''/^\S+\s+\S+$/ and print $ARGV,"\n"'\' ::: file

However, when you want to use a shell variable you need to quote the
$-sign. Here is an example
using $PARALLEL_SEQ. This variable is set
by GNU parallel itself, so the evaluation of the $ must
be done by
the sub shell started by GNU parallel:

 seq 10 | parallel -N2 echo seq:\$PARALLEL_SEQ arg1:{1} arg2:{2}

If the variable is set before GNU parallel starts you can do this:

 VAR=this_is_set_before_starting
 echo test | parallel echo {} $VAR

Prints: test this_is_set_before_starting

It is a little more tricky if the variable contains more than one space in a row:

 VAR="two spaces between each word"
 echo test | parallel echo {} \'"$VAR"\'

Prints: test two spaces between each word

If the variable should not be evaluated by the shell starting GNU parallel but be evaluated by the sub
shell started by GNU parallel, then you need to quote it:

 echo test | parallel VAR=this_is_set_after_starting \; echo {} \$VAR

Prints: test this_is_set_after_starting

It is a little more tricky if the variable contains space:

 echo test |\
 parallel VAR='"two spaces between each word"' echo {} \'"$VAR"\'

Prints: test two spaces between each word

$$ is the shell variable containing the process id of the shell. This
will print the process id of the shell
running GNU parallel:

 seq 10 | parallel echo $$

And this will print the process ids of the sub shells started by GNU parallel.

 seq 10 | parallel echo \$\$

If the special characters should not be evaluated by the sub shell
then you need to protect it against
evaluation from both the shell
starting GNU parallel and the sub shell:

 echo test | parallel echo {} \\\$VAR

Prints: test $VAR

GNU Parallel

Page 47

GNU parallel can protect against evaluation by the sub shell by
using -q:

 echo test | parallel -q echo {} \$VAR

Prints: test $VAR

This is particularly useful if you have lots of quoting. If you want
to run a perl script like this:

 perl -ne '/^\S+\s+\S+$/ and print $ARGV,"\n"' file

It needs to be quoted like one of these:

 ls | parallel perl -ne '/^\\S+\\s+\\S+\$/\ and\ print\ \$ARGV,\"\\n\"'
 ls | parallel perl -ne \''/^\S+\s+\S+$/ and print $ARGV,"\n"'\'

Notice how spaces, \'s, "'s, and $'s need to be quoted. GNU parallel can do the quoting by using
option -q:

 ls | parallel -q perl -ne '/^\S+\s+\S+$/ and print $ARGV,"\n"'

However, this means you cannot make the sub shell interpret special
characters. For example
because of -q this WILL NOT WORK:

 ls *.gz | parallel -q "zcat {} >{.}"
 ls *.gz | parallel -q "zcat {} | bzip2 >{.}.bz2"

because > and | need to be interpreted by the sub shell.

If you get errors like:

 sh: -c: line 0: syntax error near unexpected token
 sh: Syntax error: Unterminated quoted string
 sh: -c: line 0: unexpected EOF while looking for matching `''
 sh: -c: line 1: syntax error: unexpected end of file
 zsh:1: no matches found:

then you might try using -q.

If you are using bash process substitution like <(cat foo) then
you may try -q and prepending
command with bash -c:

 ls | parallel -q bash -c 'wc -c <(echo {})'

Or for substituting output:

 ls | parallel -q bash -c \
 'tar c {} | tee >(gzip >{}.tar.gz) | bzip2 >{}.tar.bz2'

Conclusion: If this is confusing consider avoiding having to deal
with quoting by writing a small script
or a function (remember to export -f the function) and have GNU parallel call that.

LIST RUNNING JOBS
If you want a list of the jobs currently running you can run:

 killall -USR1 parallel

GNU parallel will then print the currently running jobs on stderr
(standard error).

GNU Parallel

Page 48

COMPLETE RUNNING JOBS BUT DO NOT START NEW JOBS
If you regret starting a lot of jobs you can simply break GNU parallel,
but if you want to make sure
you do not have half-completed jobs you
should send the signal SIGHUP to GNU parallel:

 killall -HUP parallel

This will tell GNU parallel to not start any new jobs, but wait until
the currently running jobs are
finished before exiting.

ENVIRONMENT VARIABLES
$PARALLEL_HOME

Dir where GNU parallel stores config files, semaphores, and caches
information
between invocations. If set to a non-existent dir, the dir
will be created.

Default: $HOME/.parallel.

$PARALLEL_ARGHOSTGROUPS

When using --hostgroups GNU parallel sets this to the hostgroups
of the job.

Remember to quote the $, so it gets evaluated by the correct shell. Or
use --plus
and {agrp}.

$PARALLEL_HOSTGROUPS

When using --hostgroups GNU parallel sets this to the hostgroups
of the sshlogin
that the job is run on.

Remember to quote the $, so it gets evaluated by the correct shell. Or
use --plus
and {hgrp}.

$PARALLEL_JOBSLOT

Set by GNU parallel and can be used in jobs run by GNU parallel.
Remember to
quote the $, so it gets evaluated by the correct shell. Or
use --plus and {slot}.

$PARALLEL_JOBSLOT is the jobslot of the job. It is equal to {%} unless
the job is
being retried. See {%} for details.

$PARALLEL_PID

Set by GNU parallel and can be used in jobs run by GNU parallel.
Remember to
quote the $, so it gets evaluated by the correct shell.

This makes it possible for the jobs to communicate directly to GNU parallel.

Example: If each of the jobs tests a solution and one of jobs finds
the solution the
job can tell GNU parallel not to start more jobs
by: kill -HUP $PARALLEL_PID. This
only works on the local
computer.

$PARALLEL_RSYNC_OPTS

Options to pass on to rsync. Defaults to: -rlDzR.

$PARALLEL_SHELL

Use this shell for the commands run by GNU parallel:

$PARALLEL_SHELL. If undefined use:

The shell that started GNU parallel. If that cannot be determined:

$SHELL. If undefined use:

/bin/sh

$PARALLEL_SSH

GNU parallel defaults to using the ssh command for remote
access. This can be

GNU Parallel

Page 49

overridden with $PARALLEL_SSH, which again can be
overridden with --ssh. It can
also be set on a per server basis
(see --sshlogin).

$PARALLEL_SSHHOST

Set by GNU parallel and can be used in jobs run by GNU parallel.
Remember to
quote the $, so it gets evaluated by the correct shell. Or
use --plus and {host}.

$PARALLEL_SSHHOST is the host part of an sshlogin line. E.g.

 4//usr/bin/specialssh user@host

becomes:

 host

$PARALLEL_SSHLOGIN

Set by GNU parallel and can be used in jobs run by GNU parallel.
Remember to
quote the $, so it gets evaluated by the correct shell. Or
use --plus and {sshlogin}.

The value is the sshlogin line with number of threads removed. E.g.

 4//usr/bin/specialssh user@host

becomes:

 /usr/bin/specialssh user@host

$PARALLEL_SEQ

Set by GNU parallel and can be used in jobs run by GNU parallel.
Remember to
quote the $, so it gets evaluated by the correct shell.

$PARALLEL_SEQ is the sequence number of the job running.

Example:

 seq 10 | parallel -N2 \
 echo seq:'$'PARALLEL_SEQ arg1:{1} arg2:{2}

{#} is a shorthand for $PARALLEL_SEQ.

$PARALLEL_TMUX

Path to tmux. If unset the tmux in $PATH is used.

$TMPDIR

Directory for temporary files.

See also: --tmpdir

$PARALLEL_REMOTE_TMPDIR

Directory for temporary files on remote servers.

See also: --tmpdir

$PARALLEL

The environment variable $PARALLEL will be used as default options for
GNU
parallel. If the variable contains special shell characters
(e.g. $, *, or space) then
these need to be to be escaped with \.

Example:

 cat list | parallel -j1 -k -v ls
 cat list | parallel -j1 -k -v -S"myssh user@server" ls

can be written as:

GNU Parallel

Page 50

 cat list | PARALLEL="-kvj1" parallel ls
 cat list | PARALLEL='-kvj1 -S myssh\ user@server' \
 parallel echo

Notice the \ after 'myssh' is needed because 'myssh' and 'user@server'
must be one
argument.

See also: --profile

DEFAULT PROFILE (CONFIG FILE)
The global configuration file /etc/parallel/config, followed by user
configuration file ~/.parallel/config
(formerly known as .parallelrc)
will be read in turn if they exist. Lines starting with '#' will be
ignored.
The format can follow that of the environment variable
$PARALLEL, but it is often easier to simply put
each option on its own
line.

Options on the command line take precedence, followed by the
environment variable $PARALLEL,
user configuration file
~/.parallel/config, and finally the global configuration file
/etc/parallel/config.

Note that no file that is read for options, nor the environment
variable $PARALLEL, may contain
retired options such as --tollef.

PROFILE FILES
If --profile set, GNU parallel will read the profile from that
file rather than the global or user
configuration files. You can have
multiple --profiles.

Profiles are searched for in ~/.parallel. If the name starts with / it is seen as an absolute path. If the
name starts with ./ it
is seen as a relative path from current dir.

Example: Profile for running a command on every sshlogin in
~/.ssh/sshlogins and prepend the output
with the sshlogin:

 echo --tag -S .. --nonall > ~/.parallel/nonall_profile
 parallel -J nonall_profile uptime

Example: Profile for running every command with -j-1 and nice

 echo -j-1 nice > ~/.parallel/nice_profile
 parallel -J nice_profile bzip2 -9 ::: *

Example: Profile for running a perl script before every command:

 echo "perl -e '\$a=\$\$; print \$a,\" \",'\$PARALLEL_SEQ',\" \";';" \
 > ~/.parallel/pre_perl
 parallel -J pre_perl echo ::: *

Note how the $ and " need to be quoted using \.

Example: Profile for running distributed jobs with nice on the
remote computers:

 echo -S .. nice > ~/.parallel/dist
 parallel -J dist --trc {.}.bz2 bzip2 -9 ::: *

EXIT STATUS
Exit status depends on --halt-on-error if one of these is used:
success=X, success=Y%, fail=Y%.

0 All jobs ran without error. If success=X is used: X jobs ran without
error. If success=Y% is
used: Y% of the jobs ran without error.

1-100

GNU Parallel

Page 51

Some of the jobs failed. The exit status gives the number of failed
jobs. If Y% is used the
exit status is the percentage of jobs that
failed.

101 More than 100 jobs failed.

255 Other error.

-1 (In joblog and SQL table)

Killed by Ctrl-C, timeout, not enough memory or similar.

-2 (In joblog and SQL table)

skip() was called in {= =}.

-1000 (In SQL table)

Job is ready to run (set by --sqlmaster).

-1220 (In SQL table)

Job is taken by worker (set by --sqlworker).

If fail=1 is used, the exit status will be the exit status of the
failing job.

DIFFERENCES BETWEEN GNU Parallel AND ALTERNATIVES
See: man parallel_alternatives

BUGS
Quoting of newline

Because of the way newline is quoted this will not work:

 echo 1,2,3 | parallel -vkd, "echo 'a{}b'"

However, these will all work:

 echo 1,2,3 | parallel -vkd, echo a{}b
 echo 1,2,3 | parallel -vkd, "echo 'a'{}'b'"
 echo 1,2,3 | parallel -vkd, "echo 'a'"{}"'b'"

Speed
Startup

GNU parallel is slow at starting up - around 250 ms the first time
and 150 ms after that.

Job startup

Starting a job on the local machine takes around 3-10 ms. This can be
a big overhead if the job takes
very few ms to run. Often you can
group small jobs together using -X which will make the overhead

less significant. Or you can run multiple GNU parallels as
described in EXAMPLE: Speeding up fast
jobs.

SSH

When using multiple computers GNU parallel opens ssh connections
to them to figure out how many
connections can be used reliably
simultaneously (Namely SSHD's MaxStartups). This test is done for
each
host in serial, so if your --sshloginfile contains many hosts it may
be slow.

If your jobs are short you may see that there are fewer jobs running
on the remote systems than
expected. This is due to time spent logging
in and out. -M may help here.

Disk access

A single disk can normally read data faster if it reads one file at a
time instead of reading a lot of files
in parallel, as this will avoid
disk seeks. However, newer disk systems with multiple drives can read

GNU Parallel

Page 52

faster if reading from multiple files in parallel.

If the jobs are of the form read-all-compute-all-write-all, so
everything is read before anything is
written, it may be faster to
force only one disk access at the time:

 sem --id diskio cat file | compute | sem --id diskio cat > file

If the jobs are of the form read-compute-write, so writing starts
before all reading is done, it may be
faster to force only one reader
and writer at the time:

 sem --id read cat file | compute | sem --id write cat > file

If the jobs are of the form read-compute-read-compute, it may be
faster to run more jobs in parallel
than the system has CPUs, as some
of the jobs will be stuck waiting for disk access.

--nice limits command length
The current implementation of --nice is too pessimistic in the max
allowed command length. It only
uses a little more than half of what
it could. This affects -X and -m. If this becomes a real problem for

you, file a bug-report.

Aliases and functions do not work
If you get:

 Can't exec "command": No such file or directory

or:

 open3: exec of by command failed

or:

 /bin/bash: command: command not found

it may be because command is not known, but it could also be
because command is an alias or a
function. If it is a function you
need to export -f the function first or use env_parallel. An
alias will
only work if you use env_parallel.

Database with MySQL fails randomly
The --sql* options may fail randomly with MySQL. This problem does
not exist with PostgreSQL.

REPORTING BUGS
Report bugs to <parallel@gnu.org> or
https://savannah.gnu.org/bugs/?func=additem&group=parallel

When you write your report, please keep in mind, that you must give
the reader enough information to
be able to run exactly what you
run. So you need to include all data and programs that you use to

show the problem.

See a perfect bug report on
https://lists.gnu.org/archive/html/bug-parallel/2015-01/msg00000.html

Your bug report should always include:

The error message you get (if any). If the error message is not from
GNU parallel you need to
show why you think GNU parallel caused
this.

The complete output of parallel --version. If you are not running
the latest released version (see
https://ftp.gnu.org/gnu/parallel/) you
should specify why you believe the problem is not fixed in that
version.

A minimal, complete, and verifiable example (See description on

GNU Parallel

Page 53

https://stackoverflow.com/help/mcve).

It should be a complete example that others can run which shows the
problem including all files
needed to run the example. This should
preferably be small and simple, so try to remove as many
options as
possible.

A combination of yes, seq, cat, echo, wc, and sleep
can reproduce most errors.

If your example requires large files, see if you can make them with
something like seq 100000000
> bigfile or yes | head -n
1000000000 > file. If you need multiple columns: paste <(seq
1000)
<(seq 1000 1999)

If your example requires remote execution, see if you can use localhost - maybe using another
login.

If you have access to a different system (maybe a VirtualBox on your
own machine), test if your
MCVE shows the problem on that system. If
it does not, read below.

The output of your example. If your problem is not easily reproduced
by others, the output might
help them figure out the problem.

Whether you have watched the intro videos

(https://www.youtube.com/playlist?list=PL284C9FF2488BC6D1), walked
through the tutorial (man
parallel_tutorial), and read the examples
(man parallel_examples).

Bug dependent on environment
If you suspect the error is dependent on your environment or
distribution, please see if you can
reproduce the error on one of
these VirtualBox images:

https://sourceforge.net/projects/virtualboximage/files/
https://www.osboxes.org/virtualbox-images/

Specifying the name of your distribution is not enough as you may have
installed software that is not
in the VirtualBox images.

If you cannot reproduce the error on any of the VirtualBox images
above, see if you can build a
VirtualBox image on which you can
reproduce the error. If not you should assume the debugging will
be
done through you. That will put a lot more burden on you and it is
extra important you give any
information that help. In general the
problem will be fixed faster and with much less work for you if you
can reproduce the error on a VirtualBox - even if you have to build a
VirtualBox image.

In summary
Your report must include:

parallel --version

output + error message

full example including all files

VirtualBox image, if you cannot reproduce it on other systems

AUTHOR
When using GNU parallel for a publication please cite:

O. Tange (2011): GNU Parallel - The Command-Line Power Tool, ;login:
The USENIX Magazine,
February 2011:42-47.

This helps funding further development; and it won't cost you a cent.
If you pay 10000 EUR you
should feel free to use GNU Parallel without citing.

Copyright (C) 2007-10-18 Ole Tange, http://ole.tange.dk

Copyright (C) 2008-2010 Ole Tange, http://ole.tange.dk

Copyright (C) 2010-2024 Ole Tange, http://ole.tange.dk and Free
Software Foundation, Inc.

GNU Parallel

Page 54

Parts of the manual concerning xargs compatibility is inspired by
the manual of xargs from GNU
findutils 4.4.2.

LICENSE
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU
General Public License as published by
the Free Software Foundation; either version 3 of the
License, or
at your option any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without
even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program. If not,
see <https://www.gnu.org/licenses/>.

Documentation license I
Permission is granted to copy, distribute and/or modify this
documentation under the terms of the
GNU Free Documentation License,
Version 1.3 or any later version published by the Free Software

Foundation; with no Invariant Sections, with no Front-Cover Texts, and
with no Back-Cover Texts. A
copy of the license is included in the
file LICENSES/GFDL-1.3-or-later.txt.

Documentation license II
You are free:

to Share

to copy, distribute and transmit the work

to Remix

to adapt the work

Under the following conditions:

Attribution

You must attribute the work in the manner specified by the author or
licensor (but not
in any way that suggests that they endorse you or
your use of the work).

Share Alike

If you alter, transform, or build upon this work, you may distribute
the resulting work
only under the same, similar or a compatible
license.

With the understanding that:

Waiver

Any of the above conditions can be waived if you get permission from
the copyright
holder.

Public Domain

Where the work or any of its elements is in the public domain under
applicable law,
that status is in no way affected by the license.

Other Rights

In no way are any of the following rights affected by the license:

Your fair dealing or fair use rights, or other applicable
copyright exceptions and
limitations;

The author's moral rights;

Rights other persons may have either in the work itself or in
how the work is
used, such as publicity or privacy rights.

GNU Parallel

Page 55

Notice

For any reuse or distribution, you must make clear to others the
license terms of this
work.

A copy of the full license is included in the file as
LICENCES/CC-BY-SA-4.0.txt

DEPENDENCIES
GNU parallel uses Perl, and the Perl modules Getopt::Long,
IPC::Open3, Symbol, IO::File, POSIX,
and File::Temp.

For --csv it uses the Perl module Text::CSV.

For remote usage it uses rsync with ssh.

SEE ALSO
parallel_tutorial(1), env_parallel(1), parset(1), parsort(1), parallel_alternatives(1),
parallel_design(7), niceload(1), sql(1), ssh(1), ssh-agent(1), sshpass(1), ssh-copy-id(1), rsync
(1)

